八年级数学命题与证明

合集下载

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的重点内容,本节内容是在学生已经掌握了命题与定理的基础上进行进一步的深入学习。

本节课的主要内容是让学生了解证明的方法和步骤,学会如何正确地进行数学证明。

教材通过具体的例子引导学生理解证明的过程,并通过练习让学生掌握证明的方法。

二. 学情分析学生在学习本节内容之前,已经学习了命题与定理的基本概念,对命题和定理有了初步的理解。

但是,学生在证明方面还缺乏系统的训练,证明的方法和步骤还不够清晰。

因此,在教学过程中,需要教师引导学生理解证明的过程,并通过大量的练习让学生掌握证明的方法。

三. 教学目标1.让学生理解证明的概念和方法,掌握证明的基本步骤。

2.培养学生进行数学证明的能力,提高学生的逻辑思维能力。

3.通过数学证明的学习,培养学生的耐心和细致,提高学生的学习兴趣。

四. 教学重难点1.教学重点:让学生理解证明的概念和方法,掌握证明的基本步骤。

2.教学难点:如何引导学生理解证明的过程,如何让学生掌握证明的方法。

五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生理解证明的过程。

2.使用小组合作学习的方法,让学生在合作中学习,提高学生的学习效果。

3.通过大量的练习,让学生在实践中掌握证明的方法。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备相关的教学工具,如黑板、粉笔等。

七. 教学过程1.导入(5分钟)教师通过提问的方式引导学生回顾命题与定理的基本概念,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT或黑板,呈现本节课的主要内容,让学生了解本节课的学习目标。

3.操练(10分钟)教师通过具体的例子,引导学生理解证明的过程,让学生掌握证明的基本步骤。

4.巩固(10分钟)教师布置一些练习题,让学生在练习中巩固所学的内容,提高学生的证明能力。

5.拓展(10分钟)教师通过一些综合性的练习题,让学生在练习中提高自己的逻辑思维能力,提高学生的学习兴趣。

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4

沪科版数学八年级上册13.2《命题与证明》教学设计4一. 教材分析《命题与证明》是沪科版数学八年级上册13.2章节的内容,本节课的主要内容是让学生理解命题的概念,掌握证明的方法和技巧。

教材通过引入生活中的实例,让学生体会命题的意义,进而引导学生学习证明的基本方法。

教材内容由浅入深,循序渐进,有利于学生掌握。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力,对数学概念有一定的理解。

但是,对于证明这一概念,学生可能较为陌生,需要通过具体的实例来引导学生理解和掌握。

此外,学生在学习过程中可能存在对证明方法的不理解,需要教师耐心引导和讲解。

三. 教学目标1.让学生理解命题的概念,能正确写出题设和结论。

2.让学生掌握证明的方法和技巧,能运用所学的证明方法解决实际问题。

3.培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

四. 教学重难点1.重点:命题的概念,证明的方法和技巧。

2.难点:证明方法的灵活运用,对复杂命题的证明。

五. 教学方法1.采用实例导入法,通过生活中的实例引导学生理解命题的意义。

2.采用问题驱动法,引导学生思考和探索证明的方法。

3.采用分组合作法,让学生在合作中交流和分享证明的方法和经验。

4.采用讲解法,教师对重点和难点进行讲解和解答。

六. 教学准备1.准备相关的生活实例,用于导入和讲解。

2.准备一些证明题目,用于巩固和拓展。

3.准备PPT,用于展示和讲解。

七. 教学过程1.导入(5分钟)通过一个生活实例,如“如果一个人是男生,那么他一定有喉结”,让学生理解命题的概念,引导学生写出题设和结论。

2.呈现(10分钟)呈现一些简单的命题,如“勾股定理”和“平行线的性质”,让学生尝试证明。

教师在旁边指导,解答学生的疑问。

3.操练(10分钟)学生分组合作,每组选择一个命题进行证明。

教师巡回指导,检查学生的证明过程,纠正错误。

4.巩固(10分钟)教师选取一些学生的证明题目,进行讲解和分析,让学生理解和掌握证明的方法和技巧。

八年级数学上册讲解命题、定理与证明命题课件

八年级数学上册讲解命题、定理与证明命题课件
⑴同位角相等,两直线平行; 条件: 同位角相等 结论: 两直线平行 如果同位角相等,那么两直线平行.
7
课程讲授
1 命题
例2 指出下列命题的条件和结论,并改写成“如果……, 那么……”的形式:
⑵三个角都相等的三角形是等边三角形. 条件: 一个三角形的三个角相等 结论: 这个三角形是等边三角形 如果一个三角形的三边相等,那么这个三角 形是等边三角形.
3
课程讲授
1 命题
如果两个角是对顶角,那么这两个角相等; 正确 两直线平行,同旁内角相等; 错误
定义:它们都是判断某一件事情的语句,像这样表
示判断的语句叫做命题.
4
课程讲授
1 命题
例1 判断下列语句是否为命题. (1)长度相等的两条线段是相等的线段吗? 不是
(2)两条直线相交,有且只有一个交点; 是 3 不相等的两个角不是对顶角; 是 4 欢迎前来参加北京冬奥会!不是 5 两个锐角的和是钝角; 是
(1)全等三角形的对应边相等; 条件: 两个三角形全等 结论:这两个三角形的对应边相等
如果两个三角形全等,那么它们的对应边相等
13
随堂练习
2.把下列命题改写成“如果……,那么……”的形式,并分 别指出它们的条件和结论: (2)在同一平面内,垂直于同一条直线的两条 直线互相平行.
条件: 在同一平面内,有两条直线分别垂直于第三条直线 结论:这两条直线互相平行
15
课堂小结
命题
定义 表示判断的语句叫做命题.
真命题与假 命题
如果条件成立,那么结论一定成立. 像这样的命题,称为真命题.
当条件成立时,不能保证结论总是正 确,或者说结论不成立,像这样的命 题,称为假命题.
16
第13章 全等三角形

