经典--初中数学三角形专题训练及例题解析复习过程

合集下载

(人教版)初中数学《三角形》经典例题题目

(人教版)初中数学《三角形》经典例题题目

(人教版)初中数学《三角形》经典例题题目初中数学《三角形》经典例题三角形是初中数学中的重要概念,它在几何学中占据着重要地位。

学习三角形的概念和性质对于我们理解几何学和解题都至关重要。

本文将介绍一些人教版初中数学教材中的经典例题,帮助读者更好地掌握三角形的知识。

例题一:已知△ABC, ∠ABC = 90°,AC=6cm,BC=8cm,求AB的长度。

解析:根据直角三角形的性质,我们可以利用勾股定理来求解这道题。

根据勾股定理,直角三角形两直角边的平方和等于斜边的平方。

因此,我们可以得到公式:AB²=AC²+BC²。

代入已知数据,可得AB²=6²+8²=36+64=100。

所以AB=√100=10。

因此,AB的长度为10cm。

例题二:已知△ABC, ∠ACB = 90°,AB=5cm,AC=3cm,求BC的长度。

解析:这是一道直角三角形的题目,我们同样可以利用勾股定理来求解。

根据勾股定理,可以得到公式:BC²=AB²-AC²。

代入已知数据,可得BC²=5²-3²=25-9=16。

所以BC=√16=4。

因此,BC的长度为4cm。

例题三:已知△ABC, AB=AC,∠ABC=50°,求∠ACB 的度数。

解析:根据三角形的性质,我们知道三角形的内角和为180°。

已知AB=AC,因此△ABC是一个等腰三角形,所以∠BAC=∠BCA。

我们可以得到公式:∠BAC+50°+∠BCA=180°。

由此可得∠BCA=180°-50°-∠BAC。

又因为∠BAC=∠BCA,所以∠BCA=180°-50°-∠BAC=130°-∠BAC。

因此,∠ACB 的度数为130°-∠BAC。

例题四:已知△ABC, AB=AC,∠ABC=80°,求∠ACB 和∠BAC 的度数。

初二数学:三角形知识点总结及压轴题练习(附答案解析)

初二数学:三角形知识点总结及压轴题练习(附答案解析)

初二三角形所有知识点总结和常考题知识点:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.常考题:一.选择题(共13小题)1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm2.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°3.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270° C.180° D.135°4.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°7.如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120° D.100°8.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米9.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°10.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.5411.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条 D.内角和增加180°12.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形13.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16二.填空题(共13小题)14.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.15.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.若一个多边形内角和等于1260°,则该多边形边数是.19.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.20.一个多边形的内角和比外角和的3倍多180°,则它的边数是.21.若正多边形的一个内角等于140°,则这个正多边形的边数是.22.在△ABC中,三个内角∠A、∠B、∠C满足∠B﹣∠A=∠C﹣∠B,则∠B=度.23.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度.24.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.25.用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.26.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.三.解答题(共14小题)27.如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.28.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.29.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.30.如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.31.如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.32.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.33.如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD:∠E=1:3,求∠E的度数.34.(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.△ABC中,∠A=30°,则∠ABC+∠ACB=,∠XBC+∠XCB=.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ 仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.35.已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON 上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是;②当∠BAD=∠ABD时,x=;当∠BAD=∠BDA时,x=.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.36.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.37.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E.(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化说明你的结论的正确性.(3)把图(2)中的点C向上移到BD上时(1)如图(3)所示,五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有无变化说明你的结论的正确性.38.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.39.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数.40.将纸片△ABC沿DE折叠使点A落在A′处的位置.(1)如果A′落在四边形BCDE的内部(如图1),∠A′与∠1+∠2之间存在怎样的数量关系?并说明理由.(2)如果A′落在四边形BCDE的BE边上,这时图1中的∠1变为0°角,则∠A′与∠2之间的关系是.(3)如果A′落在四边形BCDE的外部(如图2),这时∠A′与∠1、∠2之间又存在怎样的数量关系?并说明理由.初二三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共13小题)1.(2008•福州)已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.2.(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130° D.180°【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2=150°﹣∠3,∵∠3=50°,∴∠1+∠2=150°﹣50°=100°.故选:B.【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.3.(2010•西藏)已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270° C.180° D.135°【分析】利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和解答.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=2∠C+(∠3+∠4),∵∠3+∠4=180°﹣∠C=90°,∴∠1+∠2=2×90°+90°=270°.故选:B.【点评】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.4.(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.5.(2014•达州)如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°﹣αB.90°+αC.D.360°﹣α【分析】先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.【解答】解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.【点评】本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.6.(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D ﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.7.(2004•陕西)如图,在锐角△ABC中,CD,BE分别是AB,AC边上的高,且CD,BE相交于一点P,若∠A=50°,则∠BPC=()A.150°B.130°C.120° D.100°【分析】根据垂直的定义和四边形的内角和是360°求得.【解答】解:∵BE⊥AC,CD⊥AB,∴∠ADC=∠AEB=90°,∴∠BPC=∠DPE=180°﹣50°=130°.故选B.【点评】主要考查了垂直的定义以及四边形内角和是360度.注意∠BPC与∠DPE 互为对顶角.8.(2009•黑河)如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离不可能是()A.20米B.15米C.10米D.5米【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围,看哪个数值不在范围即可.【解答】解:∵15﹣10<AB<10+15,∴5<AB<25.∴所以不可能是5米.故选:D.【点评】已知三角形的两边,则第三边的范围是:>已知的两边的差,而<两边的和.9.(2014•临沂)将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°【分析】利用多边形的内角和公式即可求出答案.【解答】解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n﹣1)•180°,因而(n+1)边形的内角和比n边形的内角和大(n﹣1)•180°﹣(n﹣2)•180=180°.故选:C.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容.10.(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.54【分析】设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.【解答】解:设这个内角度数为x°,边数为n,∴(n﹣2)×180﹣x=1510,180n=1870+x=1800+(70+x),∵n为正整数,∴n=11,∴=44,故选:C.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.11.(2011春•滨城区期末)一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条 D.内角和增加180°【分析】利用多边形的内角和定理和外角和特征即可解决问题.【解答】解:因为n边形的内角和是(n﹣2)•180°,当边数增加一条就变成n+1,则内角和是(n﹣1)•180°,内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°;根据多边形的外角和特征,边数变化外角和不变.故选:D.【点评】本题主要考查了多边形的内角和定理与外角和特征.先设这是一个n 边形是解题的关键.12.(2012•滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【分析】已知三角形三个内角的度数之比,根据三角形内角和定理,可求得三角的度数,由此判断三角形的类型.【解答】解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选:D.【点评】本题考查三角形的分类,这个三角形最大角为180°×>90°.本题也可以利用方程思想来解答,即2x+3x+7x=180,解得x=15,所以最大角为7×15°=105°.13.(2014•毕节市)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【解答】解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.【点评】本题考查了多边形内角与外角,多边形的内角和公式是解题关键.二.填空题(共13小题)14.(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.15.(2006•镇江)如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.16.(2014•随州)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.17.(2013•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为30°.【分析】根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.【解答】解:由题意得:α=2β,α=100°,则β=50°,180°﹣100°﹣50°=30°,故答案为:30°.【点评】此题主要考查了新定义以及三角形的内角和定理,根据已知得出β的度数是解题关键.18.(2013•遂宁)若一个多边形内角和等于1260°,则该多边形边数是9.【分析】根据多边形内角和定理及其公式,即可解答;【解答】解:∵一个多边形内角和等于1260°,∴(n﹣2)×180°=1260°,解得,n=9.故答案为9.【点评】本题考查了多边形的内角定理及其公式,关键是记住多边形内角和的计算公式.19.(2015•北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【分析】首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.【解答】解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(2014•自贡)一个多边形的内角和比外角和的3倍多180°,则它的边数是9.【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是3×360°+180°.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)•180°=3×360°+180°,解得:n=9.则这个多边形的边数是9.故答案为:9.【点评】考查了多边形内角与外角,此题只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.21.(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是 9 .【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.【点评】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.22.(2013•黔东南州)在△ABC 中,三个内角∠A 、∠B 、∠C 满足∠B ﹣∠A=∠C ﹣∠B ,则∠B= 60 度.【分析】先整理得到∠A +∠C=2∠B ,再利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵∠B ﹣∠A=∠C ﹣∠B ,∴∠A +∠C=2∠B ,又∵∠A +∠C +∠B=180°,∴3∠B=180°,∴∠B=60°.故答案为:60.【点评】本题考查了三角形的内角和定理,是基础题,求出∠A +∠C=2∠B 是解题的关键.23.(2013•达州)如图,在△ABC 中,∠A=m°,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD的平分线交于点A 2013,则∠A 2013= 度.【分析】利用角平分线的性质、三角形外角性质,易证∠A 1=∠A ,进而可求∠A 1,由于∠A 1=∠A ,∠A 2=∠A 1=∠A ,…,以此类推可知∠A 2013=∠A=°. 【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,即∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∴∠A1=m°,∵∠A1=∠A,∠A2=∠A1=∠A,…以此类推∠A2013=∠A=°.故答案为:.【点评】本题考查了角平分线性质、三角形外角性质,解题的关键是推导出∠A1=∠A,并能找出规律.24.(2012春•金台区期末)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=74度.【分析】利用三角形的内角和外角之间的关系计算.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.【点评】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的一个外角>任何一个和它不相邻的内角.注意:垂直和直角总是联系在一起.25.(2006•临安市)用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC= 36度.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.【点评】本题主要考查了多边形的内角和定理和等腰三角形的性质.n边形的内角和为:180°(n﹣2).26.(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.三.解答题(共14小题)27.(2013春•临清市期末)如图,直线DE交△ABC的边AB、AC于D、E,交BC延长线于F,若∠B=67°,∠ACB=74°,∠AED=48°,求∠BDF的度数.【分析】先根据三角形的内角和定理求出∠A的度数,再根据三角形外角的性质求出∠BDF的度数.【解答】解:因为∠A+∠B+∠ACB=180°,所以∠A=180°﹣67°﹣74°=39°,所以∠BDF=∠A+∠AED=39°+48°=87°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是外角和内角的关系.28.(2013•湖州校级模拟)如图,已知D为△ABC边BC延长线上一点,DF⊥AB 于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵∠AFE=90°,∴∠AEF=90°﹣∠A=90°﹣35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°﹣∠CED﹣∠D=180°﹣55°﹣42°=83°.答:∠ACD的度数为83°.【点评】三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.29.(2015秋•全椒县期中)已知△ABC中,∠ACB=90°,CD为AB边上的高,BE 平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.【分析】题目中有两对直角,可得两对角互余,由角平分线及对顶角可得两对角相等,然后利用等量代换可得答案.【解答】证明:∵∠ACB=90°,∴∠1+∠3=90°,∵CD⊥AB,∴∠2+∠4=90°,又∵BE平分∠ABC,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF.【点评】本题考查了三角形角平分线、中线和高的有关知识;正确利用角的等量代换是解答本题的关键.30.(2010春•横峰县校级期末)如图,AD为△ABC的中线,BE为△ABD的中线,(1)若∠ABE=25°,∠BAD=50°,则∠BED的度数是度.(2)在△ADC中过点C作AD边上的高CH.(3)若△ABC的面积为60,BD=5,求点E到BC边的距离.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角和,∠BED=∠ABE+∠BAE=75°;(2)三角形高的基本作法:用圆规以一边两端点为圆心,任意长为半径作两段弧,交于角的两边,再以交点为圆心,用交轨法作两段弧,找到两段弧的交点,连接两个交点,并过另一端点作所成直线的平行线,叫该边所在直线一点,连接该点和另一端点,则为高线;(3)我们通过证明不难得出三角形中线将三角形分成面积相等的两个三角形,那么可依据D是BC中点,E是AD中点,求出三角形BED的面积.三角形BDE 中,E到BD的距离就是BD边上的高,有了三角形BDE的面积,BD的长也容易求得.那么高就求出来了.【解答】解:(1)∠BED=∠ABE+∠BAE=75°;(2)CH为所求的高.(3)解:如图,过点E作EF⊥BD于点F,∵AD是BC的中线∴BD=CD=S△ACD==×60=30∴S△ABD=S△ABE==×30=15同理S△BED又∵S=BD•EF=×5EF=15△BED∴EF=6即点E到BC边的距离为6.【点评】本题主要考查了基本作图中,三角形高的作法,三角形的内角和外角等知识点.31.(2015春•单县期末)如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.(1)若∠B=35°,∠ACB=85°,求∠E的度数;(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.【分析】(1)中,首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;(2)中,根据第(1)小题的思路即可推导这些角之间的关系.【解答】解:(1)∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD平分∠BAC,∴∠DAC=30°,∴∠ADC=65°,∴∠E=25°;(2).设∠B=n°,∠ACB=m°,∵AD平分∠BAC,∴∠1=∠2=∠BAC,∵∠B+∠ACB+∠BAC=180°,∵∠B=n°,∠ACB=m°,∴∠CAB=(180﹣n﹣m)°,∴∠BAD=(180﹣n﹣m)°,∴∠3=∠B+∠1=n°+(180﹣n﹣m)°=90°+n°﹣m°,∵PE⊥AD,∴∠DPE=90°,∴∠E=90°﹣(90°+n°﹣m°)=(m﹣n)°=(∠ACB﹣∠B).【点评】运用了三角形的内角和定理以及角平分线的定义.特别注意第(2)小题,由于∠B和∠ACB的大小不确定,故表达式应写为两种情况.32.(2010春•朝阳区期末)如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E,∠AFD=158°,求∠EDF的度数.【分析】要求∠EDF的度数,只需求出∠BDE和∠FDC的度数即可,由FD⊥BC,得∠FDC=90°;而∠BDE在Rt△BDE中,故只需求出∠B的度数.因∠B=∠C,只需求出∠C的度数即可.因∠AFD是△CDF的外角,∠AFD=158°∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°.【解答】解:∵FD⊥BC,所以∠FDC=90°,∵∠AFD=∠C+∠FDC,∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°,∴∠B=∠C=68°.∵DE⊥AB,∵∠DEB=90°,∴∠BDE=90°﹣∠B=22°.又∵∠BDE+∠EDF+∠FDC=180°,∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣22°﹣90°=68°.【点评】考查三角形内角和定理,外角性质,垂直定义等知识.33.(2014春•岱岳区期末)如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD:∠E=1:3,求∠E的度数.【分析】(1)由于AD平分∠BAC,根据角平分线的概念可得∠BAD=∠CAD,再根据三角形的一个外角等于和它不相邻的两个内角和,结合已知条件可得∠EAC 与∠B相等;(2)若设∠CAD=x°,则∠E=3x°.根据(1)中的结论以及三角形的内角和定理及其推论列方程进行求解即可.【解答】解:(1)相等.理由如下:∵AD平分∠BAC,∴∠BAD=∠CAD.又∠EAD=∠EDA,∴∠EAC=∠EAD﹣∠CAD=∠EDA﹣∠BAD=∠B;。

初中数学三角形经典测试题及答案解析

初中数学三角形经典测试题及答案解析

一、选择题1.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数( )A .28°B .22°C .32°D .38°【答案】B【解析】【分析】 延长AB 交CF 于E ,求出∠ABC ,根据三角形外角性质求出∠AEC ,根据平行线性质得出∠2=∠AEC ,代入求出即可.【详解】解:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH ∥EF ,∴∠2=∠AEC=22°,故选B .【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.2.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-,解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.3.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm A .6B .8C 5D .5【答案】B【解析】【分析】根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.【详解】设∠A =x ,则∠B =2x ,∠C =3x ,由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°,解得x =30°,即∠A =30°,∠C =3×30°=90°,此三角形为直角三角形,故AB =2BC =2×4=8cm ,故选B .【点睛】本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.4.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100ABC ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 根据题意,连接OA ,OB ,OC ,进而求得BOC MOC ∆≅∆,AOB AON ∆≅∆,即∠CBO =∠CMO ,∠OBA =∠ONA ,根据三角形内角和定理即可得到∠MON 的度数.【详解】如图,连接OA ,OB ,OC ,∵点O 是ABC ∆的内心,∴BCO MCO ∠=∠,∵CM =CB ,OC =OC ,∴()BOC MOC SAS ∆≅∆,∴CBO CMO ∠=∠,同理可得:AOB AON ∆≅∆,∴ABO ANO ∠=∠,∵100CBA CBO ABO ∠=∠+∠=︒,∴100CMO ANO ∠+∠=︒,∴180()80MON CMO ANO ∠=︒-∠+∠=︒,故选:C.【点睛】本题主要考查了三角形全等的性质及判定,三角形的内角和定理及角度的转换,熟练掌握相关辅助线的画法及三角形全等的判定是解决本题的关键.5.下列命题是假命题的是( )A .三角形的外心到三角形的三个顶点的距离相等B .如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C .将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限D .若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m 【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y =3x -1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x 的一元一次不等式组0213x m x -≤⎧⎨+>⎩无解,则m 的取值范围是1m ,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.6.如图,在ABC ∆中,33B ∠=︒,将ABC ∆沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A .33︒B .56︒C .65︒D .66︒【答案】D【解析】【分析】 由折叠的性质得到∠D=∠B ,再利用外角性质即可求出所求角的度数.【详解】解:如图,由折叠的性质得:∠D=∠B=33°,根据外角性质得:∠1=∠3+∠B ,∠3=∠2+∠D ,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+66°,∴∠1-∠2=66°.故选:D .【点睛】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.8.如图11-3-1,在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC【答案】D【解析】【分析】【详解】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以13x y =,即∠ADE=13∠ADC . 故答案选D .考点:三角形的内角和定理;四边形内角和定理.9.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B【解析】【分析】 首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4,11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.10.如图,在ABC ∆中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.11.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B.一个图形经过中心对称后得到的图形,与原来的图形全等C.一个图形放大后得到的图形,与原来的图形全等D.一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G.下列结论中:①DE=DF;②AG=GF;③AF=DF;④BG=GC;⑤BF=EF,其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由AAS证明△ABF≌△DEF,得出对应边相等AF=DF,BF=EF,即可得出结论,对于①②④不一定正确.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,即AB∥CE,∴∠ABF=∠E,∵DE=CD,∴AB=DE,在△ABF和△DEF中,∵===ABF EAFB DFEAB DE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABF≌△DEF(AAS),∴AF=DF,BF=EF;可得③⑤正确,故选:B.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.13.如图,90ACB∠=︒,ACCD=,过D作AB的垂线,交AB的延长线于E,若2AB DE=,则BAC∠的度数为()A.45°B.30°C.°D.15°【答案】C【解析】【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,∵∠ACB=90°,AC=CD,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE⊥AB,∴∠DEB=90°=∠ACB=∠DCM,∵∠ABC=∠DBE,∴∠CAB=∠CDM,在△ACB和△DCM中CABCDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.14.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )A .BC = EFB .AC 【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .15.如图:AD AB ⊥,AE AC ⊥,AD AB =,AE AC =,连接BE 与DC 交于M ,则:①DAC BAE ∠=∠;②DAC BAE ∆∆≌;③DC BE ⊥;正确的有( )个A .0B .1C .2D .3【答案】D【解析】【分析】利用垂直的定义得到90DAB EAC∠=∠=︒,则ADC BAE∠=∠,于是可对①进行判断;利用“SAS”可证明DAC BAE∆≅∆,于是可对②进行判断;利用全等的性质得到ADC ABE∠=∠,则根据三角形内角和和对顶角相等得到90DMB DAB∠=∠=︒,于是可对③进行判断.【详解】解:AD AB⊥,AE AC⊥,90DAB∴∠=︒,90EAC∠=︒,DAB BAC EAC BAC∴∠+=∠+∠,即ADC BAE∠=∠,所以①正确;在DAC∆和BAE∆中,DA ABDAC BAEAC AE=⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS∴∆≅∆,所以②正确;ADC ABE∴∠=∠,∵∠AFD=∠MFB,90DMB DAB∴∠=∠=︒,DC BE∴⊥,所以③正确.故选:D.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.16.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍【答案】B【解析】设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.17.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条().A.0根B.1根C.2根D.3根【答案】B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B18.一个等腰三角形的顶角为钝角,则底角a的范围是()A.0°<a<9 B.30°<a<90° C.0°<a<45° D.45°<a<90°【答案】C【解析】:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选:C19.如图,在ABC中,分别以点A和点B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知CDE△的面积比CDB△的面积小4,则ADE的面积为()A.4B.3C.2D.1【答案】A【解析】【分析】由作图步骤可知直线MN为线段AB的垂直平分线,根据三角形中线的性质可得S △CDA =S △CDB ,根据△CDE 的面积比△CDB 的面积小4即可得答案.【详解】由作图步骤可知直线MN 为线段AB 的垂直平分线,∴CD 为AB 边中线,∴S △CDA =S △CDB ,∵△CDE 的面积比△CDB 的面积小4,∴S △ADE =S △CDA -S △CDE =S △CDB -S △CDE =4.故选:A .【点睛】本题考查尺规作图——垂直平分线的画法及三角形中线的性质,三角形的中线,把三角形分成两个面积相等的三角形;熟练掌握三角形中线的性质是解题关键.20.如图,在ABC 中,90C ∠=︒,60CAB ∠=︒,按以下步骤作图:①分别以A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别相交于点P 和Q . ②作直线PQ 交AB 于点D ,交BC 于点E ,连接AE .若4CE =,则AE 的值为( ) A .6B .2C .43D .8 【答案】D【解析】【分析】根据垂直平分线的作法得出PQ 是AB 的垂直平分线,进而得出∠EAB =∠CAE =30°,即可得出AE 的长.【详解】由题意可得出:PQ 是AB 的垂直平分线,∴AE =BE ,∵在△ABC 中,∠C =90°,∠CAB =60°,∴∠CBA =30°,∴∠EAB =∠CAE =30°, ∴CE =12AE =4, ∴AE =8.故选D .【点睛】此题主要考查了垂直平分线的性质以及直角三角形中,30°所对直角边等于斜边的一半,根据已知得出∠EAB=∠CAE=30°是解题关键.·。

