《一元二次方程》复习课件

合集下载

一元二次方程复习课件

一元二次方程复习课件
32 x X 2
32 x X 2
X 32-2X
一元二次方程解法的复习
例6、有一堆砖能砌12米长的围墙,现要围一个20
平方米的鸡场,鸡场的一边靠墙(墙长7米),其余三
边用砖砌成,墙对面开一个1米宽的门,求鸡场的长
和宽各是多少米?
解:设鸡场的宽为x米,则长为(12+1-2x) =(13-2x)米,列方程得: X(13-2x)=20 解得:x1=4,x2=2.5 经检验:两根都符合题意 ∴13-2x=5或8 (舍去)
(4):主要用到的数学思想方法
分类讨论
知识聚焦
一元二次方程根的判别式
一元二次方程 ax 2
bx c 0a 0根的判式是:
b 4ac
2
一元二次方程
判别式的情况
ax bx c 0a 0
2
根的情况
定理与逆定理
b 2 4ac 0 两个不相等实根 b 2 4ac 0 两个相等实根 b 2 4ac 0 无实根(无解)
一:回顾与总结
在解答下列各小题过程中,回顾用到了哪些知识点?
① 只含有一个未知数
1:下列方程中,属于一元二次方程的是( c ) 3 (1):一元二次方程的三要素 ② 未知数的最高次数是2次 2 A : 2 x y 1 0 B : x 2x 1 0 ③ 两边是整式
1 C : x 2 x 3 0 D : 2 3x 2 0 3x
当方程中有括号时,思考方法是:
1:应先用整体思想考虑有没有简单方法; 2:若看不出合适的方法时,则把它去括号并整理 为一般形式再选取合理的方法。
变式1: 2(x-2)2+5(2-x)-3=0 2-x 变式2:

一元二次方程复习课件

一元二次方程复习课件

初三数学第21章一元二次方程复习讲义一、一元二次方程的定义方程中只含有一个未知数,•并且未知数的最高次数是2,•这样的整式的方程叫做一元二次方程,通常可写成如下的一般形式:ax 2+bx+c=0(a ≠0)其中二次项系数是a ,一次项系数是b ,常数项是c .例1.求方程2x 2+3=22x-4的二次项系数,一次项系数及常数项的积.例2.若关于x 的方程(m+3)27m x -+(m-5)x+5=0是一元二次方程,试求m 的值,•并计算这个方程的各项系数之和.例3.若关于x 的方程(k 2-4)x 2+1k -x+5=0是一元二次方程,求k 的取值范围.例4.若α是方程x 2-5x+1=0的一个根,求α2+21α的值.1.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( ) A .4 B .0或2 C .1 D .1-2.一个三角形的两边长为3和6,第三边的边长是方程(2)(4)0x x --=的根,则这个三角形的周长是( ) A.11 B.11或13 C.13 D.11和13 3.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.(部分参考数据:2321024=,2522704=,2482304=)二、一元二次方程的一般解法 基本方法有:(1)配方法; (2)公式法; (3) 因式分解法。

联系:①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次. ②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程. 区别:①配方法要先配方,再开方求根. ②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0.例1、用三种方法解下列一元二次方程1、x 2 +8x+12=02、3x 23x-6=0用适当的方法解一元二次方程1、x2-2x-2=02、2x23、x(2x-3)=(3x+2)(2x-3)4、4x2-4x+1=x2+6x+95、(x-1)2-2(x2-1)=0注意:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法三、判定一元二次方程的根的情况?一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac,1.△=b2-4ac>0↔一元二次方程有两个不相等的实根;2.△=b2-4ac=0↔一元二次方程有两个相等的实数;3.△=b2-4ac<0↔一元二次方程没有实根.例1、不解方程判断下列方程根的情况1、x2-(2、x2-2kx+(2k-1)=0例2、关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a 的值为例3、已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,•则△ABC为例5、已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根求4)2(222-+-baab的值例6、(2006.广东)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.四、一元二次方程根与系数的关系一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x 1x2x1 + x 2= -bax 1 x2=ca例1.方程的x2-2x-1=0的两个实数根分别为x1,x2, 则(x1 -1)(x 2-1)=例2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-ba,x1·x2=ca;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.五、一元二次方程与实际问题的应用步骤:①审②设③列④解⑤答应用题常见的几种类型:1. 增长率问题 [增长率公式:b x a =2)1( ]例1:某工厂一月份产值为50万元,采用先进技术后,第一季度共获产值182万元,二、三月份平均每月增长的百分率是多少?例2:某种产品的成本在两年内从16元降至9元,求平均每年降低的百分率。