命题与证明课件初中数学湘教版八年级上册

命题与证明课件初中数学湘教版八年级上册

如:相等的角是对顶角. 2.如果一个句子没有对某一件事情作出任何判断,那么 它就不是命题.
如:画线段AB=CD.
例如,下列句子都不是命题:
(1)你喜欢数学吗? (3)清新的空气.
(2)作线段AB=CD. (4)不许讲话!
下列命题的表述情势有什么共同点? (1)如果a=b且b=c,那么a=c ; (2)如果两个角的和等于90°,那么这两个角
②有公共顶点的 两个角有 这两个角 如果两个角有公共顶点,那么两 两个角是对顶角. 公共顶点 是对顶角 个角是对顶角.
③两直线平行, 同位角相等.
两直线平行
同位角相等 两条直线别第三条直线所截,如 果两直线平行,那么同位角相等.
④同位角相等, 两直线平行.
同位角相等 两直线平行
两条直线别第三条直线所截,如 果同位角相等,那么两直线平行.
互为余角. 它们的表述情势都是“如果……,那么……”.
命题通常可写成“如果……,那么……”的情势, 其中“如果” 引出的部分就是条件,“那么”引出的部分就是结论.反之,如 果一个句子没有对某一件事情作出任何判断,那么它就不是命题.
有时为了叙述的简便,命题也可以省略关联词 “如果”、“那么”.
“如果两个角是对顶角,那么这两个角相等” 简写
这个过程 叫证明
(2)要判断一个命题是假命题,只需举出一个例子(反 例),它符合命题的条件,但不满足命题的结论,从而 就可判断这个命题为假命题.
称为“举反例”
判断下列命题为真命题的根据是什么?
(1)如果a是整数,那么a是有理数; 有理数的定义
(2)如果△ABC是等边三角形,那么△ABC是等腰三角形. 等腰(等边)三角形的定义
2.2 命题与证明 第1课时 定义与命题

沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例

沪科版数学八年级上册13.2命题与证明三角形内角和定理优秀教学案例
2.设计一系列子问题,如“三角形内角和能否大于180度?”“三角形内角和是否等于180度?”等,引导学生逐步深入探究。
3.引导学生运用转化思想,将复杂的几何问题转化为简单的问题,提高学生解决问题的能力。
4.鼓励学生提出自己的疑问,组织讨论,促进学生思维的发展。
(三)小组合作
1.组织学生分组进行讨论,鼓励学生互相交流、分享思路。
3.通过示例,讲解如何运用三角形内角和定理解决实际问题,让学生体会数学的应用价值。
(三)学生小组讨论
1.设计探究活动,让学生分组讨论如何证明三角形内角和定理。
2.引导学生运用归纳推理、类比推理等方法,深入探究三角形内角和成果,互相交流、学习。
(四)总结归纳
1.教师引导学生总结三角形内角和定理的证明方法,巩固所学知识。
2.总结三角形内角和定理在实际生活中的应用,强调数学的实际价值。
3.引导学生反思自己在讨论过程中的表现,总结自己的优点和不足。
(五)作业小结
1.设计课后作业,让学生运用所学知识解决实际问题,巩固所学内容。
2.要求学生在作业中运用转化思想,提高解决问题的能力。
3.鼓励学生在课后进行自主学习,深入研究三角形内角和定理的相关知识。
二、教学目标
(一)知识与技能
1.让学生掌握三角形内角和定理,理解并能够运用该定理解决实际问题。
2.培养学生空间想象能力,通过观察、实践,让学生能够形象地理解三角形内角和定理。
3.培养学生逻辑思维能力,学会运用归纳推理、类比推理等方法,证明三角形内角和定理。
4.培养学生运用数学知识解决实际问题的能力,将所学知识运用到生活中,提高学生解决实际问题的能力。
4.运用多媒体技术辅助教学,为学生提供丰富的学习资源,提高课堂教学效果。

八年级数学命题与证明

八年级数学命题与证明
∠A,∠B,∠C之和必大于180°, 这与“三角形三个内角和等于180°” 相矛盾. 因此△ABC中至多有一个角是钝角.
A
B
C
练一练
某种商品的商标如图所示,已知AC=BD,AB=DC,AC 与BD交于点O. 有人指出图中的两个三角形全等,并写出如下 D 证明,请你判断他的证明是否正确? A O 并说明理由. 证明:在△ABO 和△DCO中, B ∵ AC=BD, ∠AOB =∠DOC, AB=DC ∴△ABO ≌△DCO (SAS) .
A
E
D
D C
C (甲 )
D
B
C
(乙 )
B

