初一数学 练习题 因式分解 二元一次方程

合集下载

初一数学 第八章 二元一次方程组练习题(含答案)

初一数学 第八章 二元一次方程组练习题(含答案)

二元一次方程组复习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246...22222222x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?找规律专题给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个()2、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _______个。

人教版七年级数学下册 第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组 同步练习题 含答案

人教版七年级数学下册 第八章  二元一次方程组  8.2.2  用加减法解二元一次方程组  同步练习题 含答案

第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。

因式分解专题复习+二元一次方程专题

因式分解专题复习+二元一次方程专题

初一第九章专题练习因式分解⑴18a 3bc -45a 2b 2c 2; ⑵-20a -15ab ;⑶18x n +1-24x n ;⑷(m +n )(x -y )-(m +n )(x +y );⑸15(a -b )2-3y (b -a );⑹c b c b a 33)(22+--.(7)10a (x-y )2 - 5b (y-x ) 2(8)()224a c b +--(9)44161b a - (10)()()2223n m n m --+ (11)()224y x z +-(12) ()()22254y x y x +--(13)9(m-n)2-25(m+n)2(14)2161211m m +-(15)-49a 2+112ab -64b 2(16)a 2-4a +4(17)4a 2+2ab +14b 2(18)16-24(a -b )+9(a -b )2(19)(x +y )2-18(x +y )+81(20)3ax 2-3ay 4(21)x 4-81(22)x 4-2x 2+1(23)-2xy -x 2-y 2(24)3ax 2+6axy +3ay 2(25)x 4-8x 2y 2+16y 4 (26)(x 2+2x )2-(2x +4)2(27)80a 2(a +b )-45b 2(a +b ) (28)(x +y )2-4(x 2-y 2)+4(x -y )2(29)(x 2+2x )2+2(x 2+2x )+1(30)x 2+9x y -36 y 2(31)(m 2+n 2)2-4m 2n 2(32)(m 2+n 2)2-25n 4 (33)2()16()a x y y x -+-(34)222()(1)x x x +-+(35)31232-+-x x2..已知2x +y=b ,x -3y=1 求14y(x -3y)2-4(3y -x)3的值.3.试说明对任意整数n ,()()22n 7n 5+--都能被24整除4.(4分)已知11,5x y xy +==,求下面各式的值: (1) 22x y xy +; (2) 22(1)(1)x y ++5.数学课上,在将一个二次三项式进行因式分解时,刘老师巡视发现甲、乙同学的解题过程都正确,但答案都错了.甲同学的错误答案是2(x -1)( x -9) ,错因是看错了一次项系数;乙同学的错误答案是2(x -2)( x -4) ,错因是看错了常数项.请将原多项式因式分解.19.(1)(本题5分)先化简,再求值:)1(3)1)(1(2)1(422x x x x -+--+--+-,其中21-=x(2)(本题5分),3)2(,7)2(22=-=+b a b a 已知求:(1)224b a +的值,②ab 的值。

初一数学七下二元一次方程所有知识点总结和常考题型练习题

初一数学七下二元一次方程所有知识点总结和常考题型练习题

初一数学七下二元一次方程所有知识点总结和常考题型练习题二元一次方程组知识点二元一次方程的解是指能够使二元一次方程的左右两边相等的两个未知数的值。

二元一次方程组是指含有两个未知数(x和y),并且含有未知数的项的次数都是1的方程组。

二元一次方程组的解是指二元一次方程组中的几个方程的公共解。

二元一次方程组的解有三种情况:无解、只有一组解和有无数组解。

例如,x+y=6和x+y=1就没有解;x+y=1和2x+y=2只有一组解;x+y=1和2x+2y=2有无数组解。

解二元一次方程组的方法有代入消元法和加减消元法。

代入消元法是指将一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

加减消元法是指两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

三元一次方程组是指方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程。

解三元一次方程组的关键也是“消元”:三元→二元→一元。

列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步:(1)审题,把实际问题抽象成数学问题,分析已知数和未知数;(2)设法找出能够表示题意两个相等关系;并用字母表示其中的两个未知数;(3)根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解这个方程组,求出两个未知数的值;(5)在对求出的方程的解做出是否合理判断的基础上,写出答案。

二元一次方程组练一、选择题1、下列各式是二元一次方程的是()。

2、若x=3,y=2是关于x、y的二元一次方程3x-ay=的一个(组)解,则a的值为()。

3、对于二元一次方程x-2y=1有无数个解,下列四组值不是该方程的解的一组是()。

4、二元一次方程x+2y=7在正整数范围内的解有()。

二、填空题1、二元一次方程组x+y=5,2x+3y=11的解为(,)。

初一数学练习题因式分解二元一次方程

初一数学练习题因式分解二元一次方程

初一数学练习题因式分解二元一次方程文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]练 习1、分解因式(1) bc ac ab a -+-2 (2) 1+--y x xy (3) y y x x 3922--- (4) yz z y x 2222---2、分解因式1) 3223y xy y x x --+ 2) b a ax bx bx ax -+-+-22 3) 181696222-+-++a a y xy x 4) a b b ab a 4912622-++- 5) 92234-+-a a a 6) y b x b y a x a 222244+-- 7) 222y yz xz xy x ++-- 8) 122222++-+-ab b b a a 9) )1)(1()2(+---m m y y 10) )2())((a b b c a c a -+-+3、分解因式 1) 24142++x x 2) 36152+-a a 3) 542-+x x 4) 22-+x x 5) 1522--y y 6) 24102--x x4、分解因式:1) 6752-+x x 2) 2732+-x x 3) 317102+-x x 4) 101162++-y y 5、应用因式分解计算 (1)2998998016++ (2)9879879879871232644565251368136813681368⨯+⨯+⨯+⨯ 6、已知2(1)()1a a a b ---=-,求222a b ab +-的值。

思考题:1、设n 为整数,用因式分解说明2(21)25n +-能被4整除。

2、在六位数abcdef 中,a=d, b=e, c=f, 求证这个六位数必能被7、11、13整除。

1、在方程组⎩⎨⎧+==-1312z y y x 、⎩⎨⎧=-=132x y x 、⎩⎨⎧=-=+530y x y x 、⎩⎨⎧=+=321y x xy 、 ⎪⎩⎪⎨⎧=+=+1111y x y x 、⎩⎨⎧==11y x 中,是二元一次方程组的有( )A 、2个B 、3个C 、4个D 、5个 2、如果x y y x b a b a 2427773-+-和是同类项,则x 、y 的值是( )A 、x =-3,y =2B 、x =2,y =-3C 、x =-2,y =3D 、x =3,y =-23、已知⎩⎨⎧-=-=23y x 是方程组⎩⎨⎧=-=+21by cx cy ax 的解,则a 、b 间的关系是( )A 、194=-a bB 、123=+b aC 、194-=-a bD 、149=+b a4、若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值为( )A 、3B 、-3C 、-4D 、4 5、若二元一次方程123=-y x 有正整数解,则x 的取值应为( )A 、正奇数B 、正偶数C 、正奇数或正偶数D 、06、⎩⎨⎧=-=+1392x y y x 12、⎪⎩⎪⎨⎧=---=+1213343144y x y x7、一张方桌由1个桌面,4条腿组成.如果1立方米木料可以做方桌的桌面5个或做桌腿30条,现在有25立方米木料,那么用多少木料做桌面,多少木料做桌腿,做出的桌面和桌腿恰好能配成方桌能配成多少张方桌8、一组同学去种树,如果每人种4棵,还剩下3棵树苗:如果每人种5棵,则少5棵,求人数与树苗数。

初一数学消元——二元一次方程组的解法试题答案及解析

初一数学消元——二元一次方程组的解法试题答案及解析

初一数学消元——二元一次方程组的解法试题答案及解析1.若方程组的解是,那么、的值是().A.B.C.D.【答案】A【解析】本题考查的是二元一次方程组的解的定义由题意得,解得,故选A。

2.若方程是关于、的二元一次方程,则、的值是(). A.B.C.D.【答案】C【解析】本题考查的是二元一次方程的定义根据二元一次方程的定义即可得到结果。

由题意得,,解得,故选C。

3.在等式中,当时,,当时,,则这个等式是(). A.B.C.D.【答案】B【解析】本题考查的是二元一次方程的解的定义根据题意即可得到关于的方程组,解出即得结果。

由题意得,解得,则这个等式是,故选B。

4.方程组的解是()A.B.C.D.【答案】C【解析】本题考查的是方程组的解两方程相加即得的值,两方程相减即得的值,从而得到方程组的解。

两方程相加得,,两方程相减得,,故选C。

5.解方程组:(用代入法)【答案】【解析】本题考查的是二元一次方程组的解法先把原方程组整理为不含括号的形式,把①变形成含的代数式表示,再把其代入②便可消去y,解出x的值,再把x的值代入变形后的式子,即可得到y的值.方程组整理得,由①得:③,把③代入②得:,解得把代入③得:,∴方程组的解为:6.解方程组:【答案】【解析】本题考查的是二元一次方程组的解法由即可消去求得的值,再代入即可求得的值,即可方程组的解。

得,解得,把代入得,解得,方程组的解为。

7.既是方程的解,又是方程的解是()A.B.C.D.【答案】B【解析】本题主要考查了二元一次方程组的解. 根据题意即可得到方程组:,解方程组即可求解解:根据题意得:①×4+②得:x=2,把x=2代入①得:y=1.则方程组的解是:.故选B.8.若和是方程的两组解,则_____,_____.【答案】,【解析】本题主要考查了二元一次方程的解. 将两组解分别代入方程,得m,n的方程组,解方程组求m,n的值.解:把和分别代入方程mx+ny=3,得解得.9.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:求该商场购进A、B两种商品各多少件;【答案】200件和120件【解析】本题主要考查了由实际问题抽象出二元一次方程组.等量关系,即“两种商品总成本为36万元”和“共获利6万元”,根据这两个等量关系,可列出方程组,再求解.设购进A种商品件,B种商品件.根据题意,得化简,得解之,得答:该商场购进A、B两种商品分别为200件和12010.用加减法解下列方程组较简便的消元方法是:将两个方程_____,消去未知数____.毛【答案】相加,【解析】本题考查的是加减法解方程组根据两个方程中的字母的系数互为相反数,即可相加得到结果。

初一数学二元一次方程组33道典型必做题(含答案和解析及相关考点)

初一数学二元一次方程组33道典型必做题(含答案和解析及相关考点)