21章一元二次方程复习课件(共46张)

21章一元二次方程复习课件(共46张)
当y=1时,x2-1=1,∴x2=2,x=± 2 .当y=4时,
x2-1=4,∴x2=5,x=± 5 . ∴原方程的解为
x1= 2 ,x2=- 2 ,x3= 5 ,x4=- 5 .
解答问题: (2)解方程(x2-3 )2 - 3(x2-3)=4
第21页,共46页。
选择适当(shìdàng)的方法解下列方程:
第27页,共46页。
三、一元二次方程的应用 。 (yìngyòng)
1、数字问题
2、变化率问题、疾病传播问题 3、利润问题
4、面积问题
5、几何问题
注意: ①设要有单位 ②解出方程后检验根的合理性
第28页,共46页。
两个(liǎnɡ ɡè)数的差等于4,积等于45,求这两个(liǎnɡ ɡè)数.
4
第19页,共46页。
10.(2014•株洲)已知关于(guānyú)x的一元二次方程 (a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为 △ABC
三边的长. (1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理 由; (2)如果方程有两个相等的实数根,试判断△ABC的形状,并 说明理由;
x2 3x 2
D、若 x 2 的值为零,则x 2
5.一元二次方程x2﹣x﹣2=0的解是________.
6(2014•广西贺州)已知关于x的方程x2+(1﹣m)x+ =0 m2
有两个不相等的实数根,则m的最大整数值是____.
4
第18页,共46页。
7、写出一个一元二次方程,使它的两个根分别为1,-2, 则这个方程可以是______________.
第16页,共46页。
练习 检测 (liànxí)

(最新整理)一元二次方程复习课件

(最新整理)一元二次方程复习课件

-x=1或 7x=7 x1 = -1, x2 =1
=64 -43(-2) =88
法二(3x-4)²-(4x-3)²=0 X= 8 88
(3x-4+4x-3)(3x-4x+3)=0
6
(7x-7)(-x-1)=0
x14322,x24322
7x-7=0或-x-1=0
x1 = -1, x2 =1
2021/7/26
④解方程,
⑤答。 2021/7/26
29
• 如图所示,用一块长80cm,宽 60cm的薄钢片,在四个角上截去四 个相同的小正方形,然后做成底面 积为1500cm2的没有盖的长方体盒 子.求截去的小正方形的边长
2021/7/26
30
解:设截去的小正方形的边长xcm.
则长和宽分别为(80-2x)cm、 (60-2x)cm
2021/7/26
6
注意:一元二次方程的
一、一元二次方程的概念 引例:判断下列方程是不是一元二次方程
三个要素
(1)4x- 1
2
x²+
3 =0

(3)ax²+bx+c=0 不一定 巩固提高:
(2)3x²- y -1=0 不是
(4)x
+
1 x
=0
不是
1、已知关于x的方程(m²-1)x²+(m-1)x-2m+1=0,当m ≠±1
∴ x12+x22 = (x1+x2)2 - 2x1.x2 (2)=x—1(1 +x—-1232—=)—x2x-1—1+2.x(—x22—-—21=)—=——2312143— =3
2021/7/26
38
1、已知方程3 x2-19x+m=0的一个根是1,它的另