三角形全等模型详细专题 初中数学

三角形全等模型详细专题  初中数学

全等三角形中辅助线的添加主要内容:复习三角形全等的判定定理,通过三角形全等证明图形中线段和角度的关系。

(位置关系和数量关系)学习目标:通过学习三角形全等的判定,探索三角形全等的条件,能够培养比较完整、清晰的思维逻辑能力并进行基础的推理论证能力。

学习重点:灵活应用三角形中线段的性质与三角形的判定定理证明综合性的题目。

学习难点:能够从结论出发,联系已知,找出解决问题的关键点,同时能够挖掘出图中的隐含条件而且能够将未知转化为已知来解决问题(基本的全等模型与常见辅助线)。

一、知识精讲1.三边分别相等的两个三角形全等,简写为“边边边”或者“SSS”。

(三角形具有稳定性)2.两角及其夹边分别相等的两个三角形全等,简写为“角边角”或“ASA”。

3.两角分别相等且其中一组等角的对边相等的两个三角形全等,简写为“角角边”或“AAS”。

4.两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”。

5.在直角三角形中,一条斜边和一条直角边对应相等的两个直角三角形全等,简写为“HL”。

6.易错点:两边分别相等且其中一组等边的对角相等的两个三角形全等这个结论是不正确的。

EDFCBADCB A二、典型例题: 考点一倍长中线法:当遇到中线时,通常延长中线一倍,采用补短的方法,构造三角形全等条件:△ABC 中AD 是BC 边中线方法一: 延长AD 到E ,使DE=AD ,连接BE 方式 方法二:间接倍长,作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE方法三: 延长MD 到N ,使DN=MD ,连接CN【例题1】 已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.【例题2】如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.【变式训练】1、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.【练习题】1、已知:如图,在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE.求证:AF=BC+FC.2、如图所示,在△ABC中,AD是∠BAC的角平分线,且AE=AF。

全等图形与全等三角形压轴题五种模型全攻略(解析版)--初中数学专题训练 (2)

全等图形与全等三角形压轴题五种模型全攻略(解析版)--初中数学专题训练 (2)

全等图形与全等三角形压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一全等图形识别】【考点二利用全等图形求正方形网格中角度之和】【考点三将已知图形分割成几个全等图形】【考点四全等三角形的概念】【考点五全等三角形的性质】【过关检测】【典型例题】【考点一全等图形识别】1例题:(2023·浙江·八年级假期作业)下列各组图形中,属于全等图形的是( )A. B.C. D.【变式训练】1(2023·浙江·八年级假期作业)对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()A.1个B.2个C.3个D.4个2(2022春·七年级单元测试)如图,四边形ABCD与四边形A B C D 全等,则∠A =,∠A=,B C =,AD=.【考点二利用全等图形求正方形网格中角度之和】1例题:(2023春·七年级课时练习)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=____ _______度.【变式训练】1(2022秋·湖北武汉·八年级统考期中)在如图所示的3×3正方形网格中,∠1+∠2+∠3=度.2(2023·江苏·八年级假期作业)如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为.【考点三将已知图形分割成几个全等图形】1(2023春·全国·七年级专题练习)沿着图中的虚线,用两种方法将下面的图形划分为两个全等的图形.【变式训练】1(2023·江苏·八年级假期作业)试在下列两个图中,沿正方形的网格线(虚线)把这两个图形分别分割成两个全等的图形,将其中一部分涂上阴影.2(2022秋·全国·八年级专题练习)沿网格线把正方形分割成两个全等图形?用两种不同的方法试一试.【考点四全等三角形的概念】1(2023春·江苏盐城·七年级校考期中)下列说法中,正确的有( )①形状相同的两个图形是全等形 ②面积相等的两个图形是全等形 ③全等三角形的周长相等,面积相等 ④若△ABC≌△DEF,则∠A=∠D,AB=EFA.1个B.2个C.3个D.4个【变式训练】1(2023·全国·八年级假期作业)已知△ABC≌△DEF,且∠A与∠D是对应角,∠B和∠E是对应角,则下列说法中正确的是()A.AC与DF是对应边B.AC与DE是对应边C.AC与EF是对应边D.不能确定AC的对应边2(2023·全国·八年级假期作业)下列说法正确的是()A.形状相同的两个三角形一定是全等三角形B.周长相等的两个三角形一定是全等三角形C.面积相等的两个三角形一定是全等三角形D.边长为5cm的等边三角形都是全等三角形【考点五全等三角形的性质】1(2023春·广东深圳·七年级校考期中)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠B等于___ ___.【变式训练】1(2022秋·八年级单元测试)如图,Rt△ABC≌Rt△EFC,并且CF=5cm,∠EFC=52°,则BC=,∠A=.2(2023秋·八年级课时练习)如图,△ABC≌△ADE,且AE∥BD,∠ADB=25°,则∠BAC的度数为.3(2023·江苏·八年级假期作业)如图,ΔABC≅ΔADE,且∠CAD=10°,∠B=∠D=25°,∠EAB= 120°,求∠DFB和∠DGB的度数.【过关检测】一、选择题1(2023秋·七年级单元测试)下列各组中的两个图形属于全等图形的是()A. B.C. D.2(2023·江苏·八年级假期作业)下列说法正确的是()A.两个形状相同的图形称为全等图形B.两个圆是全等图形C.全等图形的形状、大小都相同D.面积相等的两个三角形是全等图形3(2023·浙江·八年级假期作业)如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=90°,则∠EAC=()A.10°B.20°C.30°D.40°4(2023·全国·八年级假期作业)如图,△ABC≅△BAD,A的对应顶点是B,C的对应顶点是D,若AB=8,AC=3,BC=7,则AD的长为()A.3B.7C.8D.以上都不对5(2023秋·四川广安·八年级统考期末)如图,已知Rt△ABC≌Rt△BDE,若AC=5,DE=2,则CE 的长为()A.2B.3C.4D.56(2023·江苏·八年级假期作业)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠1-∠2-∠3的度数为( ).A.30°B.45°C.55°D.60°二、填空题7(2023春·七年级课时练习)请观察图中的5组图案,其中是全等形的是(填序号);8(2023秋·八年级课时练习)已知△ABC中,D是BC边上的一点,△ABD≌△ACD,则∠ADB的度数为.9(2023春·全国·七年级专题练习)如图,四边形ABCD≌四边形A B C D ,若∠B=90°,∠C=60°,∠D =105°,则∠A =°.10(2023·浙江·八年级假期作业)如图,△OAD≌△OBC,且∠O=73°,∠C=20°,则∠AEB=度.11(2023·浙江·八年级假期作业)如图,在4×4的正方形网格中,求α+β=度.12(2023·浙江·八年级假期作业)如图,△ADE≌△ABC,点D在边AC上,延长ED交边BC于点F,若∠EAC=35°,则∠BFD=.三、解答题13(2023·浙江·八年级假期作业)把4×4的正方形方格图形分割成两个全等图形,如图,沿着虚线画出种不同的分法,把4×4的正方形方格图形分割成两个全等图形.14(2023·浙江·八年级假期作业)如图,△ABC≌△DEF,点A对应点D,点B对应点E,点B、F、C、E在一条直线上.(1)求证:BF=EC;(2)若AB=3,EF=7,求AC边的取值范围.15(2023·江苏·八年级假期作业)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.(1)当DE=8,BC=5时,求线段AE的长;(2)已知∠D=35°,∠C=60°,求∠DBC与∠AFD的度数.16(2023·江苏·八年级假期作业)如图,已知△ABF≌△CDE.(1)若∠B=45°,∠DCF=25°,求∠EFC的度数;(2)若BD=10,EF=5,求BF的长.17(2023春·七年级课时练习)如图,已知△ABC≅△FED,∠A和∠F是对应角,CB和DE是对应边,AF=8,BE=2.(1)写出其他对应边及对应角;(2)判断AC与DF的位置关系,并说明理由.(3)求AB的长.。

(专题精选)初中数学三角形难题汇编及答案解析

(专题精选)初中数学三角形难题汇编及答案解析
∵AE平分∠BAD,
∴∠BAE=∠EAD=60°
∴△ABE是等边三角形,
∴AE=AB=BE,∠AEB=60°,
∵AB= BC,
∴AE=BE= BC,
∴AE=CE,故①正确;
∴∠EAC=∠ACE=30°
∴∠BAC=90°,
∴S△ABC= AB•AC,故②错误;
∵BE=EC,
∴E为BC中点,O为AC中点,
(专题精选)初中数学三角形难题汇编及答案解析
一、选择题
1.如图,已知 ,若 , , ,下列结论:① ;② ;③ ;④ 与 互补;⑤ ,其中正确的有()
A.2个B.3个C.4个D.5个
【答案】C
【解析】
【分析】
根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.
∴S△ABE=S△ACE=2S△AOE,故③正确;
∵四边形ABCD是平行四边形,
∴AC=CO,
∵AE=CE,
∴EO⊥AC,
∵∠ACE=30°,
∴EO= EC,
∵EC= AB,
∴OE= BC,故④正确;
故正确的个数为3个,
故选:C.
【点睛】
此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE是等边三角形是解题关键.
15.如图,四边形 和 都是正方形,点 在 边上,点 在对角线 上,若 ,则 的面积是()
A.6B.8C.9D.12【答Βιβλιοθήκη 】B【解析】【分析】
根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE= EH= EF,EF= AE,即可得到结论.

人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)

人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)

一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个C解析:C【分析】 利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E∠=︒,180306090AGE∴∠=︒-︒-︒=︒,45,B C∠=∠=︒4904545.AGE B∴∠=∠-∠=︒-︒=︒4.C∴∠=∠故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.12,3D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵2<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 3.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.11A解析:A根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°B解析:B【分析】 利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数是( )A .65︒B .75︒C .85︒D .105︒B解析:B【分析】 根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.7.一个多边形的内角和是外角和的4倍,则这个多边形的边数为()A.10 B.8 C.6 D.4A解析:A【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边8.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.9.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.10.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C 解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.二、填空题11.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.12.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.13.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.14.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.15.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在一个四边形ABCD中,AE平分∠BAD,DE平分∠ADC,且∠ABC=80°,∠BCD=70°,则∠AED=_________.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA然后再根据角平分线的定义求得∠EAD+∠EDA最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD,∠EDA=12∠CAD∴∠EAD+∠EDA=1(∠BAD+∠CDA)=105°2∴∠AED=180°-(∠EAD+∠EDA)=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95 ,王老师沿公园边由A点经B→C→D→E,一直到F时,他在行程中共转过了_____度.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.19.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上解析:120°【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.三、解答题21.如图,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1.(1)∵BA1、CA1是∠ABC与∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=,∠ACD﹣∠ABD=∠,∴∠A1=.(2)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230°,求∠F的度数.(3)如图3,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1,若E为BA延长线上一动点,连接EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.解析:(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.解析:21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 24.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.解析:(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .25.已知一个n 边形的每一个内角都等于120°.(1)求n 的值;(2)求这个n 边形的内角和;(3)这个n 边形内一共可以画出几条对角线?解析:(1)6;(2)720°;(3)9条【分析】(1)分别用两个式子表示多边形的内角和,列出方程,求解即可;(2)根据多边形内角和公式即可求解;(3)根据对角线的定义求出每个顶点的对角线条数,再求解即可.【详解】解:(1)由题意得()2180120n n -︒=︒,解得 6n =.(2)()62180720-⨯︒=︒,所以这个多边形的内角和为720°.(3)六边形每个顶点可以引6-3=3条对角线, 所以一共可画6392⨯=条对角线. 【点睛】本题考查了多边形的内角和公式,多边形对角线的定义,熟记多边形的内角和公式,理解对角线的定义是解题关键.26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.27.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.解析:证明见解析【分析】由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.28.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式.解析:(1)10︒;(2)11 22βα-【分析】(1)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案;(2)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案.【详解】(1)∵∠B=40°,∠C=60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。

2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。

3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。

4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。

中考数学专项练习三角形(含解析)

中考数学专项练习三角形(含解析)

中考数学专项练习三角形(含解析)一、单选题1.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△AB C绕点C按顺时针方向旋转n度后得到△EDC,现在点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A.30,2B.60,2C.60,D.60,2.如图所示,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB、AC作垂线段,则能够说明△BDE≌△CDF的理由是()A.SSSB.SASC.ASAD.AAS3.如图,已知在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A,D为圆心,大于AD的长为半径在AD两侧作弧,交于M,N两点;第二步,连结MN,分别交AB,AC于点E,F;第三步,连结D E,DF.若BD=6,AF=5,CD=3,则BE的长是()A.7B.8C.9D.104.如图,过正方形ABCD的顶点B作直线l,过A、C作直线L的垂线,垂足分别为E、F,若AE=1,CF=2,则AB的长为()A.B.2C.3D.5.如图,工人师傅为了固定六边形木架ABCDEF,通常在AC,AD,D F处加三根木条,使其不变形,这种做法的依照是()A.长方形的四个角差不多上直角B.长方形的对称性C.三角形的稳固性D.两点之间线段最短6.如图,AB∥EF,C是EF上一个动点,当点C的位置变化时,△ABC的面积将()A.变大B.变小 C.不变 D.变大变小要看点C 向左依旧向右移动7.如图,、分别是、的中点,则()2B.1∶3C.1∶4D.2∶38.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.49.如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且ÐADE=60°,BD=3,CE=2,则△ABC的边长为A.9B.12C.15D.1810.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()个B.6个C.8个D.10个二、填空题11.如图,P为正方形ABCD内一点,且PC=3,∠APB=135°,将△A PB绕点B顺时针旋转90°得到△CP′B,连接PP′.若BP的长为整数,则AP=________.12.已知实数x,y满足|x﹣8|+=0,则以x,y的值为两边长的等腰三角形的周长是________13.已知是关于x的方程的一个根,同时等腰三角形ABC的腰和底边长恰好是那个方程的两个根,则△ABC的周长为_____ ___.14.如图,P是正△ABC内一点,若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是________.15.已知:如图,BD为△ABC的内角平分线,CE为△ABC的外角平分线,AD⊥BD于D,AE⊥CE于E,延长AD交BC的延长线于F,连接DE,设BC=a,AC=b,AB=c,(a<b<c)给出以下结论正确的有_____ ___①CF=c﹣a;②AE=(a+b);③DE=(a+b﹣c);④DF=(b+c﹣a)16.已知一个直角三角形的两条直角边分别为6cm,8cm,那么那个直角三角形斜边上的高为________cm.17.如图,等腰△ABC中,AB=AC=13,BC=10,D是BC边上任意一点,DE⊥AB于E,DF⊥AC于点F,则DE+DF=________.18.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,AD⊥BC于点D,则△ACD与△ABC的面积比为________三、运算题19.依照问题进行运算:(1)运算:×﹣4××(1﹣)0;(2)已知三角形两边长为3,5,要使那个三角形是直角三角形,求出第三边的长.20.如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.21.在△ABC中,∠A=38°,∠B=70°,CD⊥AB于点D,CE平分∠ACB,DP⊥CE于点P,求∠CDP的度数.四、解答题22.如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东7 5°方向上,在海岛上的观看所A测得B在A的南偏西30°方向上,C在A的南偏东25°方向.若轮船行驶到C处,那么从C处看A,B两处的视角∠ACB是多少度?23.如图,ABCD为平行四边形,DFEC和BCGH为正方形.求证:AC ⊥EG.五、综合题24.请在方格内画△ABC,使它的顶点都在格点上,且三边长分别为2,2 ,4 ,求:(1)画出△ABC并求出它的面积;(2)求出最长边上高.25.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判定直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.答案解析部分一、单选题1.【答案】C【考点】含30度角的直角三角形,专门角的三角函数值,解直角三角形,旋转的性质【解析】【解答】解:∵△ABC是直角三角形,∠ACB=90°,∠A=3 0°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2 ,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD= AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD= AB=2,∴DF是△ABC的中位线,∴DF= BC= ×2=1,CF= AC= ×2 = ,∴S阴影= DF×CF= ×= .故答案为:C.【分析】先依照已知条件求出AC的长及∠B的度数,再依照图形旋转的性质及等边三角形的判定定理判定出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判定出DF是△ABC的中位线,由三角形的面积公式即可得出结论。

