八年级数学上册第13章三角形中的边角关系命题与证明13.2命题与证明2练习题无答案新版沪科版

合集下载

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案

沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、如图,AB∥CD,∠D=30°,∠E=35°,则∠B的度数为()A.60°B.65°C.70°D.75°2、等边三角形边长为a,则该三角形的面积为()A. B. C. D.3、如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是()A.25°B.30°C.35°D.40°4、如图,四个图形中,线段BE是△ABC的高的图是()A. B. C. D.5、己知命题:(1)三角形中最少有一个内角不小于60°;(2)三角形的外心到三角形各边的距离都相等.下面判断中正确的是()A.命题(1)(2)都正确B.命题(1)正确,(2)不正确C.命题(1)不正确,(2)正确D.命题(1)(2)都不正确6、如图,点E点为△ABC的内心,且EF⊥BC于点F,若∠BAC=38°,∠B=56°,则∠AEF的度数为()A.163B.164C.165D.1667、如图,点D、B、C在同一条直线上,∠A=60°,∠C=50°,∠D=25°.则∠1=()A.60°B.50°C.45°D.25°8、如图,已知AB∥CO,那么∠1,∠2,∠3之间的关系是()A.∠1+∠2=∠3B.∠1+∠3=∠2C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°9、已知△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连结AC′交A′C于D,则△C′DC的面积为()A.6B.9C.12D.1810、若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于()A.10B.11C.13D.11或1311、如图,BE,CF都是△ABC的角平分线,且∠BDC=110°,则∠A的度数为()A.40°B.50°C.60°D.70°12、为正方形内一点,且是等边三角形,求的度数是()A. B. C. D.13、等腰三角形一个角等于50°,则它的底角是()A.80°B.50C.65°D.50°或65°14、一个多边形的内角和是外角和的3倍,这个多边形的边数是( )A.7B.8C.9D.1015、如图所示,a∥b,则下列式子中值为180°的是()A.∠α+∠β﹣∠γB.∠α+∠β+∠γC.∠β+∠γ﹣∠αD.∠α﹣∠β+∠γ二、填空题(共10题,共计30分)16、如图,中,DE垂直平分BC交BC于点D,交AB于点E,,,则________.17、一个三角形的面积为3xy-4y,一边长是2y,则这条边上的高为________.18、对于一个三角形,设其三个内角的度数为x°,y°,z°,若x,y,z满足x2+y2=z2我们定义这个三角形为美好三角形.已知△ABC为美好三角形,∠A ∠B ∠C,∠B=60°,则∠A的度数为________.19、若直角三角形斜边上的高和中线长分别是4cm,5cm,则它的面积是________cm2.20、如图,点是的对称中心,,是边上的点,且是边上的点,且,若分别表示和的面积则________ .21、一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB∥CD.则∠1+∠2=________.22、已知等腰三角形的一边长等于4,另一边长等于2,它的周长为________.23、如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=________24、如图,在△ABC 中,∠A=60°,D 是 AB 上一点,E 是 AC 上一点,BE、CD 相交于 O,且∠BOD=55°,∠ACD=30°,则∠ABE 的度数是________.25、如图,已知点在反比例函数的图象上,过点A作x轴的平行线交反比例函数的图象于点B,连结,过点B作交y轴于点C,连结,则的面积为________.三、解答题(共5题,共计25分)26、如图,D是AB上的一点,E是AC上的一点,BE、CD相交于一点F,∠A=63°,∠ACD=34°,∠ABE=20°,求∠BDC和∠BFC的度数.27、如图,在中,AD是高,,AE是外角的平分线,交BC的延长线于点E,BF平分交AE于点F,若,求的度数。