初一数学二元一次方程组33道典型必做题(含答案和解析及相关考点)1、方程mx-3y=3x+ny-1是关于x,y的二元一次方程,则m,n的取值范围是 .答案:m≠3,n≠-3.解析:mx-3y=3x+ny-1可整理为(m-3)x-(3+n)y=-1.∵mx-3y=3x+ny-1是关于x,y的二元一次方程.∴m-3≠0且n+3≠0.解得:m≠3,n≠-3.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.2、若x4-3︱m︱+y3︱n︱=2009是关于x,y 的二元一次方程,且mn<0,0<m+n≤3,则m-n的值是( ).B.2C.4D.-2A.43答案:A.解析:根据二元一次方程的定义,x和y的次数必须都为1.所以4-3︱m︱=1,且3︱n︱=1.解得m=±1,n=±1.3又∵mn<0,0<m+n≤3.∴m=1,n=-1.3.∴m-n=43考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.3、若x=a,y=b是方程2x+y=0的一个解,且a≠0,则ab的符号是( ).A. 正号B. 负号C. 可能是正号也可能是负号D. 既不是正号也不是负号答案: B.解析:∵x=a,y=b是方程2x+y=0的一个解.∴2a+b=0.即b=-2a. 又a ≠0. ∴a,b 异号. ∴ab 为负数.考点:方程与不等式——二元一次方程组——二元一次方程(组)的解.4、求方程5x-3y=-7的正整数解. 答案:{x =1−3ty =4−5t (t 为非整数) .解析:x=3y−75经观察:x 0=1,y 0=4为方程的一组解.原方程的通解为{x =1−3ty =4−5t(t 为非整数).考点:方程与不等式——二元一次方程组——二元一次方程(组)的解.5、如果方程x-y=3与下面方程中的一个组成的方程组的解为{x =4y =1,那么这个方程可以是( )A.3x-4y=16B. 14x +2y =5 C.12x +3y =8 D.2(x-y)=6y 答案:D.解析:x-y=3可得x=3+y.代入各选项计算只有D 选项的解为:{x =4y =1.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.6、若x+3y=3x+2y=7,则x= ,y= . 答案:x=1,y=2.解析:根据题意得:{x +3y =7 ①3x +2y =7 ②.①×3-②得7y=14. 解得:y=2. 将y=2代入①得x=1.考点:方程与不等式——二元一次方程组——解二元一次方程组.7、对于有理数,规定新运算:x*y=ax+by+xy,其中a,b 是常数,等式右边是通常的加法和乘法运算,已知2*1=7,(-3)*3=3,求13*6的值.答案:2539.解析:由题意得{2a +b +2=7−3a +3b −9=3.解得{a =13b =133.∴x*y=13x+133y+xy. ∴13*6 = 13×13+133×6+13×6=2539.考点:式——探究规律——定义新运算.方程与不等式——二元一次方程组——解二元一次方程组.8、已知方程组{ax +by =−16cx +20=−4 的解应为{x =8 y =−10 ,小明解题时把c 抄错了,因此得到的解是{x =12 y =−13,则a 2+b 2+c 2的值为 . 答案:34.解析:把相应的解恰当地代入原方程组,先求出a 、d 、c 的值.a=3,b=4,c=-3,a 2+b 2+c 2=34.考点:方程与不等式——二元一次方程组——解二元一次方程组.9、已知等式(2A-7B)x+(3A-8B)=13x+17对一切实数x 都成立,求A 、B 的值. 答案:{A =3B =−1.解析:因为两个多项式相等且对一切实数x 都成立,所以等式两边的对应项系数相等.即{2A −7B =13 3A −8B =17.解方程组得{A =3B =−1.考点:方程与不等式——二元一次方程组——解二元一次方程组.10、根据要求,解答下列问题:(1) 解下列方程组(直接写出方程组的解即可)① {x +2y =3 2x +y =3的解为 .② {3x +2y =10 2x +3y =10 的解为 .③ {2x −y =4 −x +2y =4的解为 .(2) 以上每个方程组的解中,x 值与y 值的大小关系为 . (3) 请你构造一个具有以上外形特征的方程组,并直接写出它的解. 答案:(1)① {x =1 y =1 ② {x =2 y =2 ③ {x =4y =4.(2) x=y.(3){3x +2y =25 2x +3y =25,解得{x =5y =5.解析:(1)略.(2)以上每个方程组的解中,x 值与y 值的大小关系为x=y. (3){3x +2y =25 2x +3y =25,解得{x =5y =5.考点:方程与不等式——二元一次方程组——解二元一次方程组.11、解下列关于x,y 的方程组:{361x +463y =−102 ①463x +361y =102 ②.答案:{x =1y =−1.解析:①+②得824x+824y=0.∴x+y=0.将x=-y 代入①得-361y+463y=-102. 解得:y=-1. ∴x=1.方程组的解为{x =1y =−1.考点:方程与不等式——二元一次方程组——解二元一次方程组.12、若方程组{2a −3b =13 3a +5b =30.9的解是{a =8.3b =1.2,则方程{2(x +2)−3(y −1)=13 3(x +2)+5(y −1)=30.9的解为 . 答案:{x =6.3y =2.2.解析:将x+2和y-1分别看作a 和b,比较两个方程组可得{x +2=8.3y −1=1.2.解得{x =6.3 y =2.2.考点:方程与不等式——二元一次方程组——解二元一次方程组——加减消元法.13、解方程组:{2(x−y)3−(x+y)4=−1123(x +y )−2(2x −y)=3.答案:{x =2y =1.解析:方程组可化为:{5x −11y =−1 ①–x +5y =3 ②.由②得 x=5y-3 ③.③代入①得 5(5y-3)-11y=-1. 解得 y=1.把y=1代入③得 x=5-3=2. ∴方程组的解为{x =2y =1.考点:方程与不等式——二元一次方程组——解二元一次方程组.14、解下列关于x,y 的方程组:{x+3a2+y−2b 3=a2 ①x+3a2−y−2b 3=a2 ②.答案:{x =−2ay =2b.解析:①+②得:x+3a=a,∴x=-2a. ①-②得:y-2b=0,∴y=2b.∴{x =−2a y =2b.考点:方程与不等式——二元一次方程组——解二元一次方程组.15、若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k 的取值为( ).A.3B.-3C.-4D.4 答案:D.解析:解 {3x −y =7 2x +3y =1得 {x =2y =−1.代入y=kx-9得-1=2k-9. 解得:k=4.考点:方程与不等式——二元一次方程组——解二元一次方程组.16、若关于x,y 的方程组{3x +2y =8 ax +by =10 与 {4x +2y =10bx +ay =14的解相同,则a+b= .答案:8.解析:由题意,得{3x +2y =8 4x +2y =10,解得{x =2y =1.∴{2a +b =102b +a =14,两式相加,得a+b=8. 考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.17、已知关于x 、y 的二元一次方程组{3x −4y =mx +2y =2m +3的解x 、y 是一对相反数,试求m 的值.答案:m 的值为−75 .解析:由题意可知x=−y,代入方程式可得 {−3y −4y =m−y +2y =2m +3.整理可得 {m =−7yy =2m +3.把y=2m+3代入m=-7y 可得m=-14m-21. 解得m=−75.考点:数——有理数——相反数.方程与不等式——二元一次方程组——含字母参数的二元一次方程组.18、m 为正整数,已知二元一次方程组 {mx +2y =10 3x −2y =0有整数解,则m 2= .答案:4.解析:{x =10m+3y =15m+3.若x 为正整数,m=2,7. 若y 为正整数,m=2,12. 则方程组为整数解得m=2.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.19、已知m 是整数,方程组{4x −3y =66x +my =26有整数解,求m 的值.答案:m=-4,-5,4,-13 . 解析:整理得 {x =3m+392m+9y =342m+9 .满足x 为整数,则m=-4,-5 ,4 ,-13. 同时满足y 为整数,则m=-4,-5 ,4 ,-13.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.20、已知关于x,y 的方程组{ax −y =ax −y =1. (1) 当a ≠1时,解这个方程组. (2) 若a=1,方程组的解得情况怎样?(3) 若a=1,方程组{ax −y =ax −y =2的解得情况怎样? 答案:(1){x =1y =0.(2)方程组有无数多个解. (3)原方程组无解.解析:(1)两式相减,整理得(a-1)x=a-1.∵a ≠1,∴x=1,y=0. ∴方程组的解为{x =1y =0.(2)当a=1时,方程(a-1)x=a-1的解为一切实数,方程组有无数多个解. (3)方程组整理得(a-1)x=a-2,当a=1时,0=-1.∴原方程组无解.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.21、如果关于x,y 的方程组{ax +3y =92x −y =1无解,则a= .A.6B.-6C.5D.-5 答案:B.解析:用换元法变为含参一元一次方程,或通过特殊值法.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.22、如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个椭圆形果冻的质量也相等,则每一块巧克力的质量是 g .答案:20.解析:设每块巧克力的重量为 克,每块果冻的重量为y 克.由题意得{3x =2y x +y =50,解得{x =20y =50.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.23、如图所示, 块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x 厘米和y厘米,则依据题意列方程组正确的是( ).A. {x +2y =75 y =3xB. {x +2y =75 x =3yC. {2x −y =75 y =3xD. {2x +y =75x =3y答案:B.解析:有题意可列方程组为 {x +2y =75x =3y..考点:方程与不等式——二元一次方程组——二元一次方程组的应用.24、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就. 《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 . 答案:{5x +2y =10 2x +5y =8.解析:依题可知:{5x +2y =102x +5y =8.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.25、现有190张铁皮,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,那么用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 答案:110张制盒身, 80张制盒底,可以正好制成一批完整的盒子. 解析:设x 张铁皮制盒身,y 张铁皮制盒底.根据题意得{x +y =1902×8x =22y .解得{x =110 y =80.答: 110张制盒身, 80张制盒底,可以正好制成一批完整的盒子. 考点:方程与不等式——二元一次方程组——二元一次方程组的应用.26、某纸品加工厂利用边角料裁出正方形和长方形两种硬纸片,长方形的宽与正方形的边长相等(如图 2),再将它们制作成甲乙两种无盖的长方体小盒(如图1 ).现将300张长方形硬纸片和150张正方形硬纸片全部用于制作这两种小盒,可以做成甲乙两种小盒各多少个?(注:图1中向上的一面无盖)答案:可以做成甲种小盒30个、乙种小盒60个. 解析:设可以做成甲、乙两种小盒各x 、y 个.根据题意可列方程组:{4x +3y =300 x +2y =150,解得{x =30y =60.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.27、“五一”节日期间,某超市进行积分兑换活动,具体兑换方法见下表.爸爸拿出自己的积分卡,对小华说:“这里积有8200分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?答案:小华兑换了2个保温杯和8支牙膏.解析:因为积分卡中只有8200分,要兑换10件礼品,所以不能选择兑换电茶壶.设小华兑换了x 个保温杯和y 支牙膏. 依题意,得{x +y =102000x +500y =8200−200.解得{x =2 y =8.答:小华兑换了2个保温杯和8支牙膏.考点:方程与不等式——二元一次方程组——二元一次方程组的应用.28、在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为s=ma+nb-1,其中m,n 为常数.(1)在下面的方格纸中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形.(2) 利用(1)中的格点多边形确定m,n 的值.答案: (1)画图见解析.(2) {m =1n =12.解析: (1)图如下:(2)三角形:a=4,b=6,S=6.平行四边形(非菱形):a=3,b=8,S=6.菱形:a=5,b=4,S=6.任选两组代入S=ma+nb-1.如:{6=4m +6n −1 6=3m +8n −1 ,解得{m =1n =12. 考点:式——探究规律——定义新运算.方程与不等式——二元一次方程组——解二元一次方程组.三角形——三角形基础——三角形面积及等积变换.四边形——四边形基础——四边形面积.29、已知方程2(n -3)x 2︱m ︱-︱n ︱+3(m-2)y 3︱n ︱-4︱m ︱=2是关于x,y 的二元一次方程,求m,n 的值.A.m=-2,n=-3B. m=2,n=-3C. m=-2,n=3D. m=2,n=3答案:A.解析:略.考点:方程与不等式——二元一次方程组——二元一次方程(组)的定义.30、解方程组{ax +by =2 cx −7y =8时,一学生把c 看错而得{x =−2 y =2 ,而正确的解是{x =3 y =−2 ,那么a,b,c 的值是( ).A. a=4,b=7,c=2B. a=4,b=5,c=-2C.a,b 不能确定,c=-2D.不能确定答案:B.解析:把{x =−2 y =2和{x =3 y =−2分别代入ax +by =2得{3a −2b =2 ① –2a +2b =2 ②. ①+②得a=4,代入①得b=5.把{x =3 y =−2代入cx −7y =8得3c+14=8. ∴c=-2.考点:方程与不等式——二元一次方程组——解二元一次方程组.31、小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组{3x +△y =11△x +2y =−2中第一个方程y 的系数和第二个方程x 的系数看不到了,现在已知小丽的运算结果是{x =1 y =2,你能由此求出原来的方程组吗?答案:{3x +4y =11−6x +2y =−2. 解析:设第一个方程中y 的系数为a,第二个方程中x 的系数为b.则原方程组可写为{3x +ay =11bx +2y =−2. 将{x =1 y =2代入二元一次方程组{3x +ay =11bx +2y =−2,解得{a =4 b =−6. ∴原方程组为{3x +4y =11−6x +2y =−2. 考点:方程与不等式——二元一次方程组——二元一次方程(组)解.32、《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x,y 的系数与相应的常数项.把图所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23. 类似地,图2所示的算筹图我们可以表述为( ).A. {2x +y =114x +3y =27B. {2x +y =114x +3y =22C. {3x +2y =19x +4y =23D. {2x +y =64x +3y =27答案:A.解析:图2所示的算筹图我们可以表述为{2x +y =114x +3y =27. 考点:方程与不等式——二元一次方程组——二元一次方程(组)的应用.33、尼泊尔当地时间4月25日14时11分,发生8.1级地震,我国迅速做出反应,国航、东航、南航和川航等航空公司克服困难,安全接回近6000名在尼滞留的我国公民.我国红十字会以最快的速度准备了第一批救援物资,其中甲、乙两种帐篷共2000顶,甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,总共可以安置11000人.求甲、乙两种帐篷各准备多少顶?答案:准备甲种帐篷1500顶,乙种帐篷500顶.解析:设准备甲种帐篷x 顶,乙种帐篷y 顶.依题意,得{x +y =20006x +4y =11000. 解得{x =1500 y =500. 答:准备甲种帐篷1500顶,乙种帐篷500顶.考点:方程与不等式——二元一次方程组——二元一次方程(组)的应用.。

初中数学-《因式分解》测试题(有答案)

初中数学-《因式分解》测试题(有答案)

初中数学-《因式分解》测试题一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)32.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+23.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)24.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.7.﹣xy2(x+y)3+x(x+y)2的公因式是;(2)4x(m﹣n)+8y(n﹣m)2的公因式是.8.分解因式:(x+3)2﹣(x+3)=.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.《第4章因式分解》参考答案与试题解析一、选择题1.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)3【考点】完全平方公式;去括号与添括号.【分析】A、B都是利用添括号法则进行变形,C、利用完全平方公式计算即可;D、利用立方差公式计算即可.【解答】解:A、∵﹣x﹣y=﹣(x+y),故此选项错误;B、∵﹣a+b=﹣(a﹣b),故此选项错误;C、∵(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故此选项正确;D、∵(a﹣b)3=a3﹣3a2b+3ab2﹣b3,(b﹣a)3=b3﹣3ab2+3a2b﹣a3,∴(a﹣b)3≠(b﹣a)3,故此选项错误.故选C.【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.括号前是“﹣”号,括到括号里各项都变号,括号前是“+”号,括到括号里各项不变号.2.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】先提取公因式(m﹣1)后,得出余下的部分.【解答】解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.【点评】先提取公因式,进行因式分解,要注意m﹣1提取公因式后还剩1.3.把10a2(x+y)2﹣5a(x+y)3因式分解时,应提取的公因式是()A.5a B.(x+y)2C.5(x+y)2D.5a(x+y)2【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:10a2(x+y)2﹣5a(x+y)3因式分解时,公因式是5a(x+y)2故选D【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.4.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A.(b﹣2)(a+a2)B.(b﹣2)(a﹣a2)C.a(b﹣2)(a+1)D.a(b﹣2)(a﹣1)【考点】因式分解﹣提公因式法.【分析】找出公因式直接提取a(b﹣2)进而得出即可.【解答】解:a(b﹣2)﹣a2(2﹣b)=a(b﹣2)(1+a).故选:C.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.5.下列因式分解正确的是()A.mn(m﹣n)﹣m(n﹣m)=﹣m(n﹣m)(n+1)B.6(p+q)2﹣2(p+q)=2(p+q)(3p+q ﹣1)C.3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x+2)D.3x(x+y)﹣(x+y)2=(x+y)(2x+y)【考点】因式分解﹣提公因式法.【分析】把每一个整式都因式分解,比较结果得出答案即可.【解答】解:A、mn(m﹣n)﹣m(n﹣m)=m(m﹣n)(n+1)=﹣m(n﹣m)(n+1),故原选项正确;B、6(p+q)2﹣2(p+q)=2(p+q)(3p+3q﹣1),故原选项错误;C、3(y﹣x)2+2(x﹣y)=(y﹣x)(3y﹣3x﹣2),故原选项错误;D、3x(x+y)﹣(x+y)2=(x+y)(2x﹣y),故原选项错误.故选:A.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.二、填空题6.把多项式(x﹣2)2﹣4x+8因式分解开始出现错误的一步是C解:原式=(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2+4)…C=(x﹣2)(x+2)…D.【考点】因式分解﹣提公因式法.【分析】利用提取公因式法一步步因式分解,逐一对比进行判定,得出答案即可.【解答】解:原式═(x﹣2)2﹣(4x﹣8)…A=(x﹣2)2﹣4(x﹣2)…B=(x﹣2)(x﹣2﹣4)…C=(x﹣2)(x﹣6)…D.通过对比可以发现因式分解开始出现错误的一步是C.故答案为:C.【点评】此题考查提取公因式法因式分解,注意提取负号时括号内式子的变化.7.﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定公因式.【解答】解:(1)﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).故答案为:4(m﹣n)x(x+y)2.【点评】本题主要考查公因式的确定,熟练掌握公因式的定义及确定方法是解题的关键.8.分解因式:(x+3)2﹣(x+3)=(x+2)(x+3).【考点】因式分解﹣提公因式法.【分析】本题考查提公因式法分解因式.将原式的公因式(x﹣3)提出即可得出答案.【解答】解:(x+3)2﹣(x+3),=(x+3)(x+3﹣1),=(x+2)(x+3).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式.9.因式分解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=2n(m﹣n)(p﹣q).【考点】因式分解﹣提公因式法.【分析】首先得出公因式为n(m﹣n)(p﹣q),进而提取公因式得出即可.【解答】解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)=n(m﹣n)(p﹣q)+n(m﹣n)(p﹣q)=2n(m﹣n)(p﹣q).故答案为:2n(m﹣n)(p﹣q).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=﹣31.【考点】因式分解﹣提公因式法.【专题】压轴题.【分析】首先提取公因式3x﹣7,再合并同类项即可得到a、b的值,进而可算出a+3b的值.【解答】解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13),=(3x﹣7)(2x﹣21﹣x+13),=(3x﹣7)(x﹣8)=(3x+a)(x+b),则a=﹣7,b=﹣8,故a+3b=﹣7﹣24=﹣31,故答案为:﹣31.【点评】此题主要考查了提公因式法分解因式,关键是找准公因式.三、解答题11.将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【考点】因式分解﹣提公因式法.【分析】均直接提取公因式即可因式分解.【解答】解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).【点评】考查了因式分解的知识,解题的关键是仔细观察题目,并确定公因式.12.若x,y满足,求7y(x﹣3y)2﹣2(3y﹣x)3的值.【考点】因式分解的应用;解二元一次方程组.【分析】应把所给式子进行因式分解,整理为与所给等式相关的式子,代入求值即可.【解答】解:7y(x﹣3y)2﹣2(3y﹣x)3,=7y(x﹣3y)2+2(x﹣3y)3,=(x﹣3y)2[7y+2(x﹣3y)],=(x﹣3y)2(2x+y),当时,原式=12×6=6.【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.先阅读下面的材料,再因式分解:要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.请用上面材料中提供的方法因式分解:(1)ab﹣ac+bc﹣b2:(2)m2﹣mn+mx﹣nx;(3)xy2﹣2xy+2y﹣4.【考点】因式分解﹣分组分解法.【专题】阅读型.【分析】(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(2)首先将前两项与后两项分组,进而提取公因式,分解因式即可;(3)首先将前两项与后两项分组,进而提取公因式,分解因式即可.【解答】解:(1)ab﹣ac+bc﹣b2=a(b﹣c)+b(c﹣b)=(a﹣b)(b﹣c);(2)m2﹣mn+mx﹣nx=m(m﹣n)+x(m﹣n)=(m﹣n)(m﹣x);(3)xy2﹣2xy+2y﹣4=xy(y﹣2)+2(y﹣2)=(y﹣2)(xy+2).【点评】此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.14.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.【考点】因式分解﹣提公因式法;解一元一次不等式.【分析】首先把x2﹣2x+3因式分解为(x﹣1)(x﹣2),进一步利用提取公因式法以及非负数的性质,探讨得出答案即可.【解答】解:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)=(x﹣1)3﹣(x﹣1)2(x﹣2)=(x﹣1)2(x+1);因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,只要x+1≥0即可,即x≥﹣1.【点评】此题考查提取公因式法因式分解,结合非负数的性质来探讨不等式的解法.15.阅读题:因式分解:1+x+x(x+1)+x(x+1)2解:原式=(1+x)+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)[(1+x)+x(1+x)]=(1+x)2(1+x)=(1+x)3.(1)本题提取公因式几次?(2)若将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?结果是什么?【考点】因式分解﹣提公因式法.【专题】阅读型.【分析】(1)根据题目提供的解答过程,数出提取的公因式的次数即可;(2)根据总结的规律写出来即可.【解答】解:(1)共提取了两次公因式;(2)将题目改为1+x+x(x+1)+…+x(x+1)n,需提公因式n次,结果是(x+1)n+1.【点评】本题考查了因式分解的应用,解题的关键是从题目提供的材料确定提取的公因式的次数.16.已知x,y都是自然数,且有x(x﹣y)﹣y(y﹣x)=12,求x、y的值.【考点】因式分解﹣提公因式法.【分析】首先把等号右边的整式因式分解,得出关于x、y的整式的乘法算式,对应12的分解,得出答案即可.【解答】解:x(x﹣y)﹣y(y﹣x)=(x﹣y)(x+y);因为x,y都是自然数,又12=1×12=2×6=3×4;经验证(4﹣2)×(4+2)=2×6符合条件;所以x=4,y=2.【点评】此题考查提取公因式因式分解,进一步利用题目中的条件限制分析探讨得出答案.。