初中数学相似三角形经典练习难题易错题(附详解)

初中数学相似三角形经典练习难题易错题(附详解)

.相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。

初中数学三角形专题训练50题(含答案)

初中数学三角形专题训练50题(含答案)

初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知⊙O的半径为R,C、D是直径AB的同侧圆周上的两点,AC的度数为100°,BC=2BD,动点P在线段AB上,则PC+PD的最小值为()C D RA.R B2.如图,在⊙ABCD中,连接AC,⊙ABC=⊙CAD=45°,AB=2,则BC的长是()AB.2C.D.43.如图点P是⊙BAC内一点,PE⊙AB于点E,PF⊙AC于点F,PE=PF,则直接得到⊙PEA⊙⊙PFA的理由是()A.HL B.ASA C.AAS D.SAS【答案】A【详解】解:⊙PE⊙AB于点E,PF⊙AC于点F,⊙⊙PEA=⊙PFA=90°,⊙PE=PF,AP=AP,⊙⊙PEA⊙⊙PFA(HL);4.如图,在平面直角坐标系中,菱形ABCD 的顶点A 在y 轴上,已知B(﹣3,0)、C(2,0),则点D 的坐标为( )A .(4,5)B .(5,4)C .(5,3)D .(4,3)5.适合下列条件的ABC ∆中,是直角三角形的共有( )⊙6a =,45A ∠=︒;⊙32A ∠=,58B ∠=︒;⊙2a =,2b =,4c =;⊙7a =,24b =,25c =.A .1个B .2个C .3个D .4个【答案】B 【分析】根据构成直角三角形三边关系的条件:三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角,判定即可.【详解】⊙6a =,45A ∠=︒,不能判定ABC ∆中是直角三角形;⊙3258A B ︒︒==∠,∠,A B ∠∠=︒+90,是直角三角形;⊙2222222a b c +=+≠,不能判定ABC ∆中是直角三角形;⊙()()22222272425a b c +=+==,是直角三角形;【点睛】此题主要考查构成直角三角形条件的判定,熟练掌握,即可解题.=,点N在CD上,且6.如图,已知四边形ABCD是矩形,点M在BC上,BM CD=与BN交于点P,则:DN CM DM,DM BN=()A2B.C D.27.如图,已知正方形的面积为25,且AB比AC大1,BC的长为()A.3B.4C.5D.6【答案】A8.如图,在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,若ABC A B C ''△≌△,且点A '恰好落在AB 上,则ACA ∠'的度数为( )A .30°B .45°C .50°D .60° 【答案】D 【分析】根据全等三角形的性质可得A C AC '=,从而得到60AA CA ,即可求解.【详解】解:⊙90ACB ∠=︒,30ABC ∠=︒,⊙⊙A =60°,⊙ABC A B C ''△≌△,⊙A C AC '=,⊙60AA C A ,⊙60ACA '∠=︒.故选:D【点睛】本题主要考查了全等三角形的性质,等腰三角形的性质,熟练掌握全等三角形的性质,等腰三角形的性质是解题的关键.9.如图,将三角板的直角顶点放在直尺的一边上,1=30∠︒,2=50∠︒,3=∠( )度A .10B .20C .30D .50 【答案】B 【分析】根据两直线平行,同位角相等求出⊙2的同位角,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【详解】解:如图:⊙⊙2=50°,直尺的两边互相平行,⊙⊙4=⊙2=50°,⊙⊙1=30°,⊙⊙3=⊙4-⊙1=50°-30°=20°.故选:B .【点睛】本题考查了两直线平行,同位角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.10.在ABC 中,若90A C ∠+∠=︒,则( ).A .BC AB AC =+B .222AC AB BC =+ C .222AB AC BC =+D .222BC AB AC =+【答案】B【分析】由⊙A +⊙C =90°可得⊙B =90°,于是可确定AC 是Rt⊙ABC 的斜边,再根据勾股定理即得答案.【详解】解:⊙⊙A +⊙C =90°,⊙⊙B =90°,⊙AC 是Rt⊙ABC 的斜边,222【点睛】本题考查了勾股定理和三角形的内角和定理,由题意确定AC 是Rt ⊙ABC 的斜边是解题的关键.11.如图,直线AB CD ∥,AE CE ⊥于点E ,若140EAB ∠=︒,则ECD ∠的度数是( )A .120°B .130°C .150°D .160° 【答案】B 【分析】延长AE ,与DC 的延长线交于点F ,根据平行线的性质,求出⊙AFC 的度数,再利用外角的性质求出⊙ECF ,从而求出⊙EC D .【详解】解:延长AE ,与DC 的延长线交于点F ,⊙AB ⊙CD ,⊙⊙A +⊙AFC =180°,⊙⊙EAB =140°,⊙⊙AFC =40°,⊙AE ⊙CE ,⊙⊙AEC =90°,而⊙AEC =⊙AFC +⊙ECF ,⊙⊙ECF =⊙AEC -⊙F =50°,⊙⊙ECD =180°-50°=130°,故选:B .【点睛】本题考查平行线的性质和外角的性质,正确作出辅助线和正确利用平行线的性质是解题的关键.12.如图,在ABC 中,AB AC =,AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,垂足分别是E 、F ,下面给出的四个结论,其中正确的有( ).距离相等的点到DE 、DF 的距离也相等.A .1个B .2个C .3个D .4个 【答案】D 【分析】由等腰三角形“三线合一”可知AD⊙BC ,BD=DC ,得到AD 上的点到B 、C 两点的距离相等,根据角平分线性质定理可知DE=DF ,根据HL 证直角三角形全等,得到AE=AF ,从而得到AD 平分EDF ∠,即可得出答案.【详解】解:⊙AB AC =,AD 是BAC ∠的平分线,⊙AD⊙BC ,BD=DC ,⊙AD 上的点到B 、C 两点的距离相等,⊙⊙正确;⊙AD 是BAC ∠的平分线,DE AB ⊥,DF AC ⊥,⊙DE=DF ,⊙EDA=⊙FDA ,⊙AD 平分⊙EDF ,⊙⊙正确;在直角△AED 和直角△AFD 中,AD AD DE DF=⎧⎨=⎩ ⊙⊙AED⊙⊙AFD ,⊙AE=AF ,⊙AD 平分⊙BAC ,又⊙AD 是BAC ∠的平分线,⊙到AE 、AF 距离相等的点到DE 、DF 的距离也相等,⊙⊙、⊙正确,故选D .【点睛】本题考查了全等三角形的证明和性质,角平分线性质,等腰三角形的性质的应用,对条件的合理利用是解题的关键.13.如图,BO 、CO 分别平分⊙ABC 、⊙ACB ,OD ⊙BC 于点D ,OD =2,⊙ABC 的周长为28,则⊙ABC 的面积为( )A .28B .14C .21D .7在BOD 和△OEB OBE BO ∠=∠∠==BOD △≌△OE =OD =21122AB OE BC OD AC OF ++ )AB BC AC OD ++ 282⨯故选:A.【点睛】本题考查了角平分线的性质定理,求三角形的面积等知识,关键是根据条件构造适合角平分线性质定理条件的辅助线.14.如图,菱形ABCD的对角线AC与BD相交于点O,AE垂直平分CD,垂足为点E,则BAD∠=()A.100°B.120°C.135°D.150°【答案】B【分析】直接利用线段垂直平分线的性质得出AC=AD,再利用菱形的性质以及等边三角形的判定与性质得出答案.【详解】解:⊙AE垂直且平分边CD,⊙AC=AD,⊙四边形ABCD是菱形,⊙AD=DC,⊙ACB=⊙ACD,⊙⊙ACD是等边三角形,⊙⊙ACD=60︒,⊙⊙BCD=120︒.⊙⊙BAD=⊙BCD=120︒,故选:B.【点睛】此题主要考查了菱形的性质以及等边三角形的判定与性质,得出⊙ACD是等边三角形是解题关键.15.如图中字母A所代表的正方形的面积为()【详解】试题分析:根据勾股定理的几何意义解答.解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.16.三角形的三边长为a,b,c,且满足22-=-,则这个三角形是()()2a b c abA.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【答案】C【分析】先利用完全平方公式化简已知等式,再根据勾股定理的逆定理即可得.【详解】由22a b c ab-=-得:222()2-+=-,a ab bc ab22即222a b c,+=,,a b c为三角形的三边长,∴这个三角形是直角三角形,故选:C.【点睛】本题考查了完全平方公式、勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键.17.如图,⊙ABC的两边AB和AC的垂直平分线分别交BC于D,E,若⊙BAC+⊙DAE=150°,则⊙BAC的度数是()A.105B.110C.115D.120【答案】B【分析】根据垂直平分线性质,⊙B=⊙DAB,⊙C=⊙EAC.则有⊙B+⊙C+2⊙DAE=150°,即180°-⊙BAC+2⊙DAE=150°,再与⊙BAC+⊙DAE=150°联立解方程组即可.【详解】⊙⊙ABC的两边AB,AC的垂直平分线分别交BC于D,E,⊙DA=DB,EA=EC,⊙⊙B=⊙DAB,⊙C=⊙EAC.⊙⊙BAC+⊙DAE=150°,⊙⊙⊙B+⊙C+2⊙DAE=150°.⊙⊙B+⊙C+⊙BAC=180°,⊙180°-⊙BAC+2⊙DAE=150°,即⊙BAC-2⊙DAE=30°.⊙由⊙⊙组成的方程组150230BAC DAEBAC DAE∠+∠=︒⎧⎨∠-∠=︒⎩,解得⊙BAC=110°.故选B.【点睛】此题考查了线段的垂直平分线、等腰三角形的性质、三角形内角和定理等知识点,解题的关键是得到⊙BAC和⊙DAE的数量关系.18.如图,在平面直角坐标系中,已知A(﹣2,4)、P(﹣1,0),B为y轴上的动点,以AB为边构造⊙ABC,使点C在x轴上,⊙BAC=90°,M为BC的中点,则PM 的最小值为()A B C D【答案】C【分析】作AH⊙y轴,CE⊙AH,证明⊙AHB⊙⊙CEA,根据相似三角形的性质得到AE =2BH,求出点M的坐标,根据两点间的距离公式用x表示出PM,根据二次函数的性质解答即可.【详解】解:如图,过点A作AH⊙y轴于H,过点C作CE⊙AH于E,则四边形CEHO是矩形,⊙OH=CE=4,⊙⊙BAC=⊙AHB=⊙AEC=90°,19.如图,在ABC 和ADE 中,36CAB DAE ∠=∠=︒,AB AC =,AD AE =.连接CD ,连接BE 并延长交AC ,AD 于点F ,G .若BE 恰好平分ABC ∠,则下列结论错误的是( )A .ADC AEB ∠=∠B .//CD ABC .DE GE=D .2BF CF AC =⋅ 【答案】C 【分析】根据SAS 即可证明DAC EAB △≌△,再利用全等三角形的性质以及等腰三角形的性质,结合相似三角形的判定和性质,即可一一判断【详解】,,36AB AC AD AE CAB DAE ==∠=∠=︒DAC EAB ∴∠=∠AB AC=∴∠=ABCBE平分∴∠=ABEDAC△≌△∴∠ACD∴∠=ACDAD AE=∴∠=ADE∠=DGE∠即ADE∴≠DE GE∠=ABCCFB∴∠=∴=BC BF∴△∽△ABCBF CF∴=AB BC=AB ACBF CF∴=AC BF2=BF CF故答案选:【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角20.如图,在Rt△ABC中,⊙ACB=90°,点D是AB边的中点,过D作DE⊙BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ 与PQ之间的数量关系是()A.AQ=52PQ B.AQ=3PQ C.AQ=83PQ D.AQ=4PQ⊙MN =PE ,ND =PC ,在△DNQ 和△CPQ 中,NDQ QCP NQD PQC DN PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊙⊙DNQ ⊙⊙CPQ ,⊙NQ =PQ ,⊙AN =NP ,⊙AQ =3PQ故选:B .【点睛】本题考查轴对称最短问题、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是利用对称找到点P 位置,熟练掌握平行线的性质,属于中考常考题型.解两条线段之和最小(短)类问题,一般是运用轴对称变换将处于直线同侧的点转化为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短来确定方案,使两条线段之和转化为一条线段.二、填空题21.在Rt⊙ABC 中,⊙C =90°,若a =6,b =8,则c =________.【答案】10【详解】根据勾股定理2223664100c a b =+=+=c 为三角形边长,故c=10.22.在半径为5的圆中,弧所对的圆心角为90°,则弧所对的弦长是________.【点睛】本题考查利用半径和圆心角求弦长,难度不大,掌握勾股定理是解题的关键.23.在ABC 中,AB AC =,CD 是AB 边上的高,40ACD ∠=︒,则B ∠的度数为______.【答案】65︒或25︒【分析】分两种情况:当D 在线段AB 上时,根据题意,得出90ADC ∠=︒,再根据三角形的内角和定理,得出50A ∠=︒,再根据等边对等角,得出B ACB ∠=∠,再根据三角形的内角和定理,计算即可得出B ∠的度数;当D 在线段AB 的延长线上时,根据题意,得出90ADC ∠=︒,再根据三角形的内角和定理,得出50A ∠=︒,再根据等边对等角,得出B ACB ∠=∠,再根据三角形的外角的性质,计算即可得出B ∠的度数,综合即可得出答案.【详解】解:如图,当D 在线段AB 上时,⊙CD 是AB 边上的高,⊙90ADC ∠=︒,又⊙40ACD ∠=︒,⊙180904050A ∠=︒-︒-︒=︒,⊙AB AC =,⊙B ACB ∠=∠,⊙218018050130B A ∠=︒-∠=︒-︒=︒,⊙65B ∠=︒;如图,当D 在线段BA 的延长线上时,⊙CD 是AB 边上的高,⊙90ADC ∠=︒,又⊙40ACD ∠=︒,⊙180904050DAC ∠=︒-︒-︒=︒,⊙AB AC =,⊙B ACB ∠=∠,又⊙2DAC B ACB B ∠=∠+∠=∠,⊙250B ∠=︒,⊙25B ∠=︒,综上所述,B ∠的度数为65︒或25︒.故答案为:65︒或25︒.【点睛】本题考查了三角形的内角和定理、等边对等角、三角形的外角的性质,解本题的关键在熟练掌握相关的性质定理,分类讨论.24.如图,分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为4,则勒洛三角形的周长为:_________.25.边长为2的等边三角形的高与它的边长的比值为___________.【详解】解:等边三角形的边长是26.在Rt⊙ABC中,⊙C=90°,⊙A=30°,BC=2,则AC=_______ .27.如图,在四边形ABCD中,90∠=︒,2A==,BC=CD=AD AB∠的度数为________.ABC28.如图,在O 中,弦2BC =,点A 是圆上一点,且30BAC ∠=︒,则O 的半径是________.【答案】2【分析】连接OB ,OC ,先由圆周角定理求出BOC ∠的度数,再由OB OC =判断出BOC 是等边三角形,故可得出结论.【详解】解:连接OB ,OC ,⊙30BAC ∠=︒,⊙260BOC BAC ∠=∠=︒,⊙OB OC =,⊙BOC 是等边三角形,⊙2OB BC ==.故答案为:2【点睛】本题考查了圆周角定理,根据题意作出辅助线,构造出圆心角是解答此题的关键.29.如果等腰三角形的两边长分别为5cm 和10cm ,那么它的周长等于___________cm .【答案】25【分析】分5cm为腰和10cm为腰,两种情况求解.【详解】解:因为等腰三角形的两边长分别为5cm和10cm,当腰长为5cm时,三边长分别为5cm,5cm,10cm,+,因为55=10所以三角形不存在;当腰长为10cm时,三边长分别为5cm,10cm,10cm,+>,因为51010所以三角形存在;++=,所以三角形的周长为5101025(cm)故答案为:25.【点睛】本题考查了等腰三角形周长的分类计算,正确进行分类和判定三角形的存在性是解题的关键.30.等腰三角形的一边长为3,周长为15,则该三角形的腰长是______.31.如图,⊙O的半径为5cm,△ABC内接于⊙O,BC=5cm,则⊙A的度数为_____°.【答案】3032.如图,AD 、AE 分别是⊙ABC 的角平分线和高,⊙B =60°,⊙C =70°,则⊙EAD =______.【答案】5︒【分析】根据角平分线的性质及三角形内角和定理进行求解.【详解】解:由题意可知,⊙B =60°,⊙C =70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以⊙EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识,解题的关键是进行变换求解.33.如图,正方形ABCD的对角线AC、BD相交于点O,点E、F分别在边AB、BC 上,且⊙EOF=90°,则S四边形OEBF⊙S正方形ABCD=___.34.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD (点A与点B重合),点O是夹子转轴位置,O E⊙AC于点E,OF⊙BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是_____cm.(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为_____cm.35.如图,直线L 1、L 2、L 3分别过正方形ABCD 的三个顶点A 、D 、C ,且相互平行,若L 1、L 2的距离为1,L 2、L 3的距离为2,则正方形的边长为__________.AED DFC ≌,从而可得度.【详解】如图,过D ⊙123////L L L⊙13,EF L EF L ⊥⊥⊙AED DFC ≌1,DE CF AE DF ===22AD AE ED =+=故答案为:5.【点睛】本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.36.正方形ABCD 中.E 是AD 边中点.连接CE .作⊙BCE 的平分线交AB 于点F .则以下结论:⊙⊙ECD =30°.⊙⊙BCF 的外接圆经过点E ;⊙四边形AFCD 的面积是⊙BCF⊙BF AB =.其中正确的结论有 _____.(请填写所有正确结论的序号),易证BCF GCF ≅37.菱形ABCD中,AD=4,⊙DAB=60°,E、F、G、H分别是AD、AB、BC、CD上的点,且DH=FB,DE=BG,当四边形EFGH为正方形时,DH=____.38.已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF=__cm.⊙如图1,正方形BDEF在点A一侧时,延长CA交EF于点M.39.如图,正方形ABCD中,2AB=,AC,BD交于点O.若E,F分别是边AB,BC上的动点,且OE OF∆周长的最小值是__________.⊥,则OEF40.如图,在平行四边形ABCD 中,AC =3cm ,BD ,AC ⊙CD ,⊙O 是△ABD 的外接圆,则AB 的弦心距等于_____cm .【答案】116##516【分析】设AC、BD的交点为G,作圆的直径AN,连接BN,过点O作OF⊙AB于点三、解答题41.如图,AD⊙BC,⊙BAC=70°,DE⊙AC于点E,⊙D=20°.(1)求⊙B的度数,并判断⊙ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是⊙ABC的平分线.【答案】(1)⊙ABC是等腰三角形,⊙B=40°;(2)见解析.【详解】分析:(1)、根据Rt⊙ADE的内角和得出⊙DAC=70°,根据平行线的性质得出⊙C=70°,从而根据有两个角相等的三角形是等腰三角形得出答案;(2)、根据等腰三角形底边上的三线合一定理得出DB为顶角的角平分线.详解:解:(1)⊙DE⊙AC于点E,⊙D=20°,⊙⊙CAD=70°,⊙AD⊙BC,⊙⊙C=⊙CAD=70°,又⊙⊙BAC=70°,⊙⊙BAC=⊙C,⊙AB=BC,⊙⊙ABC是等腰三角形,⊙⊙B=180°-⊙BAC-⊙C=180°-70°-70°=40°.(2)⊙延长线段DE恰好过点B,DE⊙AC,⊙BD⊙AC,⊙⊙ABC是等腰三角形,⊙DB是⊙ABC的平分线.点睛:本题主要考查的是等腰三角形的判定及性质,属于基础题型.明确等腰三角形底边上的三线合一定理是解决这个问题的关键.42.如图,小雪坐着轮船由点A出发沿正东方向AN航行,在点A处望湖中小岛M,测得小岛M在点A的北偏东60°,航行100米到达点B时,此时测得小岛M在点B的北偏东30°,求小岛M到航线AN的距离.Rt BDM 中,12BD MB ==2MD MB =答:小岛M 到航线【点睛】本题考查了方向角问题,勾股定理,等腰三角形的判定,含43.如图,BD 是⊙ABC 的高,AE 是⊙ABC 的角平分线,BD 交AE 于F ,若⊙BAC =44°,⊙C =80°,求⊙BEF 和⊙AFD 的度数.【答案】⊙BEF=102°;⊙AFD=68°【分析】根据BD是⊙ABC的高,AE是⊙ABC的角平分线,求得⊙ADB=90°,⊙BAE=⊙EAD=22°,根据三角形内角和定理即可求得⊙BEF和⊙AFD的度数.【详解】解:⊙BD是⊙ABC的高,AE是⊙ABC的角平分线,⊙BAC=44°,⊙C=80°,⊙⊙ADB=90°,⊙BAE=⊙EAD=22°,⊙⊙CBA=180°﹣44°﹣80°=56°,⊙⊙BEF=180°﹣22°﹣56°=102°,⊙AFD=180°﹣90°﹣22°=68°.【点睛】本题考查了三角形的高,角平分线,三角形内角和定理的应用,掌握三角形的高,角平分线的意义是解题的关键.44.(1)如图,90∠=∠=︒,O是AC的中点,求证:OB ODABC ADC=.(2)解方程:2430-+=.x x⊙()()130x x --=,即10,30x x -=-=,解得:121,3x x ==.【点睛】本题主要考查了直角三角形的性质,解一元二次方程,熟练掌握直角三角形斜边中线等于斜边的一半,一元二次方程的解法是解题的关键.45.如图,点E 在边长为10的正方形ABCD 内,6AE =,8BE =,请求出阴影部分的面积,AEB S =四边形ABCD =10ABCD ⨯AEB S =【点睛】本题主要考查了勾股定理的逆定理,熟知勾股定理的逆定理是解题的关键.46.图(a )、图(b )是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a )、图(b )中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.具体要求如下:(1)画一个底边长为4,面积为8的等腰三角形;(2)画一个面积为16的等腰直角三角形.47.如图,点A,B,C,D在同一条直线上,AB=DC,在四个论断“EA=ED,EF⊙AD,AB=DC,FB=FC”中选择二个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.已知、如图,点A,B,C,D在同一条直线上,.求证、.证明、.【答案】见解析【分析】已知:EA=ED ,EF⊙AD ,AB=DC ,求证FB=FC .想办法证明EF 是线段BC 的垂直平分线即可.(答案不唯一)【详解】已知:如图,EA=ED ,EF⊙AD ,AB=DC ,求证FB=FC .理由:延长EF 交BC 于H .⊙EA=ED ,EF⊙AD ,⊙AH=HD ,⊙AB=DC ,⊙BH=CH ,⊙FH⊙BC ,⊙FB=FC .故答案为EA=ED ,EF⊙AD ,AB=DC ;FB=FC ;延长EF 交BC 于H .⊙EA=ED ,EF⊙AD ,⊙AH=HD ,⊙AB=DC ,⊙BH=CH ,⊙FH⊙BC ,⊙FB=FC .【点睛】此题考查等腰三角形的判定和性质,线段的垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题,属于开放性题目.48.如图,已知60AOB ∠︒=,OC 平分AOB ∠,CD ⊥OA 于点D .(1)实践与操作:作OC的垂直平分线分别交OA于点E;(要求:尺规作图,保留作图痕迹,不写作法)(2)连接CE,若DE的长为1,求OC的长.(1)解:如图所示,49.正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,A(-2,3),B(-3,1),C(-1,2),现将△ABC平移先向右平移3个单位长度,再向下平移2单位长度.(1)请画出平移后的A B C '''(点B C ''、分别是B 、C 的对应点);(2)写出点A B C '''、、三点的坐标;(3)求A B C '''的面积. 【答案】(1)画图见解析 (2)A '(1,1),B '(0,-1),C '(2,0)(3)1.5【分析】(1)根据所给的平移方式作图即可;(2)根据平移方式即可求出A 、B 、C 对应点A B C '''、、三点的坐标;(3)用A B C '''所在的正方形面积减去周围三个小三角形面积即可得到答案. (1)解:如图所示,A B C '''即为所求;(2)解:⊙A B C '''是△ABC 向右平移3个单位长度,向下平移2个单位长度得到的,A (-2,3),B (-3,1),C (-1,2),⊙A '(1,1),B '(0,-1),C '(2,0);(3)50.如图1,Rt⊙ABC中,⊙ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点为E(点E在点P右侧),连结DE、BE,已知AB=3,BC=6.(1)求线段BE的长;(2)如图2,若BP平分⊙ABC,求⊙BDE的正切值;(3)是否存在点P,使得⊙BDE是等腰三角形,若存在,求出所有符合条件的CP的长;若不存在,请说明理由.。