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 定理与证明

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明  定理与证明

D.所有的命题都是定理
3.下列语句中不正确的是( B ) A.定理是命题,而且是真命题 B.“对顶角相等”不是命题,也不是定理 C.“同角(或等角)的余角相等”是定理 D.“同角(或等角)的补角相等”是定理
4.下面关于“证明”的说法正确的是( )
C
A.“证明”是一种命题
B.“证明”是一种定理
C.“证明”是一种推理过程
D.“证明”就是举例说明
5.【中考·宜昌】如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,
发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识
是( )
A.垂线段最短
B.经过一点有无数条直线
D
C.经过两点,有且仅有一条直线
D.两点之间,线段最短
6.【2021·合肥月考】如图所示,下列推理及括号中所注明的 推理依据有错误的是( )
证明:∵∠1=50°,∠2=130°,∴∠1+∠2=180°, ∴BD∥CE,∴∠ABD=∠C. ∵∠A=∠ABD,∴∠A=∠C.
(2)求∠C的度数.
解:∵∠2=130°,∴∠AGC=50°, ∴∠A+∠C=180°-50°=130°. 又∵∠A=∠C,∴∠C=65°.
10.【2021·淮南凤台月考改编】已知:如图,E为BC延长线上一点,AE交CD 于点F,AD∥BC,∠1=∠2,∠3=∠4,求证:AB∥CD.
8.如图,若AO⊥CO,BO⊥DO,则∠AOB=∠COD,推理的依据是( ) A.同角的补角相等 B.同角的余角相等 B C.AO⊥CO D.BO⊥DO
9.【2021·宿州砀山期末】如图,点B在AC上,AF与BD、CE分别交于H、G, 已知∠1=50°,∠2=130°,∠ABD=∠A.
(1)求证:∠C=∠A;

