3.2列代数式(2)
3.2 代数式(2)
(2)如果该旅游团有37个成人、 15个学生,那么他们应付多少 门票费? 解:(1)该旅游团应付的门票费是(10x+5y)元。 (2)把 x=37, y=15 代入代数式 10x+5y,得
10×37+5×15=445
因此,他们应付445元门票费。
想一想:代数式10x+5y还可以表示什么?
例2
要在长方形和环形地块中铺设草坪,长方形
2
2 2 -3
b
-6+x =3
x 7
2
x
-xy
x 2x 1 4
-1
πa
随堂练习 随堂练习
1. 下列整式哪些是单项式,哪些是多项式? 它们的次数分别是多少?
a, 1 x 2 y, 2 x 1, x 2 xy y 2 . 3 单项式有 a. 1 x 2 y ,
3 多项式有 2 x 1 , x 2 xy y 2 .
练一练
单项 1 2 r h 2.035a 2b xy 5 x 32 x 2 y 2 z 2 13 a 2bc 6 式 3
系数 次数
1 3
3
2.035
3
1
2
5 6
1
9
6
1
4
注 意
当单项式的系数为1或 –1时, 这个“1”应省略不写。
单项式、多项式、整式
• 几个单项式的和叫做 多项式
它们的次数分别是:
1、 3、 1、 2。
想一想:下列代数式中哪些是单项式?
哪些是多项式?如果是单项式,它的系数又 是多少? a+b+c -xy -3 b
2
2
-6+x -1
x 7
a
x 2x 1 4
3.2 代数式 - 第2课时课件(共15张PPT)
常见问题中常用的数量关系:
①路程=速度×时间;②工作量=工作效率×工作时间;③总价=单价×数量,总产量=单产量×数量;④各种特殊图形的面积和周长公式;⑤利息=本金×利率×期数;⑥利润=成本×利润率;⑦利润=售价-成本.
随堂练习
1.某种品牌的计算机,进价为m元,加价n元后作为定价出售,如果五一期间按定价的八折销售,则五一期间的售价为 ( )A.(m+0.8n)元 B.0.8n元C.0.8(m+n)元 D.(m+n+0.8)元2.
例题引入
已知参加甲、乙两地植树的同学分别为52人和23人,现从甲、乙两地共抽调12人到丙地植树.如果从甲地抽调x人,请用含x的代数式分别表示甲乙两地剩下的人数.
解:由题意,从乙地抽调(12-x)人.所以,甲地剩下的人数为(52-x)人,乙地剩下的人数为[23-(12-x)]人.
例1
例2
已知一桶食用油装满油时,桶和油的质量一共是a kg;当油用去一半时,桶和油的质量一共是b kg.(1)当桶里装满油时,写出表示油的质量的代数式.(2)写出表示桶的质量的代数式.
C
B
3.
(24 000-5x)
拓展提升
1.
B
2.
解:
归纳小结
用代数式表示实际问题中的数量关系时,必须注意:1.抓住关键词语,确定所求问题与已知条件之间的数量关系.2.理清问题中的语句的层次,明确运算顺序.3.若用“和”“差”表示后式子后面有单位,式子要放到括号内.
同学们再见!
授课老师:
时间:2024年9月15日
解:(1)由题意,一半油的质量为(a-b)kg.所以,当桶里装满油时,油的质量为2(a-b)kg.(2)桶的质量为[a-2(a-b)]kg.
3.2 代数式(2)
辆车所走的路程.
(3)某种数学资料每本要10元,英语资料每本要5元,小 明买了x本数学资料,y本英语资料,则(10x+5y)表示共 用了多少钱.
2.将三个边长为a cm的正方体,拼成一个长方体,求这 个长方体的体积. a 解: a3×3=3a3
a
a
a
a
a a×3a×a=3a3
a
3a
【3】在某地,人们发现某种蟋蟀叫的次数与温度之间有 如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后再 加上3,就近似地得到该地当时的温度(℃). (1)用代数式表示该地当时的温度.
