2021年新人教版七年级下数学期中试卷及答案
2020-2021学年人教版七年级数学下册期中测试卷(含答案)
七年级数学试卷- 1 -(共4页)2020-2021学年度第二学期七年级期中质量检测数 学 试 卷一、选择题(共10小题,每小题4分,满分40分,每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.9的平方根是A .9B .±9C .±3D .3 2.如图,∠1,∠2是对顶角的是3.在实数5 , 56 ,3-8 ,3.14, π 3 , 36 ,0.1010010001…中,无理数有A .2个B .3个C .4个D .5个 4.将一块直角三角板与长方形纸条如图放置.若∠1=60°,则∠2的度数为 A .30° B .45° C . 50° D . 60° 5.如图,数轴上表示实数 5 的点可能是 A .点A B .点B C .点C D .点D6.下列命题是真命题的是A .相等角是对顶角B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥cC .内错角相等D .如果a ∥b ,b ∥c ,则a ∥c12A21B D 2 121 第4题 —2 —1 0123 45 6 第5题21C七年级数学试卷- 2 -(共4页)7.如图所示,下列推理不正确的是 A .若∠1=∠B ,则BC ∥DE B .若∠2=∠ADE ,则AD ∥CE C .若∠A +∠ADC =180°,则AB ∥CD D .若∠B +∠BCD =180°,则BC ∥DE8.如果方程x —y =3与下面的方程组成的方程组的解为 ,那么这一个方程可以是A .2(x —y )=6yB .3x —4y =16C . 1 4 x +2y =5D . 12x +3y =89.某运输队接到给武汉运输物资的任务,该队有A 型卡车和B 型卡车,A 型卡车每次可运输6t 物资,每天可来回6次,B 型卡车每次可运输10t 物资,每天可来回4次,若每天派出20辆卡车,刚好运输860t 物资,设该运输队每天派出A 型卡车x 辆,B 型卡车y 辆,则所列方程组正确的是10.若有3 x + 3y =0,则x 和y 的关系是A . x =y =0B . x -y =0C . xy =1D . x+y =0二、填空题(共6小题,每小题4分,满分24分,请将答案填写在答题卡相应位置)11.计算: 64 = ;3- 18 = .12.已知x =1,y =-8是方程3ax -y =-1的解,则a 的 值为 .13.如图,为了把河中的水引到A 处,可过点A 作AB ⊥CD 于B ,然后沿AB 开渠,这样做可使所开的渠道最短,这种设计的依据是 .14.把命题改写成“如果……,那么……”的形式:两直线平行,同位角相等. .15.已知∠α与∠β互补,且∠α与∠β的差是70°,则∠α= ,∠β= .小河A B CD第13题x + y =20 6•6x + 4•10y =860 B.6x +4 y =20 6x + 10y =860 A. x + y =20 6x + 10y =860C.6x + 4y =20 6•6x + 4•10y =860D. ABE C D 321 第7题x =4y =1七年级数学试卷- 3 -(共4页)16.一束光线照射到平面镜AB 上,然后在平面镜 AB 和CD 之间来回反射,这时光线的入射角等于反射角, 即∠1=∠2,∠3=∠4,∠5=∠6. 若已知∠1=50°, ∠6=65°,那么∠3的度数为 . 三、解答题(共9小题,满分86分)17.(每小题4分,共8分)计算:(1)|5 -7 |+5 ; (2)0.09 + 3-8- 1 418.(本题6分)解下列方程组:19.(本题8分)某小组去看电影,甲种票每张24元,乙种票每张20元.如果40人购票恰好用去920元,甲乙两种票各买了多少张?20.(本题8分)完成下列证明:已知CD ⊥AB ,FG ⊥AB ,垂足分别为D 、F ,且∠1=∠2,求证DE ∥BC . 证明:∵ AB ⊥CD ,FG ⊥AB (已知),∴∠BDC =∠BFG =90°() ∴CD ∥GF ( ) ∴∠2=∠3( ) 又∵∠1=∠2(已知) ∴∠1=∠3 (等量代换)∴DE ∥BC ( )21.(本题10分)已知4a + 7的立方根是3,2a + 2b + 2的算术平方根是4. (1)求a ,b 的值;(2)求6a + 3b 的平方根.22.(本题10分)如图,已知AC ⊥BC 于点C ,∠DAB =70°,AC 平分∠DAB ,∠DCA =35°.求∠B 的度数.2x +3y =4 3x -2y =-7ABC D EFG12 3第20题ABCD第22题第16题七年级数学试卷- 4 -(共4页)23.(本题10分)某电器超市销售每台进价分别为2000元、1700元A 、B 两种型号的空调,如表是近两周的销售情况:(1)求A 、B 两种型号的空调的销售单价; (2)求近两周的销售利润.24.(本题12分)先阅读下面材料,再解答问题:材料:已知a ,b 是有理数,并且满足等式5- 7 a = 2b + 23 7 -a ,求a ,b 的值. 解:∵ 5- 7 a =2b + 23 7 -a ∴ 5- 7 a =(2b -a )+ 23 7 ∵ a ,b 是有理数∴ 解得问题:(1)已知a ,b 是有理数,a+ 3 2 =5 + 2 b ,则a = ,b = . (2)已知x ,y 是有理数,并且满足等式7x -9+ 2 x =-5y + 2 y + 3 2 ,求x ,y 的值.25.(本题14分)如图1,AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B ,过B 作BD ⊥CN ,垂足为D .(1)求证:∠BAM =∠CBD ;(2)如图2,分别作∠CBD 、∠ABD 的平分线交DN 于E 、F ,连接AF ,若∠CBF = 5 4∠CBE ,①求∠CBE 的度数; ②求证:∠CBF =∠CFB.2b -a =5 -a = 23a =- 23 b = 13 6 第25题图1ABCD MN 图2ABCD E FMN七年级数学试卷- 5 -(共4页)数学参考答案及评分细则一、选择题(有10小题,每小题4分,共40分)1. C2. C3. B4.A5. A6. D7. D8. A9. B 10. D 二、填空题(每小题4分,共24分)11. 