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案) (33)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案) (33)

人教版七年级数学下册第八章第二节解二元一次方程组测试习题(含答案)用“加减法”将方程组5x 3y 55x 4y 1-=-⎧+=-⎨⎩中的未知数x 消去后得到的方程是( ) A .y=4B .7y=4C .-7y=4D .-7y=14【答案】B【解析】 分析:根据题意,用第二个方程减去第一个方程即可消去未知数x.详解:5x 3y 55x 4y 1-=-⎧+=-⎨⎩①② ②-①得7y=4.故选:B.点睛:此题主要考查了加减消元法解二元一次方程组,关键是观察特点,选择合适的方式消去未知数x ,比较简单.二、解答题22.解方程组:(1)150243300x y x y =-⎧⎨+=⎩ (2)3005%53%25%300x y x y +=⎧⎨+=⨯⎩【答案】⑴ 3060x y =⎧⎨=⎩;(2)175125x y =⎧⎨=⎩【解析】分析:(1)直接利用代入消元法求解即可;(2)先将②化简,去掉百分号再利用加减消元法解答.详解:(1)150243300x y x y =-⎧⎨+=⎩①②, ①代入②得,4(150-2y )+3y=300,解得y=60,把y=60代入①得,x=150-2×60=30,所以,方程组的解是3060x y =⎧⎨=⎩; (2)3005%53%25%300x y x y +=⎧⎨+=⨯⎩①② ①×5-②得,-48y=-6000,解得:y=125,把y=125代入①得:x+125=300,x=175,于是方程组的解为:175125x y =⎧⎨=⎩. 点睛:本题要求同学们要熟悉二元一次方程组的解法:加减消元法和代入消元法,解题时要根据方程组的特点进行有针对性的计算.23.(1)计算:()()1200802009123 1.523π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)解方程组:743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 【答案】(1)52-;(2)6024x y =⎧⎨=-⎩; 【解析】分析:(1)根据零指数幂、负整数指数幂、有理数的乘方等知识点进行解答;(2)原方程组去分母后,用加法消元法求解即可.详解:(1)原式=1﹣2﹣2008233()322⨯⨯=52-; (2)方程整理得:34842348x y x y +=⎧⎨+=⎩①②, ①×2-②×3得:y =-24,把y =-24代入②得:x =60,∴原方程组的解为)6024x y =⎧⎨=-⎩点睛:需要注意的知识点是:a ﹣p =1pa ;解二元一次方程组的关键是熟练运用方程组的解法,本题属于基础题型.24.按要求解二元一次方程组:(1)用代入法解:528x y x y +=⎧⎨+=⎩①② (2)用加减法解:3272322x y x y -=⎧⎨+=⎩①② 【答案】(1) 32x y =⎧⎨=⎩;(2) 54x y =⎧⎨=⎩【解析】 分析:(1)根据代入消元法的方法,先由x+y=5用x 表示y ,然后直接代入2x+y=8进行解题即可;(2)把方程3x-2y=7乘以3,方程2x+3y=22乘以2,然后利用加减消元法消去y 即可求解.详解:(1)由①得,5y x =-⑴把③代入②得,258x x +-=解得,3x =.把3x =代入③得,2y =.∴这个二元一次方程组的解为32x y =⎧⎨=⎩. (2)⑴×3得,9621x y -=⑴⑴×2得,4644x y +=⑴由③+④得,1365x =.解得,5x =把5x =代入①得,3527y ⨯-=解得,4y =∴这个二元一次方程组的解为54x y =⎧⎨=⎩点睛:此题主要考查了二元一次方程的解法,关键是根据方程的特点,按照要求,选择加减消元法和代入消元法求解,比较简单.25.已知方程组4234ax by x y -=⎧⎨+=⎩与2432ax by x y +=⎧⎨-=⎩的解相同,试求a+b 的值. 【答案】32. 【解析】分析:根据题意先解方程组234432x y x y +=⎧⎨-=⎩, 再求a b ,的值即可. 详解:依题意可有234432x y x y +=⎧⎨-=⎩, 解得123x y =⎧⎪⎨=⎪⎩,所以,有243223a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得332a b =⎧⎪⎨=-⎪⎩, 因此333.22a b +=-= 点睛:考查解二元一次方程组,常用的方法有加减消元法和代入消元法.26.已知二元一次方程28px y +=,564x y -=,2580x y +-=有公共解,求p 的值. 【答案】5817【解析】【分析】先解方程组5642580x y x y -=⎧⎨+-=⎩,再把求得的解代入28px y +=,可求p.【详解】解:解方程组5642580x y x y -=⎧⎨+-=⎩得68373237x y ⎧=⎪⎪⎨⎪=⎪⎩, 代入28px y +=,得6832283737p +⨯=,解得5817p =. 【点睛】本题考核知识点:解二元一次方程组.解题关键点:熟练解方程组.27.解方程组:(1)6x y x y =⎧⎨+=⎩ ; (2)3213 325x y x y +=⎧⎨-=⎩.【答案】(1)33x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩【解析】【分析】(1)用代入法解方程组;(2)用加减法解方程组.【详解】解:(1)6x y x y =⎧⎨+=⎩①②, 把①代入②得:26y =,即3y =,把3y =代入①得:3x =,则方程组的解为33x y =⎧⎨=⎩; ()32132325x y x y +=⎧⎨-=⎩①②, ①+②得:618x =,即3x =,①-②得:48y =,即2y =,则方程组的解为32x y =⎧⎨=⎩. 【点睛】本题考核知识点:解二元一次方程组.解题关键点:掌握二元一次方程组的解法.28.解方程组:(1)623x y x y -=⎧⎨-=⎩(2)22(1)2(2)(1)5x y x y -=-⎧⎨-+-=⎩ 【答案】(1)39x y =-⎧⎨=-⎩;(2)42x y =⎧⎨=⎩【解析】【分析】(1)用加减法可求解;(2)先化简再运用加减法求解.【详解】解:(1) (1)623x y x y -=⎧⎨-=⎩①② ①-②,得-x=3,所以,x=-3把x=-3代入①得-3-y=6,解得y=-9所以方程组的解是39x y =-⎧⎨=-⎩. (2)方程组可化为20210x y x y -=⎧⎨+=⎩①② ①+②×2,得5x=20解得x=4.把x=4代入②,得2×4+y=10解得y=2.所以,方程组的解是42x y =⎧⎨=⎩. 【点睛】本题考核知识点:解方程组. 解题关键点:熟记方程组的一般解法.29.解方程组:521x y x y +=⎧⎨-=⎩①② 【答案】23x y =⎧⎨=⎩【解析】分析:本题用加减消元法或代入消元法均可.详解:解方程组:521x y x y +=⎧⎨-=⎩①② 解:①+②得:3x=6x=2把x=2代入①得:y=3.∴23x y =⎧⎨=⎩点睛:这类题目的解题关键是掌握方程组解法中的加减消元法和代入消元法.30.解方程组:22120y x x xy y -=⎧⎨--=⎩【答案】21x y =-⎧⎨=-⎩ ,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩【解析】【分析】分析:根据题意,把方程②因式分解为ab=0的形式,然后构造二元一次方程组,再根据加减消元法或代入消元法求解方程即可.【详解】详解:22120y x x xy y -=⎧⎨--=⎩①② 由⑴得:(x ﹣2y )(x+y )=0x ﹣2y=0或x+y=0原方程组可化为120y x x y -=⎧⎨-=⎩,10y x x y -=⎧⎨+=⎩解得原方程组的解为21x y =-⎧⎨=-⎩,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩⑴原方程组的解是为21x y =-⎧⎨=-⎩, 点睛:此题主要考查了二元一次方程组的特殊解法,利用加减消元法或代入消元法解方程组,应用因式分解法对方程变形是解题关键,有一定的难度,是中考扩展型的题目.。

二元一次方程练习题

二元一次方程练习题

二元一次方程练习题1.要使分式的植为0,则应该等于2.若正数a是一元二次方程x2?5x+m=0的一个根,?a是一元二次方程x2+5x?m=0的一个根,则a的值是.3.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是.4已知关于x的一元二次方程x2+ax+b=0有一个非零根?b,则a?b的值为()a.1b.?1c.0d.?25已知a,b是方程x2?x?3=0的两个根,则代数式2a3+b2+3a2?11a?b+5的值为.6.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m?4,则=.7.菱形abcd的一条对角线长为6,边ab的长是方程的一个根,则菱形abcd的周长为_______.8.第二象限内一点a(x—1,x2—2),关于x轴的对称点为b,且ab=6,则x=_________.9.已知关于x的方程x2+(1?m)x+=0有两个不相等的实数根,则m的最大整数值是.10.关于x的一元二次方程(a?1)x2?2x+3=0有实数根,则整数a的最大值是()a.2b.1c.0d.?111.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是.12.已知关于x的方程(k?1)x2?(k?1)x+=0有两个相等的实数根,则k=13.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是a.b=?1b.b=2c.b=?2d.b=014.(2013乐山)已知一元二次方程x2-(2k+1)x+k2+k=0.(1)求*:方程有两个不相等的实数根;(2)若△abc的两边ab,ac的长是这个方程的两个实数根,第三边bc的长为5.当△abc是等腰三角形时,求k的值.第2篇:一元二次方程练习题一元二次方程有4种解法,即直接开平方法、*法、公式法、因式分解法。

以下是小编整理的关于一元二次方程练习题,希望大家认真阅读!题型1:认识一元二次方程,并能找出各项的系数解法:根据一元二次方程的概念,这个不难找,注意ax+bx+c=0,不是一元二次方程,因为没有确定a的范围,a=0时,它就不是。

初一数学解方程练习题

初一数学解方程练习题

初一数学解方程练习题一、一元一次方程1. 解方程:3x 7 = 112. 解方程:5 2x = 3x + 13. 解方程:4(x 2) = 84. 解方程:$\frac{1}{2}$x + 3 = $\frac{5}{2}$5. 解方程:7 3(x 1) = 2二、一元二次方程1. 解方程:x^2 5x + 6 = 02. 解方程:2x^2 4x 6 = 03. 解方程:x^2 3x = 04. 解方程:4x^2 12x + 9 = 05. 解方程:x^2 4 = 0三、二元一次方程组1. 解方程组:$\begin{cases} 2x + 3y = 8 \\ x y = 1 \end{cases}$2. 解方程组:$\begin{cases} 3x 2y = 7 \\ 5x + y = 17 \end{cases}$3. 解方程组:$\begin{cases} 4x + y = 12 \\ 2x 3y = 6 \end{cases}$ 4. 解方程组:$\begin{cases} x + 2y = 5 \\ 3x y = 7 \end{cases}$5. 解方程组:$\begin{cases} 5x 3y = 11 \\ 2x + y = 9 \end{cases}$四、分式方程1. 解方程:$\frac{2}{x1} + \frac{3}{x+2} = 1$2. 解方程:$\frac{1}{x+3} \frac{2}{x2} = \frac{3}{2}$3. 解方程:$\frac{3}{x4} + \frac{2}{x+1} = \frac{5}{2}$4. 解方程:$\frac{4}{x+5} \frac{1}{x3} = \frac{1}{2}$5. 解方程:$\frac{5}{x2} + \frac{3}{x+4} = \frac{2}{3}$五、方程应用题1. 某数的3倍减去5等于这个数的2倍加1,求这个数。