初中数学三角形专题训练50题含参考答案

初中数学三角形专题训练50题含参考答案

初中数学三角形专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,已知△ABC的六个元素,则图中甲、乙、丙三个三角形中和△ABC全等的图形个数是A.1B.2C.3D.02.如图,以点P为圆心,以x轴交于A,B两点,点A的坐标为(2,0),点B的坐标为(6,0),则圆心P的坐标为()A.B.(4,2)C.(4,4)D.(2,3.如图,等腰△ABC,BA=BC,点P是腰AB上一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.1个B.2个C .3个D .4个4.在学习“三角形的内角和外角”时,老师在学案上设计了以下内容:下列选项正确的是( )A .①处填ECD ∠B .①处填ECD ∠C .①处填A ∠D .①处填B ∠ 5.如图,在一块长方形草地上修速两条互相垂直且宽度相同的平行四边形通道,其中60KHB ∠=︒,已知20AB =米,30BC =米,四块草地总图积为2503m ,设GH 为x 米,则可列方程为( )A .2030503⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭B .(20)(30)503x x --=C .2203097x x x +-=D .232030974x x x +-= 6.下列四个命题中,是假命题的是( )A .过直线外一点,有且只有一条直线与已知直线平行B .两条直线被第三条直线所截,同位角相等C .三角形任意两边之和大于第三边D .如果a b =,a c =,那么b c =7.如图,BD 是①O 的直径,点A 、C 在圆上,且CD =OB ,则①BAC =( )A.120°B.90°C.60°D.30°8.已知:在平行四边形ABCD中,点M是BC的中点,MAD MDA∠=∠,则B∠=()A.60°B.90°C.100°D.120°9.两个直角三角形中:①有两条边相等;①一锐角和斜边对应相等;①斜边和一直角边对应相等;①两个锐角对应相等.能使这两个直角三角形全等的是()A.①①①B.①①C.①①D.①①①①10.如图,已知点O是正六边形ABCDEF的中心,扇形AOE的面积是12π,则正六边形的边长为()A.6B.C.D.1211.如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3B.C.D12.如图,在△ABC中,①ACB=90°,①B=40°,分别以点A和点B为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E ,连接CD ,则①CDE 等于( )A .8°B .10°C .15°D .20° 13.已知菱形ABCD ,E 、F 是动点,边长为5,BE AF =,120BAD ∠=︒,则下列命题中正确的是( )①BEC AFC ≌;①ECF △为等边三角形;①ECF △的边长最小值为①若2AF =,则23FGC EGC S S =△△.A .①①B .①①C .①①①D .①①① 14.如图,在直角①O 的内部有一滑动杆AB ,当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动,如果滑动杆从图中AB 处滑动到A ′B ′处,那么滑动杆的中点C 所经过的路径是( )A .直线的一部分B .圆的一部分C .双曲线的一部分D .抛物线的一部分15.如图,平面内三点A 、B 、C ,AB =,AC =BC 为对角线作正方形BDCE ,连接AD ,则AD 的最大值是()A.5B.C.7D.16.在ABCD中,O是对角线AC,BD的交点.若AOB的面积是8,则ABCD□的面积是()A.16B.24C.32D.4017.如图,已知半圆O的直径8AB=,C是半圆上一点,沿AC折叠半圆得到弧ADC,交直径AB于点D,若DA、DB的长均不小于2,则AC的长可能是()A.7B.6C.5D.418.梯形的对角线互相垂直,其中一条对角线长为5,梯形的高为4,则梯形的面积为()A.5B.10C.503D.25319.如图,抛物线y=x2+bx+c与x轴的交点为A(x1,0)和B(x2,0),与y轴负半轴交点为C,点D为线段OC上一点.且满足c=x1+b,①ACO=①DBO,则下列说法:①b-c=1;①①AOC①①DOB;①若①DBC=30°,则抛物线的对称轴为直线x①当点B绕点D顺时针旋转90°后得到的点B'也在抛物线上,则抛物线的解析式为y=x2-2x-3.正确的是()A .①①①B .①①①C .①①①D .①①①①二、填空题20.如图,P 是MON ∠的平分线上一点,PA ON ⊥于点A ,Q 是射线OM 上一个动点,若8PA =,则PQ 的最小值为______.21.△ABC 中,①A=40o ,①B=60o ,则与①C 相邻外角的度数是______.22.在ABC 中,15,13AB AC ==,高12AD =,则ABC 的周长是 _____. 23.如图,已知ABC BAD ≌,A 和B ,C 和D 分别是对应顶点,且60C ∠=︒,35ABD ∠=︒,则BAD ∠ 的度数是_______24.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.利用所学知识可知他构造全等三角形的依据是________.25.等腰三角形的周长18cm ,其中一边长为8cm ,则底边长为 ___________cm . 26.如图,在①ABC 中,AD 、AE 分别是BC 边上的中线和高,AE =6,S △ABD =15,则CD =_____.27.如图,为了防止门板变形,小明在门板上钉了一根加固木条,从数学的角度看,这样做的理由是利用了三角形的________.28.如图,在Rt △ABC 中,AB =BC ,①B =90°,AC =BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上),则此正方形的面积是_______.29.如图, 正方形ABCD 和等边AEF △都内接于O EF ⊙,与BC CD ,分别相交于点G , H . 若6AE =, 则EG 的长为________.30.如图,在等边①ABC 中,BC =9,点O 是AC 上的一点,点D 是BC 上的一点,若①APO ①①COD ,AO =2.7,则BP =__________.31.平行四边形ABCD 中,E 为BA 延长线上的一点,CE 交AD 于F 点,若:1:3AE AB =,则:CDF ABCF S S =四边形________.32.如图,在Rt ①ABC 中,①ACB =90°,点D 是边AB 的中点,连接CD ,将①BCD 沿直线CD 翻折得到①ECD ,连接AE .若AC =6,BC =8,则①ADE 的面积为____.33.已知:如图,以Rt ABC 的三边为斜边分别向外作等腰直角三角形,若斜边AB=5,则图中阴影部分的面积为__.34.如图,在菱形ABCD 中,点E 是BC 上的点,AE ①BC ,若sin B =35,EC =3,P 是AB 边上的一个动点,则线段PE 最小时,BP 长为_____.35.如图,AB 为①O 的直径,弦CD①AB 于E ,已知CD =12,BE =2,则①O 半径为________.36.如图,在Rt①ABC 中,①ACB =90°,①B =35°,CD 是斜边AB 上的中线,如果将①BCD 沿CD 所在直线翻折,点B 落在点E 处,联结AE ,那么①CAE 的度数是_____度.37.如图,在菱形ABCD 中,=60B ∠︒,E 在CD 上,将ADE ∆沿AE 翻折至AD E '∆,且AD '刚好过BC 的中点P ,则D EC '∠=_________.38.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.三、解答题39.如图,在ABC 中,44ABC ∠=︒,BD 平分ABC ∠,60C ∠=︒,22BDE ∠=︒.(1)求证:DE//AB;∠的度数.(2)求ADB40.如图,菱形ABCD对角线AC,BD相交于点O,点E是AD的中点,过点A作对角线AC的垂线,与OE的延长线交于点F,连接FD.(1)求证:四边形AODF是矩形;(2)若AD=10,①ABC=60°,求OF和OA的长.=,D是BC边上的中点,连结AD,BE平分①ABC交41.如图,在①ABC中,AB ACAC于点E,过点E作EF//BC交AB于点F.(1)若36∠=︒,求①BAD的度数;C(2)求证:点F在BE的垂直平分线上.42.如图,已知EF①BC,AD①BC,①1=①2,①判断DM与AB的位置关系,并说明理由;①若①BAC=70°,DM平分①ADC,求①ACB的度数.43.如图1,线段AD,BC相交于点O,32B︒∠=,38∠=.D︒(1)若60A ︒∠=,求AOB ∠和C ∠的度数;(2)在(1)的条件下,如图2,若BAO ∠、DCO ∠的平分线AM ,CM 相交于点M ,求M ∠度数;(3)若改变条件,设B α∠=,D β∠=,试用含αβ,的代数式表示M ∠的大小. 44.已知抛物线y =x 2+(12m ﹣2)x ﹣3,抛物线与坐标轴交于点A (3,0)、B 两点.(1)求抛物线解析式;(2)当点P (2,a )在抛物线上时.①如图1,过点P 不与坐标轴平行的直线l 1与抛物线有且只有一个交点,求直线l 1的方程;①如图2,若直线l 2:y =2x +b 交抛物线于M ,点M 在点P 的右侧,过点P (2,a )作PQ ①y 轴交直线l 2于点Q ,延长MQ 到点N 使得MQ =NQ ,试判断点N 是否在抛物线上?请说明理由.45.已知:如图,已知点B 、E 、F 、C 在同一直线上,AB =CD ,AE ⊥BC ,DF ⊥BC ,E ,F 是垂足,CE =BF ,求证:AB //CD .46.已知:如图所示,在Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 是BC 的中点,CE AD⊥,垂足为点E,BF AC交CE的延长线于点F,求证:AB垂直平分DF.47.求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半.(1)根据题意补全下图,并根据题设和结论,结合图形,用符号语言补充写出“已知”和“求证”.=,______;已知:在锐角ABC中,AB AC求证:______.(2)证明:48.如图,已知①ABC中,AB=AC,①A=108°,BD平分①ABC.求证:BC=AB+CD.参考答案:1.B【分析】根据全等三角形判定方法进行判断即可【详解】解:由已知,甲全等条件不具备,乙和△ABC满足两角夹边,故全等,丙和△ABC满足两角和其中一角的对边,故全等,因此,有两个三角形可以判定三角形全等. 2.C【分析】作PC①AB于C,如图,由点A和点B坐标得到AB=4,再根据垂径定理得到AC=BC=2,然后根据勾股定理计算出PC=4,于是可确定P点坐标.【详解】解:作PC①AB于C,如图,①点A的坐标为(2,0),点B的坐标为(6,0),①OA=2,OB=6,①AB=OB-OA=4,①PC①AB,①AC=BC=2,在Rt△P AC中,①P A AC=2,①PC,①OC=OA+AC=4,①P点坐标为(4,4).故选:C.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、坐标与图形性质.3.C【分析】根据相似三角形的判定,过点P分别BC,AC的平行线即可得到与原三角形相似的三角形,过点P作以点P为顶点的角与①A相等的角也可以得到原三角形相似的三角形.【详解】解:①BA=BC,①①A=①C,①作PE①BC,可得①APE①①ABC.①作PF①AC,可得①BPF①①BAC.①作①APG=①A,可得①AGP①①ABC,故选:C.【点睛】本题考查相似三角形的判定质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.4.B【分析】延长BC到点D,过点C作CE①AB.依据平行线的性质以及平角的定义,即可得到①A+①B+①ACB=180°.【详解】延长BC到点D,过点C作CE①AB,①CE①AB.①①A=①ACE(两直线平行,内错角相等).①B=①ECD(两直线平行,同位角相等).①①ACB+①ACE+①ECD=180°(平角定义).①①A+①B+①ACB=180°(等量代换).故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和定理,解题时注意:两直线平行,内错角相等;两直线平行,同位角相等.5.D【分析】设GH为x米,根据矩形和平行四边形的面积公式,即可得出关于x的一元二次方程,此题得解.【详解】解:过H 作HM ①LG 于M ,①①KHB =60°,//LG KH ,①①HGM =①KHB =60°,①①HMG =90°,①HM , ①长方形的面积=20×30=600(cm )2,①四块草地总面积为503m 2,①通道的面积为:20x +30x -34x 2=97, 故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.B【分析】根据平行公理,平行线的性质及三角形三边关系等逐项判断.【详解】A.过直线外一点,有且只有一条直线与已知直线平行,故A 不符合题意;B.两条平行线被第三条直线所截,同位角相等,故B 符合题意;C.三角形任意两边之和大于第三边,故C 不符合题意;D.如果a =b ,a =c ,那么b =c ,故D 不符合题意.故选:B .【点睛】本题考查命题与定理,解题的关键是掌握平行公理,平行线的性质及三角形三边关系等教材上的相关结论.7.C【分析】根据题意得OCD ∆为等边三角形,则60COD ∠=︒,根据圆周角定理得出BAC ∠的度数.【详解】解:连接OC ,CD OB =,OCD ∴∆为等边三角形,60COD ∴∠=︒,180120BOC COD ∴∠=︒-∠=︒,111206022BAC BOC ∴∠=∠=⨯︒=︒, 故选:C .【点睛】本题考查了圆周角定理、等边三角形的判定,解题的关键是掌握圆周角定理的内容.8.B【分析】由MAD MDA ∠=∠,得AM =DM ,再由平行四边形的性质得AB =CD ,AB ∥CD ,则①B +①C =180°,然后证△ABM ①△DCM (SSS ),得①B =①C ,即可求得①B 度数.【详解】解:如图,过点M 作MN ①AD 于N ,①MAD MDA ∠=∠,①AM =DM ,①平行四边形ABCD ,①AB =CD ,AB ∥CD ,①①B +①C =180°,①点M 是BC 的中点,在△ABM 与△DCM 中,AB DC BM CM AM DM =⎧⎪=⎨⎪=⎩,①△ABM ①△DCM (SSS ),①①B =①C ,①2①B =180°,①①B =90°,故选:B .【点睛】本题考查平行四边形的性质,等腰三角形的判定,全等三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.9.B【分析】根据直角三角形全等的判定条件逐一分析即可得到答案.【详解】解:①两个直角三角形中有两条边相等,不能证明两个直角三角形全等,如一条直角边相等,另一个直角边与斜边相等;①两个直角三角形中一锐角和斜边对应相等,可用AAS 证明两个直角三角形全等; ①两个直角三角形中斜边和一直角边对应相等,可用HL 证明两个直角三角形全等; ①两个直角三角形中两个锐角对应相等,不能证明两个直角三角形全等;故选B .【点睛】本题主要考查了直角三角形全等的判定定理,熟知直角三角形的判定定理有AAS SAS ASA SSS HL ,,,,是解题的关键.10.A【分析】先求出中心角120AOE ∠︒=,证得OAF △是等边三角形,得到AF R =,根据扇形的面积求出圆的半径,即可得到正六边形的边长.【详解】解:连接OF ,设①O 的半径为R ,①O 是正六边形ABCDEF 的中心, ①360606AOF EOF ︒∠=∠==︒, ①120AOE ∠︒=,①OAF △是等边三角形,①AF OA R ==,①扇形AOE 的面积是12π, ①212012360R ππ=, ①236R = ,①6AF R ==,①正六边形的边长是6,故选:A .【点睛】本题考查了正多边形与圆,扇形的面积计算,解题的关键是求出正多边形的边长等于圆的半径.11.D【分析】作DF①CE 于F ,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D 作DF①CE 于F ,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF 中,根据勾股定理,得:DF 2=CD 2-CF 2=22-12=3,在直角三角形BDF 中,BF=BC+CF=1+1=2,根据勾股定理得:故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.12.B【分析】由题意得MN 垂直平分AB ,得到AD =BD ,①ADE =90°,证得CD =AD =BD ,求出①ADC =2①B =80°,即可得到①CDE 的度数.【详解】解:由题意得MN 垂直平分AB ,①AD =BD ,①ADE =90°,①①ACB =90°,①CD =AD =BD ,①①BCD =①B =40°,①①ADC =2①B =80°,①①CDE =①ADE -①ADC =10°,故选:B .【点睛】此题考查了线段垂直平分线的作图方法,直角三角形斜边中线等于斜边一半的性质、等腰三角形的性质、三角形的外角性质,正确理解线段垂直平分线的作图是解题的关键.13.C【分析】根据菱形的性质可得AB =BC ,AD ①BC ,①BAC =①DAC =12①BAD =60°,从而可得①B =60°,进而证明△ABC 是等边三角形,然后得出BC =AC ,即可判断①;利用①的结论可得CE =CF ,①BCE =①ACF ,从而可得①BCA =①ECF =60°,即可判断①;当CE ①AB 时,ECF △的边长取最小值,根据含30度角的直角三角形的性质求出BE ,再利用勾股定理求出CE 即可判断①;过点E 作EM ①BC ,交AC 于点M ,求出EM =3,然后利用平行线分线段成比例求出23FG AF EG EM ==即可判断①. 【详解】解:①四边形ABCD 是菱形,120BAD ∠=︒,①AB =BC ,AD ①BC ,①BAC =①DAC =12①BAD =60°,①①B =180°−①BAD =60°,①①ABC 是等边三角形,①BC =AC ,①ACB =60°,在△BEC 和△AFC 中,BE AF B FAC BC AC =⎧⎪∠=∠⎨⎪=⎩,①①BEC ①①AFC (SAS ),①正确; ①CE =CF ,①BCE =①ACF ,①①BCE +①ACE =①ACF +①ACE , ①①BCA =①ECF =60°,①①ECF 是等边三角形,①正确; ①△ABC 是等边三角形,AB =BC =5, ①当CE ①AB 时,ECF △的边长取最小值, ①①B =60°,①此时①BCE =30°,①BE =1522BC =, ①CE①ECF △,①错误; 过点E 作EM ①BC ,交AC 于点M ,①①BEC ①①AFC ,①AF =BE =2,①AB =5,①AE =AB −BE =5−2=3,①EM ①BC ,①①AEM =①B =60°,①AME =①ACB =60°, ①①AEM 是等边三角形,①AE =EM =3,①AD①BC,①AF①EM①23 FG AFEG EM==,①23FGC EGCS S=△△,①正确;故选:C.