8 - 1212. -3 13. 垂线段最短14. 如果两条直线互相平行,那么这两条直线被第三条直线所截形成的同位角相等. (注:“如果两条直线平行,那么同位角相等”也给分) 15. 125° 55° 16. 57.5°三、解答题(有9道题,共86分)17.(1)解:原式= 7 - 5 +5 …………………………………………2分= 7 +(- 5 +5 )=7 ………………………………………………………………4分(2)解:原式=0.3 +(-2)- 12……………………………………………3分=-115…………………………………………………………4分 18. 解:将①×3得……………………………………………………………1分②×2得………………………………………………………2分 将③-④得 13y =26y =2 ……………………………………………………………………3分将y =2 代入①中,得2x +3×2=4 ………………………………………………………………4分 x =1 ………………………………………………………………5分 ∴ 这个方程组的解是 ………………………………………………6分19. 解:设甲种票买了x 张,乙种票买了y 张,依题意可得 ………………………1分………………………………………………………5分解得…………………………………………………………7分答:甲种票买了30张,乙种票买了10张.…………………………………8分20.证明:∵AB⊥CD,FG⊥AB(已知),∴∠BDC=∠BFG=90°(垂直的定义)∴CD∥GF (同位角相等,两直线平行)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3 (等量代换)∴DE∥BC (内错角相等,两直线平行)(注:每空2分)21. 解:(1)∵4a + 7的立方根是3,2a + 2b + 2的算术平方根是4∴4a + 7=27,2a + 2b + 2=16 …………………………………………4分∴a=5,b=2 ……………………………………………………………6分(2)由(1)知a=5,b=2∴6a + 3b=6×5+3×2=36 ……………………………………………8分∴6a + 3b的平方根为±6 ………………………………………………10分22.解:∵∠DAB=70°,AC平分∠DAB∴∠DAC=∠BAC=35°……………………………………………………1分又∵∠DCA=35°∴∠DCA=∠BAC ……………………………………………………3分∴DC//AB ……………………………………………………………5分∴∠DCB+∠B=180°……………………………………………………6分又∵AC⊥BC∴∠ACB=90°……………………………………………………………7分∴∠DCB=∠DCA+∠ACB=125°………………………………………8分∴∠B=180°-∠DCB=55°………………………………………………10分23. 解:(1)设A型号空调的销售单价为x元,B型号空调的销售单价为y元,七年级数学试卷- 6 -(共4页)依题意可得………………………………………………………………1分…………………………………………………5分解得………………………………………………6分答:A型号空调的销售单价为2500元,B型号空调的销售单价为2100元.……7分(2)由(1)题知A型号空调的销售单价为2500元,B型号空调的销售单价为2100元,则销售总利润为(2500-2000)(4+5)+(2100-1700)(5+10)…………………………8分=4500+6000=10500(元)………………………………………………………………9分答:近两周的销售利润为10500元. ………………………………………10分24.解:(1)a=5 ,b=3;………………………………………………………………4分(2)∵7x-9+ 2 x=-5y + 2 y + 3 2∴7x-9+ 2 x=-5y + 2(y + 3)………………………………6分∵a,b是有理数∴……………………………………………………10分解得……………………………………………………12分25. 解:(1)过点B作BG//AM ………………………………………………………1分∴∠BAM=∠ABG ……………………………………………………2分∵AB⊥BC∴∠ABG=90°-∠CBG∴∠BAM=90°-∠CBG ……………………3分∵BG//AM,AM//CN∴BG//CN∵BD⊥CN∴∠DBG=90°=∠D∴∠CBD=90°-∠CBG ………………………………………………4分七年级数学试卷- 7 -(共4页)七年级数学试卷- 8 -(共4页)∴ ∠BAM =∠CBD ………………………………………………5分(2)如图2,∵ BE 为∠CBD 的平分线∴ ∠DBE =∠CBE …………………6分 设∠DBE =∠CBE =x ,则∠BAM =2x , ∠CBF = 54 x ……………………8分①∵ BF 为∠ABD 的平分线 ∴ ∠ABF =∠DBF = 134x∴ ∠ABC = 13 4 x + 5 4 x = 184 x …………………………………………9分∵ AB ⊥BC∴ ∠ABC =90°,即 184 x =90° ………………………………………10分∴ x =20°,即∠CBE =20° …………………………………………11分 ②∵ BG //AM ,AM //CN ∴ ∠ABG =∠BAM ,BG //CN ∴ ∠CFB =∠FBG∴ ∠CFB +∠BAM =∠FBG +∠ABG即∠CFB +∠BAM =∠ABF …………………………………………12分 ∴ ∠CFB =∠ABF -∠BAM = 13 4 x - 2x = 54 x ……………………13分∴ ∠CBF =∠CFB ……………………………………14分七年级数学试卷- 9 -(共4页)。
2020-2021学年度七年级下学期期中考试数学试卷(含答案)
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。