2
(5)一台电视机原价a元,现按原价的9折出售,这台电
视机现在的售价为_____元; 0.9a
(6)一个长方形的长是0.9,宽是a,这个长方形面积是 ___. 0.9a
用含有字母的式子填空: 6a2 a3 1.边长为a的正方体的表面积为____,体积为_____. 2.铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,
解:(1)用c表示蟋蟀1分ห้องสมุดไป่ตู้叫的次数,则该地当时的 c 温度为 +3. 7
【4】用代数式填空 12n (1)每包书有12册,n包书有___册;
1 ah 2 (2)底边长为a,高为h的三角形的面积是____;
a h (3)一个长方体的长和宽都是a,高是h,它的体积是_____;
1.1km (4)产量由m千克增长10%,就达到_______ 千克;
示为__________; a-2和a-4
(2) x是一个三位数,在它后面加上2所形成的四位数可表示 为________,在它前面加上3所形成的四位数是__________. 10x+2 3 000+x
2024年新人教版七年级数学上册 3.2 第2课时 利用公式列代数式并求值(课件)
小组展示
越展越优秀
提疑惑:你有什么疑惑?
知识点:利用公式列代数式并求值(重难点)
(1)在同一个式子或具体问题中,每一个字母只能代表一个量. (2)要注意书写的规范性,用字母表示数以后,在含有字母与数的
乘法中,通常将“×”简写作“·”或者省略不写. (3)在数和表示数的字母的乘积中,一般把数写在字母的前面. (4)含有字母的除法,一般不用“÷”,而是写成分数的形式.
例2:如图,某长方形广场的四角都有一块边长为 x米的正方形草地.若长方形的长为a米,宽为b米. (1)请用代数式表示阴影部分的面积; (2)若长方形广场的长为300米,宽为200米,正方形草地的边长为10
米,求阴影部分的面积. 解:(1)阴影部分的面积为(ab-4x2)平方米. (2)当a=300,b=200,x=10时, ab-4x2=300×200-4×102=60 000-400=59 600(平方米). 答:阴影部分的面积为59 600平方米.
(1)由题意得 S 阴影=S 正方形 ABCD+S 正方形 CEFG-S△ABD-S△BGF=a2+62- 12a2-12×6×a+6=a2+36-12a2-3a-18=21a2-3a+18.
(2)当 a=12 时,S 阴影=21×122-3×12+18=54, S△BGF式的值
第2 课时 利用公式列代数式并求值
1. 通过阅读课本学生可以回忆起相关计算公式,并利用公 式列出代数式进行求值,提高学生的计算能力和综合应 用能力.
3.2 代数式(第2课时)
【教学目标】〖知识与技能〗1、了解代数式的分类以及整式、分式、单项式、多项式的概念; 2、理解单项式的系数和次数、多项式的次数与项数的概念;〖过程与方法〗通过引导学生思考、分析、对比,使学生加深对相关概念的理解。
〖情感、态度与价值观〗培养学生的观察分析和比较归纳的能力。
【教学重点】代数式的分类及整式、单项式、、多项式的概念 【教学难点】多项式的项数和次数概念的理解 【教学过程】 一、自学质疑:1、什么叫做整式、分式?2、什么叫做单项式?单项式的系数?单项式的次数?3、什么叫做多项式?多项式的项、常数项、多项式的次数? 二、交流展示:观察下列代数式,你能对它们进行适当分类吗?2222156232522125ba b a a a xy m n c ab ab -+--+,,,,,,,,0 三、互动探究:如何对代数式进行分类?根据交流展示内容,由学生分析归纳,老师总结。
四、精讲点拨:【点拨】 1、代数式的分类:代数式可以分为整式和分式。
整式:在代数式中,或者没有除法,或者虽有除法,但除式(或分母)中不含字母。
像这样的代数式叫做整式。
如;上述的5ab ,21xy+52 , -2 , 156a ,0 分式:在代数式中,不但有除法,而且除式(或分母)中含有字母。
像这样的代数式叫做分式。
如;上述的c ab 2 , m n ,a 2-3 ,2222ba b a -+ 整式可以分为单项式和多项式。
2、单项式:(1)单项式:不含有加减运算的整式,叫做单项式。
如:7436.05322322z y x n m a x ,,,-。
单独一个数或一个字母, 例如3,52-,a 等,也叫单项式。
(2)、单项式的系数:单项式里的数字因数,叫做单项式的系数。
它通常写在字母的前面。
3.2 代数式(第2课时)如7436.05322322z y x n m a x ,,,-的系数,分别为2、53-.、036、74。
x a -和2的系数分别为1和—1。
3.2 代数式的值(第2课时)课件(共44张PPT) 七年级数学上册(人教版2024)
(1)用代数式表示甲比乙少用的时间;
形的面积是( A )
A. 64
B. 32
C. 40
D. 42
随堂练
3. 一段钢管的外部直径是 d cm,管壁的厚度为 a cm,长度为 l cm,则
这段钢管的底面积为
π
2
2
=1, l =5,则钢管的体积为
-π
2
15π
−
2
cm3.