二元一次方程组与因式分解习题

二元一次方程组与因式分解习题

练习题一、选择题1.用加减法解方程组时,下列四种变形中正确的是A. B.C. D.1.方程组的解为A. B. C. D.2.用加减法解方程组时,若要求消去y,则应A. B.C. D.3.已知方程组,x与y的值之和等于2,则k的值为A. 4B.C. 3D.4.已知a,b满足方程组,则的值为A. B. 4 C. D. 25.若方程组中x与y互为相反数,则m的值是A. 1B.C.D. 366.关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值是A. B. C. D.7. m 为正整数,已知二元一次方程组有整数解,则的值为A. 4B. 49C. 4或49D. 1或498. 在解方程组时,由于粗心,甲看错了方程组中的a ,得到的解为,乙看错了方程组中的b ,得到的解为则原方程组的解 A.B.C.D.10.下列多项式的分解因式,正确的是( ).A .)34(391222xyz xyz y x xyz -=- B.)2(363322+-=+-a a y y ay y a C.)(22z y x x xz xy x -+-=-+- D.)5(522a a b b ab b a +=-+ 11.满足0106222=+-++n m n m 的是( ).A.3,1==n mB.3,1-==n mC.3,1=-=n mD.3,1-=-=n m 12.把多项式)2()2(2a m a m -+-分解因式等于( ). A . ))(2(2m m a +- B . ))(2(2m m a -- C. m(a-2)(m-1)D. m(a-2)(m+1)13.已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( ).A.1,3-==c bB.2,6=-=c bC.4,6-=-=c bD.6,4-=-=c b二、填空题 1.已知方程组的解满足,则k 的值为______. 2.若是方程组的解,则______ ______. 3.若二元一次方程组和的解相同,则______ ,______ .4.在解关于x ,y 的方程组时,老师告诉同学们正确的解是,粗心的小勇由于看错了系数c ,因而得到的解为,则abc 的值______.5.已知31=+a a ,则221aa +的值是 . 6.已知x 2-2(m -3)x+36是完全平方式,则m 的值为 .三、计算题1.解方程组(3)2.甲、乙两人共同解方程组,由于甲看错了方程中的a ,得到方程组的解为;乙看错了方程中的b ,得到方程组的解为,求:.3. 计算20042200420022004200420053232-⨯-+-4.分解因式(1) ()()144244222++++x x x x (2)m m n n m 2224()()---(3) -+-x x x3214 (4))()3()3)((22a b b a b a b a -+++-(5)()222222164c b c b a --- (6)ax 3ax 35-(7)4224167281y y x x +- (8)223333m n m n n m +--(9)222946b m ab a -++- (10)()()b a a b b a -+---2325.先分解因式,再求值:已知22==+ab b a ,,求32232121ab b a b a ++的值.6.不解方程组⎩⎨⎧=-=+1362y x y x ,求32)3(2)3(7x y y x y ---的值。

初一数学方程练习题

初一数学方程练习题

初一数学方程练习题一、一元一次方程1. 解方程:3x 7 = 112. 解方程:5 2x = 3x + 13. 解方程:4(x 2) = 84. 解方程:7 3(x + 1) = 25. 解方程:2(3x 4) + 5 = 21二、二元一次方程组1. 解方程组:\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\]2. 解方程组:\[\begin{cases}3x 4y = 7 \\2x + y = 6\end{cases}\]3. 解方程组:\[\begin{cases}5x + 2y = 15 \\4x 3y = 2\end{cases}\]4. 解方程组:\[\begin{cases}2x 3y = 9 \\x + 4y = 8\end{cases}\]5. 解方程组:\[\begin{cases}4x + 5y = 23 \\3x 2y = 7\end{cases}\]三、分式方程1. 解方程:$\frac{2x 3}{5} = \frac{x + 1}{2}$2. 解方程:$\frac{3}{x 2} = \frac{4}{x + 1}$3. 解方程:$\frac{1}{x + 3} + \frac{2}{x 1} = 1$4. 解方程:$\frac{2}{x 4} \frac{3}{x + 2} = 1$5. 解方程:$\frac{5}{2x + 3} = \frac{2}{x 3}$四、一元二次方程1. 解方程:$x^2 5x + 6 = 0$2. 解方程:$2x^2 4x 6 = 0$3. 解方程:$3x^2 + 12x + 9 = 0$4. 解方程:$4x^2 12x + 9 = 0$5. 解方程:$5x^2 + 10x 3 = 0$五、应用题1. 某数的2倍与3的和等于13,求这个数。

2. 甲、乙两人年龄之和为35岁,甲的年龄是乙的2倍,求甲、乙的年龄。

(完整版)人教版初一数学下册二元一次方程组试题(带答案) (一)解析(1)

(完整版)人教版初一数学下册二元一次方程组试题(带答案)  (一)解析(1)