新版人教版七年级下学期数学期中考试试题(共4套)(2021年)
新版人教版七年级下学期数学期中考试试题(共4套)(2021年)人教版七年级下学期期中考试数学试卷(新人教版)一、选择题:(共 12 小题,每小题 2 分,共 24 分)1、 4 的算术平方根值等于()A.2 B.-2 C.±2 D. 2数学 2、一个自然数 a 的算术平方根为 x,则 a+1 的立方根是()A. 3 x 1 B. 3 (x 1)2C. 3 a2 1 D. 3 x2 13、如图所示,点 E 在AC 的延长线上,下列条件中能.判.断.AB// CD ()A. 3 4B. 1 2C. D DCED. D ACD 1804、如图,AD∥BC,∠B=30°,DB 平分∠ADE,则∠DEC 的度数为()2020-2021 A.30° B.60° C.90°BD13D.120°24ACE第 3 题图第 4 题图第 7 题图七年级下册 5、A(―4,―5),B(―6,―5),则 AB 等于(A、4B、2C、56、由点 A(―5,3)到点 B(3,―5)可以看作() D、3 )平移得到的。
A、先向右平移 8 个单位,再向上平移 8 个单位B、先向左平移 8 个单位,再向下平移 8 个单位C、先向右平移 8 个单位,再向下平移 8 个单位D、先向左平移 2 个单位,再向上平移 2 个单位7、如图,已知AB ∥ CD ,直线 MN 分别交 AB 、CD 于点 M 、N , NG 平分 MND ,若1 70 °,练习题试卷则2的度数为()A、10°B、15°C、20°D、35°8、一辆车在笔直的公路上行驶,两次拐弯后,仍在平行原来的方向上前进,那么两次拐弯是()A、第一次右拐50°,第二次左拐130°B、第一次左拐50°,第二次右拐50°C、第一次左拐50°,第二次左拐130°D、第一次右拐50°,第二次右拐50°9、下列命题中,真命题的个数有()教案人教版七年级数学下册1① 同一平面内,两条直线一定互相平行;② 有一条公共边的角叫邻补角;人教版③ 内错角相等。
最新人教版2021-2022年七年级下期中数学试卷(含答案解析)
七年级(下)期中(qī zhōnɡ)数学试卷一、选择题(每小题3分,共30分)1.(3分)下列(xiàliè)各图中,∠1与∠2是对顶角的是()A. B.C.D.2.(3分)如图,下列条件中,不能判断(pànduàn)直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°3.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°4.(3分)在实数(shìshù)﹣,0.,,π,中,无理数的个数是()A.1 B.2 C.3 D.45.(3分)的平方根是()A.2 B.4 C.﹣2或2 D.﹣4或46.(3分)在平面(píngmiàn)直角坐标系中,点P(﹣3,5)所在的象限是()A.第一(dìyī)象限B.第二象限 C.第三象限 D.第四象限7.(3分)已知坐标平面(píngmiàn)内点M(a,b)在第三象限,那么点N (b,﹣a)在()A.第一象限(xiàngxiàn) B.第二象限 C.第三象限 D.第四象限8.(3分)已知x=3﹣k,y=k+2,则y与x的关系(guān xì)是()A.x+y=5 B.x+y=1 C.x﹣y=1 D.y=x+19.(3分)若方程组的解x和y的值相等,则k的值为()A.4 B.11 C.10 D.1210.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题(每小题3分,共18分)11.(3分)把“对顶角相等”改写成“如果…那么…”的形式是:.12.(3分)点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;13.(3分)若+(n﹣2)2=0,则m=,n=.14.(3分)直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,那么O′点对应的数是.15.(3分)已知方程组的解也是方程(fāngchéng)3x﹣2y=0的解,则k=.16.(3分)已知点P(3,﹣1)关于(guānyú)y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.三.解答(jiědá)题(共72分)17.(8分)计算题(1)+﹣+(2)﹣﹣++18.(9分)如图,已知单位(dānwèi)长度为1的方格中有个△ABC.(1)请画出△ABC向上(xiàngshàng)平移3格再向右平移2格所得△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、B′的坐标;(3)求出△ABC面积.19.(7分)如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.20.(4分)用适当方法(代入法或加减法)解下列方程组.(1)(2)21.(9分)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线(lùxiàn)移动(即:沿着长方形移动一周).(1)写出B点的坐标(zuòbiāo)();(2)当点P移动了4秒时,描出此时(cǐ shí)P点的位置,并写出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位(dānwèi)长度时,求点P 移动的时间.22.(7分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明(shuōmíng):AC∥DF.23.(8分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为,试计算a2022+(﹣b)2022的值.24.(8分)如图1,已知△ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法.证法(zhènɡ fǎ)1:如图1,延长BC到D,过C画CE∥BA.