cm2;若 d =4, a
随堂练
4. [立德树人 红色旅游]某学校组织七、八年级全体同学参观红色教
思考探究
(3)当h=20时,比较物体在地球上和月球上自由下落所需的时间.
物体在地球上时,4.9t²= 20,
∴=±
当t = −
20
10 2
=±
,
4.9
7
10 2
时,不符合题意,舍去,
7
10 2
s;
7
∴物体在地球上自由下落所需的时间为
物体在月球上时,0.8t²= 20,
∴=±
20
= ±5,
0.8
是h=4.9t2,在月球上大约是h=0.8t2.
(1)填写下表:
t
h=4.9t2
h=0.8t2
0
本节课我们来学
2
4
6
习代数式值的应
用,来解决此类
实际问题
8
10
(2)物体在哪儿下落得快?
(3)当h=20时,比较物体在地球上和月球上自由下落所需的时间.
新知探究
代数式值的应用
有些同类事物中的某种数量关系常常可以用公式来描述.
A. 12
B. 24
北师大版七年级数学3.2 代数式(2)课件
n
1
2
3
4
5
6
7
8
5n+6 11 16
21
26
31
36
41 46
n2
1
4
9 16 25 36 49 64
(1)随着n的值逐渐变大,两个代数式的值如何变化? 逐渐增大
(2)估计一下,哪个代数式的值先超过100. n2先超过100
单三击、此典处例编解辑析母版标题样式
物体自由下落的高度h(m)和下落时间t(s)的关系,在地球 上大约是:h 4.9t2 ,在月球上大约是:h 0.8t2 . (1)填写下表:
随着n的值逐渐变大,两个代数式的值都逐渐减小;
(2)估计一下,哪个代数式的值先小于-100?
- n2的值先小于-100.
3.2 代数式(2)
单一击、此情处境编引辑入母版标题样式
输入x
×6
6x
-3
输出
6x 3
数值转换机
输入 x
-3
x3
×6
输出
6(x 3)
-15 -6
-3 -1.44 -1
12
24
-30 -21 -18 -16.44 -16 -3
9
单二击、此新处知编探辑究母版标题样式
填写下表,并观察下列两个代数式的值的变化情况.
观察右图,回答下列问题: (1)标出未注明的边的长度; (2)阴影部分的周长是__4_x_+_6y___; (3)阴影部分的面积是__4x_y_-0_.5_x_y_; (4)当x=5.5,y=4时,阴影部分的 周长是___4_6____,面积是___77_____.
2y0.5xFra bibliotek单五击、此自处我编尝辑试母版标题样式
3.2代数式 第2课时 教案(北师大版七年级上)
(2)七年级女生小红的父亲身高是1.72米,母亲的身高是1.65米;七年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高?(3)试预测成年后你的身高。
展示教材中的“数值转换机”.要求学生:⑴写出图1.的输出结果;⑵找出图
教
学
过
程
二、例题点拨,实践探究
2.的转换步骤。
讨论“议一议”.在讨论过程中,鼓励学生根据已有的信息作估计,判断变化特征和趋势,并给出适当的说理过程。
三、随堂练习,突破难点
班级同学按4个同学一组进行分组。第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。如果第一个同学报给第二个同学的数是5,第四个同学报出的答案是35,这个结果对吗?