一元二次方程复习课件

一元二次方程复习课件
通过复习.掌握一元二次方程的概念.并能够熟 练的解一元二次方程.并且利用一元二次方程解决 实际问题.
一般形式 ax2+bx+c=0 (a≠0) ( x a)2 b b 0 直接开平方法 程一 元 二 次 方 配方法 解法
b b x bx x c c 0 2 2
一元二次方程的根
能使方程左右两边相等的未知数的值叫做方程的解. 一元二次方程的解也叫做一元二次方程的根. -7 1.已知x=-1是方程x²ax+6=0的一个根.则a=___, 6 另一个根为__.
2.若关于X的一元二次方程 a 1x x a 1 0 的一 1 个根为0.则a的值为( B ) A.1 B.-1 C. 1或 -1 D. 4 3、一元二次方程ax² +bx+c =0, 若x=1是它的一个根,则a+b+c= 0 . 若a-b+c=0,则方程必有一根为 -1 .
2
(5) x 1 3
2
(6) y 2 0
y 4
× (√ ) ( ) × ( ) × ( ) × (√ )
( )
2 2 ≠2 时,方程 kx 3x 2 x 1 是关于x 2.当k 的一元二次方程.
3.方程2x(x-1)=18化成一般形式为 x2-x-9=0 其中常 x2 .一次项为 -x .二次项系数 数项为 -9 .二次项为 为 1 .一次项系数为 -1 .
8 是 4 , 则 t 的值是 _______ . 3 2
8. 已知: (a2+b2)(a2+b2-3)=10, 求 a2+b2 的值。 分析 : 设x a 2 b 2 , 则原方程化为: x 2 3 x 10 0

初三数学中考专题复习 一元二次方程 课件(共22张PPT)

初三数学中考专题复习    一元二次方程  课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,

一元二次方程的解法复习课 ppt课件

一元二次方程的解法复习课 ppt课件

用配方法解一元二次方程: 2x2-9x+8=0
解:x29x40.
x29ຫໍສະໝຸດ 2 x4.x29x292924.
x
2 9
2
4 17
.
4
4 16
x 9 17 . 44
1.一般式后把二次项系数化为1, 移常数项到方程的右边 2.配方:方程两边都加上一次项 系数绝对值一半的平方;
3.开方:两边开平方;
x 9 17 . 44
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
1、(3x -2)²-49=0
解:移项,得:
2 3
x2 6
2、平方差公式与完全平方公式
形如 x2 a2 0运用平方差公式得:
(xa)(xa)0
xa0 或 xa0
x1 a x2 a
形如 x22axa20的式子运用完全平方公式得:
(xa)2 0 x1 x2 a 或 x1 x2 a
例1 解下列方程
(1)16(2x)290
解:原方程变形为: (2 x)2 9 16
2、实质:如果两个因式的积等于0,那么这两个因式中至少 有一个等于0;反过来,如果两个因式中有一个等于0,那么它们的 积就等于0.
3、一般步骤:
(1)将方程右边的各项移到方程的左边,使方程右边为0; (2)将方程左边分解为两个一次因式的乘积形式: (3)令每个因式分别为零,得到两个一元一次方程: (4)解这两个一元一次方程,它们的解就是原方程的解。

一元二次方程的复习课件

一元二次方程的复习课件

是使方程成立的未知数值。
解方程
是找到使方程成立的未知数值。
一元二次方程的标准形式及其含义
1 标准形式
一元二次方程的标准形式为ax2 + bx + c = 0,其中a、b、c为实数且a≠0。
2 含义
方程中的a决定了抛物线的开口方向,b决定了抛物线的位置,c决定了抛物线与坐标轴的 交点。
解一元二次方程的一般步骤
一元二次程的应用:空气动力 学方程
在空气动力学中,一元二次方程被广泛应用于描述飞机的起飞距离、爬升率 和滑行的相关问题。
一元二次方程的应用:金融问题
金融领域中,一元二次方程可以用于解决投资回报率、利润最大化、财务规划等问题,帮助我们做出更明智的 金融决策。
一元二次方程可以通过完全平方公式(a ± b)2 = a2 ± 2ab + b2来求解。
一元二次方程的求解方法:图 像法
利用抛物线的图像来求解一元二次方程,可以通过观察抛物线与坐标轴的交 点和抛物线的开口方向得到解。
一元二次方程的根的性质
一元二次方程的根有以下性质: • 当判别式>0时,方程有两个不相等的实根。 • 当判别式=0时,方程有两个相等的实根。 • 当判别式<0时,方程没有实根。
一元二次方程的复习ppt 课件
本ppt课件将帮助你复习一元二次方程的基本概念和解法,学会如何应用于不 同领域中。
引言:什么是一元二次方程
一元二次方程是由一个未知数的平方项、一次项和常数项组成的二次方程。 它的一般形式为ax2 + bx + c = 0。
方程的定义
方程
是一个等式,其中含有一个或多个未知数。
步骤1
将方程化为标准形式。
步骤2

24.1 一元二次方程课件(共20张PPT)

24.1 一元二次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义

如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.