∵BA∥CE(作图2所知(suǒ zhī)),∴∠B=∠1,∠A=∠2(两直线平行(píngxíng),同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角(píngjiǎo)的定义),∴∠A+∠B+∠ACB=180°(等量(děnɡ liànɡ)代换).如图3,过BC上任一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法能证明∠A+∠B+∠C=180°吗?请你试一试.25.(12分)如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(n,0)且a、n满足|a+2|+=0,现同时将点A,B分别向上平移4个单位,再向右平移3个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形OBDC的面积;(2)如图2,若点P是线段BD上的一个动点,连接PC,PO,当点P在BD 上移动时(不与B,D重合)的值是否发生变化,并说明理由.(3)在四边形OBDC内是否存在一点P,连接PO,PB,PC,PD,使S△=S△PBD; S△POB:S△POC=1?若存在这样一点,求出点P的坐标,若不存PCD在,试说明理由.七年级(下)期中(qī zhōnɡ)数学试卷参考答案与试题(shìtí)解析一、选择题(每小题3分,共30分)1.(3分)下列(xiàliè)各图中,∠1与∠2是对顶角的是()A. B.C.D.【分析(fēnxī)】根据(gēnjù)对顶角的定义作出判断即可.【解答】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.故选:C.【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.2.(3分)如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.【解答】解:当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选:B.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.3.(3分)如图AB∥CD,则∠1=()A.75°B.80°C.85°D.95°【分析(fēnxī)】延长(yáncháng)BE交CD于点F,根据平行线的性质求得∠BFD的度数,然后根据(gēnjù)三角形外角的性质即可求解.【解答(jiědá)】解:延长(yáncháng)BE交CD于点F.∵AB∥CD,∴∠B+∠BFD=180°,∴∠BFD=180°﹣∠B=180°﹣120°=60°,∴∠1=∠ECD+∠BFD=25°+60°=85°.故选:C.【点评】本题考查了平行线的性质以及三角形外角的性质,正确作出辅助线是关键.4.(3分)在实数﹣,0.,,π,中,无理数的个数是()A.1 B.2 C.3 D.4【分析】根据无理数是无限不循环小数,可得答案.【解答】解:,π是无理数,故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.5.(3分)的平方根是()A.2 B.4 C.﹣2或2 D.﹣4或4【分析(fēnxī)】先对进行(jìnxíng)化简,可得=4,求的平方根就是求4的平方根,只要求出4的平方根即可,本题(běntí)得以解决.【解答(jiědá)】解:∵,∴的平方根是±2,故选:C.【点评(diǎn pínɡ)】本题考查算术平方根、平方根,解题的关键是先对进行化简,学生有时误认为求16的平方根,这是易错点,要注意.6.(3分)在平面直角坐标系中,点P(﹣3,5)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(﹣3,5)所在的象限是第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)已知坐标平面内点M(a,b)在第三象限,那么点N(b,﹣a)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据第三象限点的横坐标与纵坐标都是负数表示出a、b,再根据各象限内点的坐标特征解答.【解答】解:∵点M(a,b)在第三象限,∴a<0,b<0,∴﹣a>0,∴点N(b,﹣a)在第二象限.故选:B.【点评(diǎn pínɡ)】本题考查了各象限(xiàngxiàn)内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二(dì èr)象限(﹣,+);第三(dì sān)象限(﹣,﹣);第四象限(+,﹣).8.(3分)已知x=3﹣k,y=k+2,则y与x的关系(guān xì)是()A.x+y=5 B.x+y=1 C.x﹣y=1 D.y=x+1【分析】利用x=3﹣k,y=k+2,直接将两式左右相加得出即可.【解答】解:∵x=3﹣k,y=k+2,∴x+y=3﹣k+k+2=5.故选:A.【点评】此题主要考查了等式的基本性质,根据已知将两式左右相加等式仍然成立得出是解题关键.9.(3分)若方程组的解x和y的值相等,则k的值为()A.4 B.11 C.10 D.12【分析】x和y的值相等,把第一个式子中的y换成x,就可求出x与y的值,这两个值代入第二个方程就可得到一个关于k的方程,从而求得k的值.【解答】解:把y=x代入4x+3y=1得:7x=1,解得x=,∴y=x=.把y=x=得: k+(k﹣1)=3,解得:k=11故选:B.【点评】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.10.(3分)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样(zhèyàng)的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,1)B .(2021,0)C .(2021,2)D .(2022,0) 【分析(fēnxī)】设第n 此运动(yùndòng)后点P 运动到P n 点(n 为自然数).