一、选择题1.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天2.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1)B .(0,﹣1)C .(﹣1,0)D .(1,0)3.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( ) A .3分钟B .4分钟C .5分钟D .6分钟4.若关于x 、y 的方程组2335x y ax by +=⎧⎨-=-⎩和32111x y bx ay -=⎧⎨-=⎩有相同的解,则2021()a b +的值为( ) A .1-B .0C .1D .20215.在解方程组2574x y x y -=⎧⎨-=⎩●★时,小明由于粗心把系数●抄错了,得到的解是13103x y ⎧=-⎪⎪⎨⎪=-⎪⎩.小亮把常数★抄错了,得到的解是916x y =-⎧⎨=-⎩,则原方程组的正确解是( ) A .11x y =⎧⎨=⎩B .11x y =-⎧⎨=⎩C .11x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩6.已知111222(1)(2)(1)(2)a x b y c a x b y c ++-=⎧⎨++-=⎩的解是34x y =⎧⎨=⎩,求11122255a x b y c a x b y c +=⎧⎨+=⎩的解为( )A .1020x y =⎧⎨=⎩B .2010x y =⎧⎨=⎩C .4525x y ⎧=⎪⎪⎨⎪=⎪⎩D .2545x y ⎧=⎪⎪⎨⎪=⎪⎩7.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,通过计算,鸡和兔的数量分别为( ) A .23和12B .12和23C .24和12D .12和248.甲、乙两人在解方程组51542ax y x by +=⎧⎨=-⎩①②时,甲看错了方程①中的a ,解得21x y =⎧⎨=⎩,乙看错了方程②中的b ,解得54x y =⎧⎨=⎩,则2020201910b a ⎛⎫-- ⎪⎝⎭的值为( )A .2B .-2C .0D .-39.已知x,y互为相反数且满足二元一次方程组2321x y kx y+=⎧⎨+=-⎩,则k的值是()A.﹣1 B.0 C.1 D.210.如果32xy=⎧⎨=-⎩是方程组15ax byax by+=⎧⎨-=⎩的解,则a2008+2b2008的值为()A.1 B.2 C.3 D.4二、填空题11.有一片开心农场,蔬菜每天都在匀速生长,如果每天有20名游客摘菜,6天就能摘完;如果每天有17名游客摘菜,9天就能摘完(规定每名游客每天摘菜量相同),那么每天有14名游客摘菜,___天就能摘完.12.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..13.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.14.某景区游船码头派车原定于8点整准时到达景区入口接工作人员,由于汽车在路上因故障导致8:10时车还未到达景区入口,于是工作人员步行前往码头.走了一段时间后遇到了前来接他的汽车,他上车后汽车立即掉头继续前进.到达码头时已经比原计划迟到了20min.已知汽车的速度是工作人员步行速度的6倍,则汽车在路上因故障耽误的时间为____min.15.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.16.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k=_____.17.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的值为________.18.如图,将6个大小、形状完全相同的小长方形放置在大长方形中,所标尺寸如图所示(单位:cm),则图中含有阴影部分的总面积为 _____cm2.19.关于x,y的二元一次方程2x+3y=12的非负整数解有______组.20.某中学七年级在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,则调整后二等奖比三等奖平均分数多______分.三、解答题21.如图,在平面直角坐标系中,已知,点()0,A a ,(),0B b ,()0,C c ,a ,b ,c 满足()282122a b c -+-=-+,(1)直接写出点A ,B ,C 的坐标及ABC 的面积;(2)如图2,过点C 作直线//l AB ,已知(),D m n 是l 上的一点,且152ACD S ≤△,求n 的取值范围;(3)如图3,(),M x y 是线段AB 上一点, ①求x ,y 之间的关系;②点N 为点M 关于y 轴的对称点,已知21BCN S =△,求点M 的坐标.22.如果3个数位相同的自然数m ,n ,k 满足:m +n =k ,且k 各数位上的数字全部相同,则称数m 和数n 是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;(2)已知两位数s 和两位数t 的十位数字相同,若s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,求出满足题意的s .23.对于不为0的一位数m 和一个两位数n ,将数m 放置于两位数之前,或者将数m 放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为(),F m n .例如:当1m =,68n =时,可以得到168,618.较大三位数减去较小三位数的差为618168450-=,而4501530÷=,所以()1,6830F =.(1)计算:()2,17F .(2)若a 是一位数,b 是两位数,b 的十位数字为x (18x ≤≤,x 为自然数),个位数字为8,当()()11,509,862F a F b +=时,求出所有可能的a ,b 的值.24.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.25.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数.26.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM ∶AN =8∶9,问通道的宽是多少?27.某企业用规格是170cm ×40cm 的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a 、b 的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材 张,乙型板材 张; ②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?28.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.29.题目:满足方程组3512332x y k x y k +=+⎧⎨+=-⎩的x 与y 的值的和是2,求k 的值.按照常规方法,顺着题目思路解关于x ,y 的二元一次方程组,分别求出xy 的值(含有字母k ),再由x +y =2,构造关于k 的方程求解,从而得出k 值.(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,对于方程组中每个方程变形得到“x +y ”这个整体,或者对方程组的两个方程进行加减变形得到“x +y ”整体值,从而求出k 值请你运用这种整体思想的方法,完成题目的解答过程. (2)小勇同学的解答是:观察方程①,令3x =k ,5y =1解得y =15,3x +y =2,∴x =95∴k =3×95=275把x =95,y =15代入方程②得k =﹣35所以k 的值为275或﹣35. 请诊断分析并评价“小勇同学的解答”.30.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解;(3)已知,m n 是实数, 27n =,若)P n 是隐线23x y s -=的一个亮点,求隐线s中的最大值和最小值的和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】解:根据题意设有x 天早晨下雨,这一段时间有y 天,有9天下雨, 即早上下雨或晚上下雨都可称之为当天下雨, ①总天数﹣早晨下雨=早晨晴天; ②总天数﹣晚上下雨=晚上晴天;列方程组7(9)6y x y x -=⎧⎨--=⎩,解得411x y =⎧⎨=⎩,所以一共有11天, 故选B . 【点睛】本题考查二元一次方程组的应用.2.D解析:D 【分析】根据新定义运算法则列出方程{ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则 {ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b , ∵a ,b 是任意实数,∴x+y=1,③ 由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④ 由③④解得,x=1,y=0, ∴(x,y)为(1,0); 故选D.3.D解析:D【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间. 【详解】解:设8路公交车的速度为x 米/分,小王行走的速度为y 米/分,同向行驶的相邻两车的间距为s 米.每隔12分钟从背后驶过一辆8路公交车,则 1212x y s -=①每隔4分钟从迎面驶来一辆8路公交车,则 44x y s +=②由①+②可得6s x =, 所以6sx=, 即8路公交车总站发车间隔时间是6分钟. 故选:D . 【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.4.A解析:A 【分析】将方程组中不含,a b 的两个方程联立,求得,x y 的值,代入,含有,a b 的两个方程中联立求得,a b 的值,再代入代数式中求解即可. 【详解】 根据题意2333211x y x y +=⎧⎨-=⎩①② ①⨯2+②⨯3得:3x = 将3x =代入①得:1y =-将31x y =⎧⎨=-⎩代入51ax by bx ay -=-⎧⎨-=⎩得:3531a b b a +=-⎧⎨+=⎩③④ ③-④⨯3得:1b = 将1b =代入④得:2a =- 当21a b =-=,时, 20212021(()1)1a b +=-=-故选A . 【点睛】本题考查了解二元一次方程组,乘方运算,理解题意中方程组有相同解的意义是解题的关键.5.C解析:C 【分析】通过小明由于粗心把系数●抄错了,得到1107433⎛⎫⎛⎫⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭★,通过小亮把常数★抄错了,得到()()92165⋅--⨯-=●,便可将原方程组复原,再求解即可. 【详解】对于方程组2574x y x y -=⎧⎨-=⎩●★,小明由于粗心把系数●抄错了,得到的解是13103x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴1107433⎛⎫⎛⎫⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭★解得11=★小亮把常数★抄错了,得到的解是916x y =-⎧⎨=-⎩∴()()92165⋅--⨯-=● 解得3=●∴原方程组为3257411x y x y -=⎧⎨-=⎩,解得11x y =⎧⎨=-⎩故答案选:C . 【点睛】本题是二元一次方程组错解复原问题.通过错解复原原方程组是本题的关键.6.B解析:B 【分析】把x =3,y =4代入第一个方程组,可得关于a 1,b 1方程组,两方程同时乘5可得出1112222010520105a b c a b c +=⎧⎨+=⎩,再结合第二个方程组即可得出结论. 【详解】解:把34x y =⎧⎨=⎩代入方程组得:1112224242a b c a b c +=⎧⎨+=⎩,方程同时×5,得:1112222010520105a b c a b c +=⎧⎨+=⎩,∴方程组11122255a x b y c a x b y c +=⎧⎨+=⎩的解为2010x y =⎧⎨=⎩,故选B . 【点睛】本题考查了二元一次方程组的解,发现两方程组之间互相联系是解题的关键.7.A解析:A 【分析】设鸡有x 只、兔有y 只,由等量关系:鸡兔35只,共有足94足,列方程组,解之即可. 【详解】解:设鸡有x 只、兔有y 只,故居题意得:352494x y x y +=⎧⎨+=⎩,解得:2312x y =⎧⎨=⎩,答鸡和兔的数量分别为23和12. 故选择:A . 【点睛】本题考查列方程组解应用题,掌握列方程组解应用题的方法,抓住等量关系:鸡兔35只,共有足94足列方程组是解题关键.8.B解析:B 【分析】根据题意,方程②的一个解为21x y =⎧⎨=⎩,代入方程②,求得b ;方程①的一个解为54x y =⎧⎨=⎩,代入求得a ,再代入代数式即可求解. 【详解】解:根据题意,方程②的一个解为21x y =⎧⎨=⎩,代入方程②,求得=10b方程①的一个解为54x y =⎧⎨=⎩,代入方程①,求得=-1a将=-1a ,=10b 代入代数式得202020192019202010=(-1)()1121010b a⎛⎫----=--=- ⎪⎝⎭故答案为B . 【点睛】此题主要考查了二元一次方程组的有关知识,解题的关键是通过已知条件列出式子求得a ,b .9.A解析:A 【分析】根据x ,y 互为相反数得到0x y +=,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得x 和y 的值,最后代入求值. 【详解】 解:由题意可得021x y x y +=⎧⎨+=-⎩①②,②﹣①,得:y =﹣1,把y =﹣1代入①,得:x ﹣1=0, 解得:x =1,把x =1,y =﹣1代入2x +3y =k 中, k =2×1+3×(﹣1)=2﹣3=﹣1, 故选:A . 【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.10.C解析:C 【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解. 【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,∴321325a b a b -=⎧⎨+=⎩①②, ①+②得,a =1, 将a =1代入①得,b =1, ∴a 2008+2b 2008=1+2=3, 故选:C . 【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题 11.18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程解析:18【分析】首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完.根据“原蔬菜量+每天生长的蔬菜量×采摘天数=每名游客每天摘菜量×人数×天数”列出方程组6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③,可解得x 的值即为所求. 【详解】解:首先设原有蔬菜量为a ,每天生长的蔬菜量为b ,每名游客每天摘菜量为c ,有14名游客摘菜x 天就能摘完,依题意得 6206917914a b c a b c a bx cx +=⨯⎧⎪+=⨯⎨⎪+=⎩①②③, 由②﹣①得:11b c =④ 由③﹣②得:()()914153xb xc ﹣=﹣⑤ 将④代入⑤得:()()91114153xc x c ⨯﹣=﹣, 解得:18x =故答案是:18.【点睛】本题考查方程组的应用,有些应用题,它所涉及到的量比较多,量与量之间的关系也不明显,需增设一些表知数辅助建立方程,辅助表知数的引入,在已知条件与所求结论之间架起了一座“桥梁”,对这种辅助未知量,并不能或不需求出,可以在解题中相消或相约,这就是我们常说的“设而不求.”12.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.13..【分析】设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,根据题意,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入中即可求出结论.【详解】设每个进水口每小时进 解析:3817. 【分析】设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,根据题意,可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入124%32x y--中即可求出结论. 【详解】设每个进水口每小时进水量为x ,每个出水口每小时出水量为y ,依题意,得:()()534115%243115%x y x y ⎧-=-⎪⎨-=-⎪⎩, 解得:0.170.085x y =⎧⎨=⎩,∴124%383217x y -=-. 故答案为:3817. 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.【解析】【分析】正常8:00到景区,出故障后,耽误t 分钟,8点t 分到景区,他在景区等了10分钟,车没来,就走了a 分钟,在8点(10+a )分时遇到了车,他走a 分钟的路程,车走分钟就走完,也就是在解析:【解析】【分析】正常8:00到景区,出故障后,耽误t 分钟,8点t 分到景区,他在景区等了10分钟,车没来,就走了a 分钟,在8点(10+a )分时遇到了车,他走a 分钟的路程,车走6a 分钟就走完,也就是在8点(t-6a )时遇到了车,得出关系式10+a=t-6a ; 正常时从景区到码头用b 分钟,在他遇到车的地点到景区要(b-6a )分钟,也就是8点(t-6a +b-6a )分钟到景区,已知他是8点(b+20)分到的,得出关系式t-6a +b-6a =b+20;联立方程组求解.【详解】正常8:00准时到达景区入口,汽车在路上因故障,耽误t 分钟,8点t 分到达景区入口, 工作人员步行前往码头.走了10分钟,车没来,就走了a 分钟,在8点(10+a )分时遇到了车;工作人员走a 分钟的路程,车走6a 分钟就走完,也就是在8点(t-6a )时遇到了车,有10+a=t-6a , t=10+76a ,-----① 正常时从景区到码头用b 分钟,在他遇到车的地点到景区要(b-6a )分钟, 也就是8点(t-6a +b-6a )分钟到景区, 已知他是8点(b+20)分到的,所以有t-6a +b-6a =b+20,t-3a =20,----② 由①②解得:a=12,t=24.则汽车在路上因故障耽误的时间为24min.故答案为24.【点睛】此题主要考查了二元一次方程的应用,依据题意得出汽车晚到景区的时间具体原因以及汽车所晚的20分钟具体原因得出等量关系是解决问题的关键.15.3【详解】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.解析:3【详解】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.16.-3【分析】由题意得:x =﹣y+2,代入方程组中的第一个方程可求得y 的值,再求出x 的值,最后代入到方程组中的第二个方程可求出k 的值.【详解】解:∵方程组中x 的值比y 的相反数大2,∴x =﹣y解析:-3【分析】由题意得:x =﹣y +2,代入方程组中的第一个方程可求得y 的值,再求出x 的值,最后代入到方程组中的第二个方程可求出k 的值.【详解】解:∵方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,∴x=﹣y+2,∴4(﹣y+2)+5y=10,解得:y=2,把y=2代入4x+5y=10中,得:4x+10=10,解得:x=0,则方程组的解是x=0y=2⎧⎨⎩,∴﹣(k﹣1)×2=8,解得:k=﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解.17.2【分析】根据题意,将代入二元一次方程组,得到关于m、n的二元一次方程组,求出后代入即可.【详解】将代入二元一次方程组,得,解得,,,,,故答案为:2.【点睛】本题主要考查解析:2【分析】根据题意,将21xy=⎧⎨=⎩代入二元一次方程组81mx nynx my+=⎧⎨-=⎩,得到关于m、n的二元一次方程组,求出后代入即可.【详解】将21xy=⎧⎨=⎩代入二元一次方程组81mx nynx my+=⎧⎨-=⎩,得28 21m nn m+=⎧⎨-=⎩,解得32mn=⎧⎨=⎩,=2,故答案为:2.【点睛】本题主要考查了解二元一次方程组,算术平方根,解题关键是熟练掌握二元一次方程组的解法.18.44【分析】设小长方形的长为xcm,宽为ycm,根据长方形的对边相等,列出二元一次方程组,解之得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可得出答案.【详解】解析:44【分析】设小长方形的长为xcm,宽为ycm,根据长方形的对边相等,列出二元一次方程组,解之得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可得出答案.【详解】解:设小长方形的长为xcm,宽为ycm,依题意得:31426x yx y y+=⎧⎨+-=⎩,解得:82xy=⎧⎨=⎩,∴图中阴影部分的总面积=14×(6+2y)﹣6xy=14×(6+2×2)﹣6×8×2=44(cm2).故答案为:44.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.3【分析】把x看做已知数表示出y,确定出非负整数x与y的值即.【详解】解:方程2x+3y=12,解得:y=-x+4,当x=0时,方程变形为3y=12,解得y=4;当x=3时,方程变形为解析:3【分析】把x 看做已知数表示出y ,确定出非负整数x 与y 的值即.【详解】解:方程2x +3y =12,解得:y =-23x +4, 当x =0时,方程变形为3y =12,解得y =4;当x =3时,方程变形为6+3y =12,解得y =2;当x =6时,方程变形为12+3y =12,解得y =0;∴关于x ,y 的二元一次方程2x +3y =12的非负整数解有3组:04x y ==⎧⎨⎩、32x y ⎧⎨⎩==和60x y ⎧⎨⎩==. 故答案为3【点睛】此题考查了二元一次方程的解,用x 表示出y 是解本题的关键.20.9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低解析:9【分析】先设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,列出方程组,求出原二等奖比三等奖平均分多的分数,最后根据调整后二等奖平均分降低3分,三等奖平均分降低1分,列出代数式,即可求出答案.【详解】解:设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由于总分不变,得:510351051532512x y z x y z x y ++=-+-+-⎧⎨=+⎩()()()①② 由①得:x+y -2z =24 ③将②代入③得:y +2+y -2z =24解得:y-z =11,则调整后二等奖比三等奖平均分数多=(y -3)-(z -1)=(y-z )-2=11-2=9(分). 故答案为:9.【点睛】此题主要考查了三元一次方程组的应用,关键是读懂题意,找到等量关系,列出方程组.三、解答题21.(1)()0,8A ,()6,0B ,()0,2C -,30ABC S =;(2)n 的取值范围为40n -≤≤;(3)①4324x y +=;②()3,4M【分析】(1)根据()28212a b -+-=a 、b 、c 的值,由此求解即可;(2)分当D 点在直线l 上位于y 轴左侧时和当D 点在直线l 上位于y 轴右侧时讨论求解即可得到答案;(3)①由由AOB AON BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯,由此求解即可;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=,化简得,315x y +=,然后联立4324315x y x y +=⎧⎨+=⎩求解即可. 【详解】解:(1)∵()28212a b -+-=∴()28212a b -+-, ∴80a -=,2120b -=,20c +=,∴8a =,6b =,2c =-,∴()0,8A ,()6,0B ,()0,2C -,∴AC =10,OB =6, ∴1302ABC S AC OB ==; (2)当D 点在直线l 上位于y 轴左侧时,由题意得,()()111510222ACD S AC m m =⨯⨯-=⨯⨯-≤△, 解得,32m ≥-, 当32m =-时,3,02D ⎛⎫- ⎪⎝⎭, 结合图形可知,当32m ≥-时,0n ≤; 同理可得,当D 点在直线l 上位于y 轴右侧时,32m ≤, 当32m =时,3,2D n ⎛⎫ ⎪⎝⎭,12//,D D AB22,ACD BCD S S ∴=()()13113156262222222n n ⎛⎫⨯+⨯--⨯⨯-⨯⨯--= ⎪⎝⎭, 解得,4n =-,结合图形可知,当32m ≤时,4n ≥-,∴n 的取值范围为40n -≤≤;(3)①由AOB AOM BOM S S S =+得,1118668222x y ⨯+⨯=⨯⨯, 化简得,4324x y +=;②易得(),N x y -,连接ON ,由NBC CON OBC BON S S S S =++△△△△得,111226621222x y ⨯⨯+⨯⨯+⨯⨯=, 化简得,315x y +=,联立方程组4324315x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩, ∴()3,4M【点睛】本题主要考查了绝对值和算术平方根的非负性,三角形面积,解二元一次方程组,坐标与图形,截图的关键在于能够熟练掌握相关是进行求解.22.(1)87和12是“黄金搭档数”,62和49不是“黄金搭档数”,理由见解析;(2)39或38【分析】(1)根据“黄金搭档数”的定义分别判断即可;(2)由已知设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,表示出s t +,由s 和t 是一对“黄金搭档数”,并且s 与t 的和能被7整除,综合分析,列出方程组求解即可.【详解】(1)解:∵871299,+=∴87和12是一对“黄金搭档数”;∵6249111,+=∴111与62,49数位不相同,∴62和49不是一对“黄金搭档数”;故87和12是一对“黄金搭档数”,62和49不是一对“黄金搭档数”;(2)∵两位数s 和两位数t 的十位数字相同,∴设10,19,09,s x y x y =+≤≤≤≤x ,y 为整数,10,19,09,t x z x z =+≤≤≤≤ x ,z 为整数,∴20,s t x y z +=++∵s 和t 是一对“黄金搭档数”,∴s t +是一个两位数,且各个数位上的数相同,又∵s 与t 的和能被7整除,∴77s t +=,共有两种情况:①20707x y z =⎧⎨+=⎩, 解得 3.5x =,∵x 为整数,∴不合题意,舍去;②206017x y z =⎧⎨+=⎩, ∵,,x y z 都是整数,且19,09,09,x y z ≤≤≤≤≤≤∴解得398x y z =⎧⎪=⎨⎪=⎩或389x y z =⎧⎪=⎨⎪=⎩, 故s 为39或38.【点睛】本题考查三元一次方程组的整数解,解题关键是理解题目中的定义,根据已知条件列出方程组.23.(1) (2,17)F =6;(2)a=3,b=78或a=7,b=78.【分析】(1) (2,17)F =(217-127)÷15=6;(2)分1≤a <5,a=5,5<a≤9三种情形讨论计算.【详解】(1) 当2m =,17n =时,可以得到217,127.较大三位数减去较小三位数的差为21712790-=,而90156÷=,∴()2,176F =.(2)当m a =,50n =时,可以得a50,5a0.三位数分别为100a+50,500+10a ,当1≤a <5时,(500+10a )-(100a+50)=450-90a ,而(45090)15306a a -÷=-, ∴(),50F a =306a -, ∴()1,506F a =5a -; 当a=5时,(500+10a )-(100a+50)=0,而0150÷=,∴(),50F a =0, ∴()1,506F a =0; 当5<a≤9时,(100a+50)-(500+10a )=90a-450,而(90450)15630a a -÷=-, ∴(),50F a =630a -, ∴()1,506F a =a-5; 当9m =,n b =时,可以得900+10x+8,100x+98.∵18x ≤≤,∴(900+10x+8)-(100x+98)=810-90x ,而(81090)15546x x -÷=-,∴()9,F b =546x -,, ∴()19,2F b =273x -; 当1≤a <5时,5-a+27-3x=8,∴a+3x=24,∴当a=1时,x=233(舍去),当a=2时,x=223(舍去), 当a=3时,x=7,当a=4时,x=203(舍去), ∴a=3,b=78;当a=5时,则27-3x=8,∴x=193(舍去), 当5<a≤9时,则a-5+27-3x=8,∴3x-a=14,∴当a=6时,x=203(舍去),当a=7时,x=7, 当a=8时,x=223(舍去),当a=9时,x=233(舍去), ∴a=7,b=78;综上所述,a=3,b=78或a=7,b=78.【点睛】本题考查了新定义问题和二元一次方程的整数解,准确理解新定义的意义,灵活运用分类思想和枚举法是解题的关键.24.(1)A 的单价30元,B 的单价15元(2)购买A 奖品8个,购买B 奖品22个,花费最少【分析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意列出方程组3212054210x y x y +=⎧⎨+=⎩,即可求解;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元,根据题意得到由题意可知,1(30)3z z ≥-,3015(30)45015W z z z =+-=+,根据一次函数的性质,即可求解;【详解】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩, 3015x y =⎧∴⎨=⎩, ∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元, 由题意可知,1(30)3z z ≥-, 152z ∴≥, 3015(30)45015W z z z =+-=+,当=8z 时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少;【点睛】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.25.(1)50130αβ︒︒⎧∠=⎨∠=⎩;(2)//AB CD ,理由详见解析;(3)40° 【分析】(1)利用加减消元法,通过解二元一次方程组可求出∠a 和β∠的度数;(2)利用求得的∠a 和β∠的度数可得到180αβ∠+∠=︒,于是根据平行线的判定可判断AB ∥EF ,然后利用平行的传递性可得到AB ∥CD ;(3)先根据垂直的定义得到90CAE ∠=︒,再根据平行线的性质计算C ∠的度数.【详解】解(1)解方程组223080αββα︒︒⎧+=⎨∠-∠=⎩①②, ①-②得:3150α∠=︒ ,解得:50α∠=︒把50α∠=︒代入②得:5080β∠-︒=︒解得:130β∠=︒;(2)//AB CD ,理由:∵50α∠=︒,130β∠=︒,180αβ︒∴∠+∠=,//AB EF ∴(同旁内角互补,两直线平行),又 CD//EF ,//AB CD ∴;(3)AC AE ⊥,90CAE ︒∴∠=//AB CD180C CAB ︒∴∠+∠=180905040C ︒∴∠=︒-︒-︒=.【点睛】本题考查了平行线的性质与判定、解二元一次方程组,熟练掌握平行线的性质和判定定理是解题关键.26.1【分析】利用AM:AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9ym ,进而利用AD 为18m ,AB 为13m ,得出等式求出即可.【详解】设通道的宽是xm ,AM =8ym.因为AM ∶AN =8∶9,所以AN =9ym.所以22418,1813.x y x y +=⎧⎨+=⎩解得1,2.3x y =⎧⎪⎨=⎪⎩答:通道的宽是1m.故答案为1.。