E
(丙 )
做一做
2、如图,O是△ABC的∠ABC与∠ACB的平分线的交点, DE∥BC交AB于点D,交AC于点E.若AB=10cm,AC=8cm, 则△ADE的周长是_______cm.
18
A
D B
O
E C
做一做
3、如右图,点A,B,E是同一条直线上的点,三 角形ABC与三角形ADE都是等边三角形; 求证:(1)CE=BD (2)∠CFB=600
C
练一练
某种商品的商标如图所示,AC与BD交于点O ,
且AC=BD,AB=DC,则△ABO ≌△DCO.
证明:连结BC,在△ABC 和△DCB中, ∵ AC=BD, BC=CB, AB=DC ∴△ABC ≌△DCB(SSS) ∴ ∠A=∠D(全等三角形的对应角相等) 又∵∠AOB=∠DOC ∴ △ABO ≌△DCO(AAS) .
证法二:
连接BC.
B
1
A
D
0
在ABC中,BAC ABD ACD 1 2 180 , 1 2 1800 (BAC ABD ACD), 1 2 1800 BDC(等式性质). BDC BAC ABD ACD(等量代换) . 即BDC BAC B C.

初二数学命题与证明教学

初二数学命题与证明教学

初二数学命题与证明教学数学是英语词汇中“科学”的基础,它是逻辑思维的基础,也是科学素养的维度之一。

在初中数学教学中,命题与证明是一个重要的组成部分,“初二数学命题与证明教学”是一个非常重要的教学内容,因为它能够提高学生逻辑思维能力,构建基本数学逻辑,掌握新知识。

首先,要有足够的准备工作,开展初二数学命题与证明教学活动。

其次,要给学生以足够的时间掌握基础知识,引导学生理解有关重要概念,如定理、公理、证明、步骤等。

最后,要布置有趣的实际操作,引导学生参与和完成更多的具体练习题,增强学生的理解能力、解决问题的能力和实践能力。

在初二数学命题与证明教学中,教师应根据学生实际情况,建立有效的教学模式,使学生在舒适的氛围中学习,并采取科学有效的教学方法,提高学生的学习兴趣。

首先,应按照教学目标,创设有趣的课堂氛围,以趣味化的形式吸引学生的兴趣,如以故事、图画、问答、竞猜等形式来展示学习内容;其次,要根据学生的年龄特点,采用多种多样的教学手段,激发学生的兴趣;最后,应使用多媒体教学技术,课堂上放映各种素材,让学生感受到数学命题与证明的真实性和实用性,从而提高学习兴趣。

此外,要让学生养成良好的学习习惯,培养独立思考和解决问题的能力,培养数学思维的能力,使学生具备自主学习的能力以及独立解决数学问题的能力。

初二数学命题与证明教学是一项重要的内容,不仅能够提高学生的数学思维能力,还能够提高学生的科学素养。

因此,教师应当采取有效措施,将命题与证明纳入到初中数学教学中。

只有这样,才能使学生掌握科学素养,更好地掌握数学知识,发挥创新能力,成为社会有用的人才。

初二数学命题与证明教学不但要让学生掌新知识,更要培养学生的思维能力,使学生具备分析问题的能力,培养学生的创新性思维,让学生养成良好的学习习惯,要求学生在课堂上全身心投入学习,从而用一种积极向上的态度去面对每一个问题,勇于挑战,敢于实践,争取获取更多的成果,培养学生成为数学创新人才。

北师大版八年级上册数学第27讲《命题、证明及平行线的判定定理》知识点梳理

北师大版八年级上册数学第27讲《命题、证明及平行线的判定定理》知识点梳理

北师大版八年级上册数学第 27 讲《命题、证明及平行线的判定定理》知识点梳理【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2.体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论.【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理.要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.2.平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1.请说出下列名词的定义:(1)无理数(2)直角三角形【答案与解析】解:(1)无理数:无限不循环小数叫做无理数.(2)直角三角形:有一个角是直角的三角形叫做直角三角形.【总结升华】对学过的定义要准确地牢记.举一反三:【变式】指出下列句子哪些是定义.(1)两直线平行,内错角相等;(2)两腰相等的梯形叫等腰梯形;(3)有一个角是钝角的三角形是钝角三角形;(4)等腰三角形的两底角相等;(5)平行四边形的对角线互相平分;(6)连结三角形两边中点的线段叫做三角形的中位线.【答案】(2),(3),(6)是定义.2.说出下列命题的条件和结论,并判断它是真命题还是假命题:(1)如果a >b, b >c ,那么a >c ;(2)如果两个角相等, 那么它们是对顶角.【答案与解析】解:(1)条件:a >b, b >c ;结论:a >c .它是真命题.(2)条件:两个角相等;结论:这两个角是对顶角.它是假命题.反例,你书的左下角和右下角两个角都是直角,相等,但不是对顶角.【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.a 2 举一反三:【变式】(2013•贵港)下列四个命题中,属于真命题的是().A .若 = m ,则a = mB .若 a >b ,则 am >bmC .两个等腰三角形必定相似D .位似图形一定是相似图形【答案】D类型二、公理、定理及证明 3. 证明:等角的余角相等.【思路点拨】如果题目中没有明确指出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:∠1=∠2,∠1+∠3=90°,∠2+∠4=90°.求证:∠3=∠4.证明:∵∠1+∠3=90°,∠2+∠4=90°,(已知)∴∠3=90°-∠1,∠4=90°-∠2.(等式的性质)∵∠1=∠2(已知),∴∠3=∠4(等量代换).【总结升华】“等角的余角相等”与“等角的补角相等”可以作为今后证明的依据.此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.举一反三:【变式】“垂线段最短”是( ).A .定义B .定理C .公理D .不是命题【答案】B类型三、平行线的判定定理4. (2016•淄博)如图,一个由 4 条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°, 找出图中的平行线,并说明理由.【思路点拨】根据同位角相等,两直线平行证明OB∥AC,根据同旁内角互补,两直线平行证明OA∥BC.【答案与解析】解:OA∥BC,OB∥AC.∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.【总结升华】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.举一反三:【变式】(2015•宁城)如图,下列能判定AB∥CD 的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【答案】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3 个;故选:C.5.(2015•日照期末)如图,AB∥CD,AE 平分∠BAD,CD 与AE 相交于F,∠CFE=∠E.求证:AD∥BC.【答案与解析】证明:∵AE 平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【总结升华】主要考查角平分线的性质以及平行线的判定定理.举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB 与CD 平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴AB∥CD (同位角相等,两直线平行).。