根据(gēnjù)题意列出部分P n 点的坐标(zuòbiāo),根据坐标的变化找出变化规律“P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,2)”,依此规律即可得出结论.【解答】解:设第n 此运动后点P 运动到P n 点(n 为自然数). 观察,发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,2),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,2). ∵2021=4×504,∴P 2021(2021,0).故选:B .【点评】本题考查了规律型中的点的坐标,解题的关键是找出变化规律“P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,2)”.本题属于基础题,难度不大,解决该题型题目时,罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题(每小题3分,共18分)11.(3分)把“对顶角相等”改写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【解答(jiědá)】解:∵原命题的条件(tiáojiàn)是:“两个角是对顶角”,结论是:“它们相等”,∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个(liǎnɡ ɡè)角是对顶角,那么它们相等”.故答案(dá àn)为:如果两个角是对顶角,那么它们相等.【点评(diǎn pínɡ)】本题考查了命题的条件和结论的叙述,注意确定一个命题的条件与结论的方法是首先把这个命题写成:“如果…,那么…”的形式.12.(3分)点P(﹣2,3)关于x轴对称点的坐标是(﹣2,﹣3),关于原点对称点的坐标是(2,﹣3),关于y轴的对称点的坐标是(2,3);【分析】利用关于原点对称点的坐标性质以及关于x轴、y轴对称的点的坐标性质分别得出答案.【解答】解:点P(﹣2,3)关于原点的对称点的坐标为:(2,﹣3),关于x轴的对称点的坐标为(﹣2,﹣3),关于y轴的对称点的坐标为(2,3).故答案为:(﹣2,﹣3);(2,﹣3);(2,3).【点评】本题考查了关于原点对称的点的坐标以及关于x轴、y轴对称的点的坐标,熟记对称的点的横坐标与纵坐标关系是解题的关键.13.(3分)若+(n﹣2)2=0,则m=1,n=2.【分析】根据非负数的性质列出方程求出m、n的值即可.【解答】解:由题意得,m﹣1=0,n﹣2=0,解得m=1,n=2.故答案为:1;2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,那么O′点对应的数是π.【分析(fēnxī)】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明(shuōmíng)OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【解答(jiědá)】解:因为(yīn wèi)圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动(gǔndòng)一周OO'=π.【点评】本题主要考查了实数与数轴之间的对应关系,解题需注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.15.(3分)已知方程组的解也是方程3x﹣2y=0的解,则k=﹣5.【分析】由题意,建立关于x,y的二元一次方程组,求得解后,再代入4x﹣3y+k=0的方程而求解的.【解答】解:根据题意,联立方程,运用加减消元法解得,再把解代入方程4x﹣3y+k=0,得k=﹣5.【点评】本题先通过建立二元一次方程组,求得x,y的值后,再代入关于k 的方程而求解的.16.(3分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案(dá àn)为:25.【点评(diǎn pínɡ)】此题主要考查了关于y轴对称点的坐标特点(tèdiǎn),关键是掌握点的坐标的变化规律.三.解答(jiědá)题(共72分)17.(8分)计算题(1)+﹣+(2)﹣﹣++【分析(fēnxī)】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【解答】解:(1)+﹣+=2+0﹣﹣=2;(2)﹣﹣++=﹣3﹣0﹣+0.5+=﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、B′的坐标;(3)求出△ABC面积.【分析(fēnxī)】(1)首先找到A、B、C三点(sān diǎn)的对应点,然后再顺次连接即可;(2)画出坐标(zuòbiāo)系,再写出点的坐标即可;(3)利用正方形的面积(miàn jī)减去周围多余三角形的面积可得答案.【解答(jiědá)】解:(1)如图所示:(2)如图所示:B(1,2),B′(3,5);(3)△ABC面积:3×3﹣1×2×﹣1×3×﹣2×3×=3.5.【点评】此题主要考查了平移作图,关键是正确画出图形,第三问补全后再减去,求解三角形的面积值得同学们参考掌握.19.(7分)如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.【分析】根据一个正数的两个平方根互为相反数,可得出关于a的方程,解出即可.【解答】解:由题意知a+1+2a﹣22=0,解得:a=7,则a+1=8,∴这个(zhè ge)正数为64,∴这个(zhè ge)正数的立方根为4.【点评(diǎn pínɡ)】本题主要考查了平方根的定义和性质,注意掌握一个正数(zhèngshù)的两个平方根互为相反数.20.(4分)用适当(shìdàng)方法(代入法或加减法)解下列方程组.(1)(2)【分析】(1)利用加减消元法求解可得;(2)利用加减消元法求解可得.