四、师生交流,归纳小结
教师启发学生回顾本课学习内容,总结收获,布置作业。
布置作业
练习册代数式(2)
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
课时教案
第周星期第节年月日
课题
3.2代数式(第2课时)
教学
目标
知识与技能:会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;会利用代数式求值推断代数式所反映的规律;能解释代数式值的实际意义。
过程与方法:经历观察、试验、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点,形成解决问题的一些基本策略。
情感与态度:通过“做数学”,体会数学活动充满着探索性、创造性,发展学生的实践能力与创新精神。
教
北师大版七年级数学上册 3 2代数式(第二课时) 同步导练(含答案)
3.2代数式(二)基础导练1. 代数式2a-b 表示的意义是_____________________________.2. 列代数式:⑴设某数为x,则比某数大20%的数为_______________.⑵a 、b 两数的和的平方与它们差的平方和________________.3. 有一棵树苗,刚栽下去时,树高 2.1米,以后每年长0.3米,则n 年后的树高为________________,计算10年后的树高为_________米.4. 某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后第n 天(n >2的自然数)应收租金_________________________元.5. 观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4------请你将猜想到的规律用自然数n(n ≥1)表示出来______________________.6. 一个两位数,个位上的数是a ,十位上的数字比个位上的数小3,这个两位数为_________,当a=5时,这个两位数为_________.7. 某品牌的彩电降价30%以后,每台售价为a 元,则该品牌彩电每台原价为( ).A . 0.7a 元B .0.3a 元C .a 310 元D . a 710元 8. 根据下列条件列出的代数式,错误的是( ). A . a 、b 两数的平方差为a 2-b 2 B . a 与b 两数差的平方为(a-b)2C. a 与b 的平方的差为a 2-b 2 D . a 与b 的差的平方为(a-b)29. 如果,0)1(22=-++b a 那么代数式(a+b)2005的值为( ).A . –2005B . 2005C . -1D . 110. 笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需( ).A . ( mx+ny )元B . (m+n)(x+y) C. (nx+my )元 D . mn(x+y) 元11. 当x=-2,y=3时,代数式4x 3-2y 2的值为( ).A . 14B . –50C . –14D . 50 能力提升12. 已知代数式3a 2-2a+6的值为8, 求1232+-a a 的值.13. 当a=-1,b=-21,c=211时,求代数式b 2-4ac 的值,并指出求得的这个值是哪些数的平方. 14.人在运动时的心跳速率通常和人的年龄有关.如果用a 表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220-a).⑴ 正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少? ⑵ 一个45岁的人运动时10秒心跳的次数为22次,请问他有危险吗?为什么?15. 给出下列程序:⇒ ⇒若输入x=1时,输出的值为-2,求输入x=-2时,输出的值是多少?参考答案:1.2a 与b 的差2.⑴(1+10%)x ⑵(a+b)2 +(a-b)23. 2.1+0.3n 5.14.1.6+0.5(n-2)6.n 2+n=n(n+1) 6.10(a-3)+a 257.D8.C9.C 10.A 11.B 12. ∵3a 2-2a +6=8 13. b 2-4ac=(-21)2-4×(-1)×23=425 ∴ 3a 2-2a=2 ∵(±25)2=425 ∴1232=-a a ∴425是±25的平方. ∴.2111232=+=+-a a 14. ⑴b=0.8(220-14)=164.8答:正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数164次.⑵b=0.8(220-45)=140, ∵22×6=132 132<140 ∴他没有危险.15.4.。
3.2代数式(2)-求值
(3)代数式中省略了乘号时,代入数值以 后必须添上乘号。(还原乘号)
反馈练习:
1、如图,是一个简单的数值运算程序示的程序计算函数值。若 输入的值为1.5,则输出的结果为0.5 .
3、在如图所示的运算流程中,若输出的 数y=3,则输入的数x=_5_或__6__。
的输出结果和图2的运算过程。
输入x
×6 图1 6x
-3 输出 6x-3
输入x -3 ?
图2 ?
x-3
?
×6
输出6(x-3)
输入 -2
-1 2
0
0.26
1 3
5 4.5
2
图1的输出 -15 -6 -3 -1.44 -1 12 24
图2的输出 -30 -21 -18 -16.44 -16 -3 9
研究代数式的值的意义
1.若a+2b-7=0,
求:(1)a+2b-3= 4 (2)-2a-4b+1= -13
2.若代数式2x2+3x+7的值是8,则代 数式4x2+6x+15的值是_1_7_____
3. 已知 a b=7,求 (2 a b) a b 的值。 a b 13 20 a b 3(a b) 21
小结:本节课你的收获是什么?