沪科版八年级数学上册第13章三角形中的边角关系、命题与证明单元测试题含答案

沪科版八年级数学上册第13章三角形中的边角关系、命题与证明单元测试题含答案

第13章三角形中的边角关系、命题与证明一、选择题1.有下列三个命题:(1)两点之间线段最短(2)平面内,过一点能且只能作一条直线与已知直线垂直(3)过直线外一点有且只有一条直线与这条直线平行其中真命题的个数是()A. 0个B. 1个C. 2个D. 3个【答案】D2.一个三角形至少有()A. 一个锐角B. 两个锐角C. 一个钝角D. 一个直角【答案】B3.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为平方厘米,则此方格纸的面积为()A. 11平方厘米B. 12平方厘米C. 13平方厘米D. 14平方厘米【答案】B4.若三条线段中a=3,b=5,为奇数,那么由a、b、c为边组成的三角形共有()A. 个B. 个C. 无数多个D. 无法确定【答案】B5.三角形三条高的交点在一边上,则这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 以上都有可能【答案】B6.某轮船往返于A、B两地之间,设船在静水中的速度不变,那么,当水的流速增大时,轮船往返一次所用的时间()A. 不变B. 增加C. 减少D. 增加,减少都有可能【答案】B7.如图,在△ABC中,∠B=30°,∠C=70°,AD是△ABC的一条角平分线,则∠CAD的度数为()A. 40°B. 45°C. 50°D. 55°【答案】A8.已知△ABC中,∠A与∠C的度数比为5:7,且∠B比∠A大10°,那么∠B为( )A. 40°B. 50°C. 60°D. 70°【答案】C9.某校九年级四个班的代表队准备举行篮球友谊赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“902班得冠军,904班得第三”;乙说:“901班得第四,903班得亚军”;丙说:“903班得第三,904班得冠军”.赛后得知,三人都只猜对了一半,则得冠军的是()A. 901班B. 902班C. 903班D. 904班【答案】B10.下列命题:①两点确定一条直线;②两点之间,线段最短;③对顶角相等;④内错角相等;其中真命题的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C11.下列说法正确的有()①不相交的两条直线是平行线;②经过直线外一点,有且只有一条直线与这条直线平行;③两条直线被第三条直线所截,同旁内角互补;④在同一平面内,若直线a⊥b,b⊥c,则直线a与c不相交.A. 1个B. 2个C. 3个D. 4个【答案】B12.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC等于()A. 42°B. 66°C. 69°D. 77°【答案】C二、填空题13.命题:“三边分别相等的两个三角形全等”的逆命题________【答案】如果两个三角形全等,那么对应的三边相等14.等腰三角形的一个角是100°,其底角是________ °【答案】 40°、40°15.“等角的补角相等”的条件是________ ,结论是________ .【答案】如果两个角都是某一个角的补角;那么这两个角相等16.如图,小林已经画出了一个三角形的两条角平分线,他说:“我不用再将第三个角平分,就能画出第三条角平分线.”他说的有道理吗?他会怎样做?答:________.他这样做的理由是什么?答:________.【答案】有道理;连接CO,并延长交AB于点F,则CF即为∠ACB的平分线;三角形的三条角平分线交于一点17.如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在200个小伙子中,如果某人不亚于其他199人,就称他为棒小伙子,那么,200个小伙子中的棒小伙子最多可能有 ________ 【答案】200个18.请写出“等腰三角形的两底角相等”的逆命题: ________【答案】两个角相等三角形是等腰三角形19.如图,AD为△ABC中线,点G为重心,若AD=6,则AG=________ .【答案】420.命题“如果两个实数相等,那么它们的平方相等”的逆命题是________ ,成立吗________ .【答案】如果两个实数平方相等,那么这两个实数相等;不成立21.已知三角形的两边长是方程x 2-5x+6=0的两个根,则该三角形的周长的取值范围是________.【答案】6<<1022.A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是 ________【答案】E三、解答题23.请写出命题“等角的余角相等”的条件和结论;这个命题是真命题吗?如果是,请你证明;如果不是,请给出反例.【答案】解:条件:两个角分别是两个相等角的余角;结论:这两个角相等这个命题是真命题,已知:∠1=∠2,∠3是∠1的余角.∠4是∠2的余角求证:∠3=∠4,证明:∵∠3是∠1的余角.∠4是的余角∴∠3=90°﹣∠1,∠4=90°﹣∠2,又∠1=∠2∴∠3=∠4.24.已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.【答案】解答:∵AB=AC,BD是AC边上的中线,∴AB=2AD=2CD,∴AB+AD=3AD.①当AB与AD的和是12厘米时,AD=12÷3=4(厘米),所以AB=AC=2×4=8(厘米),BC=12+15-8×2=12+15-16=11(厘米);②当AB与AD的和是15厘米时,AD=15÷3=5(厘米),所以AB=AC=2×5=10(厘米),BC=12+15-10×2=12+15-20=7(厘米).25.证明三角形的内角和定理:已知△ABC(如图),求证:∠A+∠B+∠C=180°【答案】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和等于180°.26.如图,已知点O是△ABC的两条角平分线的交点,(1)若∠A=30°,则∠BOC的大小是________;(2)若∠A=60°,则∠BOC的大小是________;(3)若∠A=n°,则∠BOC的大小是多少?试用学过的知识说明理由.【答案】(1)105°(2)120°(3)解:∵如图,在△ABC中,∠A+∠ABC+∠ACB=180°,在△BOC中,∠BOC+∠OBC+∠OCB=180°,∵BO,CO分别是∠ABC和∠ACB的平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠BOC+ ∠ABC+ ∠ACB=180°,又∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴∠BOC= ∠A+90°=105°;∴若∠A=n°,∠BOC= n°+90°;27.已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C,B重合),点E为射线CA上一点,∠ADE=∠AED,设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=42°,∠DAE=30°,则α=________,β=________.②若∠BAC=54°,∠DAE=36°,则α=________,β=________.③写出α与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.【答案】(1)12°;6°;18°;9°(2)解:α=2β﹣180°,理由是:如图(2),设∠E=x°,则∠DAC=2x°,∴∠BAC=∠BAD+∠DAC=α+2x°,∴∠B=∠ACB= ,∵∠ADC=∠B+∠BAD,∴β﹣x°= +α,∴α=2β﹣180°.。

沪科版八年级数学上册 13.2命题与证明专题训练(含答案)

沪科版八年级数学上册 13.2命题与证明专题训练(含答案)

沪科版八年级数学上册 13.2 命题与证明专题一 三角形中的计算与证明题1.已知△ABC 的高为AD ,∠BAD =70º,∠CAD =20º,求∠BAC 的度数。