初一数学下二元一次方程组的实际应用习题

初一数学下二元一次方程组的实际应用习题

初一数学下二元一次方程组的实际应用习题初一数学下二元一次方程组的实际应用习题把两个含有相同未知数的一次方程联合在一起,那么这两个方程就组成了一个二元一次方程组。

下面是应届毕业生店铺整理的初一数学下二元一次方程组的实际应用习题,希望对大家有所帮助。

专题1 和、差、倍、分问题1.(北京中考)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为5x+2y=102x+5y=8.2.(湘潭中考)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4 000元,那么当日售出成人票50张.3.有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”两个牧童各有多少只羊?解:设两个牧童分别有x只羊,y只羊.根据题意,得x+1=2(y-1),x-1=y+1.解得x=7,y=5.答:两个牧童各有7只、5只羊.4.(济南中考)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40 kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?解:(1)设采摘黄瓜x千克,茄子y千克.根据题意,得x+y=40,x+1.2y=42.解得x=30,y=10.答:采摘的黄瓜和茄子各30千克、10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.5.2016年某市“奥博园丁杯”篮球赛前四强积分榜如下:队名比赛场次胜负积分坏小子 7 7 0 14后街男孩 7 6 1 13极速 7 5 2 12小小牛 7 4 3 11注:平局后出现加时赛,一定比出胜负.问:(1)某队的负场总积分能等于它的胜场总积分的2倍吗?(2)某队的胜场总积分能等于它的负场总积分的5倍吗?解:(1)从表中可知胜一场得2分,负一场得1分.设一个队胜的场次为x场,负的场次为y场,由题意,得x+y=7,y=2×2x.解得x=75,y=285.因为胜的场次不可能为分数,所以某队的负场总积分不能等于它的胜场总积分的2倍.(2)设一个队胜的场次为a场,负的场次为b场,由题意得a+b=7,2a=5b.解得a=5,b=2.答:某队的胜场总积分能等于它的负场总积分的5倍.专题2 按比例分配、原料的混合与配套问题1.(曲靖中考)某种仪器由1个A部件和1个B部件配套构成,每个工人每天可以加工A部件1 000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?解:设安排生产A部件和B部件的工人分别为x人,y人.根据题意,得x+y=16,1 000x=600y.解得x=6,y=10.答:安排生产A部件和B部件的工人分别为6人,10人.2.把浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%消毒酒精溶液500克,求甲、乙两种酒精溶液各多少克?解:设甲种酒精溶液x克,乙种酒精y克,可得方程组x+y=500,90%x+60%y=75%×500.解得x=250,y=250.答:甲种酒精溶液250克,乙种酒精250克.3.为迎接新年,某工艺厂准备生产A、B两种礼盒.这两种礼盒主要用甲、乙两种原料,已知生产一套A礼盒需要甲原料和乙原料分别为4盒和3盒;生产一套B礼盒需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20 000盒和30 000盒,如果所进原料全部用完,求该厂能生产A、B两种礼盒各多少套?解:设生产A礼盒x套,生产B礼盒y套,则4x+5y=20 000,3x+10y=30 000.解得x=2 000,y=2 400.答:该厂能生产A礼盒2 000套,B礼盒2 400套.4.在“某地大地震”灾民安置工作中,某企业捐助了一批板材24 000 m2,某灾民安置点用该企业捐助的这批板材全部搭建成A,B两种型号的板房,供2 300名灾民临时居住.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:板房型号所需板材安置人数A型板房 54 m2 5B型板房 78 m2 8问:该灾民安置点搭建A型板房和B型板房各多少间?解:设该灾民安置点搭建A型板房x间,B型板房y间.由题意得,5x+8y=2 300,54x+78y=24 000.解得x=300,y=100.答:该灾民安置点搭建A型板房300间,B型板房100间.5.已知甲、乙两种食物的维生素A、B的含量如下表:维生素类型甲乙维生素A(单位/千克) 600 700维生素B(单位/千克) 800 400现有50万单位的维生素A和40万单位的维生素B,请你算一算,能制成甲、乙两种食物各多少千克?解:设能制成甲、乙两种食物分别为x千克和y千克.则600x+700y=500 000,800x+400y=400 000.解得x=250,y=500.答:制成甲、乙两种食物分别为250千克和500千克.专题3 行程问题与顺逆流(风)问题1.甲、乙两码头相距60千米,某船往返两地,顺流时用3小时,逆流时用4小时,求船在静水中的航速及水流速度.解:船在静水中的速度是x千米/时,水流速度为y千米/时,则3(x+y)=60,4(x-y)=60.解得x=17.5,y=2.5.答:船在静水中的速度是17.5千米/时,水流速度为2.5千米/时.2.甲、乙两人在400米的环形跑道上练习赛跑.如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.求甲、乙两人的平均速度.解:甲、乙每秒分别跑x米,y米,则根据题意,得25(x+y)=400,250(x-y)=400.解得x=8.8,y=7.2.答:甲、乙每秒分别跑8.8米、7.2米.3.(张家界中考)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m,下坡路每分钟走80 m,上坡路每分钟走40 m,则他从家里到学校需10 min,从学校到家里需15 min.问:从小华家到学校的平路和下坡路各有多远?解:设平路有x m,下坡路有y m,则x60+y80=10,x60+y40=15.解得x=300,y=400.答:小华家到学校的平路和下坡路各为300 m,400 m.4.A、B两地相距176 km,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A,B两地同时出发赶往滑坡点疏通公路.10时,甲队赶到,半小时后乙队赶到.若滑坡受损公路长1 km,甲队行进的速度是乙队的32倍多5 km,求甲、乙两队赶路的速度.解:设甲队的速度为x千米/时,则乙队为y千米/时.由题意得x=32y+5,2x+2.5y=176-1.解得x=50,y=30.答:甲队赶路的速度为50 km/h,乙队赶路的速度为30 km/h.5.一辆汽车从A地驶往B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km/h,在高速公路上行驶的速度为100 km/h,汽车从A地到B地一共行驶了2.2 h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.解:答案不唯一,问题:普通公路和高速公路各为多少千米?解:设普通公路长为x km,高速公路长为y km.根据题意,得2x=y,x60+y100=2.2.解得x=60,y=120.答:普通公路长为60 km,高速公路长为120 km.问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了x h,高速公路上行驶了y h.根据题意,得x+y=2.2,60x×2=100y.解得x=1,y=1.2.答:汽车在普通公路上行驶了1 h,高速公路上行驶了1.2 h.专题4 几何问题1.(广元中考)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°,则可得到的方程组为(D)A.x=y-50x+y=180B.x=y+50x+y=180C.x=y-50x+y=90D.x=y+50x+y=902.(漳州中考)如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是(B)A.x+2y=75y=3xB.x+2y=75x=3yC.2x+y=75y=3xD.2x+y=75x=3y3.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是100.4.(吉林中考)根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在的高度为x m,长颈鹿现在的`高度为y m.根据题意,得y-x=4,y=3x+1.解得x=1.5,y=5.5.答:梅花鹿现在的高度为1.5 m,长颈鹿现在的高度为5.5 m.5.(凉山中考)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)如果要使水面上升到50 cm,应放入大球、小球各多少个?解:设应放入x个大球,y个小球.由题意得3x+2y=50-26,x+y=10.解得x=4,y=6.答:应放入4个大球,6个小球.6.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,谁的设计符合实际,按照他的设计,鸡场的面积多大?解:根据小王的设计可以设垂直于墙的一边长为x米,平行于墙的一边长为y米.根据题意得2x+y=35,y-x=5.解得x=10,y=15.又因为墙的长度只有14米,所以小王的设计不符合实际.根据小赵的设计可以设垂直于墙的一边长为a米,平行于墙的一边长为b米.根据题意得2a+b=35,b-a=2.解得a=11,b=13.又因为墙的长度有14米,显然小赵的设计符合要求.此时鸡场的面积为11×13=143(平方米).答:小赵的设计符合实际,按照他的设计,鸡场的面积为143平方米.下载全文。