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,含30度角的直角三角形的性质,勾股定理以及平行线分线段成比例,灵活运用各性质进行推理是解题的关键.14.B【详解】连接OC、OC′,如图,①①AOB=90°,C为AB中点,①OC=12AB=12A′B′=OC′,①当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,①滑动杆的中点C所经过的路径是一段圆弧.故选B.【点睛】考点:①圆的定义与性质;①直角三角形的性质.15.C【分析】如图,将①BDA绕点D顺时针旋转90°得到①CDM,由旋转的性质可得①ADM是等腰直角三角形,根据勾股定理推出AD,可知当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值,即可解决问题.【详解】解:如图,将BDA△绕点D顺时针旋转90°得到CDM由旋转的性质可知:4AB CM ==,DA DM =,90ADM ∠=︒①ADM △是等腰直角三角形,①根据勾股定理222AD MD AM +=,①AD AM =, ①当AM 的值最大时,AD 的值最大,①AM AC CM ≤+,AC CM AB ===①AM ≤①AM 的最大值为①AD 的最大值为7,故选C .【点睛】本题考查了正方形的性质,旋转的性质,等腰直角三角形的判定和性质,勾股定理以及两点之间线段最短.解题的关键在于根据旋转的性质构造等腰直角三角形. 16.C【分析】根据平行四边形的性质可得BO =DO ,AO =CO ,由此可得8AOB AOD BOC COD S S S S ∆∆∆∆====,从而可得结论.【详解】解:①四边形ABCD 是平行四边形,①BO =DO ,AO =CO ,①8AOB AOD BOC COD S S S S ∆∆∆∆====,①平行四边形ABCD 的面积=4×8=32,故选:C【点睛】本题考查了平行四边形的性质和三角形中线的性质,解决本题的关键是理解平行四边形的对角线互相平分.17.A【分析】分如解图①,当点D 在圆心O 的左侧且2AD =时,如解图①,当点D 在圆心O 的右侧且2BD =时,两种情况求出AC 的长,从而确定AC 的取值范围即可得到答案.【详解】如解图①,当点D 在圆心O 的左侧且2AD =时,过C 作CE AB ⊥,垂足为E ,连接CD 、CO 、CB ,①AC ADC =,①CDB CBD ∠=∠,①CD CB =,①3DE BE ==,①2DO =,①1OE =,①5AE =,22215CE CO OE =-=,①AC =如解图①,当点D 在圆心O 的右侧且2BD =时,过C 作CE AB ⊥,垂足为E ,连接CD 、CO 、CB ,①AC ADC =,①CDB CBD ∠=∠,①CD CB =,①1DE BE ==,①3OE =,①7AE =,2227CE CO OE =-=,①AC =①若DA 、DB 的长均不小于2AC ≤①AC 的长可能是7,故选A .【点睛】本题主要考查了圆周角定理,等腰三角形的性质与判定,勾股定理,无理数的估算等等,利用分类讨论的思想求解是解题的关键.18.C【分析】过B 作BE AC ∥交DC 延长线于E ,过B 作BF DC ⊥于F ,如图所示,根据题意,分两种情况讨论:①当5BD =时;①当5AC =时,根据双垂直模型得到BDF EBF ∽△△,利用相似比得到未知线段,然后根据BDE ABCD S S =△梯形代值求解即可得到答案.【详解】解:过B 作BE AC ∥交DC 延长线于E ,过B 作BF DC ⊥于F ,如图所示:4BF ∴=,①当5BD =时,对角线相互垂直,即AC BD ⊥,BE BD ∴⊥,90DBF EBF ∴∠+∠=︒,BF DC ⊥,在Rt BDF △中,90,5,4DFB BD BF ∠=︒==,则3DF =, 90DBF BDF ∴∠+∠=︒,BDF EBF ∴∠=∠,90BFD BFE ∠=∠=︒,∴BDF EBF ∽△△,BD DF BE BF ∴=,即534BE =,203BE ∴=, ,AB CE AC BE ∥∥,∴四边形ABEF 是平行四边形,AB CE ∴=, ∴()()11111205052222233BDE ABCD S AB DC BF CE DC BF DE BF S BD BE =+⋅=+⋅=⋅==⋅=⨯⨯=△梯形;①当5AC =时,对角线相互垂直,即AC BD ⊥,BE BD ∴⊥,90DBF EBF ∴∠+∠=︒,BF DC ⊥,在Rt BEF △中,90,5,4EFB BE BF ∠=︒==,则3EF =, 90DBF BDF ∴∠+∠=︒,BDF EBF ∴∠=∠,90BFD BFE ∠=∠=︒,∴BDF EBF ∽△△,BD BF BE EF∴=,即453BD =, 203BD ∴=, ,AB CE AC BE ∥∥,∴四边形ABEF 是平行四边形,AB CE ∴=, ∴()()11111205052222233BDE ABCD S AB DC BF CE DC BF DE BF S BD BE =+⋅=+⋅=⋅==⋅=⨯⨯=△梯形;综上所述,梯形的对角线互相垂直,其中一条对角线长为5,梯形的高为4,则梯形的面积为503,【点睛】本题属于几何综合问题,考查梯形性质、梯形面积公式、勾股定理、两个三角形相似的判定与性质、平行四边形的判定与性质、三角形面积及双垂直模型等知识,熟练掌握相关几何图形的性质是解决问题的关键.19.B【分析】利用已知条件分别求得点A,B,C的坐标,表示出线段OA,OB,OC的长度,利用二次函数的性质,待定系数法与全等三角形的判定定理对每个结论进行逐一判断即可得出结论.【详解】解:将A(x1,0)代入物线y=x2+bx+c得:x12+bx1+c=0.①c=x1+b,①x12+bx1+x1+b=0,①x1(x1+1)+b(x1+1)=0,①(x1+b)(x1+1)=0,①c=x1+b≠0,①x1+1=0,①x1=-1,①A(-1,0),①OA=1,①c=-1+b,①b-c=1.①①的结论正确;①c=-1+b,①y=x2+bx+b-1,令y=0,则x2+bx+b-1=0,解得:x=-1或x=1-b,①B(1-b,0),①抛物线的对称轴在y轴的右侧,①b<0,①OB=1-b,①C(0,b-1),①OB =OC ,在△AOC 和△DOB 中,90ACO DBO OC OB AOC DOB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ①①AOC ①①DOB (ASA ).①①的结论正确;若①DBC =30°,过点D 作DH ①BC 于点H ,如图,①①AOC ①①DOB ,①OA =OD =1,AC =BD ,①CD =OC -OD =-b ,①OB =OC ,①①OCB =①OBC =45°,①DH ①BC ,①DH, ①DH ①BC ,①DBC =30°,①BD =2DH,①ACb ,①OA 2+OC 2=AC 2,①12+(1−b ) 2=b ) 2.解得:b①b①抛物线的对称轴为直线x== ①①的结论不正确;当点B 绕点D 顺时针旋转90°后得到的点B '也在抛物线上时,过点B ′作B ′M ①y 轴于点M ,如图,由题意:DB =DB ′,①BDB ′=90°,①①MDB ′+①ODB =90°,①①ODB +①OBD =90°,①①MDB ′=①OBD ,在△MDB ′和△OBD 中,90DMB BOD MDB OBD DB BD ''∠=∠=︒⎧⎪∠=∠⎨⎪=⎩',①①MDB ′①①OBD (AAS ),①MD =OB =1-b ,MB ′=OD =1,①OM =OD +DM =2-b ,①B ′(1,b -2),①1+b +b -1=b -2,解得:b =-2,①c =b -1=-3,①此时抛物线的解析式为y=x2-2x-3,①①的结论正确;综上,正确的结论是:①①①.故选:B.【点睛】本题主要考查了待定系数法,数形结合法,二次函数的性质,抛物线与x轴的交点,抛物线上点的坐标的特征,图形的旋转的性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,熟练掌握二次函数的性质是解题的关键.20.8【分析】根据角平分线的性质定理解答.【详解】解:当PQ①OM时,PQ最小,①P是①MON角平分线上的一点,PA①ON,PQ①OM,①PQ=PA=8,故答案为:8.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.21.100°##100度【分析】先根据三角形的内角和求出①C的度数,即可求出与①C相邻外角的度数【详解】①C=180°-①A-①B=80°,①①C相邻外角的度数为180°-80°=100°.故答案为:100°【点睛】此题主要考查邻补角的求解,解题的关键是熟知三角形的内角和为180°. 22.42或32##32或42【分析】分两种情况讨论:当高AD在ABC的内部时,当高AD在ABC的外部时,结合勾股定理,即可求解.【详解】解:当高AD在ABC的内部时,如图,在Rt ABD中,9BD,在Rt ACD中,5CD==,①14BC BD CD =+=,此时ABC 的周长是15141342AB BC AC ++=++=;当高AD 在ABC 的外部时,如图,在Rt ABD中,9BD ,在Rt ACD中,5CD ==,①4BC BD CD =-=,此时ABC 的周长是1541332AB BC AC ++=++=;综上所述,ABC 的周长是42或32.故答案为:42或32【点睛】此题考查了勾股定理的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.23.85︒【分析】根据全等三角形的性质和三角形内角和定理计算即可;【详解】①ABC BAD ≌,60C ∠=︒,35ABD ∠=︒,①60C D ∠=∠=︒,35DBA CAB ∠=∠=︒,①180180603585DAB D DBA ∠=︒-∠-∠=︒-︒-︒=︒.故答案是:85︒.【点睛】本题主要考查了全等三角形的性质和三角形内角和定理,准确分析计算是解题的关键.24.SSS【分析】根据全等三角形的判定定理SSS 推出①COM ①①DOM ,根据全等三角形的性质得出①COM =①DOM ,根据角平分线的定义得出答案即可.【详解】解:在①COM 和①DOM 中,,OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩. ①①COM ①①DOM (SSS ),①①COM=①DOM,即OM是①AOB的平分线,故答案为:SSS.【点睛】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键.25.2或8.【详解】试题分析:由题意知,应分两种情况:当腰长为8cm时,则另一腰也为8cm,底边为18-2×8=2cm,①0<2<8+8,①边长分别为8cm,8cm,2cm,能构成三角形;当底边长为8cm时,腰的长=(18-8)÷2=5cm,①0<8<5+5=13,①边长为5cm,5cm,8cm,能构成三角形.故答案为2或8.考点:等腰三角形的性质.26.5【分析】由利用三角形的面积公式可求得BD的长,再由中线的定义可得CD=BD,从而得解.【详解】解:①S△ABD=15,AE是BC边上的高,BD•AE=15,①12×6BD=15,则12解得:BD=5,①AD是BC边上的中线,①CD=BD=5.故答案为:5.【点睛】本题主要考查三角形的中线,三角形的高,解答的关键是由三角形的面积公式求得BD的长.27.稳定性【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【详解】解:这样做的原因是:利用三角形的稳定性使门板不变形.故答案为:三角形具有稳定性.【点睛】本题主要考查三角形的稳定性在实际生活中的应用.28.36【分析】由△ABC 是等腰直角三角形,可得①A =①C =45°,从而证明△AEF 也是等腰直角三角形,设AF =x ,则BF =12﹣x ,列出方程并求出x 的值,再根据正方形的面积公式即可求得.【详解】解:①①ABC 是等腰直角三角形,①①A =①C =45°,①四边形BDEF 是△ABC 的内接正方形,①EF ①BC ,①①AEF =①C =45°,①①AEF 也是等腰直角三角形,①AF =EF ,设AF =x ,则BF =12﹣x ,①12﹣x =x ,①x =6,①此正方形的面积为6×6=36.故答案为:36.【点睛】本题考查了正方形的性质、等腰三角形的性质及判定.解题的关键是熟练掌握正方形的性质.29.3【分析】连接AC ,CE ,CF ,正方形ABCD 和等边AEF △都内接于O ,得证AC 是O 的直径,45ACG ∠=,60AEF AFE ∠=∠=,AE AF =,从而得证90AEC AFC ∠=∠=,30CEF CFE ∠=∠=,得到CE CF =,直线AC 是线段EF 的垂直平分线,从而得到90GMC ∠=,45CGM ∠=,得证CM GM =,30EAM ∠=,从而得证132EM AE ==,AM =2AC EC =,结合222AC EC AE =+,确定AC =CM GM AC AM ==-==,根据EG EM GM =-计算即可.【详解】如图,连接AC ,CE ,CF ,因为正方形ABCD 和等边AEF △都内接于O , 所以AC 是O 的直径,45ACG ∠=,60AEF AFE ∠=∠=,AE AF =,所以90AEC AFC ∠=∠=,30CEF CFE ∠=∠=,所以CE CF =,所以直线AC 是线段EF 的垂直平分线,所以90GMC ∠=,45CGM ∠=,所以CM GM =,30EAM ∠=,所以132EM AE ==,AM ==2AC EC =, 因为222AC EC AE =+, 所以2221()62AC AC =+,解得AC =所以CM GM AC AM ==-=所以EG EM GM =-=3故答案为:3【点睛】本题考查了正方形的性质,等边三角形的性质,线段垂直平分线的判定和性质,圆的基本性质,直角三角形的性质,勾股定理,等腰直角三角形的判定和性质,熟练掌握正方形的性质,圆的性质,等边三角形的性质,勾股定理是解题的关键.30.2.7【分析】根据全等可得OC =AP ,再根据等边三角形的性质可得AC =AB ,从而可得AO =BP ,即可得出结论【详解】解:①①ABC 为等边三角形,①AC =AB =BC =9,①①APO ①①COD ,AO =2.7,①AP =OC ,①BP =AO =2.7.故答案为:2.7.【点睛】本题考查全等三角形的性质,等边三角形的性质.正确理解性质得出线段之间的关系是解题关键.31.5:3.【分析】过C 做CG ①AD 交AD 延长线于G ,根据四边形ABCD 为平行四边形,可得CD∥AB 且CD =AB ,AD =BC ,利用平行线性质可得①CDF =①EAF ,①DCF =①E ,可证△DCF ①①AEF ,根据相似三角形性质可得31DF DC AF AE ==,设AF =m ,DF =3m ,则BC =AD = 4m ,求三角形与四边形面积S △CDF =1322DF CG mCG ⋅=,S 四边形ABCF =()()1154222AF BC CG m m CG mCG +⋅=+⋅=,再求两面积比即可. 【详解】解:过C 做CG ①AD 交AD 延长线于G ,①四边形ABCD 为平行四边形,①CD∥AB 且CD =AB ,AD =BC ,①①CDF =①EAF ,①DCF =①E ,①△DCF ①①AEF , ①31DF DC AF AE ==, 设AF =m ,DF =3m ,则BC =AD =AF +DF =4m ,①S △CDF =1322DF CG mCG ⋅=, S 四边形ABCF =()()1154222AF BC CG m m CG mCG +⋅=+⋅=, ①53::5:322CDF ABCF S S mCG mCG ==四边形. 故答案为5:3.【点睛】本题考查平行四边形的性质,三角形相似判定与性质,三角形面积与四边形面积,掌握平行四边形的性质,三角形相似判定与性质,三角形面积与四边形面积是解题关键.32.6.72【分析】连接BE,延长CD交BE与点H,作CF①AB,垂足为F.首先证明DC垂直平分线段BE,△ABE是直角三角形,利用三角形的面积求出EH,得到BE的长,在Rt△ABE 中,利用勾股定理即可解决问题.【详解】解:如图,连接BE,延长CD交BE与点H,作CF①AB,垂足为F.①①ACB=90°,AC=6,BC=8.①AB,①D是AB的中点,①AD=BD=CD=5,①S△ABC=12AC•BC=12AB•CF,①12×6×8=12×10×CF,解得CF=4.8.①将△BCD沿直线CD翻折得到△ECD,①BC=CE,BD=DE,①CH①BE,BH=HE.①AD=DB=DE,①①ABE为直角三角形,①AEB=90°,①S△ECD=S△ACD,①12DC•HE=12AD•CF,①DC=AD,①HE=CF=4.8.①BE=2EH=9.6.①①AEB=90°,①AE.①S△ADE=12EH•AE=12×2.8×4.8=6.72.故答案为:6.72.【点睛】本题考查了翻折变换(折叠问题),直角三角形斜边上的中线的性质,勾股定理,三角形的面积等知识,解题的关键是学会利用面积法求高,属于中考常考题型.33.【详解】试题分析:根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.解:在Rt①ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB=×+×+×,=(AC2+BC2+AB2),=AB2,=×52=.故答案为.点评:本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.34.48 5【分析】根据垂线段最短可知当EP①AB时,线段EP最短.根据12•AB•PE=12×BE×AE,只要求出AB、AE、BE、PE,即可解决问题.【详解】解:根据垂线段最短可知当PE①AB时,线段PE最短.①AE①BC于E,sinB=35=AEAB,设AE=3k,AB=BC=5k,则BE=4k,EC=k,①EC=3,①k=3,①BE=12,AB=15,AE=9,当PE①AB时,12•AB•PE=12×BE×AE,①PE=AE BEAB⨯=365,①线段PE的最小值为365,①BP 485.故答案为:485.【点睛】本题考查菱形的性质、解直角三角形、垂线段最短、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.35.10.【分析】连结OC,设①O半径为r,则OC=r,OE=r-2,根据垂径定理得到CE=DE=1 2CD=6,在Rt△OCE中,利用勾股定理列出关于r的等式,然后解方程求出r即可.【详解】解:连结OC,设①O半径为r,则OC=r,OE=r-BE=r-2,①CD①AB,CD=12①CE=DE=12CD=6,。