传数游戏
规则:班级同学按4个同学一 概括
组进行分组,做一个传数
游戏。第一个同学任意报
x
一个数给第二个同学,第
二个同学把这个数加1传给
第三个同学,第三个同学
x 1
再把听到的数平方后传给
第四个同学,第四个同学
x 12
把听到的数减去1报出答案。
3.2代数式(2)--
思考
先填空,再请说出你所列式子的运算含义. 1.边长为x的正方形的周长是 4x . 2.一辆汽车的速度是v千米/小时,行驶t小时 所走过的路程为 vt 千米。 6a2 ,体积为 a3 . 3.如图正方体的表面积为 4.设n表示一个数,则它的相反数是 -n . 2 5.半径为r的圆面积是 πr .
a
b
(2)窗户中能射进阳光部分的面积是多少?
16
b
2
ab
16
b
2
随堂练习
1、
ab b2 有 2 项、次数是 2 ; 16 1 4 a b 1 是 3 项 4 次式。 2 一般的我们把多项式按照某个字母
的指数从大到小的顺序书写: • 2、下列多项式是几次几项式? 如: -m4+m3-3m2n+0.2mn+1 • 指出它们的最高次项和常数项.
1 2 2 3 3 4 4 a, a , a , a 呢 ? 2 4 8 16
提高探究
提高探究
1.多项式
5x y (m 2)xy 3x
m 2
如果的次数为5次,则m为多少? 如果多项式只有二项,则m为多少?
提高探究
(反馈) 4x – 2b是四 次二 项式,试求a, b的值.
提高探究
1 2 3 k 1 1 2 7 x y 与 x y 的次数相同, 3 2 求 K的 值 .
5.尽可能多的写出系数为-3,含有x、y、 z三个字母的四次单项式.
6.观察下列单项式:
1 1 2 1 3 1 4 a, a , a , a 2 3 4 5
(1)第2007项是什么? (2)第n项是什么?
(1)2 x 1 3x
七年级数学上册:3.2 代数式(2) 学案
3.2 代数式(2)学习目标1、理解代数式的值的意义2、能熟练地求代数式的值一、自主学习⑴ 随着n 的值逐渐变大,两个代数式的值变化为 。
⑵ 估计一下, 代数式的值先超过100。
知识小结:用数值代替代数式里的 ,按照代数式的 计算出的结果叫做代数式的值。
二、互助提升1.一只小狗的奔跑速度为a 千米/时,从A 地到B 地的路程为(b +15)千米,则这只小狗从A 地到B 地所用的时间为 ;当a =21,b =12时,它所用的时间为 . 2.当34,32,1===z y x 时,代数式y (x -y +z )的值为 . 3.爸爸的体重比妈妈的2倍少30 kg ,若妈妈的体重为p kg ,用代数式表示爸爸的体重为 kg .当p =50时,爸爸的体重为 kg .4.三个连续的整数,中间的为x ,则其余两个数分别为__ _____,当X 为2014时,其余两个数分别为 。
5.某商店购进一批茶杯,每个1.5元,则购进n 个茶杯需付款__________元,如果茶杯的零售价为每个2元,则售完茶杯得款 元,当n =300时,该商店的利润为 元. 6.某处细菌在培养过程中,每30分钟分裂一次(一个分裂成两个),经过4小时,这种细菌由1个可繁殖成__________个.三、体验成功⒈ 人体的血液的质量约占人体体重的6%~7.5%。
⑴ 如果某人体重是a 千克,那么他的血液质量大约在什么范围?⑵ 亮亮体重是35千克,他的血液质量大约在什么范围内?2. 物体自由下落的高度 h (米)和下落时间 t (秒)的 关系,在地球上大约是:h =4.9t 2,在月球上大约是:h =0.8t 2.⑵ 物体在哪儿下落得快? . ⑶ 当h =20米时,比较物体在地球上在月球上自由下落所需的时间. 通过表格,估计当h =20米时,t (地球)≈2(秒),t (月球)≈5(秒).四、拓展延伸1. 设x 是大于-1.5的负整数,y 为绝对值最小的有理数,试求323x x y y +-的值.2.某书屋开设两种租书方式:一种是零星出租,每本书收费1元;另一种是会员卡租书,办卡费每月12元,租书费每本0.4元,小彬经常来该店租书,若每月租书数量为x 本。
3.2 代数式2 列代数式表示实际中的数量关系 2021秋冀教版七年级数学上册课件
c 80
80
c
10
min
.