一元二次方程的综合复习PPT

一元二次方程的综合复习PPT
次项、一次项和常数项,a, b分别称为二次项系数 和一次项系数.
明辨是非
判断下列方程是不是一元二次方程,若不是一元二 次方程,请说明理由?
1、(x-1)2=4
√ 2、x2-2x=8

1
3、x2+ =1
× 4、x2=y+1
×
x
5、x3-2x2=1 × 6、ax2 + bx + c=1 ×
填一填
1、若 m 2 x 2 m 2 x 2 0 是关于x的一元二次
解:(1)设养鸡场的靠墙的一边长为xm,
是关于x的一元二次方程,则m的值为 -x=1或 7x=7
一元二次方程的解法 列方程解应用题的一般步骤是:
2

一元二次方程
根的判式是:
解得:x1=8,x2=-10(不合题意舍去)
所以,3原.方若程有x两个=不2相是等的方实根。程x2+ax-8=0的解,则a= 2 ;
开启 智慧
w2.一次会议上,每两个参加会议的人都互相握了一次 手,有人统计一共握了66次手.这次会议到会的人数是 多少?
1x2 3x0 2(2x1)290
3x2 4x1 4x23x10
1x2 3x0
因式分解法:
1.用因式分解法的条件是:方程左边能 够分解为两个因式的积,而右边等于0的 方程;
2.形如:ax2+bx=o(即常数C=0).
因式分解法的一 般步骤:
一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解;
二.一元二次方程的解法
1.直接开平方法
2. 配方法 3. 公式法
x= -b b2 4ac(b2 4ac 0) 2a