沪科版八年级数学 13.2 命题与证明(学习、上课课件)

沪科版八年级数学  13.2 命题与证明(学习、上课课件)

感悟新知
知2-练
2-1. [期末·宿州] 把命题“ 全等三角形的对应角相等”改 写成“ 如果……,那么……”的形式:_如__果__两__个__三__角__ _形__是__全__等__三__角__形__,__那__么__它__们__的__对__应__角__相__等___.
感悟新知
知识点 3 互逆命题及反例
感悟新知
知识点 2 命题的结构
知2-讲
1. 命题的构成 数学命题通常由题设和结论两部分组成, 命题常写成“如果……那么……”的形式. 其中,“如果” 引出的部分是条件(或题设), “那么”引出的部分是结 论(或题断). 有时为了叙述简便,也可以省略关联词 “如果”“那么”.
感悟新知
知2-讲
2. 命题的一般形式 “如果p,那么q”,或者说成“若p, 则q”,其中p是这个命题的条件(或题设),q是这个命题 的结论(或题断).
感悟新知
知2-练
解:(1)如果两个角互为补角,那么这两个角相等. 假命题. (2)如果两个角是同一个角的余角,那么这两个角相等. 真 命题. (3)如果两条直线垂直于同一条直线,那么这两条直线平行. 假命题.
感悟新知
知2-练
方法点拨:改写命题的方法: 理清命题的题设与结论部分,改写命题时将题设 放在“如果”后面,将结论放在“那么”后面.
感悟新知
知1-讲
特别解读:(1)命题只是对事件进行判断,判断的结果 可能是正确的,也可能是错误的;
(2)命题必须是一个完整的句子,不能是一个词语; (3)命题必须具有“判断”作用,要对事件作出肯定或 否定的判断,故命题不能是祈使句或疑问句.
感悟新知
Hale Waihona Puke 知1-讲2. 命题的种类 (1)真命题:如果题设成立,那么结论一定成立,这样的 命题叫做真命题. (2)假命题:题设成立时,不能保证结论一定成立,这样 的命题叫做假命题.

13.1 命题、定理与证明 课件 2024-2025学年 华东师大版数学八年级上册

 13.1 命题、定理与证明 课件 2024-2025学年 华东师大版数学八年级上册

本课结束
【举一反三】 1.(2024·来宾期中)下列命题中,是真命题的是( B ) A.相等的角是对顶角 B.垂线段最短 C.三角形的外角和等于180° D.三角形的外角大于它的内角 2.(2024·吴忠期末)命题“等角的余角相等”的题设是____两__个__角__是_等__角__的__余__角_____, 结论是___它__们__相__等_____.
2.下列说法正确的是( C ) A.命题是定理,定理是命题 B.命题不一定是定理,定理不一定是命题 C.真命题有可能是定理,假命题不可能是定理 D.定理可能是真命题,也可能是假命题
3. 如 图 , 有 如 下 四 个 论 断 : ① AC ∥ DE; ② DC ∥ EF; ③ CD 平 分 ∠ BCA; ④ EF 平 分 ∠BED,请你选择四个论断中的三个作为条件,余下的一个作为结论,构成一个正 确的数学命题并证明它.
5.(8分·推理能力、几何直观)如图,有下列三个条件:①DE∥BC;②∠1=∠2; ③∠B=∠C. (1)若从这三个条件中任选两个作为题设,另一个作为结论, 组成一个命题,一共能组成几个命题?请你都写出来; 【解析】(1)一共能组成三个命题: ①如果DE∥BC,∠1=∠2,那么∠B=∠C; ②如果DE∥BC,∠B=∠C,那么∠1=∠2; ③如果∠1=∠2,∠B=∠C,那么DE∥BC.
13.1 命题、定理与证明 1.命题 2.定理与证明
基础 主干落实 重点 典例研析 素养 当堂测评
课时学习目标 1.了解命题的概念,理解命题的结构,会区分命题的条件 和结论,会将命题改写成“如果……,那么……”的形式 2.掌握已学的5个基本事实,理解定理的概念 3.理解证明的概念,掌握推理证明的格式,并会证明简单 命题的真假
2.五个基本事实: (1)两点确定一条直线; (2)两点之间,__线__段__最__短__; (3)过一点__有__且__只__有__一__条__直__线__与已知直线垂直; (4)过直线外一点__有__且__只__有__一__条__直__线__与这条 直线平行; (5)两条直线被第三条直线所截,如果同位角 相等,那么这两条直线_平__行___.