2022-2023学年初一数学第二学期培优专题训练33 因式分解的应用

2022-2023学年初一数学第二学期培优专题训练33 因式分解的应用

专题33 因式分解的应用(确定好一个因式)【例题讲解】阅读下列解答过程,然后回答问题:已知27x x k -+有一个因式(3)x -,求k 的值.解:设另一个因式为()x a +,则27(3)()x x k x x a -+=-+.即227(3)3x x k x a x a -+=+--(对任意实数x 成立)由此得:37,3a a k -=-⎧⎨-=⎩∴12k = (1)已知21534x x --有一个因式(2)x +,则另一个因式为_______________;(2)已知224x mx +-有一个因式(6)x +,则m 的值为________________;(3)已知多项式323x x k -+有一个因式2(2)x -,求k 的值. 【解答】(1)解:设另一个因式为(x +a ),则()()215342x x x x a --=++,即()22153422x x x a x a --=+++(对任意实数x 成立)由此得215234a a +=-⎧⎨=-⎩,∴a =-17,故答案为:-17; (2)设另一个因式为(x +b ),则()()2246x mx x x b +-=++,即()222466x mx x b x b +-=+++(对任意实数x 成立)由此得2624b m b +=⎧⎨=-⎩,解得:24m b =-⎧⎨=-⎩,故答案为:-2; (3)设另一个因式为(x +c ),则()()23232x x k x x c -+=-+,即()3223(44)x x k x x x c -+=-++(对任意实数x 成立)()32322323444444x x k x x cx cx c x c x cx c -+=-+-+=+--+由此得434c k c -=-⎧⎨=⎩,解得:14c k =⎧⎨=⎩,∴k 的值为4. 【综合解答】1.已知二次三项式22x x m -+有一个因式是5x +,则m 的值为______.2.若多项式225x x m -+有一个因式为(1)x -,那么m =_____.3.若关于x 的二次三项式x 2﹣3x +k 有一个因式是(x ﹣2),则k 的值是________. 4.阅读材料:若3222(x x x m m +-+为常数)有一个因式为()1x -,则如何因式分解3222x x x m +-+?解:因为3222x x x m +-+有一个因式为()1x -,所以当10x -=时,32220x x x m +-+=,于是把1x =代入32220x x x m +-+=得1220m +-+=,解得1m =-,原代数式变为32221x x x +--,接着可以通过列竖式做多项式除法的方式求出其它因式,如图所示,则因式分解()()322221131x x x x x x +--=-++若3242(x x mx m +++为常数)有一个因式为()2x +,则因式分解3242x x mx +++=______.5.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是(3)x +,求另一个因式以及m 的值.解:设另一个因式为()x n +,得24(3)()x x m x x n -+=++则224(3)3x x m x n x n -+=+++∴343n m n +=-⎧⎨=⎩. 解得:7n =-,21m =-∴另一个因式为(7)x -,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式223x x k +-有一个因式是(25)x -,求另一个因式以及k 的值.6.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解31x -.因为31x -为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜想31x -可以分解成()()3211x x x ax b -=-++,展开等式右边得:()()321x a x b a x b +-+--,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:10a -=,0b a -=,1b -=-,可以求出1a =,1b =.所以()()32111x x x x -=-++ (1)若x 取任意值,等式()222333x x x a x ++=+-+恒成立,则=a ______;(2)已知多项式421x x ++有因式21x x ++,请用待定系数法求出该多项式的另一因式.(3)请判断多项式421x x -+是否能分解成两个整系数二次多项式的乘积,并说明理由.7.因为()()25661x x x x +-=+-,这说明多项式256x x +-有一个因式为1x -,我们把1x =代入此多项式,发现1x =能使多项式256x x +-的值为0.利用上述阅读材料,回答下列问题:(1)若2x 是多项式28x kx ++的一个因式,求k 的值;(2)若(3)x -和(5)x +是多项式3215x mx x n +-+的两个因式,求m ,n 的值.(3)在(2)的条件下,把多项式3215x mx x n +-+因式分解.8.因为2(2)(1)2x x x x +-=+-,所以2(2)(1)2x x x x +-÷-=+,这说明22x x +-能被1x -整除,同时也说明多项式22x x +-有一个因式为1x -,另外当1x =时,多项式22x x +-的值为0.利用上述阅读材料求解:(1)已知2x 能整除216x kx +-,求k 的值;(2)已知(2)(1)x x +-能整除432247x x ax x b -+++,试求a 、b 的值.9.如果多项式23x x m -+分解因式的结果为23(2)()x x m x x n -+=-+,则当20x -=时可得230x x m -+=,此时可把2x =代入230x x m -+=中得出2m =.利用上述阅读材料解答以下两个问题:(1)若多项式28x kx +-有一个因式为2x ,求k 的值;(2)若2x +,1x -是多项式3227x ax x b +++的两个因式,求a 、b 的值.10.阅读理解:例题:已知二次三项式24x x m -+有一个因式是(3)x +,求另一个因式以及m 的值.解:设另一个因式为()x n +,得24(3)()x x m x x n -+=++,∵22(3)()()3()33(3)3x x n x x n x n x nx x n x n x n ++=+++=+++=+++,∴224(3)3x x m x n x n -+=+++,∴由等式恒等原理可知:34n +=- ①,3m n = ②,由①②解得:7,21n m =-=-,∴另一个因式为(7)x -,m 的值为21-.活学活用:(1)若24(3)()x x m x x n +-=-+,则mn =_________;(2)若二次三项式226x ax +-有一个因式是(23)x -,求另一个因式.11.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =代入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”. (1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.12.阅读下列材料,然后解答问题:分解因式:x 3+3x 2-4.解答:把x =1代入多项式x 3+3x 2-4,发现此多项式的值为0,由此确定多项式x 3+3x 2-4中有因式(x -1),于是可设x 3+3x 2-4=(x -1)(x 2+mx +n ),分别求出m ,n 的值,再代入x 3+3x 2-4=(x -1)(x 2+mx +n ),就容易分解多项式x 3+3x 2-4.这种分解因式的方法叫“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:x 3+x 2-16x -16.13.阅读以下内容解答下列问题.七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是 .(2)对于多项式x 3﹣5x 2+x+10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x+10的值为0,由此可以断定多项式x 3﹣5x 2+x+10中有因式(x ﹣2),【注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )】,于是我们可以把多项式写成:x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),分别求出m 、n 后再代入x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),就可以把多项式x 3﹣5x 2+x+10因式分解,这种因式分解的方法叫“试根法”.①求式子中m 、n 的值;②用“试根法”分解多项式x 3+5x 2+8x+4.14.阅读下列材料:对于多项式22x x +-,如果我们把1x =代入此多项式,发现22x x +-的值为0,这时可以确定多项式中有因式(1)x -:同理,可以确定多项式中有另一个因式(2)x +,于是我们可以得到:22(1)(2)x x x x +-=-+.又如:对于多项式2232x x --,发现当2x =时,2232x x --的值为0,则多项式2232x x --有一个因式(2)x -,我们可以设2232(2)()x x x mx n --=-+,解得2m =,1n =,于是我们可以得到:2232(2)(21)x x x x --=-+.请你根据以上材料,解答以下问题:(1)当x = 时,多项式265x x --的值为0,所以多项式265x x --有因式 ,从而因式分解265x x --= .(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2253x x ++;②376x x -+.(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式333(2)(2)()x y x y -----有因式 , , ,所以分解因式333(2)(2)()x y x y -----= .15.阅读:把多项式2310x x --分解因式得()()231052x x x x --=-+,由此对于方程23100x x --=可以变形为()()520x x -+=,解得5x =或2x =-.观察多项式2310x x --的因式()5x -、()2x +,与方程23100x x --=的解5x =或2x =-之间的关系.可以发现,如果5x =、2x =-是方程23100x x --=的解,那么()5x -、()2x +是多项式2310x x --的因式.这样,若要把一个多项式分解因式,可以通过其对应方程的解来确定其中的因式.例如:对于多项式332x x -+.观察可知,当1x =时,3320x x -+=.则()3321x x x A -+=-,其中A 为整式,即()1x -是多项式332x x -+的一个因式.若要确定整式A ,则可用竖式除法:∴()()()()()()()232321211212x x x x x x x x x x -+=-+-=--+=-+. 填空:(1)分解因式:22x x +-=______;(2)观察可知,当x =______时,3230x x x ++-=,可得______是多项式323x x x ++-的一个因式. 分解因式:323x x x ++-=______.(3)已知:()361x mx x B +-=+,其中B 为整式,则分解因式:36x mx +-=______.16.对于多项式x 3﹣5x 2+11x ﹣10,如果我们把x =2代入此多项式,发现多项式x 3﹣5x 2+11x ﹣10=0,这时可以断定多项式中有因式(x ﹣2),于是我们可以把多项式写成:x 3﹣5x 2+11x ﹣10=(x ﹣2)(x 2+mx +n ),以上这种因式分解的方法叫试根法.(1)求式子中m 、n 的值;(2)用试根法对多项式x 3﹣5x 2+3x +9进行因式分解.专题33 因式分解的应用(确定好一个因式)【例题讲解】阅读下列解答过程,然后回答问题:已知27x x k -+有一个因式(3)x -,求k 的值.解:设另一个因式为()x a +,则27(3)()x x k x x a -+=-+.即227(3)3x x k x a x a -+=+--(对任意实数x 成立)由此得:37,3a a k -=-⎧⎨-=⎩∴12k = (1)已知21534x x --有一个因式(2)x +,则另一个因式为_______________;(2)已知224x mx +-有一个因式(6)x +,则m 的值为________________;(3)已知多项式323x x k -+有一个因式2(2)x -,求k 的值. 【解答】(1)解:设另一个因式为(x +a ),则()()215342x x x x a --=++,即()22153422x x x a x a --=+++(对任意实数x 成立)由此得215234a a +=-⎧⎨=-⎩,∴a =-17,故答案为:-17; (2)设另一个因式为(x +b ),则()()2246x mx x x b +-=++,即()222466x mx x b x b +-=+++(对任意实数x 成立)由此得2624b m b +=⎧⎨=-⎩,解得:24m b =-⎧⎨=-⎩,故答案为:-2; (3)设另一个因式为(x +c ),则()()23232x x k x x c -+=-+,即()3223(44)x x k x x x c -+=-++(对任意实数x 成立)()32322323444444x x k x x cx cx c x c x cx c -+=-+-+=+--+由此得434c k c -=-⎧⎨=⎩,解得:14c k =⎧⎨=⎩,∴k 的值为4. 【综合解答】1.已知二次三项式22x x m -+有一个因式是5x +,则m 的值为______.【答案】35-【分析】设另一个因式为()x n +,根据因式分解的定义以及多项式乘以多项式的运算法则求解即可.【解答】解:设另一个因式为()x n +,根据题意,得()()225x x m x x n -+=++,即()22255x x m x n x n -+=+++,∴52n +=-, 5m n =,解得7n =-,35m =-,故答案为:35-.【点评】本题考查因式分解的应用、多项式乘以多项式,理解因式分解和整式乘法是互逆运算是解答的关键.2.若多项式225x x m -+有一个因式为(1)x -,那么m =_____. 【答案】3【分析】设另一个因式为2x +a ,利用因式分解是乘法运算的逆运算求解即可.【解答】解:设另一个因式为2x +a ,∵(2x +a )(x -1)=222x x ax a -+-=()222x a x a +--,∴225x x m -+=()222x a x a +--,∴a -2=-5,m =-a ,∴a =-3,m =3.故答案为:3.【点评】本题主要考查因式分解与乘法运算的关系,熟练掌握因式分解是乘法运算的逆运算是解答本题的关键.3.若关于x 的二次三项式x 2﹣3x +k 有一个因式是(x ﹣2),则k 的值是________. 【答案】2【分析】设另一个因式为()x m +,则23()(2)x x k x m x +=+--,再根据多项式乘多项式法则计算()(2)x m x +-,然后比较系数即可得.【解答】解:设另一个因式为()x m +,则23()(2)x x k x m x +=+--,2()(2)(2)2x m x x m x m +-=+--,22(2)23x m x m x x k ∴+---=+,23m ∴-=-,2k m =-,解得1m =-,将1m =-代入2k m =-得:2k =,故答案为:2.【点评】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式法则是解题关键.4.阅读材料:若3222(x x x m m +-+为常数)有一个因式为()1x -,则如何因式分解3222x x x m +-+? 解:因为3222x x x m +-+有一个因式为()1x -,所以当10x -=时,32220x x x m +-+=,于是把1x =代入32220x x x m +-+=得1220m +-+=,解得1m =-,原代数式变为32221x x x +--,接着可以通过列竖式做多项式除法的方式求出其它因式,如图所示,则因式分解()()322221131x x x x x x +--=-++若3242(x x mx m +++为常数)有一个因式为()2x +,则因式分解3242x x mx +++=______. 【答案】()()221x x ++【分析】根据题意,因为3242x x mx +++有一个因式为()2x +,仿照例题通过列竖式做多项式除法的方式求出其它因式.【解答】解:因为3242x x mx +++有一个因式为()2x +,所以当20x +=时,32420x x mx +++=,于是把2x =-代入32420x x mx +++=得816220m -+-+=,解得5m =,原代数式变为32452x x x +++,接着可以通过列竖式做多项式除法的方式求出其它因式,如图所示,则因式分解()()322452221x x x x x x +++=+++ 2323222+212452225224220x x x x x x x x x x x xx x +++++++++++∴因式分解()()2324221x x mx x x +++=++,故答案为:()()221x x ++.【点评】本题考查了因式分解,掌握列竖式做多项式除法是解题的关键.例题:已知二次三项式24x x m -+有一个因式是(3)x +,求另一个因式以及m 的值.解:设另一个因式为()x n +,得24(3)()x x m x x n -+=++ 则224(3)3x x m x n x n -+=+++∴343n m n +=-⎧⎨=⎩. 解得:7n =-,21m =-∴另一个因式为(7)x -,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式223x x k +-有一个因式是(25)x -,求另一个因式以及k 的值. 【答案】另一个因式为(4)x +,k 的值为20【分析】根据题目中给出的方法进行计算即可.【解答】解:设另一个因式为()x a +,得:223(25)()x x k x x a +-=-+,则22232(25)5x x k x a x a +-=+--∴2535a a k -=⎧⎨-=-⎩. 解得:4a =,20k =.∴另一个因式为(4)x +,k 的值为20.【点评】本题主要考查了多项式乘多项式的应用,二元一次方程组的应用,解题的关键是理解题意,准确进行计算.6.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解31x -.因为31x -为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜想31x -可以分解成()()3211x x x ax b -=-++,展开等式右边得:()()321x a x b a x b +-+--,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:10a -=,0b a -=,1b -=-,可以求出1a =,1b =.所以()()32111x x x x -=-++ (1)若x 取任意值,等式()222333x x x a x ++=+-+恒成立,则=a ______;(2)已知多项式421x x ++有因式21x x ++,请用待定系数法求出该多项式的另一因式.(3)请判断多项式421x x -+是否能分解成两个整系数二次多项式的乘积,并说明理由.【答案】(1)1(2)多项式的另一因式是21x x -+;(3)不能,理由见解析【分析】(1)直接对比系数得出答案即可;(2)设()()4222111x x x ax x x ++=++++,进一步展开对比系数得出答案即可;(3)设()()4222111x x x ax x bx -+=++++,进一步展开对比系数,系数有解则能分解成的两个整系数二次多项式的乘积,否则不能.【解答】(1)解:∵()222333x x x a x ++=+-+,∴32a -=,7.因为5661x x x x +-=+-,这说明多项式256x x +-有一个因式为1x -,我们把1x =代入此多项式,发现1x =能使多项式256x x +-的值为0.利用上述阅读材料,回答下列问题:(1)若2x 是多项式28x kx ++的一个因式,求k 的值;(2)若(3)x -和(5)x +是多项式3215x mx x n +-+的两个因式,求m ,n 的值.(3)在(2)的条件下,把多项式3215x mx x n +-+因式分解.【答案】(1)6-(2)m 、n 的值分别为2和0(3)()()35x x x -+【分析】(1)由已知条件可知,当2x =时,280x kx ++=,将x 的值代入即可求得;(2)由题意可知,3x =和5x =-时,32150x mx x n +-+=,由此得二元一次方程组,从而可求得m 和n 的值;(3)将(2)中m 和n 的值代入3215x mx x n +-+,提取公因式x ,则由题意知()3x -和()5+x 也是所给多项式的因式,从而问题得解.【解答】(1)∵2x 是多项式28x kx ++的一个因式.∴2x =时,280x kx ++=.∴4280k ++=.∴212k =-∴k 的值为6-.(2)(3)x -和(5)x +是多项式32x mx 15x n +-+的两个因式∴3x =和5x =-时32150x mx x n +-+=∴27945012525750m n m n +-+=⎧⎨-+++=⎩. 解得20m n =⎧⎨=⎩∴m 、n 的值分别为2和0.(3)∵2,0m n ==,∴3215x mx x n +-+可化为:32215x x x +-.∴32215x x x +-()2215x x x =+- ()()35x x x =-+.【点评】本题考查了因式分解的应用,根据阅读材料仿做,是解答本题的关键.8.因为2(2)(1)2x x x x +-=+-,所以2(2)(1)2x x x x +-÷-=+,这说明22x x +-能被1x -整除,同时也说明多项式22x x +-有一个因式为1x -,另外当1x =时,多项式22x x +-的值为0.利用上述阅读材料求解:(1)已知2x 能整除216x kx +-,求k 的值;(2)已知(2)(1)x x +-能整除432247x x ax x b -+++,试求a 、b 的值. 【答案】(1)6k =(2)15,10a b =-=【分析】(1)当2x =时,多项式2160x kx +-=,代入计算即可.(2)当2x =-时,多项式4322470x x ax x b -+++=,当1x =时,多项式4322470x x ax x b -+++=,代入转化为方程组计算即可.【解答】(1)因为2x 能整除216x kx +-,所以当2x =时,多项式2160x kx +-=,所以42160k +-=,解得6k =.(2)因为(2)(1)x x +-能整除432247x x ax x b -+++,所以当2x =-时,多项式4322470x x ax x b -+++=,当1x =时,多项式4322470x x ax x b -+++=,所以5450a b a b +=-⎧⎨+=-⎩, 解得1510a b =-⎧⎨=⎩,所以15,10a b =-=.【点评】本题考查了整除的意义,方程组的解法,熟练掌握整除的意义是解题的关键.9.如果多项式23x x m -+分解因式的结果为23(2)()x x m x x n -+=-+,则当20x -=时可得230x x m -+=,此时可把2x =代入230x x m -+=中得出2m =.利用上述阅读材料解答以下两个问题:(1)若多项式28x kx +-有一个因式为2x ,求k 的值;(2)若2x +,1x -是多项式3227x ax x b +++的两个因式,求a 、b 的值. 【答案】(1)2k =(2)13a =,22b =-【分析】(1)把2x =代入28x kx +-得到4280k +-=,求得k 的值即可;(2)分别将2x =-和1x =代入3227x ax x b +++得到有关a 、b 的方程组求得a 、b 的值即可.(1)解:令20x -=,即当2x =时,得:4280k +-=,解得:2k =.∴k 的值为2.(2)令20x +=,即当2x =-时,得:164140a b -+-+=①,令10x -=,即当1x =时,得:270a b +++=②,由①,②得:13a =,22b =-.∴a 的值为13,b 的值为22-.【点评】本题考查因式分解的意义,一元一次方程,二元一次方程组.解题的关键是熟悉因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式.10.阅读理解:例题:已知二次三项式24x x m -+有一个因式是(3)x +,求另一个因式以及m 的值.解:设另一个因式为()x n +,得24(3)()x x m x x n -+=++,∵22(3)()()3()33(3)3x x n x x n x n x nx x n x n x n ++=+++=+++=+++,∴224(3)3x x m x n x n -+=+++,∴由等式恒等原理可知:34n +=- ①,3m n = ②,由①②解得:7,21n m =-=-,∴另一个因式为(7)x -,m 的值为21-.活学活用:(1)若24(3)()x x m x x n +-=-+,则mn =_________;(2)若二次三项式226x ax +-有一个因式是(23)x -,求另一个因式. 【答案】(1)147(2)另一个因式为()2x +【分析】(1)按多项式乘以多项式展开,再根据等式恒等原理即可得到关于m 、n 的二元一次方程组,解方程即可求解;(2)设另一个因式为()x b +,再根据(1)的方法即可求解.(1)∵24(3)()x x m x x n +-=-+,∴22(3)()()3()33(3)3x x n x x n x n x nx x n x n x n -+=+-+=+--=+--,∴224(3)3x x m x n x n +-=+--,∴由等式恒等原理可知:①式为:34n -=,②式为:3m n -=-,由①②解得:7n =,21m =,∴721147mn =⨯=;故答案为:147;(2)设另一个因式为()x b +,得226(23)()x ax x x b +-=-+,∵22(23)()2()3()22332(23)3x x b x x b x b x bx x b x b x b -+=+-+=+--=+--,∴22262(23)3x ax x b x b +-=+--,∴由等式恒等原理可知:①式为:36b -=-,②式为:23a b =-,由①②解得:b =2,a =1,∴另一个因式为()2x +.【点评】本题主要考查了已知因式分解的结果求解参数以及多项式乘以多项式的知识,运用等式恒等原理是解答本题的关键.11.阅读下列材料,然后解答问题:问题:分解因式:3245x x +-.解答:把1x =代入多项式3245x x +-,发现此多项式的值为0,由此确定多项式3245x x +-中有因式()1x -,于是可设()()322451x x x x mx n +-=-++,分别求出m ,n 的值.再代入()()322451x x x x mx n +-=-++,就容易分解多项式3245x x +-,这种分解因式的方法叫做“试根法”. (1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:3299x x x +--.【答案】(1)5m =,5n =;(2)()()()133x x x ++-【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【解答】解:(1)把1x =带入多项式3245x x +-,发现此多项式的值为0,∴多项式3245x x +-中有因式()1x -,于是可设322451xx x x mx n , 得出:3232451x x x m x n m x n ,∴14m ,0n m ,∴5m =,5n =,(2)把=1x -代入3299x x x +--,多项式的值为0,∴多项式3299x x x +--中有因式()1x +,于是可设322329911x x x x x mx n x m x n m x n ,∴11m +=,9n m,9n =- ∴0m =,9n =-,∴3229133991x x x x x x x x【点评】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.12.阅读下列材料,然后解答问题:分解因式:x 3+3x 2-4.解答:把x =1代入多项式x 3+3x 2-4,发现此多项式的值为0,由此确定多项式x 3+3x 2-4中有因式(x -1),于是可设x 3+3x 2-4=(x -1)(x 2+mx +n ),分别求出m ,n 的值,再代入x 3+3x 2-4=(x -1)(x 2+mx +n ),就容易分解多项式x 3+3x 2-4.这种分解因式的方法叫“试根法”.(1)求上述式子中m ,n 的值;(2)请你用“试根法”分解因式:x 3+x 2-16x -16.【答案】(1)m=4,n=4;(2)(x +1)(x +4)(x -4).【分析】(1)先找出一个x 的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【解答】(1)原式=(x -1)(x 2+mx +n)=x 3+mx 2+nx -x 2-mx -n=x 3+(m -1)x 2+(n -m)x -n ,根据题意得13{04mn mn-=-=-=-解得=4{=4mn;(2)把x=-1代入,发现多项式的值为0,∴多项式x3+x2-16x-16中有因式(x+1),于是可设x3+x2-16x-16=(x+1)(x2+mx+n),可化为x3+mx2+nx+x2+mx+n=x3+(m+1)x2+(m+n)x+n,可得11{1616mm nn+=+=-=-,解得=0{=16mn-∴x3+x2-16x-16=(x+1)(x2-16)=(x+1)(x+4)(x-4).【点评】此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.13.阅读以下内容解答下列问题.七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题:(1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是.(2)对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),【注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)】,于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解,这种因式分解的方法叫“试根法”.①求式子中m、n的值;②用“试根法”分解多项式x3+5x2+8x+4.【答案】(1)降次;(2)①m=﹣3,n=﹣5;②(x+1)(x+2)2.【分析】(1)根据材料回答即可;(2)①分别令x=0和x=1即可得到关于m和n的方程,即可求出m和n的值;②把x=﹣1代入x3+5x2+8x+4,得出多项式含有因式(x+1),再利用①中方法解出a和b,即可代入原式进行分解.【解答】解:(1)根据因式分解的定义可知:因式分解的作用也可以看做是降次,故答案为:降次;(2)①在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,令x=0,可得:102n=-,解得:n=-5,令x=1,可得:()15110=1m n -++-++,解得:m=﹣3,故答案为:m =﹣3,n =﹣5;②把x =﹣1代入x 3+5x 2+8x+4,得x 3+5x 2+8x+4=0,则多项式x 3+5x 2+8x+4可分解为(x+1)(x 2+ax+b )的形式,同①方法可得:a =4,b =4,所以x 3+5x 2+8x+4=(x+1)(x 2+4x+4),=(x+1)(x+2)2.【点评】本题考查了因式分解,二元一次方程组的应用,解题的关键是读懂材料中的意思,利用所学知识进行解答.14.阅读下列材料:对于多项式22x x +-,如果我们把1x =代入此多项式,发现22x x +-的值为0,这时可以确定多项式中有因式(1)x -:同理,可以确定多项式中有另一个因式(2)x +,于是我们可以得到:22(1)(2)x x x x +-=-+.又如:对于多项式2232x x --,发现当2x =时,2232x x --的值为0,则多项式2232x x --有一个因式(2)x -,我们可以设2232(2)()x x x mx n --=-+,解得2m =,1n =,于是我们可以得到:2232(2)(21)x x x x --=-+.请你根据以上材料,解答以下问题:(1)当x = 时,多项式265x x --的值为0,所以多项式265x x --有因式 ,从而因式分解265x x --= .(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2253x x ++;②376x x -+.(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式333(2)(2)()x y x y -----有因式 , , ,所以分解因式333(2)(2)()x y x y -----= . 【答案】(1)1;1x -,(1)(65)x x -+;(2)①2253(1)(23)x x x x ++=++②376(1)(2)(3)x x x x x -+=--+;(3)2,2,x y x y ---,333(2)(2)()3(2)(2)()x y x y x y x y -----=--- 【分析】(1)当x=1是,多项式265x x --的值为0,所以可设265(1)()x x x mx n --=-+,然后求解得到m ,n 的值即可;(2)①把x=﹣1代入2253x x ++,得到的值为0,则可设2253(1)()x x x mx n ++=++,然后根据题意求解m ,n 的值即可;②同理①利用试根法进行求解即可;(3)当x=2或y=2或x=y 时都可得式子333(2)(2)()x y x y -----=0,根据题意可得其有因式2,2,x y x y ---,然后将代数式333(2)(2)()x y x y -----去括号化简,将(2)(2)()x y x y ---也去括号化简即可得到其关系.【解答】(1)当x=1是,多项式265x x --=0,则()22(1)()65x mx n mx m n x n x x -+=---=--,解得m=6,n=5,∴265(1)(65)x x x x --=-+;(2)①当x=﹣1时,多项式2253x x ++=0,则()()()22315x mx n mx m n x x x n ++=+++=++,解得m=2,n=3,∴2253(1)(23)x x x x ++=++;②当x=1或2时,多项式376x x -+=0,则()()323(1)(2)()323276x x mx n mx m n x m n x n x x --+=--+-+=-+,解得m=1,n=3,∴376(1)(2)(3)x x x x x -+=--+;(3)由题意可得当x=2或y=2或x=y 时,多项式333(2)(2)()x y x y -----=0,则333(2)(2)()x y x y -----有因式2,2,x y x y ---,∵22222333(2)(2)(666)633x x y y x y xy x y x y =-++--------,22222(2)(2)(22)22x x y y x y x y x x y y +---=---+-,∴333(2)(2)()3(2)(2)()x y x y x y x y -----=---.【点评】本题主要考查因式分解的拓展,解此题的关键在于熟练掌握其知识点,准确理解题意找到试根法的运算技巧.15.阅读:把多项式2310x x --分解因式得()()231052x x x x --=-+,由此对于方程23100x x --=可以变形为()()520x x -+=,解得5x =或2x =-.观察多项式2310x x --的因式()5x -、()2x +,与方程23100x x --=的解5x =或2x =-之间的关系.可以发现,如果5x =、2x =-是方程23100x x --=的解,那么()5x -、()2x +是多项式2310x x --的因式.这样,若要把一个多项式分解因式,可以通过其对应方程的解来确定其中的因式.例如:对于多项式332x x -+.观察可知,当1x =时,3320x x -+=.则()3321x x x A -+=-,其中A 为整式,即()1x -是多项式332x x -+的一个因式.若要确定整式A ,则可用竖式除法:∴()()()()()()()232321211212x x x x x x x x x x -+=-+-=--+=-+. 填空:(1)分解因式:22x x +-=______;(2)观察可知,当x =______时,3230x x x ++-=,可得______是多项式323x x x ++-的一个因式. 分解因式:323x x x ++-=______.(3)已知:()361x mx x B +-=+,其中B 为整式,则分解因式:36x mx +-=______. 【答案】(1)(2)(1)x x +-(2)1;(1)x -;2(1)(23)x x x -++(3)(1)(2)(3)x x x ++-【分析】(1)通过得出方程的根,即可求解;(2)通过对竖式除法的掌握,进行计算即可得到;(3)通过对竖式除法的掌握,进行计算即可得到.【解答】(1)解:22(2)(1)x x x x +-=+-,故答案为:(2)(1)x x +-;(2)解:当1x =时,3230x x x ++-=,可得(1)x -是多项式323x x x ++-的一个因式,通过竖式除法得:3223(1)(23)x x x x x x ++-=-++,故答案为:1;(1)x -;2(1)(23)x x x -++.(3)解:36(1)x mx x B +-=+,361x mx B x +-=+为整式, 通过竖式除法得:26B x x =--,326(1)(6)(1)(2)(3)x mx x x x x x x +-=+--=++-,故答案为:(1)(2)(3)x x x ++-.【点评】本题考查了因式分解,解题的关键是掌握通竖式除法的运算法则,进行计算即可得到.0,这时可以断定多项式中有因式(x ﹣2),于是我们可以把多项式写成:x 3﹣5x 2+11x ﹣10=(x ﹣2)(x 2+mx +n ),以上这种因式分解的方法叫试根法.(1)求式子中m 、n 的值;(2)用试根法对多项式x 3﹣5x 2+3x +9进行因式分解. 【答案】(1)3,5m n =-=;(2)2(1)(3)x x +-【分析】(1)把2(2)()x x mx n -++由多项式乘以多项式展开,与3251110x x x -+-对应相等即可得出答案;(2)把=1x -代入32539x x x -++中得325390x x x -++=,故可把32539x x x -++写成322539(1)()x x x x x ax b -++=+++,同(1)解出a 、b 的值,代入即可进行因式分解.【解答】(1)2322(2)()222x x mx n x mx nx x mx n -++=++---, 32(2)(2)2x m x n m x n =+-+--,3232(2)(2)251110x m x n m x n x x x ∴+-+--=-+-,25211210m n m n -=-⎧⎪∴-=⎨⎪-=-⎩,解得:35m n =-⎧⎨=⎩; (2)把=1x -代入32539x x x -++中得:325390x x x -++=, 322539(1)()x x x x x ax b ∴-++=+++,232(1)()(1)()x x ax b x a x a b x b +++=+++++,3232(1)()539x a x a b x b x x x ∴+++++=-++,1539a a b b +=-⎧⎪∴+=⎨⎪=⎩,解得:69a b =-⎧⎨=⎩, 3222539(1)(69)(1)(3)x x x x x x x x ∴-++=+-+=+-.【点评】本题考查因式分解,掌握试根法的定义是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练 习
1、分解因式
(1) bc ac ab a -+-2
(2) 1+--y x xy (3) y y x x 392
2--- (4) yz z y x 22
2
2
---
2、分解因式 1) 3223y xy y x x --+
2) b a ax bx bx ax -+-+-22 3) 181696222-+-++a a y xy x
4) a b b ab a 4912622-++- 5)
92234-+-a a a
6) y b x b y a x a 222244+-- 7) 222y yz xz xy x ++--
8) 122222++-+-ab b b a a 9)
)1)(1()2(+---m m y y
10) )2())((a b b c a c a -+-+
3、分解因式 1) 24142
++x x 2) 36152+-a a 3) 542-+x x 4) 22-+x x 5) 1522--y y
6)
24
102--x x
4、分解因式: 1) 6752-+x x 2)
2732+-x x
3) 317102
+-x x 4) 10
1162
++-y y 5、应用因式分解计算 (1)2
998998016++ (2)987987987987
1232644565251368136813681368