【解答】解:(1),①+②,得:3x=﹣3,解得:x=﹣1,将x=﹣1代入①,得:﹣1+y=1,解得:y=2,所以方程组的解为;(2),①×3+②×2,得:13x=52,解得:x=4,将x=4代入②,得:8+3y=17,解得:y=3,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(9分)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一(dìyī)象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的路线移动(即:沿着长方形移动一周).(1)写出B点的坐标(zuòbiāo)(4,6);(2)当点P移动了4秒时,描出此时P点的位置(wèi zhi),并写出点P的坐标.(3)在移动过程中,当点P到x轴距离(jùlí)为5个单位长度时,求点P移动的时间.【分析(fēnxī)】(1)根据矩形的性质以及点的坐标的定义写出即可;(2)先求得点P运动的距离,从而可得到点P的坐标;(3)根据矩形的性质以及点到x轴的距离等于纵坐标的长度求出OP,再根据时间=路程÷速度列式计算即可得解.【解答】解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);故答案为:4,6.(2)如图所示,∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)点P到x轴距离为5个单位长度时,点P的纵坐标为5,若点P在OC上,则OP=5,t=5÷2=2.5秒,若点P在AB上,则OP=OC+BC+BP=6+4+(6﹣5)=11,t=11÷2=5.5秒,综上所述,点P移动(yídòng)的时间为2.5秒或5.5秒.【点评(diǎn pínɡ)】本题考查了坐标与图形性质,动点问题,主要利用(lìyòng)了矩形的性质和点的坐标的确定,难点在于(3)要分情况讨论.22.(7分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明(shuōmíng):AC∥DF.【分析(fēnxī)】根据已知条件∠1=∠2及对顶角相等求得同位角∠2=∠3,从而推知两直线DB∥EC,所以同位角∠C=∠ABD;然后由已知条件∠C=∠D 推知内错角∠D=∠ABD,所以两直线AC∥DF.【解答】证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴AC∥DF(内错角相等,两直线平行).【点评(diǎn pínɡ)】本题考查了平行线的判定与性质(xìngzhì).解答此题的关键是注意平行线的性质和判定定理的综合运用.23.(8分)甲、乙两人共同(gòngtóng)解方程组,由于(yóuyú)甲看错了方程①中的a,得到(dé dào)方程组的解为;乙看错了方程②中的b,得到方程组的解为,试计算a2022+(﹣b)2022的值.【分析】将代入方程组的第二个方程,将代入方程组的第一个方程,联立求出a与b的值,代入即可求出所求式子的值.【解答】解:将代入方程组中的4x﹣by=﹣2得:﹣12+b=﹣2,即b=10;将代入方程组中的ax+5y=15得:5a+20=15,即a=﹣1,则a2022+(﹣b)2022=1﹣1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.24.(8分)如图1,已知△ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一平角,依辅助线不同而得多种证法.证法1:如图1,延长BC到D,过C画CE∥BA.∵BA∥CE(作图2所知),∴∠B=∠1,∠A=∠2(两直线平行,同位角、内错角相等).又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).如图3,过BC上任(shàng rèn)一点F,画FH∥AC,FG∥AB,这种添加辅助线的方法(fāngfǎ)能证明∠A+∠B+∠C=180°吗?请你试一试.【分析(fēnxī)】根据(gēnjù)平行线性质得出∠1=∠C,∠3=∠B,∠2+∠AGF=180°,∠A+∠AGF=180°,推出∠2=∠A,即可得出(dé chū)答案.【解答】证明:如图3,∵HF∥AC,∴∠1=∠C,∵GF∥AB,∴∠B=∠3,∵HF∥AC,∴∠2+∠AGF=180°,∵GF∥AH,∴∠A+∠AGF=180°,∴∠2=∠A,∴∠A+∠B+∠C=∠1+∠2+∠3=180°(等量代换).【点评】本题考查了平行线性质的应用,主要考查学生的推理能力.25.(12分)如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(n,0)且a、n满足|a+2|+=0,现同时将点A,B分别向上平移4个单位,再向右平移3个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形OBDC的面积;(2)如图2,若点P是线段BD上的一个动点,连接PC,PO,当点P在BD 上移动时(不与B,D重合)的值是否发生变化,并说明理由.(3)在四边形OBDC内是否存在一点P,连接PO,PB,PC,PD,使S△=S△PBD; S△POB:S△POC=1?若存在这样一点,求出点P的坐标,若不存PCD在,试说明理由.【分析(fēnxī)】(1)根据被开方数和绝对值大于等于0列式求出b和n,从而得到A、B的坐标,再根据向上(xiàngshàng)平移4个单位,则纵坐标加4,向右平移3个单位,则横坐标加3,求出点C、D的坐标即可,然后利用平行四边形的面积公式,列式计算;(2)根据(gēnjù)平移的性质可得AB∥CD,再过点P作PE∥AB,根据平行(píngxíng)公理可得PE∥CD,然后(ránhòu)根据两直线平行,内错角相等可得∠DCP=∠CPE,∠BOP=∠OPE,然后求出∠CPO=∠DCP+∠BOP,从而判断出比值不变;(3)根据面积相等的特殊性可知,点P为平行四边形ABCD对角线的交点,即PB=PC,因此根据中点可求出点P的坐标.