华东师大版数学八年级上册1第2课命题、定理与证明课件

华东师大版数学八年级上册1第2课命题、定理与证明课件
“内错角相等,两直线平行”是平行线的判定定理.
定理揭示了客观事物的本质属性.
基本事实、定理、命题、真命题、假命题之间有什关系?
命题
真命题
假命题
基本事实
定理
思考1:当n=1,2,3,4,5时,代数式n2-3n+7的值是 质数吗?你能肯定:对于所有的自然数,式子n2-3n+7的 值都是质数吗?
解:当n=1时,n2-3n+7=5,是质数, 当n=2时,n2-3n+7=5,是质数, 当n=3时,n2-3n+7=7,是质数, 当n=4时,n2-3n+7=11,是质数, 当n=5时,n2-3n+7=17,是质数,
思考1:当n=1,2,3,4,5时,代数式n2-3n+7的值是 质数吗?你能肯定:对于所有的自然数,式子n2-3n+7的 值都是质数吗?
所以,当n=1,2,3,4,5时,代数式n2-3n+7的值
全都是质数.
当n=6时,n2-3n+7=62-18+7=25=52. 所以,对于所有自然数,式子n2-3n+7的值不都是质数.
已知:如图,已知AB∥CD, OP,MN分别平分∠BOM, ∠OMD,OP、MN交于G点, 求证:MN⊥OP.
证明:∵AB∥CD, ∴∠BOM+∠OMD=180°(两直线平行,同旁内角互补), ∵OP 、 MN分别平分∠BOM,∠OMD, ∴2∠POM+2∠NMO=180°. ∴∠POM+∠NMO=90°. ∴∠MGO=90°. ∴MN⊥OP.
新知讲授
上面这些命题是通过长期实践总结出来,被大家公认的真 命题.我们将这些命题视为基本事实.
它们是我们在继续学习过程中用来判断其他命题真假的原 始根据,即出发点. “同位角相等,两直线平行”是基本事实,那么七年级我 们学过的命题“内错角相等,两直线平行”是什么呢?

命题与证明第3课时命题的证明与反证法课件初中数学湘教版八年级上册

命题与证明第3课时命题的证明与反证法课件初中数学湘教版八年级上册

※ 课堂小结
证明与图形有关的命题时,一般有以下步骤:
第一步
根据题意
画出图形
第二步 根据命题的条件和结论,结合图形 写出已知、求证
第三步 通过分析,找出证明的途径 写出证明的过程
直接证明一个命题为真有困难时 假设命题不成立
利用命题的条件或有关的结论 推理
导出矛盾
反证法(间接证明)
假设不成立 即所证明的命题正确
∴ ∠DAC = 2∠B (等式的性质). 又∵AE 平分∠DAC (已知), ∴∠DAC = 2∠DAE (角平分线的定义) ∴∠DAE =∠B (等量代换). ∴ AE∥BC (同位角相等,两直线平行).
例2 已知:∠A,∠B,∠C 是△ABC 的内角. 求证:∠A,∠B,∠C 中至少有一个角大于或等于 60°.
猜测:三角形的 三个外角之和等 于 360°.
※ 新知探究
从剪拼或度量可以猜测三角形的三个外角之和等于360°,但 是由于存在误差,剪拼时难以真正拼成一个周角,只是接近周 角;分别度量这三个角后再相加,结果可能接近360°,但不 能很准确地都得到360°.
猜测出的命题仅仅是一种猜想,未必都是真命题.要确定这 个命题是真命题,还需要通过推理的方法加以证明.
应假设( D)
A. ∠A=60°
B. ∠A<60°
C. ∠A ≠ 60°
D. ∠A ≤ 60°
2.命题“三角形中最多只有一个内角是直角”的结论的否定是 A.两个内角是直角 B.有三个内角是直角 C.至少有两个内角是直角 D.没有一个内角是直角
(C)
3. 求证:△ABC 中不能有两个钝角.
证明:假设△ABC 中有两个钝角, 不妨设∠A<90°,∠B>90°,∠C>90°, 则∠A+∠B+∠C>180°. 这与三角形的内角和定理相矛盾, 所以假设不成立,因此原命题正确, 即△ABC 中不能有两个钝角.

最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)

最新华师版八上数学 13.1 命题、定理与证明 上课课件(共43张PPT)
(1)同位角相等,两直线平行; 真命题 (2)多边形的内角和等于 180°; 假命题 (3)三角形的外角和等于 360°; 真命题
(4)平行于同一条直线的两条直线互相平行.
真命题
3. 如图,从① ∠1= ∠2;②∠C=∠D ;③∠A =∠F 三个条件
中选出两个作为已知条件,另一个作为结论所组成的命题中,
这些都是公认的真命题,我们把它视为基本事实.
基本事实:
公认的真命题视为基本事实. 它们是用来判断其他命题真假的原始依据,即出发点.
定理:
数学中,有些命题可以从基本事实或其他真命题出发, 用逻辑推理的方法判断它们是正确的,并且可以作为进一步 判断其他命题真假的依据,这样的真命题叫做定理.
试一试
1. 下列命题中属于基本事实的是( C ) A. 内错角相等,两直线平行 B. 三角形的外角和等于 360° C. 两点确定一条直线 D. 直角三角形两锐角互余
改写:直角都相等. 如果两个角都是直角,那么这两个角相等.
例1 把命题“三个角都相等的三角形是等边三角形” 改写成“如果……,那么……”的形式,并分别指出 该命题的条件与结论.
解:这个命题可以写成“如果一个三角形的三个角 都相等,那么这个三角形是等边三角形”.该命题的条件 是“一个三角形的三个角都相等”,结论是“这个三角 形是等边三角形”.
命题的分类 命题分为真命题和假命题. 有些命题,如果条件成立,那么结论一定成立, 像这样的命题称为真命题; 而有些命题,条件成立时,不能保证结论总是正确, 也就是说结论不成立,像这样的命题,称为假命题.
两直线平行,内错角相等. 真命题 同位角相等. 假命题
真假命题的判断:
(1)要判断一个命题是真命题,可以用演绎推理加以论证. (2)要判断一个命题是假命题,只要举出一个例子,说明 该命题不成立,即只要举出一个符合该命题条件而不符合 该命题结论的例子就可以了.