2.如图,已知AB ∥DE ,试求证:∠A +∠ACD +∠D =3600(你有几种证法?)3.在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法. 小明:在△ABC 中,延长BC 到D ,∴∠ACD =∠A +∠B (三角形一个外角等于和它不相邻的两个内角的和).又∵∠ACD +∠ACB =180°(平角定义), ∴∠A +∠B +∠ACB =180°(等式的性质).小虎:在△ABC 中,作CD ⊥AB (如图9), ∵CD ⊥AB (已知),∴∠ADC =∠BDC =90°(直角定义).∴∠A +∠ACD =90°,∠B +∠BCD =90°(直角三角形两锐角互余). ∴∠A +∠ACD +∠B +∠BCD =180°(等式的性质). ∴∠A +∠B +∠ACB =180°.请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.专题二 证明中的探究题4.(1)如图①∠1+∠2与∠B +∠C 有什么关系?为什么?(2)把图①△ABC 沿DE 折叠,得到图②,填空:∠1+∠2_______∠B +∠C (填“>”A B CD“<”“=”),当∠A =40°时,∠B +∠C +∠1+∠2=______.(3)如图③,是由图①的△ABC 沿DE 折叠得到的,如果∠A =30°,则x +y =360°-(∠B +∠C +∠1+∠2)=360°- = ,猜想∠BDA+∠CEA 与∠A 的关系为 .5.如图,已知AB CD ∥,探究123∠,∠,∠之间的关系,并写出证明过程.【知识要点】1.判断一件事情的语句叫命题,命题都由题设和结论两部分构成,分为真命题和假命题,都可以改写成“如果……那么……”的形式,任何一个命题都有逆命题.2.三角形内角和等于180°,可利用平行线的有关知识证明.三角形三个外角的和等于360°,每个外角等于和其不相邻的两个内角的和,因此三角形的外角大于和它不相邻的任一个内角.【温馨提示】1.命题有逆命题,但定理不一定有逆定理.2.要说明一个命题不成立,只要举出一个反例即可,反例满足命题的题设,但不满足结论.3.“三角形的一个外角大于与它不相邻的任何一个内角”不能说成“三角形的一个外角大于一个内角”.4.在证明一个命题的正确性时,每步都要有根据,根据可以是公理、定义、已知条件或已经证明的定理等.【方法技巧】1.要会判断一个语句是否为命题,需注意两点:(1)命题必须是一个完整的语句,通常是陈述句(包括肯定句和否定句);(2)必须对某件事情做出肯定或否定的判断.两者缺一不可.2.在证明或计算三角形的角度大小关系时,要注意“三角形三个内角的和等于180°”这一隐含条件,合理地构造方程或方程组,以便正确求解.y°x°AD CB E12AD CB E12A DCBE图① 图② 图③3.要证明角的不等关系时,经常用三角形的外角性质来证明,在证明时,如果直接证明有难度,可连接两点,或延长某边,构造三角形,使求证的大角(或它的一部分)处于某个三角形的外角的位置上,小角处在内角的位置上,再结合不等式的性质证明.参考答案1.(1)当高AD 在△ABC 的内部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD +∠CAD =70º+20º=90º;(2)当高AD 在△ABC 的外部时,因为∠BAD =70º,∠CAD =20º,所以∠BAC =∠BAD -∠CAD =70º-20º=50º.综合(1)、(2)可知∠BAC 的度数为90º或50º.2.证法一:如图1,过点C 作CF ∥AB 。