【解答】解:(1)如图1,由题意得,a+2=0,a=﹣2,则A(﹣2,0),5﹣n=0,n=5,则B(5,0),∵点A,B分别向上平移4个单位,再向右平移3个单位,∴点C(1,4),D(8,4);∵OB=5,CD=8﹣1=7,∴S四边形OBDC=(CD+OB)×h=×4×(5+7)=24;(2)的值不发生变化,且值为1,理由是:由平移的性质可得AB∥CD,如图2,过点P作PE∥AB,交AC于E,则PE∥CD,∴∠DCP=∠CPE,∠BOP=∠OPE,∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,∴=1,比值不变.(3)存在(cúnzài),如图3,连接AD和BC交于点P,∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∴BP=CP,∴S△PCD=S△PBD; S△POB:S△POC=1,∵C(1,4),B(5,0)∴P(3,2).【点评(diǎn pínɡ)】本题是几何变换的综合题,考查了线段平移(pínɡ yí)与点的坐标的关系,明确点的坐标的平移原则:①上移→纵+,②下移→纵﹣,③左移→横﹣,④右移(yòu yí)→横+;同时对于面积的关系除了熟记面积公式外,要知道(zhī dào)三角形的中线把三角形分成面积相等的两个三角形;第二问中角的比值的证明,在几何中很少出现,不过此题分子与分母中角的大小相等,属于平行线的性质得出的结论.内容总结(1)当∠4=∠5时,a∥b。
最新人教版数学七年级下学期《期中测试卷》及答案解析
2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题1. 9的算术平方根是()A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点()2,3A-位于哪个象限?()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在0,2,﹣3,﹣12这四个数中,最小的数是()A. 0B. 2C. ﹣3D. ﹣124.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A. 60°B. 45°C. 50°D. 30°5.下列说法正确的是( ) A. 相等的角是对顶角 B. 一个角的补角必是钝角C. 同位角相等 D. 一个角的补角比它的余角大90°6.课间操时,小华、小军、小刚的位置如图所示,小军对小刚说,如果我的位置用(–1,0)表示,小华的位置用(–3,–1)表示,那么小刚的位置可以表示成()A. (1,2)B. (1,3)C. (0,2)D. (2,2)7.在式子x+6y=9,x+6y=2,3x﹣y+2z=0,7x+4y,5x=y中,二元一次方程有()A. 1个B. 2个C. 3个D. 4个8.方程2x+y=8的正整数解的个数是( )A. 4B. 3C. 2D. 19.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( )A . (3,6) B. (1,3) C. (1,6) D. (3,3)10.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A . ①② B. ②③ C. ③④D. ②④ 二、填空题11.在22,0, 3.141592,2.95,,25,3,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.如图,三角形ABC 中任意一点P (x ,y ),经过平移后对应点为P 1(x +4,y -2),将三角形ABC 作同样的平移得到三角形A 1B 1C 1,若点A 的坐标为(-4,5),则点A 1的坐标为____.13.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB ∥CD 的条件有_____(填写所有正确的序号).14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________81____.16.25.36 5.036,253.6=15.906253600=__________. 17.()2230x y +-=,则x y +=______.18.已知点在第四象限,且点P 到x 轴的距离为5,到y 轴的距离为2,那么点P 的坐标为_____.19.已知2x y 7x 2y 8+=⎧⎨+=⎩,,则x-y=____,x+y=____. 20.观察下列等式:2211112++1+11﹣111+=112, 2211123++1+12﹣121+=116, 2211134++1+13﹣131+=1112, …请你根据以上规律,写出第n 个等式_____.三.解答题21.计算与解方程组(1311684(2)3232--; (3)4311213x y x y -=⎧⎨+=⎩; (4)37528x y x y -=⎧⎨+=⎩. 22.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点A ',B ',C '的坐标;(3)求三角形ABC 的面积.23.请你补全证明过程:如图,DG ⊥BC ,AC ⊥BC ,EF ⊥AB ,∠1=∠2,求证:EF ∥CD证明:∵DG ⊥BC ,AC ⊥BC(已知)∴∠DGB=90°,∠ACB=90°①( )∴∠DGB=∠ACB ②( )∴DG ∥AC ③( )∴∠2= ④________ ⑤()又∠1=∠2 ⑥()∴∠1=∠DCA ⑦()∴EF∥CD ⑧()24.已知关于x、y的方程组547ax yx by+=⎧⎨-=⎩①②,甲由于看错了方程①中的a,得到方程组的解为35xy=⎧⎨=⎩;乙由于看错了方程②中的b,得到方程组的解为17xy=-⎧⎨=⎩.求原方程组的正确解.25.(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.26.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,而12<<2,于是可用21-来表示2的小数部分.请解答下列问题:(1)29的整数部分是_______,小数部分是_________;(2)如果10的小数部分为15a,的整数部分为b,求10a b+-的值.27.