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)

中考数学复习《等腰、等边及直角三角形》经典题型(含答案)知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;注意:1.实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:1)、“角平分线+平行线”构造等腰三角形。

2)、“角平分线+垂线”构造等腰三角形。

3)、用“垂直平分线”构造等腰三角形;4)、用“三角形中角的2倍关系”构造等腰三角形。

2.当等腰三角形的腰和底不明确时,需分类讨论.变式练习1:如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.3.三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.变式练习2:如右图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为 __7__.变式练习5:一个等腰三角形的两边长分别为4,8,则它的周长为( C )A.12 B.16 C.20 D.16或202.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.变式练习1:△ABC中,∠B=60°,AB=A C,BC=3,则△ABC的周长为9.变式练习2:在等边△ABC中,点D,E分别在边BC,AC上,若CD=2,过点D 作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在Rt△DEF,∵∠DEF=90°,DE=2,∴DF=2DE=4,∴EF=DF2-DE2=42-22=2 3.变式练习3:如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=__2__.知识点二:角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.21P C OBAPCO B A注意:(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.变式练习:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。

初中数学《三角形中的经典模型》九大题型含解析

初中数学《三角形中的经典模型》九大题型含解析

三角形中的经典模型【1A字模型 1【28字模型 3【3飞镖模型 6【4双垂直模型 9【5老鹰抓小鸡模型 15【6两内角角平分线模型 19【7两外角角平分线模型 21【8一内一外角角平分线模型 26【9三角形折叠模型 29知识点1:A字模型已知△ABC,AB至D,AC至E,∠1+∠2=∠A+180°【1A字模型1.(23-24八·全·专)如△ABC中∠A=65°,DE交AB于D,AC于E,∠BDE+∠CED=( ).A.180°B.215°C.235°D.245°【答案】D【分析】根据三角形内角和定理求出∠ADE+∠AED,根据平角的概念计算即可.【详解】解:∵∠A=65°,∴∠ADE+∠AED=180°-65°=115°,∴∠BDE+∠CED=360°-115°=245°,故选:D.【点睛】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.2.(23-24八年级·全国·专题练习)如图是某建筑工地上的人字架,若∠1=120°,那么∠3-∠2的度数为.【答案】60°【分析】根据平角的定义求出∠4,再利用三角形的外角的性质即可解决问题.【详解】解:如图∵∠1+∠4=180°,∠1=120°,∴∠4=60°,∵∠3=∠2+∠4,∴∠3-∠2=∠4=60°,故答案为:60°.【点睛】本题考查三角形外角的性质、平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考基础题.3.(23-24八年级·河北沧州·期中)琪琪在操作课上将三角形剪掉一个角后得到四边形ABCD,则下列判断错误的是()A.变成四边形后对角线增加了两条B.变成四边形后内角和增加了360°C.外角和没有发生变化D.若剪掉的角的度数是60°,则∠1+∠2=240°【答案】B【分析】本题考查了多边形的对角线,内角和与外角和,三角形内角和定理,解题的关键是【详解】解:A、三角形没有对角线,变成四边形后对角线为两条,即增加了两条,故正确,不合题意;B、三角形内角和为180°,变成四边形后内角和为360°,增加了180°,故错误,不合题意;C、任意多边形的外角和是360°,故正确,不合题意;D、若剪掉的角的度数是60°,则∠A+∠B=120°,则∠1+∠2=360°-120°=240°,故正确,不合题意;故选:B.4.(23-24·浙江杭州·二模)将一把直尺与一块三角板在同一平面内按如图所示的方式放置,若∠1=130°,则∠2的度数为.【答案】40°/40度【分析】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键,根据平行线的性质可得∠FGH=∠1=130°,然后利用三角形外角的性质进行计算即可解答.【详解】解:如图:由题意得:AD∥BC,∴∠FGH=∠1=130°,∵∠FGH是△EFG的一个外角,∴∠FGH=∠2+∠E,∵∠E=90°,∴∠2=130°-90°=40°,故答案为:40°.知识点2:8字模型①已知AD,BC相交于O,则∠A+∠B=∠C+∠D②已知线段AP平分∠BAD,线段CP平分∠BCD,则∠P=12(∠B+∠D)【题型28字模型】5.(23-24八年级·浙江金华·期末)如图,BP平分∠ABC,交CD于点F,DP平分∠ADC交AB于点E,AB与CD相交于点G,∠A=42°.(1)若∠ADC=60°,求∠AEP的度数;(2)若∠C=38°,求∠P的度数.【答案】(1)72°;(2)40°.【分析】(1)根据角平分线的定义可得∠ADP=12∠ADC,然后利用三角形外角的性质即可得解;(2)根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理可得∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,所以∠A+∠C=2∠P,即可得解.【详解】解:(1)∵DP平分∠ADC,∴∠ADP=∠PDF=12∠ADC,∵∠ADC=60°,∴∠ADP=30°,∴∠AEP=∠ADP+∠A=30°+42°=72°;(2)∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=42°,∠C=38°,∴∠P=12(38°+42°)=40°.【点睛】本题考查了三角形的内角和定理及三角形外角的性质,角平分线的定义,熟记定理并理解“8字形”的等式是解题的关键.6.(23-24八年级·河南漯河·期末)如图,AB和CD相交于点O,∠A=∠C,则下列结论中不能完全确定正确的是()A.∠B=∠DB.∠1=∠A+∠DC.∠2>∠DD.∠C=∠D【答案】D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,∴∠B=∠D,∵∠1=∠2=∠A+∠D,∴∠2>∠D,故选项A,B,C正确,故选D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.7.(23-24八年级·北京怀柔·期末)如图,在由线段AB,CD,DF,BF,CA组成的平面图形中,∠D=28°,则∠A+∠B+∠C+∠F的度数为( ).A.262°B.152°C.208°D.236°【答案】C【分析】如图标记∠1,∠2,∠3,然后利用三角形的外角性质得∠1=∠B+∠F=∠D+∠3,∠2=∠A+∠C,再利用∠2,∠3互为邻补角,即可得答案.【详解】解:如下图标记∠1,∠2,∠3,∵∠1=∠B+∠F=∠D+∠3,∵∠D=28°,∴∠3=∠B+∠F-28°,又∵∠2=∠A+∠C,∴∠2+∠3=∠A+∠C+∠B+∠F-28°,∵∠2+∠3=180°∴180°=∠A+∠C+∠B+∠F-28°,∴∠A+∠C+∠B+∠F=180°+28°=208°,故选C.【点睛】此题考查了三角形的外角性质与邻补角的意义,熟练掌握并灵活运用三角形的外角性质与邻补角的意义是解答此题的关键.8.(23-24八年级·全国·专题练习)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H六个角的和.【答案】360°【分析】根据三角形内角和外角的性质可得:∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,再根据三角形内角和定理可得答案.【详解】解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2,∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.【点睛】此题主要考查了三角形内角与外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.知识点3:飞镖模型①已知四边形ABCD,则∠C=∠A+∠B+∠D②已知四边形ABCD,线段BO平分∠ABC,线段OD平分∠ADC,则∠O=12(∠A+∠C)【题型3飞镖模型】9.(23-24·河北秦皇岛·一模)如图,用铁丝折成一个四边形ABCD(点C在直线BD的上方),且∠A=70°,∠BCD=120°,若使∠ABC、∠ADC平分线的夹角∠E的度数为100°,可保持∠A不变,将∠BCD(填“增大”或“减小”)°.【答案】增大10【分析】利用三角形的外角性质先求得∠ABE+∠ADE=30°,根据角平分线的定义得到∠ABC+∠ADC= 60°,再利用三角形的外角性质求解即可.【详解】解:如图,连接AE并延长,连接AC并延长,∠BED=∠BEF+∠DEF=∠ABE+∠BAD+∠ADE=100°,∵∠BAD=70°,∴∠ABE+∠ADE=30°,∵BE,DE分别是∠ABC、∠ADC平分线,∴∠ABC+∠ADC=2(∠ABE+∠ADE)=60°,同上可得,∠BCD=∠BAD+∠ABC+∠ADC=130°,130°-120°=10°,∴∠BCD增大了10°.故答案为:增大,10.【点睛】本题考查了三角形的外角性质,三角形的内角和定理,角平分线的定义等知识,熟练运用题目中所给的结论是解题的关键.10.(23-24八年级·江苏苏州·阶段练习)在社会实践手工课上,小茗同学设计了如上图这样一个零件,如果∠A=52°,∠B=25°,∠C=30°,∠D=35°,∠E=72°,那么∠F=°.【答案】70【分析】延长BE、CF,交于点G,连接AG,根据三角形内角和定理和四边形的内角和为360°即可求解.【详解】解:延长BE、CF,交于点G,连接AG,如图,∴∠AGB=180°-∠B-∠BAG,∠AGC=180°-∠C-∠CAG,∴∠AGB+∠AGC=180°-∠B-∠BAG+180°-∠C-∠CAG=360°-∠B-∠C-∠BAC=253°,∴∠CGB=360°-∠AGB+∠AGC=107°.∵∠BED=72°,∴∠GED=108°,∴∠GFD=360°-∠GED-∠D-∠CGB=110°,∴∠CFD=70°.故答案为:70.【点睛】本题主要考查三角形内角和定理.正确的作出辅助线是解题关键.11.(23-24八年级·全国·专题练习)如图,若∠EOC=115°,则∠A+∠B+∠C+∠D+∠E+∠F=.【答案】230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.【详解】解:如图∵∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∴∠E+∠D+∠C=115°,∵∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∴∠A+∠B+∠F=115°,∴∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.12.(23-24·河北邯郸·一模)嘉嘉在作业本上画了一个四边形,并标出部分数据(如图),淇淇说,这四个数据中有一个是标错的;嘉嘉经过认真思考后,进行如下修改:若∠A,∠B,∠BCD保持不变,则将图中∠D(填“增大”或“减小”)度,淇淇说,“改得不错”.【答案】增大5【分析】连接BD,利用三角形的内角和计算即可.【详解】解:连接BD,∵∠CDB+∠CBD=180°-∠A-∠ABC-∠ADC∠CDB +∠CBD =180°-∠BCD∴∠A +∠ABC +∠ADC =∠BCD∵∠A =90°,∠ABC =25°,∠BCD =145°∴∠ADC =145°-25°-90°=30°∴30°-25°=5°故答案为:增大,5【点睛】本题主要考查三角形的内角和,添加辅助线利用三角形内角和计算是解决本题的关键.知识点4:双垂直模型已知∠B =∠D =∠ACE =90°.则∠BAC =∠DCE ,∠ACB =∠CED .【证明】∵∠B =∠D =∠ACE =90°;∴∠BAC +∠ACB =90°;又∠ECD +∠ACB =90°;∴∠BAC =∠DCE 同理,∠ACB +∠DCE =90°,且∠CED +∠DCE =90°;∴∠ACB =∠CED ,得证.【题型4双垂直模型】13.(23-24八年级·广东珠海·期末)如图1,AB ⊥BC 于点B ,CD ⊥BC 于点C ,点E 在线段BC 上,且AE ⊥DE .(1)求证:∠EAB =∠CED ;(2)如图2,AF 、DF 分别平分∠BAE 和∠CDE ,则∠F 的度数是(直接写出答案即可);(3)如图3,EH 平分∠CED ,EH 的反向延长线交∠BAE 的平分线AF 于点G .求证:EG ⊥AF .(提示:三角形内角和等于180°)【答案】(1)见解析;(2)45°;(3)见解析【分析】(1)利用同角的余角相等即可证明;(2)过点F 作FM ∥AB ,利用∠DFA =∠DFM +∠AFM =12∠CDE +12∠EAB =12(∠CDE +∠EAB )即可解决问题;(3)想办法证明∠EAG +∠AEG =90°即可解决问题.【详解】解:(1)∵AB ⊥BC ,CD ⊥BC ,∴∠B =∠C =90°,∴∠BAE +∠AEB =90°,∵AE ⊥DE ,∴∠AED =90°,∴∠AEB +∠CED =90°,∴∠BAE =∠CED .(2)解:答案为45°;过点F 作FM ∥AB ,如图,∵AB ⊥BC ,CD ⊥BC ,∴∠B =∠C =90°,∴AB ∥CD ,∵∠C =90°,∴∠CED +∠CDE =90°,∵∠BAE =∠CED ,∴∠BAE +∠CDE =90°,∵AF 、DF 分别平分∠BAE 和∠CDE ,∴∠CDF =12∠CDE ,∠BAF =12∠BAE ,∴∠CDF +∠BAF =12(∠BAE +∠CDE )=45°,∵FM ∥AB ∥CD ,∴∠CDF =∠DFM ,∠BAF =∠AFM ,∴∠AFD =∠CDF +∠BAF =45°.(3)∵EH 平分∠CED ,∴∠CEH =12∠CED ,∴∠BEG =12∠CED ,∵AF 平分∠BAE ,∴∠BAG =12∠BAE ,∵∠BAE =∠CED ,∴∠BAG =∠BEG ,∵∠BAE +∠BEA =90°,∴∠BAG +∠GAE +∠AEB =90°,即∠GAE +∠AEB +∠BEG =90°,∴∠AGE =90°,∴EG ⊥AF .【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.14.(23-24八年级·陕西西安·期末)如图,在等腰Rt △ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF .(1)求证:AD⊥CF.(2)连接AF,试判断△ACF的形状,并说明理由.【答案】(1)见解析(2)△ACF为等腰直角三角形;理由见解析【分析】本题考查了全等三角形的判定和性质及等腰三角形性质和判定.(1)欲求证AD⊥CF,先证明∠CAG+∠ACG=90°,需证明∠CAG=∠BCF,利用三角形全等,易证.(2)要判断△ACF的形状,看其边有无关系.根据(1)的推导,易证CF=AF,从而判断其形状.【详解】(1)证明:在等腰直角△ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°,∵DE⊥AB,∴∠DEB=90°,∴∠BDE=45°,∵BF∥AC,∴∠CBF=180°-∠ACB=90°,∴∠BFD=45°=∠BDE,∴BF=DB,又∵D为BC的中点,∴CD=DB,即BF=CD,在△CBF和△ACD中,BF=CD∠CBF=∠ACD=90°CB=AC,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°,即AD⊥CF.(2)解:△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:△CBF≌△ACD,∴CF=AD,∵△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.15.(23-24八年级·山西晋中·期中)请把下面的证明过程补充完整如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:CF=CE.证明:∵AE平分∠CAB(已知),∴∠CAE=∠FAB(①),∵∠ACE=90°(已知),∴∠CAE+∠CEF=90°(②),∵CD是△ABC的高(已知),∴∠CDA=90°(三角形高的定义),∴(③),(直角三角形的两个锐角互余),∴∠CEF=∠AFD(④),∵∠CFE=∠AFD(⑤),∴∠CFE=∠CEF(⑥),∴CF=CE(⑦).【答案】①角平分线的定义;②直角三角形的两锐角互余;③∠FAD+∠AFD=90°;④等角的余角相等;⑤对顶角相等;⑥等量代换;⑦等角对等边【分析】本题考查的是直角三角形的性质、角平分线的定义,等腰三角形的判定,掌握直角三角形的两锐角互余是解题的关键.根据角平分线的定义、直角三角形的性质、对顶角相等、等角对等边解答即可.【详解】证明:∵AE平分∠CAB(已知),∴∠CAE=∠FAB(角平分线的定义),∵∠ACE=90°(已知),∴∠CAE+∠CEF=90°(直角三角形的两锐角互余),∵CD是△ABC的高(已知),∴∠CDA=90°(三角形高的定义),∴∠FAD+∠AFD=90°(直角三角形的两锐角互余),∴∠CEF=∠AFD(等角的余角相等),∵∠CFE=∠AFD(对顶角相等),∴∠CFE=∠CEF(等量代换),∴CF=CE(等角对等边).故答案为:角平分线的定义;直角三角形的两锐角互余;∠FAD+∠AFD=90°;等角的余角相等;对顶角相等;等量代换;等角对等边.16.(23-24八年级·江苏扬州·阶段练习)在Rt △ABC 中,∠CAB =90°,AB =AC ,点O 是BC 的中点,点P 是射线CB 上的一个动点(点P 不与点C 、O 、B 重合),过点C 作CE ⊥AP 于点E ,过点B 作BF ⊥AP 于点F ,连接EO ,OF.(问题探究)如图1,当P 点在线段CO 上运动时,延长EO 交BF 于点G .(1)求证:△AEC ≌△BFA ;(2)BG 与AF 的数量关系为:(直接写结论,不需说明理由);(拓展延伸)(3)①如图2,当P 点在线段OB 上运动,EO 的延长线与BF 的延长线交于点G ,∠OFE 的大小是否变化?若不变,求出∠OFE 的度数;若变化,请说明理由;②当P 点在射线OB 上运动时,若AE =2,CE =6,直接写出△OEF 的面积,不需证明.【答案】(1)见解析;(2)BG =AF ;(3)①∠OFE 的大小不变,∠OFE =45°;②满足条件的△OEF 的面积为8或16【分析】(1)根据等角的余角相等得出∠CAE =∠ABF ,证明△AEC ≌△BFA AAS ;(2)证明△COE ≌△BOG AAS 得出CE =BG ,则CE =AF ,等量代换可得AF =BG ;(3)①证明△AEC ≌△BFA AAS ,进而证明∠CEO =∠BGO 证明△COE ≌△BOG AAS 得出∠EFO =12∠EFG =45°;②根据题意画出图形,分类讨论,根据三角形的面积公式,即可求解.【详解】(1)证明:如图1中,∵CE ⊥AE ,BF ⊥AE ,∴∠AEC =∠BFA =∠CAB =90°,∴∠CAE +∠BAF =90°,∠BAF +∠ABF =90°,∴∠CAE =∠ABF ,在△AEC 和△BFA 中,∠AEC =∠BFA∠CAE =∠ABF AC =BA,∴△AEC ≌△BFA AAS ;(2)解:结论:BG =AF .理由:∵CE ⊥AE ,BF ⊥AE ,∴CE ∥BG ,∴∠CEO =∠BGO ,∵O 是BC 的中点,∴OC =OB ,在△COE 和△BOG 中,∠CEO =∠BGO∠AOE =∠BOG OC =OB,∴△COE ≌△BOG AAS ,∴CE =BG ,∵△AEC ≌△BFA ,∴CE =AF ,∴AF =BG .故答案为:BG =AF .(3)解:①如图2中,结论:∠OFE 的大小不变,∠OFE =45°.理由:∵CE ⊥AE ,BF ⊥AE ,∴∠AEC =∠BFA =∠CAB =90°,∴∠CAE +∠BAF =90°,∠BAF +∠ABF =90°,∴∠CAE =∠ABF ,在△AEC 和△BFA 中,∠AEC =∠BFA∠CAE =∠ABF AC =BA,∴△AEC ≌△BFA AAS ;∴CE =AF ,AE =BF ,∵CE ⊥AE ,BF ⊥AE ,∴CE ∥BG ,∴∠CEO =∠BGO ,∵O 是BC 的中点,∴OC =OB ,在△COE 和△BOG 中,∠CEO =∠BGO∠AOE =∠BOG OC =OB,∴△COE ≌△BOG AAS ,∴CE =BG ,OE =OG ,∴AF =BG ,∴EF =FG ,根据△EFO ≌△GFO SSS 可得:∠EFO =∠GFO∴∠EFO =12∠EFG =45°;②如图2中,当AE =2,CE=6时,EF =FG =6-2=4,∴S △EOF =12S △EFC =12×12×4×4=4如图3中,当AE =2,CE =6时,EF =FG =6+2=8,∴S △EOF =12S △EFG =12×12×8×8=16综上所述,满足条件的△OEF 的面积为8或16.【点睛】本题考查了全等三角形的证明与性质,等腰三角形的判定和性质,三角形的动点问题以及三角形求面积的问题,正确掌握知识点是解题的关键.知识点5:老鹰抓小鸡模型如图,∠A+∠O=∠1+∠2;口诀:腋下两角之和等于上下两角之和【题型5老鹰抓小鸡模型】17.(23-24八年级·江苏扬州·阶段练习)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.35°C.30°D.25°【答案】D【分析】根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC= 360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,即可求得∠2的度数.【详解】∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=95°,∴∠2=120°-95°=25°,故选D.【点睛】本题考查了三角形的内角和定理,翻折变换的性质,熟记定理及性质并准确识图是解题的关键.18.(23-24八年级·重庆渝北·阶段练习)如图,将△ABC沿着DE翻折,使B点与B 点重合,若∠1+∠2=80°,则∠B的度数为.