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。

2019-2020学年度沪科版初中数学八年级上册第13章 三角形中的边角关系、命题与证明13.2 命题与证明拔高训练

2019-2020学年度沪科版初中数学八年级上册第13章 三角形中的边角关系、命题与证明13.2 命题与证明拔高训练

2019-2020学年度沪科版初中数学八年级上册第13章三角形中的边角关系、命题与证明13.2 命题与证明拔高训练八十九第1题【单选题】小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?( )A、只使用苹果B、只使用芭乐C、使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D、使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【答案】:【解析】:第2题【单选题】羊羊运动会上,懒羊羊参加了越野比赛.选手的号码从1号开始连续编排,领号码时,懒羊羊有些迟到,工作人员警告它:“除你之外,其他选手的号码之和是180.你能推断出你的号码是多少吗?否则不让比赛!”懒羊羊的号码为( )A、30B、20C、15D、10【答案】:【解析】:第3题【单选题】下列语句中,属于命题的是( )A、直线AB和CD垂直吗B、过线段AB的中点C画AB的垂线C、同旁内角不互补,两直线不平行D、连结A,B两点【答案】:【解析】:第4题【单选题】下列命题中,为假命题的是( )A、对顶角相等B、如果a∥b,b∥c,那么a∥cC、三角形的一个外角大于任何一个内角D、在同一平面内,如果一条直线和两条平行直线中的一条相交,那么和另一条也相交【答案】:【解析】:第5题【单选题】七年级(1)班的四位同学参加数学知识竞赛活动,分别获得第一、二、三、四名,大家猜测谁得第几名时,明明说:“甲得第一,乙得第二”;文文说:“甲得第二,丁得第四”;凡凡说:“丙得第二,丁得第三”.名次公布后,他们每人只猜对一半,那么甲、乙、丙、丁的名次顺序为( )A、甲、乙、丙、丁B、甲、丙、乙、丁C、甲、丁、乙、丙D、甲、丙、丁、乙【答案】:【解析】:第6题【单选题】下列说法正确的是( )A、真命题的逆命题都是真命题B、在同圆或等圆中,同弦或等弦所对的圆周角相等C、等腰三角形的高线、中线、角平分线互相重合D、对角线相等且互相平分的四边形是矩形【答案】:【解析】:第7题【单选题】1、2、3、4四位同学参加60米赛跑的决赛,赛前四位同学对结果各做了如下猜测1说:我会得第一名2说:1、3都不会取得第一名3说:1或2会得第一名4说:2会得第一名结果两名同学说对了.由此,可以判断是( )夺得这次决赛第一名.A、1B、2C、3D、4【答案】:【解析】:第8题【单选题】下列命题正确的个数有( )①相等的圆周角所对的弧相等;②圆的两条平行弦所夹的弧相等;③三点确定一个圆;④在同圆或等圆中,同弦或等弦所对的圆周角相等或互补.A、1B、2C、3D、4【答案】:【解析】:第9题【单选题】下列命题中正确的是( )A、三点确定一个圆B、在同圆中,同弧所对的圆周角相等C、平分弦的直线垂直于弦D、相等的圆心角所对的弧相等【答案】:【解析】:第10题【单选题】判断下列语句,①一根拉紧的细线就是直线;②点A一定在直线AB上;③过三点可以画三条直线;④ 两点之间,线段最短。

新编秋八年级数学上册第13章三角形中的边角关系命题与证明13.2命题与证明2练习题无答案新版沪科版2

新编秋八年级数学上册第13章三角形中的边角关系命题与证明13.2命题与证明2练习题无答案新版沪科版2

13.2命题与证明(2)练习题1. 如图DH // EG // BC ,DC // EF ,与1∠相等的角的个数是( )A. 2B. 3C. 4D. 5A DH EBF C G12. “如果两个角的两边互为反向延长线,那么这两个角是对顶角”是( )A. 假命题B. 真命题C. 定义D. 定理3. “同角或等角的补角相等”是( )。

A. 定义B. 公理C. 定理D. 假命题4. 两个角的两边分别平行,那么这两个角( )A. 相等B. 互补C. 互余D. 相等或互补5. 用推理的方法判断为正确的命题叫做( )A. 定义B. 定理C. 公理D. 真命题6. 画图,并写出已知,求证。

(不写证明)(1)同角的余角相等;(2)内错角相等两直线平行(3)平行于同一直线的两直线平行7. 如图,已知D C ∠=∠∠=∠,21,求证:A F ∠=∠。

︒=∠40D ,求NMP ∠的B AM P D CN,求证:(1)CBF EDA ∠=∠,附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