感悟新知
知2-练
例2 从A地乘火车到北京,普通票价格为40元/人,学生票价格为 20元/人. 星期日,A地育才学校组织部分师生到天安门广场观 看升旗仪式. (1)如果有教师14人,学生180人,那么买单程火车票共需多 少元? (2)如果有教师x人,学生y人,那么买单程火车票共需多少元? (3)如果教师人数恰好是学生人数的 1 ,将教师的人数或学
感悟新知
例 1 在甲处劳动的有33人,在乙处劳动的有25人.现在 知1-练 又有26人来支援,其中x人去甲处,剩下的人去处.
此时,甲处人数的一半是多少?乙处人数的2倍是多少?
导引:利用列表法,常常可以帮助我们分析实际问
题中的数量关系.根据题意列表如下:
原有人数 来支援的人数
甲处 33 x
乙处 25 26-x
现有人数
33+x 25+(26-x)
感悟新知
33 x 解:此时,甲处人数的一半是 2 ,
乙处人数的2倍是2[25+(26-x)],即2(51-x).
知1-练
感悟新知
总结
知1-讲
解答此类题目通过列表格可以是题目关系直 观,便于理解.
感悟新知
1.(1)如果汽车以85 km/h的速度在高速公路上匀速行驶, 知1-练
果要求他们同时完成任务,那么小亮比大华要提前 多少分钟开始打字? (4)根据以上问题情境,请你自己提出一个问题并解决.
知2-导
感悟新知
知2-导
问题中涉及三个基本的量:打字速度、时间、打字的个数. 这些量之间具有怎样的关系?
对每个问题,要表示的是哪个量,用哪些量来表示,怎样 表示?
对于上面的问题,可以这样思考和解答: (1)小亮a min 打的字数就等于80与a的积,即80a个字;大华a
苏科版七年级上册3.2 代数式(2)家庭作业(无答案)
苏科版七年级上册3.2 代数式(2)家庭作业(无答案)3、整式、单项式和多项式统称为_____二、基础训练1、在代数式-5,53,12y x x -,0,53b a +,a 2+ab +b 2,a a+5,-k 中,单项式有_______________2、单项式2341y x -的系数是_____,单项式a 2b 的系数是______单项式y x 231π-的系数是_____,单项式5×105t 的系数是_____3、若-ax m y 是关于x ,y 的一个五次单项式,则m =_____4、关于x 的四次三项式的系数是2,二次项系数是-1,常数项是1,则这个四次三项式为________5、a 的倒数与b 的倒数的差的平方是______6、akg 的面积售价b 元,c 千克的面积售_______元7、某班学生总数是x 人,其中女生点48%,则男生有_____人8、多项式xy -5x 2y 2+3x 4-2x 2y 3-y 4是___次____项式,最高次项是___,四次项是____,第二项是____,9、已知关于x 的多项式(m -2)x 2-mx +3中含x 的一次项系数为-2,则这个多项式为____次____项式.10、已知下列一组数:1,4,7,10,13,…,则第n 个数是( )A 、nB 、3nC 、3n +1D 、3n -211、在代数式:-2x 2,ax ,x 21,32x ,1+a ,-b ,3+a ,2y x 中,单项式共有( )个. A 、5 B 、2 C 、3D 、412、下列代数式书写规范的是( )A 、a ÷2B 、2322x C 、(1-5%)x D 、2d13、计算上网时间如果每月在60小时以内,按每小时a 元收费,如果超过60小时,则超过的部分加倍收费,某用户在一个月内的上网时间为100小时,该用户这个月交纳的上网费用是()A、100a元B、140a元C、120a元D、200a元14、指出下列代数式中的单项式,并写出各单项式的系数和次数.15、结合你的生活经验,对下列代数式作出具体解释:(1)a-b (2)2a+3b16、银行3个月整存整取定期存款的月利率是1.65%,所获利息的5%,要缴纳个人所得税,某人将a元钱按三个月的定期存入银行,到期后这个人能得到的利息是多少元?