【答案】40°/40度【分析】由翻折的性质可知,∠B=∠B ,∠BED=∠B ED,∠BDE=∠B DE,由∠BED+∠B ED+∠1= 180°,∠BDE+∠B DE+∠2=180°,∠1+∠2=80°,可得∠BED+∠BDE=140°,根据∠B=180°-∠BED+∠BDE,计算求解即可.【详解】解:由翻折的性质可知,∠B=∠B ,∠BED=∠B ED,∠BDE=∠B DE,∵∠BED+∠B ED+∠1=180°,∠BDE+∠B DE+∠2=180°,∠1+∠2=80°,∴∠BED+∠BDE=140°,∴∠B=180°-∠BED+∠BDE=40°,故答案为:40°.【点睛】本题考查了翻折的性质,三角形内角和定理.解题的关键在于对知识的熟练掌握与灵活运用.19.(23-24八年级·安徽铜陵·期中)如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C平分∠ACB,若∠1+∠2=120°,则∠BA′C的度数为()A.120°B.110°C.100°D.90°【答案】A【详解】由∠BDE、∠CED是△ADE的两个外角知∠BDE=∠A+∠AED、∠CED=∠A+∠ADE,据此得∠BDE+∠CED=∠A+∠AED+∠A+∠ADE,推出∠1+∠2=2∠A得到∠A=60°,根据BA'平分∠ABC,CA'平分∠ACB知∠A'BC+∠A'CB=12(∠ABC+∠ACB)=90°-12∠A.利用∠BA'C=180°-(∠A'BC+∠A'CB)可得答案.解:∵∠BDE、∠CED是△ADE的两个外角,∴∠BDE=∠A+∠AED,∠CED=∠A+∠ADE,∴∠BDE+∠CED=∠A+∠AED+∠A+∠ADE,∴∠1+∠ADE+∠2+∠AED=2∠A+∠AED+∠ADE,即∠1+∠2=2∠A,∵∠1+∠2=120°,∴∠A=60°,∵BA'平分∠ABC,CA'平分∠ACB,∴∠A'BC+∠A'CB=12(∠ABC+∠ACB)=12(180°-∠A )=90°-12∠A .∴∠BA 'C =180°-(∠A 'BC +∠A 'CB ),=180°-90°-12∠A =90°+12∠A =90°+12×60°=120°.故选:A .【点睛】本题考查三角形的内角和定理、角平分线的定义、三角形的外角的性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.20.(23-24八年级·山东烟台·期中)折纸是我国一项古老的传统民间艺术,这项具有中国特色的传统文化在几何中可以得到新的解读.已知在△ABC 中,请根据题意,探索不同情境中∠1+∠2(或∠1-∠2)与∠A 的数量关系.(1)如图①,若∠A =80°,沿图中虚线DE 截去∠A ,则∠1+∠2=.(2)如图②,若∠A =80°,沿图中虚线DE 将∠A 翻折,使点A 落在BC 上的点A '处,则∠1+∠2=.(3)如图③,翻折后,点A 落在点A '处,若∠1+∠2=80°,求∠B +∠C 的度数(4)如图④,△ABC 纸片沿DE 折叠,使点A 落在点A '处,若∠1=80°,∠2=24°,求∠A 的度数.【答案】(1)260°(2)160°(3)∠B +∠C =140°(4)∠A =28°【分析】(1)根据三角形内角和定理得出∠B +∠C =180°-80°=100°,再由平角进行求解即可;(2)利用翻折的性质得出∠EDA '=∠ADE ,∠AED =∠DEA ',根据三角形内角和定理得出∠ADE +∠AED =100°,结合图形,由平角及各角之间的关系进行计算即可‘(3)连接AA .根据三角形外角的性质得出∠1=∠DAA '+∠DA 'A ,∠2=∠EAA '+∠EA 'A ,然后利用各角之间的数量关系得出∠EAD =40°,再由三角形内角和定理即可求解;(4)设AB 与DA 交于点F ,根据三角形外角得出∠1=∠DFA +∠A ,∠DFA =∠A +∠2,再由折叠的性质得出∠A =∠A ,结合图形及各角之间的数量关系进行求解即可【详解】(1)解:∵∠A=80°,∴∠ADE+∠AED=180°-80°=100°,∴∠1+∠2=360°-∠ADE-∠AED=260°,故答案为:260°;(2)∵∠A=80°,∴∠ADE+∠AED=180°-80°=100°,∵翻折,∴∠EDA'=∠ADE,∠AED=∠DEA',∴∠ADA'+∠AEA'=2(∠ADE+∠AED)=200°,∴∠1+∠2=360°-(∠ADA'+∠AEA')=160°,故答案为:160°;(3)解:连接AA .如图所示:∵∠1=∠DAA'+∠DA'A,∠2=∠EAA'+∠EA'A,∴∠1+∠2=∠DAA'+∠DA'A+∠EAA'+∠EA'A=∠EAD+∠EA'D,∵∠EAD=∠EA D,∴∠1+∠2=2∠EAD=80°,∴∠EAD=40°,∴∠B+∠C=180°-40°=140°.(4)解:如图,设AB与DA 交于点F,∵∠1=∠DFA+∠A,∠DFA=∠A +∠2,由折叠可得,∠A=∠A ,∴∠1=∠A+∠A +∠2=2∠A+∠2,又∵∠1=80°,∠2=24°,∴80°=2∠A+24°,∴∠A=28°.【点睛】题目主要考查三角形内角和定理及三角形外角的性质,平角的定义等,理解题意,作出相应辅助线求解是解题关键.知识点6:两内角角平分线模型在△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I .则∠I =90°+12∠A【题型6两内角角平分线模型】21.(23-24八年级·河南信阳·开学考试)如图,AD ,CE 都是△ABC 的角平分线,且交于点O ,∠DAC =30°,∠ECA =35°,则∠ABO 的度数为.【答案】25°/25度【分析】本题考查了三角形内角和定理、角平分线,利用角平分线的定义结合三角形内角和定理找出∠ABO 的度数是解题的关键.根据角平分线的定义可得出∠BAC =60°、∠ACB =70°,结合三角形内角和可得出∠ABC =50°,由三角形的三条角平分线交于一点,可得出BO 平分∠ABC ,进而可得出∠ABO 的度数,此题得解.【详解】解:∵AD 平分∠BAC ,CE 平分∠ACB ,∠DAC =30°,∠ECA =35°,∴∠BAC =2∠DAC =60°,∠ACB =2∠ECA =70°,∴∠ABC =180°-∠BAC -∠ACB =50°.∵△ABC 的三条角平分线交于一点,∴BO 平分∠ABC ,∴∠ABO =12∠ABC =25°.故答案为:25°.22.(23-24八年级·全国·课后作业)如图,在△ABC 中,∠ABC 和∠ACB 的平分线BE ,CF 相交于点G ,若∠A =66°,则∠BGC 的度数为.【答案】123°/123度【分析】本题考查角平分线和三角形内角和定理,熟练利用角平分线的性质和三角形内角和定理找出题目中角的等量关系是解答本题的关键.由角平分线的性质可知∠GBC =12∠ABC ,∠GCB =12∠ACB ,再由三角形内角和定理可知∠BGC =180°-∠GBC +∠GCB ,即可求解.【详解】∵∠A =66°,∴∠ABC +∠ACB =180°-∠A =114°,∵BE 和CF 分别是∠ABC 和∠ACB 的平分线,∴∠GBC =12∠ABC ,∠GCB =12∠ACB ,∴∠BGC =180°-∠GBC +∠GCB =180°-12∠ABC +∠ACB =123°,故答案为:123°.23.(23-24八年级·河南信阳·开学考试)如图,在△ABC 中,AD 是BC 边上的高,AE ,BF 分别是∠BAC 和∠ABC 的角平分线,它们相交于点O ,∠AOB =125°.求∠CAD 的度数.【答案】∠CAD =20°.【分析】本题考查了角平分线的性质,三角形的内角和定理,以及余角的性质,解题的关键是熟练掌握所学的知识,正确求出∠C =70°,从而求出答案.根据角平分线的性质,由∠AOB =125°,得到∠CAB +∠CBA =110°,然后得到∠C ,由余角的性质,即可求出答案.【详解】解:∵AE ,BF 分别是∠BAC 和∠ABC 的角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC .∴∠CAB +∠CBA =2(∠OAB +∠OBA )=2180°-∠AOB∵∠AOB =125°,∴∠CAB +∠CBA =110°,∴∠C =70°.∵AD 是BC 边上的高∴∠ADC =90°,∴∠CAD =20°.24.(23-24八年级·山东烟台·期末)如图,在△ABC 中,∠A =90°,BE ,CD 分别平分∠ABC 和∠ACB ,且相交于F ,EG ∥BC ,CG ⊥EG 于点G ,则下列结论:①∠CEG =2∠DCA ;②∠DFE =130°;③∠EFC =12∠G :④∠ADC =∠GCD ;⑤△EGC 是等腰直角三角形,其中正确的结论是()A.①③④⑤B.①②③④C.①②③D.①③④【答案】D 【分析】本题主要考查了平行线的性质,角平分线的定义,三角形内角和定理,熟知平行线的性质,角平分线的定义是解题的关键.根据平行线的性质与角平分线的定义即可判断①;只需要证明∠ADC +∠ACD =90°,∠GCD +∠BCD =90°,即可判断④;根据角平分线的定义和三角形内角和定理先推出∠BFC=135°,即可判断②③;根据现有条件无法推出⑤.【详解】解:∵CD平分∠ACB,∴∠ACB=2∠DCA,∠ACD=∠BCD∵EG∥BC,∴∠CEG=∠ACB=2∠DCA,故①正确;∵∠A=90°,CG⊥EG,EG∥BC,∴∠ADC+∠ACD=90°,CG⊥BC,即∠BCG=90°,∴∠GCD+∠BCD=90°,又∵∠BCD=∠ACD,∴∠ADC=∠GDC,故④正确;∵∠A=90°,∴∠ABC+∠ACB=90°,∵BE,CD分别平分∠ABC,∠ACB,∴∠FBC=12∠ABC,∠FCB=12∠ACB,∴∠BFC=180°-∠FBC-∠FCB=180°-12(∠ACB+∠ABC)=135°,∴∠EFC=180°-∠BFC=45°,∵CG⊥EG∴∠G=90°,∴∠EFC=12∠G,故③正确;∵∠BFC=135°,∴∠DFE=∠BFC=135°,故②错误;∵∠G=90°∴△EGC是直角三角形,根据现有条件,无法推出CG=CE,即无法得到△EGC是等腰直角三角形,故⑤错误;∴正确的有①③④,故选:D.知识点7:两外角角平分线模型在△ABC中,BI、CI分别是△ABC的外角的角平分线,且相交于点O.则∠O=90°-12∠A.【证明】∵BO是∠EBC平分线,∴∠2=12∠EBC,∵CO是∠FCB平分线,∴∠5=12∠FCB由△BCO中内角和定理可知:∠O=180°-∠2-∠5=180°-12∠EBC-12∠FCB=180°-12(180°-∠ABC)-12(180°-∠ACB)=12(∠ABC+∠ACB)=12(180°-∠A)=∠O=90°-12∠A【题型7两外角角平分线模型】25.(23-24八年级·全国·专题练习)如图,在△ABC中,∠B=58°,三角形两外角的角平分线交于点E,则∠AEC=.【答案】61°【分析】先根据三角形的内角和定理和平角定义求得∠DAC+∠ACF的度数,再根据角平分线的定义求得∠EAC+∠ECA的度数,即可解答.【详解】解:∵∠B+∠BAC+∠BCA=180°,∠B=58°,∴∠BAC+∠BCA=180°-∠B=180°-58°=122°,∵∠BAC+∠DAC=180°,∠BCA+∠ACF=180°,∴∠DAC+∠ACF=360°-(∠BAC+∠BCA)=360°-122°=238°,∵AE平分∠DAC,CE平分∠ACF,∴∠EAC=12∠DAC,∠ECA=12∠ACF,∴∠EAC+∠ECA=12(∠DAC+∠ACF)=119°,∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=180°-(∠EAC+∠ECA)=180°-119°=61°,故答案为:61°.【点睛】本题考查三角形的内角和定理、角平分线的定义、平角定义,熟练掌握三角形的内角和定理和角平分线的定义是解答的关键.26.(23-24八年级·河南郑州·阶段练习)如图,G是ΔAFE两外角平分线的交点,P是ΔABC的两外角平分线的交点,F,C在AN上,又B,E在AM上;如果∠FGE=66°,那么∠P=度.【答案】66【分析】利用角平分线的定义和三角形、四边形的内角和可求得:∠G=180°-12×[360°-(180°-∠A)]=90°-1 2∠A,∠P=180°-12×[360°-(180°-∠A)]=90°-12∠A,所以∠P=∠FGE=66°.【详解】解:因为G是△AFE两外角平分线的交点,∴∠FGE=180°-12×[360°-(180°-∠A)]=90°-12∠A,∵P是△ABC两外角平分线的交点,∴∠P=180°-12×[360°-(180°-∠A)]=90°-12∠A,∴∠P=∠FGE=66°.故答案为:66.【点睛】本题考查了三角形内角和定理、角平分线的性质和三角形外角的性质,结合图形熟练运用定理和性质进行求解是解题的关键.27.(23-24八年级·山东聊城·期末)如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,D是∠ACF与∠ABC平分线的交点,E是△ABC的两外角平分线的交点,若∠BOC=130°,则∠D的度数为()A.25°B.30°C.40°D.50°【答案】C【分析】根据角平分线的定义和平角定义可得∠OCD=∠ACO+∠ACD=90°,根据外角的性质可得∠BOC =∠OCD+∠D,继而即可求解.【详解】解:∵CO平分∠ACB,CD平分∠ABC的外角,∴∠ACO=12∠ACB,∠ACD=12∠ACF,∵∠ACB+∠ACF=180°,∴∠OCD=∠ACO+∠ACD=12∠ACB+∠ACF=90°,∴∠BOC=∠OCD+∠D,∴∠D=∠BOC-∠OCD=130°-90°=40°,故选择C.【点睛】本题考查角平分线的定义,平角定义,三角形的外角性质,解题的关键是根据角平分线定义和平角定义可得∠OCD=90°,根据外角的性质求得∠BOC=∠OCD+∠D.28.(23-24八年级·全国·课后作业)(分类讨论思想)△ABC的两外角平分线交于点F.(1)如图1,若∠A=30°,则∠BFC的度数为.(2)如图2,过点F作直线MN∥BC,分别交射线AB,AC于点M,N,若设∠MFB=α,∠NFC=β,则∠A与α+β的数量关系是.(3)在(2)的条件下,将直线MN绕点F转动.①如图3,当直线MN与线段BC没有交点时,试探索∠A与α,β之间的数量关系,并说明理由.②当直线MN 与线段BC 有交点时,试问①中∠A 与α,β之间的数量关系是否仍然成立?若成立,请说明理由;若不成立,请给出三者之间的数量关系.【答案】(1)75°(2)α+β-12∠A =90°(3)①α+β-12∠A =90°,见解析;②不成立,β-α-12∠A =90°或α-β-12∠A =90°【分析】(1)由三角形内角和定理可得∠ACB +∠ABC =180°-∠A ,从而可得∠CBD +∠BCE =180°+∠A ,再由角平分线的定义可得∠CBF +∠BCF =90°+12∠A ,最后由三角形内角和定理可得∠BFC =90°-12∠A ,进行计算即可;(2)由(1)可得由(1)可得∠BFC =90°-12∠A ,再由α+∠BFC +β=180°代入进行计算即可;(3)①根据(1)中的结论∠BFC =90°-12∠A ,以及平角的定义,即可得到答案;②分两种情况进行讨论:根据(1)中的结论∠BFC =90°-12∠A ,以及平角的定义,即可得到答案.【详解】(1)解:∵∠A +∠ACB +∠ABC =180°,∴∠ACB +∠ABC =180°-∠A ,∵∠ACB +∠BCE =180°,∠ABC +∠CBD =180°,∴∠CBD +∠BCE=180°-∠ABC +180-∠ACB=360°-∠ABC +∠ACB=360°-180°-∠A=180°+∠A ,∵BF 和CF 分别是∠DBC 和∠BCE 的平分线,∴∠CBF =12∠CBD ,∠BCF =12∠BCE ,∴∠CBF +∠BCF ,=12∠CBD +12∠BCE =12∠CBD +∠BCE =12×180°+∠A =90°+12∠A ,∵∠BFC +∠CBF +∠BCF =180°,∴∠BFC =180°-∠CBF +∠BCF =180°-90°+12∠A =90°-12∠A =75°,故答案为:75°;(2)解:α+β-12∠A =90°,由(1)可得∠BFC =90°-12∠A ,∵α+∠BFC +β=180°,∴α+β+90°-12∠A =180°,即α+β-12∠A =90°.(3)解:①当直线MN 与线段BC 没有交点时,α+β-12∠A =90°,理由如下:∵∠BFC =90°-12∠A ,∠MFB +∠NFC +∠BFC =180°,∴α+β+90°-12∠A =180°,即α+β-12∠A =90°;②当直线MN 与线段BC 有交点时,①中∠A 与α,β之间的数量关系不成立,需分两种情况讨论:a .如图1,当M 在线段AB 上,N 在射线AC 上时,β-α-12∠A =90°,,∵∠BFC =90°-12∠A ,∠BFC -∠MFB +∠NFC =180°,∴90°-12∠A -α+β=180°,即β-α-12∠A =90°,b .如图2,当M 在射线AB 上,N 在线段AC 上时,α-β-12∠A =90°,,∵∠BFC =90°-12∠A ,∠BFC -∠NFC +∠MFB =180°,∴90°-12∠A -β+α=180°,即α-β-12∠A =90°.【点睛】本题考查了三角形内角和定理、角平分线的定义、平角的定义等知识,熟练掌握以上知识点,采用分类讨论的思想解题,是解此题的关键.知识点8:一内一外角角平分线模型已知△ABC 中,BP 、CP 分别是△ABC 的内角和外角的角平分线,且相交于点P .则∠P =12∠A【证明】∵BP 是∠ABC 平分线,∴∠3=12∠ABC ∵CP 是∠ACE 平分线,∴∠1=12∠ACE 由△ABC 外角定理可知:∠ACE =∠ABC +∠A 即:2∠1=2∠3+∠A ⋯⋯①对①式两边同时除以2,得:∠1=∠3+12∠A⋯⋯②又在△BPC中由外角定理可知:∠1=∠3+∠P⋯⋯③比较②③式子可知:∠P=12∠A.【题型8一内一外角角平分线模型】29.(23-24八年级·江苏泰州·期末)如图,点B、C分别在AM、AN上运动(不与A重合),CD是∠BCN的平分线,CD的反向延长线交∠ABC的平分线于点P.知道下列哪个条件①∠ABC+∠ACB;②∠A;③∠NCD -∠ABP;④∠ABC的值,不能求∠P大小的是()A.①B.②C.③D.④【答案】D【分析】本题考查三角形外角的性质与内角和定理,根据三角形外角的性质及角平分线的定义可得∠P=∠NCD-∠ABP,可判断③,再利用三角形外角的性质得到∠A=∠NCB-∠ABC,等量代换可判断②,根据三角形内角和定理及等量代换可判断①和④,即可求解.【详解】解:∵CD是∠BCN的平分线,CD的反向延长线交∠ABC的平分线于点P,∴∠NCD=∠BCD,∠ABP=∠CBP,∵∠P=∠DCB-∠CBP,∴∠P=∠NCD-∠ABP,∴③能求出∠P的大小;∵∠A=∠NCB-∠ABC=2∠NCD-∠ABP,∠P=∠NCD-∠ABP∴∠P=12∠A,∴②能求出∠P的大小;∵∠ABC+∠ACB=180°-∠A,∴∠A=180°-∠ABC+∠ACB∵∠P=12∠A,∴∠P=12180°-∠ABC+∠ACB=90°-12∠ABC+∠ACB,∴①能求出∠P的大小,④不能求出∠P的大小;故选:D.30.(23-24八年级·四川遂宁·开学考试)如图,点D为△ABC边BC的延长线上一点,若∠A:∠ABC=3:4,∠ACD=140°,∠ABC的角平分线与∠ACD的角平分线交于点M,则∠M=度.【答案】30【分析】本题考查了三角形的外角定理,与角平分线有关的计算.解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和,以及角平分线的定义.先根据∠A:∠ABC=3:4,∠ACD=140°,求出∠ABC=80°,进而得出∠CBM=12∠ABC=40°,∠CDM=12∠ACD=70°,最后根据三角形的外角定理即可解答.【详解】解:∵∠ACD=140°,∴∠A+∠ABC=140°∵∠A:∠ABC=3:4,∴∠ABC=140°×43+4=80°,∵BM平分∠ABC,CM平分∠ACD,∴∠CBM=12∠ABC=40°,∠CDM=12∠ACD=70°,∴∠M=∠DCM-∠CBM=30°,故答案为:30.31.(23-24八年级·四川眉山·开学考试)如图,∠ABC=∠ACB,AD、BD、CD分别平分∠EAC、∠ABC和∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°-∠ABD.其中正确的结论有.(填序号)【答案】①②④【分析】证明∠EAD=∠DAC,由三角形外角得∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,得出∠EAD =∠ABC,再由平行线的判定即可判断出①是否正确;由AD∥BC,得出∠ADB=∠DBC,再由BD平分∠ABC,所以∠ABD=∠DBC,∠ABC=2∠ADB,进而可判断出②是否正确;假设DB平分∠ADC,推出与题干不符的结论,进而可判断出③是否正确,由∠ADC+∠CAD+∠ACD=180°,利用角的关系得∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,进而可判断出④是否正确;【详解】解:①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;③若DB 平分∠ADC ,∴∠ADB =∠CDB ,∵∠ADB =∠DBC =∠ABD ,∴∠ADB =∠DBC =∠ABD =∠CDB ,∴∠ABC =∠ADC ,与题干条件矛盾.故③错误.④在△ADC 中,∠ADC +∠CAD +∠ACD =180°,∵CD 平分△ABC 的外角∠ACF ,∴∠ACD =∠DCF ,∵AD ∥BC ,∴∠ADC =∠DCF ,∠ADB =∠DBC ,∠CAD =∠ACB ,∴∠ACD =∠ADC ,∠CAD =∠ACB =∠ABC =2∠ABD ,∴∠ADC +∠CAD +∠ACD =∠ADC +2∠ABD +∠ADC =2∠ADC +2∠ABD =180°,∴∠ADC +∠ABD =90°,∴∠ADC =90°-∠ABD ,故④正确;故答案为:①②④【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形的内角和定理的应用,解题关键在于掌握外角性质.32.(23-24八年级·河南开封·期末)如图,在△ABC 中,∠A =48°,△ABC 的内角∠ABC 与外角∠ACD 的平分线相交于点A 1,得到∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得到∠A 2;⋯⋯按此规律继续下去,∠A n -1BC 与∠A n -1CD 的平分线相交于点A n ,要使∠A n 的度数为整数,则n 的最大值为()A.3B.4C.5D.6【答案】B 【分析】本题主要考查了三角形的内角和,三角形的外角定理,角平分线的定义,熟练掌握三角形内角和是解题的关键.先根据外角和定理得出∠ACD =∠ABC +∠A ,再根据题意总结出规律,∠A n =12n ∠A 即可得到答案.【详解】解:∵∠ACD 是△ABC 的一个外角,∴∠ACD =∠ABC +∠A ,∵△ABC 的内角∠ABC 与外角∠ACD 的平分线相交于点A 1,得到∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,∴∠A 1BC =12∠ABC ,∠A 1CA =12∠ACD ,∴∠A 1=180°-∠A 1BC -∠A 1CB=180°-12∠ABC -(∠ACB +∠A 1CA )=180°-12∠ABC -∠ACB -12∠ACD =180°-12∠ABC -∠ACB -12(∠ABC +∠A )。