八年级数学命题与证明

八年级数学命题与证明
3.说明一个命题是假命题,通常只用 找出一个反例,但要说明一个命题是 真命题,就必须用推理的方法,而不能 光凭一个例子(即证明)。
4.反证法。
改写成“如果……,那么……”的形式:
如果两个角不相等,那么这两个角不可能是对顶角
公理(举例):这些公认为正确的命题叫做公理。
1、两点间线段最短。 2、两点确定一条直线。
3、过直线外一点,有且只有一条直线与已 知直线平行 。 4、同位角相等,两直线平行。 5、两直线平行,同位角相等。 6、全等三角形的对应角相等,对应边相等。 7、三角形的全等的方法:SAS ASA SSS
1、将下列命题改写成“如果……那么……” 的形式,然后指出这个命题的题设和结论。
(1)同角的补角相等。
(2)两直线平行,同位角相等。
(3)在同一平面内,同垂直于第三条直线的两直线平行 注意:
思维判断的对象是什么,即考察对象是什么。
对于命题“不相等的两个角不可能是对顶角”
条件: 两个角不相等
结论: 这两个角不可能是对顶角
下列语句中哪些是命题?请判断其 中命题的真假,并说明理由。
(1)每单位面积所受到的压力叫做压强;
(2)两个奇数的和是偶数。 (3)两个无理数的乘积一定是无理数; (4)偶数一定是合数吗?
(5)连结AB; (6)不相等的两个角不可能是对顶 角
团围主!只见无数名片和谷粒像成千上万的石柱一样朝壮扭公主冲来……这时壮扭公主不高兴道:“你们弄得不好玩,看我的!”壮扭公主一边说着!一边耍动憨厚自 然的嘴唇大吼一声,只见无数高达五千米的菱形摩天二大厦纷纷从地下钻了出来,然后纷纷长出比水塔烟囱还粗的手脚,排列成整齐的兵阵……壮扭公主摇动憨厚自然 、但却带着田野气息的嘴唇又是一声大吼,所有二都像巨大的导弹一样腾空而起,向怒放的烟花一样朝四周超巨型的烟龙卷射去……随着一阵阵的爆炸和一片片的闪光 ,所有的烟龙卷群都烟消云散、不见了踪影……这时,已经收齐所有神秘配方物品的月光妹妹终于回来了!月光妹妹:我找到月亮绿钻石啦!嘻嘻!”壮扭公主:咱们 终于得到红烧巨乌贼颗月亮绿钻石!”月光妹妹:嘻嘻!好高兴啊!内力又长一层,现在咱们的内力已经是第四十四层啦!”壮扭公主:看来咱们支票上的宇宙币也该 增加了……”第三章下午该就要正式大l了,大l场地在秋窗帘草原进行,蘑菇王子和知知爵士很早就骑着各自的宝贝飞向了大l场地。天似穹庐、瑰丽多彩的秋窗帘地 区就像一尊神奇的雕塑。极目环视,在秋窗帘地区的前边,悬浮着奇奇怪怪的非常像柱子模样的暗灰色的幽静的荒滩,极目远视,那里的风光极似高贵的车轮,那里的 风景真是不错,只是没有什么好玩的去处。在秋窗帘地区的北边,飘浮着影影绰绰的非常像一片酱缸模样的淡黄色的五彩缤纷的莽原,深看远瞧,那里的景致极似变幻 的牛儿,那里的景象虽然不理想,但好像很有一些好玩的东西。在秋窗帘地区的西方,遮护着无法形容的特别像一片乌贼模样的米黄色的震撼的琼楼玉宇,张目前望, 那里的景象非常像闪腰扭腿的玉葱,那里的一切都显得非常平淡,没有谁会因为好奇而光顾那里。在秋窗帘地区的右方,映现着深浅莫测的极像一片弯月模样的紫红色 的异形的山峰,举目四看,那里的景象好似款款而行的鱼刺,那里的风光好有趣,只是路有些不好走。在秋窗帘地区上空,轻漫着深浅莫测的紫玫瑰色仙云,那模样好 像漂浮着很多鸽子,纵目远眺,天空的景象真像款款而行的邮筒,样子十分的粗犷。秋窗帘地区四周散发着一种空气中迷人的麻味,很快怪异的味道慢慢散去,好像这 里从来没有发生过什么……忽然,秋窗帘地区妙处送来阵阵花香,没多久,若有若无的清香渐渐远去,只留下一丝淡淡仙境的芬芳……不一会儿,秋窗帘地区边又舞来 飘飘的钟声,声音是那样的美妙,很久很久都在耳边缭绕……经过秋窗帘地区后,身上就有一种温暖的,非常舒服的感觉。整个秋窗帘地区让人感到一种无法形容的、 莫名其妙的