想要不出现太强的考试焦虑,那么最好的办法是,形成自己的掌控感。

1、首先,认真研究考试办法。

这一点对知识水平比较高的考生非常重要。

随着重复学习的次数增加,我们对知识的兴奋度会逐渐下降。

最后时刻,再去重复学习,对于很多学生已经意义不大,远不如多花些力气,来思考考试。

很多老师也会讲解考试的办法。

但是,老师给你的办法,不能很好地提高你对考试的掌控感,你要找到自己的一套明确的考试办法,才能最有效地提高你的掌控感。

有了这种掌控感,你不会再觉得,在如此关键性的考试面前,你是一只被检验、被考察甚至被宰割的绵羊。

2、其次,试着从考官的角度思考问题。

考官,是掌控考试的;考生,是被考试考验的。

如果你只把自己当成一个考生,你难免会惶惶不安,因为你觉得自己完全是个被摆布者。

如果从考官的角度去看考试,你就成了一名主动的参与者。

具体的做法就是,面对那些知识点,你想像你是一名考官,并考虑,你该用什么形式来考这个知识点。

(核定版)沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案

(核定版)沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案

沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、等腰三角形的一个外角是130°,则它的底角等于()A.50°B.50°或70°C.65°D.50°或65°2、如图,点D、B、C在同一条直线上,∠A=60°,∠C=50°,∠D=25°.则∠1=()A.60°B.50°C.45°D.25°3、如图,在△ABC中,∠A= ,∠C= ,BD平分∠ABC,DE∥BC,则∠BDE的度数是()A.50°B.25°C.30°D.35°4、如图,△PAB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD的面积之和为10,则△PAB与△PCD的面积之差为()A.5B.10C.l5D.205、如图,在△ABC中,∠C=90°,∠B=15°,AC=l,分别以点A,B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则AD的长为()A.l.5B.C.2D.6、如图,已知AD是△ABC的中线,AE=EF=FC,下面给出三个关系式:①AG:AD=1:2;②GE:BE=1:3③BE:BG=4:3,其中正确的是()A.①②③B.①②C.②③D.①③7、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β8、以下列每组长度的三条线段为边能组成三角形的是()A.2、3、6B.2、4、6C.2、2、4D.6、6、69、三角形的两边长分别为3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长是()A.12B.13C.15D.12或1510、下列关于一次函数 y=-x+2 的图象性质的说法中,错误的是()A.直线与 x 轴交点的坐标是(0,2)B.直线经过第一、二、四象限 C.y 随 x 的增大而减小 D.与坐标轴围成的三角形面积为 211、等腰三角形的两边长为2和6,则周长是()A.10B.14C.10或14D.612、如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B 的度数为()A.30°B.36°C.40°D.45°13、适合下列条件的△ABC中,直角三角形的个数为()(1)a=b,∠A=45°(2)∠A=32°,∠B=58°(3)a=5,b=12,c=13 (4)a=32, b=42, c=52A.1个B.2个C.3个D.4个14、三角形的两边长为4和7,则第三边长x的取值范围为().A. B. C. D.15、具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠CB.∠A-∠B=∠C C.∠A=∠B=2∠C D.∠A:∠B:∠C=1:2:3二、填空题(共10题,共计30分)16、如图,________.17、如图,直线y= x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB 上,且点C的纵坐标为﹣1,点D在反比例函数y= 的图象上,CD平行于y = ,则k的值为________.轴,S△OCD18、如图示在△ABC中∠B=________.19、如图,Rt△ABC中,AC=5,BC=2.5,∠ACB=90°,分别以AB,BC,AC为直径作三个半圆,那么阴影部分的面积为________.20、已知直线与两坐标轴所围成的三角形面积等于4,则k的值为________.21、若等腰三角形的顶角为80°,则它的底角度数为________°.22、如图,四边形中,,平分,,,则的长是________ .23、如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BOA=125°,则∠DAC的度数是________.24、已知△ABC中,∠A=∠B=∠C,则△ABC为________三角形.25、如图AD是△ABC的中线,AB=7,AC=5,AD=x,则x的取值范围是________。