初二数学 全等三角形经典模型及例题详解

初二数学 全等三角形经典模型及例题详解

辅助线模型考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。

判断三角形全等的公理有 SAS、ASA、AAS、SSS 和 HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。

一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。

典型例题人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,Δ ABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC交AC 于点D,CE 垂直于 BD,交BD 的延长线于点E。

求证:BD=2CE。

思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证 BD=2CE,可用加倍法,延长短边,又因为有 BD 平分∠ABC 的条件,可以和等腰三角形的三线合一定理结合起来。

解答过程:证明:延长BA,CE 交于点F,在ΔBEF 和ΔBEC 中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典--初中数学三角形专题训练及例题解析知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类.⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边. 4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心 ③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质 定理:三角形的内角和等于180°. 推论1:直角三角形的两个锐角互补。

推论2:三角形的一个外角等于不相邻的两个内角的和。

推论3:三角形的一个外角大于与它不相邻的任何一个内角。

7、多边形的外角和恒为360° 8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。

③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

B.n 边形共有2)3(-n n 条对角线。

9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。

②多边形的外角和等于360°。

10、平面镶嵌及平面镶嵌的条件。

①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。

②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。

考点二、全等三角形 1、全等三角形的概念三角形 (按角三角形能够完全重合的两个三角形叫做全等三角形。

2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

考点四、直角三角形1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半4直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC经典例题解析:例1.如图,BP 平分∠FBC ,CP 平分∠ECB ,∠A=40°求∠BPC 的度数。

分析:可以利用三角形外角的性质及三角形的内角和求解。

解:∵∠1=)4(21∠+∠A )3(212∠+∠=∠A∵)21(180∠+∠-︒=∠BPC ︒=∠40A∴(()111804)322BPC A A ⎡⎤∠=︒-∠+∠+∠+∠⎢⎥⎣⎦()︒=︒+︒-︒=704018021180 例2.如图,求∠A+∠C+∠3+∠F 的度数。

分析:由已知∠B=30°,∠G=80°, ∠BDF=130°,利用四边形内角和,求出 ∠3的度数,再计算要求的值。

解:∵四边形内角和为(4-2)×180°=360°∴∠3=360°-30°-80°-130°=120° 又∵∠A ∠C ∠F 是三角形的内角 ∴∠A+∠C+∠F+∠3=180°+120°=300°例3.已知一个多边形的每个外角都是其相邻内角度数的41,求这个多边形的边数。

分析:每一个外角的度数都是其相邻内角度数的41,而每个外角与其相邻的内角的度数之和为180°。

解:设此多边形的外角为x ,则内角的度数为4x418036*********x x x n +=︒=︒︒∴==︒则解得边数即这个多边形的边数为例4.用正三角形、正方形和正六边形能否进行镶嵌?分析:可以进行镶嵌的条件是:一个顶点处各个内角和为360° 解:正三角形的内角为︒60 正方形的内角为︒90正六边形的内角为︒120∴可以镶嵌。

一个顶点处有1个正三角形、2个正方形和1个正六边形。

例5.如图,在△ABC 中,∠ACB=60°,∠BAC=75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD=解:在△ABC 中,三边的高交于一点,所以CF ⊥AB , ∵∠BAC=75°,且CF ⊥AB ,∴∠ACF=15°, ∵∠ACB=60°,∴∠BCF=45° 在△CDH 中,三内角之和为180°, ∴∠CHD=45°, 故答案为∠CHD=45°.点评:考查三角形中,三条边的高交于一点,且内角和为180°.例6.如图,AD 、AM 、AH 分别△ABC 的角平分线、中线和高. (1)因为AD 是△ABC 的角平分线,所以∠ =∠ = 1/2∠;(2)因为AM是△ABC的中线,所以 = = ;(3)因为AH是△ABC的高,所以∠ =∠ =90°.分析:(1)根据三角形角平分线的定义知:角平分线平分该角;(2)根据三角形的中线的定义知:中线平分该中线所在的线段;(3)根据三角形的高的定义知,高与高所在的直线垂直.解答:解:(1)∵AD是△ABC的角平分线,∴∠BAD=∠CAD=1/2∠BAC;(2)∵AM是△ABC的中线,∴BM=CM=1/2BC;(3)∵AH是△ABC的高,∴AH⊥BC,∴∠AHB=∠AHC=90°;故答案是:(1)BAD、CAD、BAC;(2)BM、CM、BC;(3)AHB、AHC.例8.如图,AP平分∠BAC交BC于点P,∠ABC=90°,且PB=3cm,AC=8cm,则△APC的面积是 cm2.解:∵AP平分∠BAC交BC于点P,∠ABC=90°,PB=3cm,∴点P到AC的距离等于3,∵AC=8cm,∴△APC的面积=8×3÷2=12cm2.例9. 已知:点P是等边⊿ABC内的一点,∠BPC=150°,PB=2,PC=3,求PA的长。

分析:将⊿BAP绕点B顺时针方向旋转60°至⊿BCD,即可证得⊿BPD为等边三角形,⊿PCD为直角三角形。

解:∵BC=BA,∴将⊿BAP绕点B顺时针方向旋转60°,使BA与BC重合,得⊿BCD,连结PD。

∴BD=BP=2,PA=DC。

∴⊿BPD是等边三角形。

∴∠BPD=60°。

∴∠DPC=∠BPC-∠BPD=150°-60°=90°。

∴DC=PA=DC=13。

例10. 两个全等的含30º,60º角的三角板ADE和ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连结ME,MC。

试判断△EMC是什么样的三角形,并说明理由。

分析:判断一个三角形的形状,可以结合所给出的图形作出假设,或许是等腰三角形。

这样就可以转化为另一个问题:尝试去证明EM=MC,要证线段相等可以寻找全等三角形来解决,然而图中没有形状大小一样的两个三角形。

这时思考的问题就可以转化为这样一个新问题:如何构造一对全等三角形?根据已知点M是直角三角形斜边的中点,产生联想:直角三角形斜边上的中点是斜边的一半,得:MD=MB=MA。

连结M A后,可以证明△MDE≌△MAC。

答:△EMC是等腰直角三角形。

证明:连接AM,由题意得,DE=AC,AD=AB,∠DAE+∠BAC=90º。

∴∠DAB=90º。

∴△DAB为等腰直角三角形。

又∵MD=MB,∴MA=MD=MB,AM⊥DB,∠MAD=∠M AB=45º。

∴∠MDE=∠MAC=105º,∠DMA=90º。

∴△MDE≌△MAC。

∴∠DME=∠AMC,ME=MC。

又∠DME+∠EMA=90º,∴∠AMC+∠EMA=90º。

∴MC⊥EM。

∴△EMC是等腰直角三角形。

说明:构造全等三角形是解决这个问题的关键,那么构造全等又如何进行的呢?对条件的充分认识和对知识点的联想可以找到添加辅助线的途径。

相关文档
最新文档