+⨯+⨯+⨯
6、已知2
(1)()1a a a b ---=-,求
22
2
a b ab +-的值。

思考题:
1、设n 为整数,用因式分解说明2
(21)25n +-能被4整除。

2、在六位数abcdef 中,a=d, b=e, c=f, 求证这个六位数必能被7、11、13整除。

1、在方程组⎩⎨⎧+==-1312z y y x 、⎩⎨⎧=-=132x y x 、⎩⎨⎧=-=+530y x y x 、⎩⎨⎧=+=321y x xy 、 ⎪⎩⎪⎨⎧=+=+1
1
1
1y x y x 、⎩⎨⎧==11y x 中,是二元一次
方程组的有( )
A 、2个
B 、3个
C 、4个
D 、5个 2、如果x y y x
b a b
a 2427
773-+-和是同类项,则x 、y 的值是( )
A 、x =-3,y =2
B 、x =2,y =-3
C 、x =-2,y =3
D 、x =3,y =-2
3、已知⎩⎨⎧-=-=23y x 是方程组⎩
⎨⎧=-=+21
by cx cy ax 的解,则a 、b 间的关系是( )
A 、194=-a b
B 、123=+b a
C 、194-=-a b
D 、149=+b a 4、若二元一次方程73=-y x ,132=+y x ,9-=kx y 有公共解,则k 的取值为( )
A 、3
B 、-3
C 、-4
D 、4 5、若二元一次方程123=-y x 有正整数解,则x 的取值应为( )
A 、正奇数
B 、正偶数
C 、正奇数或正偶数
D 、0
6、⎩⎨⎧=-=+1392x y y x 12、⎪⎩⎪⎨⎧=---=+121334
3144y x y x
7、一张方桌由1个桌面,4条腿组成.如果1立方米木料可以做方桌的桌面5个或做桌腿30条,现在有25立方米木料,那么用多少木料做桌面,多少木料做桌腿,做出的桌面和桌腿恰好能配成方桌?能配成多少张方桌?
8、一组同学去种树,如果每人种4棵,还剩下3棵树苗:如果每人种5棵,则少5棵,求人数与树苗数。

9、地面上空h (M )处的气温S 有以下关系:t=-kh+s ,现用气象气球侧地200M 处的气温t 为8.4℃,离地面500M 处气温t 为6℃。

求K 。

s 的值并计算离地面1500M 的气温
10、马4匹,牛六头,共价48两,马3匹,牛五头,共价38两。

求马,牛单价。

相关文档
最新文档