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 含答案

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 含答案

沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、如图,已知直线与x轴、y轴分别交于A、B两点,P是以C (0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8B.12C.D.2、如图,△ABC的面积为16,点D是BC边上一点,且BD= BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是()A.3B.4C.5D.63、如图,中, BP平分∠ABC, AP⊥BP于P,连接PC,若的面积为3.5cm2,的面积为4.5cm2,则的面积为( ).A.0.25cm 2B.0.5 cm 2C.1cm 2D.1.5cm 24、从长度分别为2、3、6、7、9的5条线段中任取3条作为三角形的边,能组成三角形的概率为()A. B. C. D.5、如图,在中,,以点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心,大于为半径画弧,两弧交于点,作射线交边于点,则的面积是()A. B. C. D.6、如图,∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.105°B.120°C.110°D.115°7、如图,△ABC中,已知,AB=AC,点D在CA的延长线上,∠DAB=50°,则∠B的度数为()A.25°B.30°C.40°D.45°8、如图,△ABC的面积为1cm2, AP垂直∠B的平分线BP于P,则△PBC的面积为()cm2A. B. C. D.9、下面各组线段中,能组成三角形的是()A.5,11,6B.6,9,14C.10,5,4D.8,8,1610、将一副三角板按图中方式叠放,则∠α等于()A.90°B.75°C.60°D.45°11、如图,AD是△ABE边BE上的中线,AE是△ACD边CD上的中线,则图中面积相等的三角形有( )A.3对B.4对C.5对D.6对12、如图,AB∥CD,BE平分∠ABC, CE⊥BE.若∠BCD=50°,∠BCE的度数为()A.55°B.65°C.70°D.75°13、如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是图中的()A. B. C.D.14、下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线直线,在中,,顶点在上,顶点在上,且平分,若,求的度数.解:∵,,∴_______①_______,∵直线直线,∴_____②______ ,∵平分,∴_____③_____= ,∵直线直线,∴___④_____= ,下列选项错误的是()A.①代表64°B.②代表C.③代表D.④代表15、如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A. B. C. D.二、填空题(共10题,共计30分)16、将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是________cm2.17、如图,,,将纸片的一角折叠,使点落在内部,若∠1=45°,则=________.18、一个等腰三角形的两条边分别为4cm和8cm,则这个三角形的周长为________.19、如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为________.20、如图,Rt△ABC中,∠BAC=90。

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 含答案

沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 含答案

沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC 中,∠C=90°,在AC和AB 上分别截取AE,AD,使 AE=AD分别以点D,E 为圆心,大于立DE 长为半径作弧,两弧在∠BAC 内交于点F,作射线AF交边BC 于点G,若 CG=4,AB=10,则△ABG 的面积为()A.12B.20C.30D.402、已知等腰三角形的一个底角是50°,则它的顶角为:()A.50°B.80°C.65°D.130°3、如图,在四边形中,,,垂足为点E,连接AC 交DE于点F,点G为AF的中点,.若,,则DE的长为()A. B. C. D.4、甲、乙、丙3人从图书馆各借了一本书,他们相约在每个星期天相互交换读完的书.经过数次交换后,他们都读完了这3本书.若乙读的第三本书是丙读的第二本书,则乙读的第一本书是甲读的()A.第一本书B.第二本书C.第三本书D.不能确定5、如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°6、已知△ABC的一个外角为70°,则△ABC一定是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形7、如图,直线AB∥CD,∠1=50°,∠2=110°,则∠E的大小是()A.40°B.50°C.60°D.30°8、三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().A.8B.8或10C.10D.8和109、如图所示,a∥b,∠1的度数为()A.90°B.80°C.70°D.60°10、如图,在直角三角形ABC中,CD是斜边AB上的中线 ,若∠A=20°,则∠BDC=( )A.30°B.40°C.45°D.60°11、如图,在中,是的平分线,于点,于点.若,,,则()A.4B.6C.3D.512、如图,AB∥CD,则图中α,β,γ三者之间的关系是()A.α+β+γ=180°B.α–β+γ=180°C.α+β–γ=180°D.α+β+γ=360°13、如图,△ABC中,边BC=12cm,高AD=6cm ,边长为x的正方形PQMN的一边在BC上,其余两个顶点分别在AB、AC上,则正方形边长x为()A.3cmB.4cmC.5cmD.6cm14、已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.615、下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共10题,共计30分)16、边长为整数,且周长等于12的三角形的面积为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.2命题与证明(2)练习题
1.如图DH / / EG // BC,DC // EF,与 相等的角的个数是()
A. 2B. 3C. 4D. 5
2.“如果两个角的两边互为反向延长线,那么这两个角是对顶角”是 ()
A.假命题B.真命题C.定义D.定理
3.“同角或等角的补角相等”是()。
A.定义B.公理C.定理D.假命题
4.两个角的两边分别平行,那么这两个角()
A.相等B.互补 C.互余D. 相等或互补
5.用推理的方法判断为正确的命题叫做()
A.定义B.定理C.公理D.真命题
6.画图,并写出已知,求证。(不写证明)
(1)同角的余于同一直线的两直线 平行
7.如图,已知 ,求证: 。
8.如图,AB // CD,MP / / AB,MN平分 , , ,求 的度数。
9.已知,如图D E // BF,BE // DF,AD // BC,AB // DC,求证:(1) ,(2)
相关文档
最新文档