冀教版数学八年级上册13.1《命题与证明》教学设计

冀教版数学八年级上册13.1《命题与证明》教学设计

冀教版数学八年级上册13.1《命题与证明》教学设计一. 教材分析冀教版数学八年级上册13.1《命题与证明》是学生在掌握了基本的数学知识的基础上,进一步深入研究数学理论的一部分。

本节内容主要介绍了命题的概念、分类及证明的方法。

教材通过丰富的实例,引导学生理解命题的意义,学会用符号表示命题,并掌握证明的基本方法。

本节课的内容为后续的数学学习奠定了基础。

二. 学情分析学生在学习本节课之前,已经掌握了基本的数学运算能力和一定的逻辑思维能力。

但对于命题与证明这一部分内容,由于较为抽象,学生可能存在理解上的困难。

因此,在教学过程中,需要关注学生的学习情况,针对学生的实际问题进行针对性的引导和解答。

三. 教学目标1.了解命题的概念,学会用符号表示命题。

2.掌握证明的基本方法,能够运用所学知识解决实际问题。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.命题的概念及其表示方法。

2.证明的基本方法及其应用。

五. 教学方法1.实例教学法:通过丰富的实例,引导学生理解命题的意义,学会用符号表示命题。

2.启发式教学法:在教学过程中,引导学生主动思考,发现问题,解决问题。

3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,内容包括命题的定义、分类及表示方法,证明的基本方法等。

2.实例素材:收集与命题与证明相关的实例,用于引导学生学习。

3.练习题:准备适量的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实例引入命题的概念,引导学生思考:如何用数学语言描述一个命题?如何判断一个命题是真命题还是假命题?2.呈现(10分钟)呈现命题的定义、分类及表示方法,让学生直观地了解命题的结构。

同时,介绍证明的基本方法,如直接证明、反证法、归纳法等。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用所学知识进行证明。