一元二次方程 复习课件

一元二次方程 复习课件

1.变形:化已知
b2 4ac 42 4 5 (12) 256 0.
方程为一般形式; 2.确定系数:
x b b2 4ac 2a
4 256 4 16 .
25
10
用a,b,c写出各 项系数;
3.计算: b24ac的值;
一、用配方法解下列方程 2x²-12x+5=0
二、用配方解一元二次方程的步骤是什么?
知识点1:配方
1.已知x2+16x+k是完全平方式,则常数k=__6_4_;若x2-2kx+ 9是完全平方式,则k=_____±__3____.
2.用适当的数填空: (1)x2-4x+__4__=(x-__2__)2; (2)m2+__7__m+449=(m+__72__)2; (3)x2-12x+_1_16__=(x-__14__)2.
根据平方根的定义,要特别注意: 由于负数没有平方根,
所以,当p<0时,原方程无解。
(1)形如的 x2 p p 0 方程
的解为
x p
(2)形如的 mx n2 p p 0 方
程的解为
pn x
m
因式分解法 (十字相乘法)
因式分解法
一般地,对于一元二次方程 ax2+bx+c=0(a≠0)
[解析] 每千克盈利与售出千克数的乘积=每天盈利6000元, 若每千克水果应涨价x元,则可根据题意列出方程求解。
解:设每千克水果应涨价 x 元,依题意,得(500-20x)(10 +x)=6000。整理,得 x2-15x+50=0。解这个方程,得 x1=5, x2=10。要使顾客得到实惠,应取 x=5。
实际情况. 6.答——完整地写出答案,注意单位.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二环节
(m-1) x
m 2 1
基础知识重现
1、当m =-1 时,关于x的方程 +5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0, 当m ≠±1 时,是一元二次方程;
当m =-1 时,是一元一次方程. 3、将一元二次方程x2-2x-2=0化成(x+a)2=b的形式 2=3 (x - 1) 是 ;此方程的根是 x 1 3 .
第二环节
基础知识重现
5、解下列一元二次方程
(1) 4x2-16x+15=0 (用配方法解) (2) 9-x2=2x2-6x(用分解因式法解) (3) (x+1)(2-x)=1 (用公式法解)
第四环节:巩固提高
3、王老师假期中去参加高中同学聚会,聚会时,所有 到会的同学都互相握了一次手,王老师发现共握手435 次,则参加聚会的同学共有多少人?设参加聚会的同 x( x 1) 435 2 学共有x人,则根据题意,可列方程: . 4、初三、三班同学在临近毕业时,每一个同学都将自 己的照片向全班其他同学各送一张以表示纪念,全班 共送了1640张照片,如果设全班有x名学生,则根据题 意,可列方程( B ) A.x(x+1)=1640 C.2x(x+1)=1640
解:设垂直于墙的一边的篱笆长为xm (1) x (40-2x) =180 解得x1=10+ 10 , x2=10- 10 (不合题意,舍去) ∴花圃的面积能达到180m2,其中垂直于墙的一边的篱笆长为 10+ 10 米. (2) x (40-2x) =200 解得x1= x2=10 ∴花圃的面积能达到200m2,其中垂直于墙的一边的篱笆长为 10米. (3) x (40-2x) =250 方程无解 ∴花圃的面积达不到250m2. (4) x (40-2x)=-2(x-10)2+200≥200 ∴花圃的最大面积为200m2, 垂直于墙的一边的篱笆长为10米. (5)x (40-3x)=-3(x- 20)2+400≥ 400 3 4003 m2,3 垂直于墙的一边的篱笆长为 (6)∴花圃的最大面积为 20 3 米. 3
第二章 一元二次方程
回顾与思考
第一环节
课前准备----构建知识结构
1、定义: 可化为ax2+bx+c=0(a≠0)的整式方程 ⑴ 直接开平方法 ⑵ 配方法 ㈠ 问 题 2、解法: ⑶ 公式法 ax2+bx+c=0 情 境 --(a≠0,b2-4ac≥0)的解为: —元二 2 b b 4ac 次方程 x 2a ⑷ 分解因式法 3、应用 : 其关键是能根据题意找出等量关系. ㈡本章的重点:一元二次方程的解法和应用. ㈢本章的难点:应用一元二次方程解决实际问题的方法.
进这批衬衫的资金不多于1500元,则该种衬衫
该如何定价?此时该进货多少?
解:设涨价x元时,月利润可达1350元,则此时应进货 (200-10x)支.根据题意,得0 解得x1=11,x2=5
当x=11时,200-10x=200-10×11=90;
当x=5时,200-10x=200-10×5=150
B. x(x-1)=1640
D.x(x-1)=2×1640
第三环节:情境中合作学习
2、新新商场以16元/件的价格购进一批衬衫,
根据市场调查,如果以20元/件的价格销售,
每月可以售出200件;而这种衬衫的售价每上
涨1元就少卖10件.现在商场经理希望销售该种
衬衫月利润为1350元,而且,经理希望用于购
答:当每支钢笔涨价11元或5元时,月利润可达1350元.
当每支钢笔涨价11元时,应进货90支;当每支钢笔涨价
5元时,应进货150支.
第三环节:情境中合作学习
5、新苑小区的物业管理部门为了美化环境,在小区靠墙 的一侧设计了一处长方形花圃(墙长25m),三边外围用篱 笆围起,栽上蝴蝶花,共用篱笆40m, A D (1) 花圃的面积能达到180m2吗? (2) 花圃的面积能达到200m2吗? (3) 花圃的面积能达到250m2吗? B C 如果能,请你给出设计方案;如果不能,请说明理由. (4) 你能根据所学过的知识求出花圃的最大面积吗?此 时,篱笆该怎样围? (5) 如果想在花圃中栽种两种不同的蝴蝶花,需要在花 圃中再加一道篱笆,若不想改变篱笆的总长度,那么, 此时花圃的最大面积会是多少,篱笆该怎样围?
相关文档
最新文档