三、能力提升17、用字母表示任意偶数和奇数.18、若5x3y n-1是关于x,y的六次单项式,则n应满足什么条件?19、请写出一个含有a和b的二次三项式.2、若多项式x2-(k-2)xy+y2-k不含xy的项,则k的值是多少?19、按图那样堆放钢管,第一层(最上层)有5根,第二层有6根,第三层有7根,…那么,第n层有多少根?并求出第30层钢管的根数.20、有一列单项式:-x,2x2,-3x3,…,-19x19,20x20…(1)你能说明它们排列的规律吗?(2)根据你发现的规律,请你写出第100个和第101个单项式;(3)你能进一步写出第n个和第n+1个单项式吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例5 在某地,人们发现某种蟋蟀叫的次数与温度 之间有如下的近似关系:用蟋蟀1分叫的次数除以7,然 后再加上3,就近似地得到该地当时的温度(℃). (1) 用代数式表示该地当时的温度; (2) 当蟋蟀1分叫的次数分别是80,100和120时, 该 地当时的温度约是多少? 解: (1)用c 表示蟋蟀1分叫的次数,则该地当时的 c 温度为: + 3 7 c (2)把 c=80,100和120分别代入 7 + 3 ,得
3.2 代数式(2)
复习巩固
用基本的运算符号把数或 表示数的字母连 接而成的式子叫代数式。
注意:单独的一个数或一个字母也是代数式。
如:a、1、0。
注:运算符号包括加、减、乘、除、乘方及开方 。
如:a+5 、 4-b、 5b、 3÷b、m
、5、x.
复习巩固
书写代数式的规定:
1.数字与字母、字母与字母、数字或字母与括号相乘时, 乘号通常简写作 “·“ 或者省略不写;数字与数字相乘一般 仍用乘号;数与字母相乘,数字写在字母前面。 如 6x + 6y 就是6×x +6×y的简写。 2.在实际问题中含有单位时,如果最后运算结果是和或差 的形式时,要把整个的代数式括起来再写单位。 a 如 小华、小明一共走了 (6x + 6y)米。 7 3.在代数式中出现除法运算时,一般按照分数的写法来写。 如a÷7= 4.遇到带分数与字母相乘时,要将带分数改写成假分数。
80 7
, ∴当蟋蟀1分叫的次数分别是80,100和120时,该 地当时的温度大约分别是14℃,17℃,20℃.
7
+ 3=
101 7
14
100
,7+ຫໍສະໝຸດ =121 17120
7
+ 3=
141
7
20
例
题
例3 甲乙两地相距150km,一辆汽车的行驶速度akm/h.用代 数式表示: (1)这辆汽车从甲地到乙地需要行驶多长时间? (2)若速度增加2km/h,则需要多长时间?加速后可以早到 多长时间?
解:(1)根据时间、路程和速度三者之间的关 系,可知这辆汽车从甲地到乙地需要行驶 150 h.
a
(2)如果速度增加2km/h,那么行驶的速度就是
想一想 代数式10x+5y可以表示什么?
1、如果用x(米/ 秒)表示小明跑步的速度,用y (米/秒)表示小明走路的速度,那么10x + 5y表示他 跑步10秒和走路5秒所经过的路程。
2、如果用x 和y分别表示1元和5角硬币的枚数, 那么10x+ 5y就表示x 枚1元硬币和y枚5角硬币共是多 少角钱。 3、我国载人飞船的造价约为10亿,人造卫星造价 约为5亿,在未来的二十年内将造x 架载人飞船,和y 架人造卫星,那么10x + 5y就表示造x 架载人飞船和y 架人造卫星共需花的钱。
(a+2)km/h,所以从甲地到乙地需要行驶 150 h, 加速后可以早到( 150 - 150 )h.
a+2
a
a+2
例
题
例4(1)某公园的门票价格是:成人每张10元, 学生每张5元。一个旅行团有成人x 人、学生y人去参 观,那么该旅行团应付多少门票费? 解:该旅行团应付的门票费是(10x + 5y)元。 (2)如果该旅行团有成人37人、学生15人去参观, 那么他们应付多少门票费? 解:把x =37, y=15代入代数式10x+5y,得 10x37+5x15=445. ∴ 他们应付445元门票费。