教师巡回指导,解答学生遇到的问题。

4.巩固(10分钟)出示练习题,让学生独立完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国际பைடு நூலகம்兰中文网
[多选]不能在关节内注射激素类药物的情况有()。A.疑为感染性关节炎B.活动性结核病、眼睛疱疹和急性精神症状C.痛风性关节炎D.被穿刺关节肢端可疑有缺血坏死E.义肢关节 [填空题]照明电器通常用()作额定值。 [单选]某起重机械设备安装单位投保了安装工程一切险,在机械设备安装过程中基于下列原因造成损失,其中应由保险公司承担损失的原因是()。A.短路、过电压B.材料瑕疵C.机械结构不合理D.战争、暴乱 [单选,A2型题,A1/A2型题]问月经史时以下哪项最重要()A.期、量、色、味B.量、色、质、味C.期、量、色、质D.伴随症状E.初潮或绝经年龄 [单选,A1型题]早产儿,胎龄30周,生后不久出现呼吸困难、青紫、呻吟,三凹征阳性,给头罩吸氧1小时,呼吸困难无好转。查血气分析:pH7.15,PaO245mmHg,PaCO260mmHg,BE-7mmol/L。最恰当的处理是()A.加大头罩吸氧氧流量B.机械通气C.给予鼻塞式CPAPD.补充碳酸氢钠纠正酸中毒E.给 [单选]铁路平面无线调车A型号电台,在调车作业中,连结员或制动员按下绿键时,辅助语音提示为()。A.起动B.推进C.紧急停车(×号×号)D.×号解锁 [单选,A2型题,A1/A2型题]对接触砷、石棉、镍、铬酸盐、放射性物质的工人进行定期体检时,首先应考虑()A.皮肤癌B.肺癌C.泌尿道癌D.白血病E.肝癌 [单选,A型题]产气荚膜梭菌区别于其他厌氧菌最有特点的生物学性状是()A.革兰阳性粗大杆菌B.远端芽胞C.厌氧性D.菌落光滑,有溶血E.分解糖大量产气 [填空题]英国生物学家达尔文在1859年出版的《物种起源》一书中,揭示了生物由低级向高级进化的科学规律,认为人类就是由()经过长期进化而来的。 [填空题]A型显示超声波探伤仪荧光屏上时基线是由扫描电路产生的()形成的。 [单选]下列关于建设单位质量责任和义务的表述中,错误的是()。A.建设单位不得将建设工程肢解发包B.建设工程发包方不得迫使承包方以低于成本的价格竞标C.建设单位不得任意压缩合同工期D.涉及承重结构变动的装修工程施工期前,只能委托原设计单位提交设计方案 [判断题]为了预防、减少和避免学生伤害事故的发生,除应对学生加强安全意识和提高自我保护能力以及培养健康的心理素质外,还应对其强化纪律观念,尽量减少因自违纪行为而导致的伤害事故的发生。A.正确B.错误 [单选]利用船尾叠标导航,叠标方位090°,驶真航向275°时,恰好保持前后标成一直线,表明()。A.船舶应向左转向B.受较大西南流的影响C.船舶应向右转向D.B或C [单选]通过遥控器的以下组合操作来操作高清变焦摄像机的对焦()A、shift键↑+滚转指令←→B、shift键↑+俯仰指令↓↑C、shift键↑+航向指令←→D、shift键↑+油门指令↓↑ [单选]在柴油机实际工作循环中缸内的工质是()。A.可燃混合气B.燃气C.空气D.B+C [单选,A2型题,A1/A2型题]下列哪项叙述是错误的()A.皇甫谧著《针灸甲乙经》B.杨继洲著《针灸大成》C.徐凤著《针灸大全》D.高武著《十四经发挥》E.李时珍著《奇经八脉考》 [单选]对于手工切割编织袋的长度确定,要从()点开始测量,在规定的长度处划线标记。A.切割B.调整C.校验D.试验 [单选]月经周期中,子宫内膜增生期主要是下列哪项激素的作用?()A.绒毛膜促性腺激素B.雌激素C.孕激素D.雄激素E.促性腺激素 [问答题,简答题]文艺心理学同普通心理学是什么关系? [单选]决定分娩过程的要素是()。A.母畜年龄B.产力C.怀孕期D.胎位 [单选]我国《合同法》规定,工程施工合同应当采用()。A.口头形式B.书面形式C.其它形式D.以上都不对 [单选]“冬伤于寒,春必病温”出自:().A.《素问•评热病论》B.《素问•至真要大论》C.《素问•玉版论要篇》D.《素问•生气通天论》 [单选,A2型题,A1/A2型题]碘造影剂可发生过敏反应,除哪项外属于轻度反应()A.恶心、呕吐B.气喘、呼吸困难C.面色潮红D.头晕、头痛E.荨麻疹 [单选]在发现有可疑交易或者行为时,在其发生后()个工作日内,向中国反洗钱监测分析中心报告。A.5B.10C.30D.60 [单选,A3型题]婴儿胎龄40周,生后5小时,择期剖宫产娩出,生后不久出现呻吟,呼吸急促,口中少许泡沫伴口周发绀。查体:呼吸70次/分,双肺呼吸音粗,可闻及粗湿啰音,心率140次/分,胸骨左缘2.3肋间闻及Ⅰ~Ⅱ级收缩期杂音。血气分析结果:pH7.32,PaO26.4kPa,PaCO26.7kPa,BE-6 [单选]某企业年初资产总额为30000000元,负债总额为6000000元,所有者权益总额为24000000元,则该企业年初的产权比率为()。A.0.5B.0.25C.1.5D.2.5 [单选,A1型题]下列各项中,不是热衰竭临床表现的是()。A.患者先有头痛、头晕、恶心B.典型表现为高热、无汗、昏迷C.热衰竭可有低钠、低钾血症D.热衰竭可有晕厥、抽搐E.热衰竭重者出现循环衰竭 [判断题]在工作中如发现有漏油现象,如问题不大可在工作后再维修。A.正确B.错误 [多选]关于性病性淋巴肉芽肿描述正确的是()A.病原体为6、11、15血清型沙眼衣原体B.生殖器初疮主要表现为外生殖器小丘疹,疱疹,糜烂或溃疡C.常伴有发热、头痛、乏力等全身症状D.可并发无菌性脑膜炎、心包炎等并发症 [单选]需要特殊的护理专长,由医师下医嘱并由执业护士或有执照的看护人员担任,或由有执照的治疗师进行康复治疗,但病人不需要24小时看护的,称为()A.中级看护B.家中看护C.照顾式看护D.医护人员看护 [单选,A1型题]社会医学的研究对象是()A.社会经济状况及其变动规律B.社会卫生状况及其变动规律C.社会发展战略D.卫生政策制定E.个人卫生状况 [单选,A1型题]佝偻病肺脾气虚型的治法是()A.温脾助运B.健脾益肺,调和营卫C.补肾填精D.补肾壮骨E.平肝潜阳 [单选,A1型题]患者男,34岁。较长距离步行后,感下肢疼痛,肌肉抽搐,休息后症状消失,再走一段路后症状又出现。平时有右足发凉、怕冷及麻木感。检查:右足背动脉较左侧搏动减弱。应考虑为()A.静脉血栓形成B.血栓性静脉炎C.动静脉瘘D.雷诺综合征E.血栓闭塞性脉管炎 [单选]辅助生产成本交互分配法的交互分配,是指将辅助生产费用首先在企业内部()。A.辅助生产车间之间分配B.辅助生产车间与销售部门之间分配C.辅助生产车问与基本生产车间之间分配D.辅助生产车间与行政管理部门之间分配 [单选,A2型题,A1/A2型题]继发性肺结核包括()A.血行播散性肺结核B.浸润型肺结核C.结核性胸膜炎D.其他肺外结核E.原发性肺结核 [多选]有明显流幅的钢筋,其性能的基本指标有()A、屈服强度B、延伸率C、强屈比D、焊接性能E、冷弯性能 [单选,A2型题,A1/A2型题]中性粒细胞吞噬能力显著下降见于()A.白色念珠菌感染B.糖尿病C.烧伤D.补体缺陷症E.肝癌 [单选]超限车辆行驶公路的危害,一是严重损害路桥等道路基础设施;二是诱发了大量的道路交通安全事故;三是导致()的恶性竞争;四是影响了汽车生产工业的健康发展,造成“大吨小标”车辆泛滥。A、运输市场B、市场经济C、运输秩序 [单选]在大信号检波器中,减小非线性失真的方法是()。A、提高电容值B、减小电容值C、减小负载电阻值D、提高负载电阻值 [单选,A2型题,A1/A2型题]关于NBT试验下列说法正确的是()A.用于检测巨噬细胞的胞内杀菌能力B.细胞杀细菌过程中耗氧量逐渐减少C.细胞内磷酸己糖旁路代谢活力不变D.NBT试验可以接受氧分子E.淡黄色的NBT还原成点状的颗粒,并沉积于胞质内
相关文档
最新文档