(1)如图1,AB∥CD,∠A=38°,∠C=50°,求∠APC的度数.(提示:作PE∥AB).(2)如图2,AB∥DC,当点P在线段BD上运动时,∠BAP=∠α,∠DCP=∠β,求∠CPA与∠α,∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P在段线OB上运动,请你直接写出∠CPA与∠α,∠β之间的数量关系______.答案与解析一、选择题1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D.【答案】C【解析】试题分析:9的算术平方根是3.故选C .考点:算术平方根.2.在平面直角坐标系中,点()2,3A -位于哪个象限?( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A 坐标为()2,3-,则它位于第四象限,故选D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(),++;第二象限(),-+;第三象限(),--;第四象限(),+-. 3.在0,2,﹣3,﹣12这四个数中,最小的数是( ) A. 0B. 2C. ﹣3D. ﹣12【答案】C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数比较大小的方法,可得﹣3<﹣12<0<2所以最小的数是﹣3故选C.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A. 60°B. 45°C. 50°D. 30°【答案】D【解析】【分析】先根据∠1=60°,∠FEG=90°,求得∠3=30°,再根据平行线的性质,求得∠2的度数.【详解】如图,∵∠1=60°,∠FEG=90°,∴∠3=30°,∵AB∥CD,∴∠2=∠3=30°.故选D.【点睛】本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°【答案】D【解析】【分析】根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.【详解】解:A、对顶角相等,相等的角不一定是对顶角,故本选项错误;B、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C、只有两直线平行,同位角才相等,故本选项错误;D、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确.故选D.【点睛】本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.课间操时,小华、小军、小刚的位置如图所示,小军对小刚说,如果我的位置用(–1,0)表示,小华的位置用(–3,–1)表示,那么小刚的位置可以表示成()A. (1,2)B. (1,3)C. (0,2)D. (2,2)【答案】A【解析】【分析】如图,根据题意作出直角坐标系,即可得出小刚的位置.【详解】如图,小刚的位置可以表示为(1,2)【点睛】此题主要考查直角坐标系的定义,解题的关键是根据题意画出直角坐标系.7.在式子x+6y=9,x+6y=2,3x﹣y+2z=0,7x+4y,5x=y中,二元一次方程有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】直接利用二元一次方程的定义分别判断得出答案.【详解】解:在式子x+6y=9,x+6y=2,3x-y+2z=0,7x+4y,5x=y中,二元一次方程有x+6y=9,5x=y,共2个.故选:B.【点睛】此题主要考查了二元一次方程的定义,正确把握定义是解题关键.8.方程2x+y=8的正整数解的个数是()A. 4B. 3C. 2D. 1【答案】B【解析】先用含x的代数式表示y为:y=8-2x;当x=1时,y=6;当x=2时,y=4;当x=3时,y=2.一共3组.故选B.点睛:取定x的值代入求y的值时,要注意y也为正整数.9.在直角坐标系中,点P(-2,3)向右平移3个单位长度后的坐标为()A. (3,6)B. (1,3)C. (1,6)D. (3,3)【答案】B【解析】【详解】解:根据点的平移规律:左减右加,可知点P(-2,3)向右平移3个单位长度后的坐标为(1,3),故选B.10.如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DE交AC于点G,BE=2,三角形CEG的面积为13.5,下列结论:①三角形ABC平移的距离是4;②EG=4.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是A. ①②B. ②③C. ③④D. ②④【答案】B【解析】 分析:(1)对应线段的长度即是平移的距离;(2)根据EC 的长和△CEG 的面积求EG ;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B ,E 是对应点,且BE =2,所以△ABC 平行的距离是2,则①错误;②根据题意得,13.5×2=(8-2)EG ,解得EG =4.5,则②正确; ③因为A ,D 是对应点,C ,F 是对应点,所以AD ∥CF ,则③正确;④平行四边形ADFC 的面积为AB ·CF =AB ·BE =6×2=12,则④错误.故选B .点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.二、填空题11.在22,0, 3.141592,2.95,25,3,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个【答案】3【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】解:无理数有2π3−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.12.如图,三角形ABC中任意一点P(x,y),经过平移后对应点为P1(x+4,y-2),将三角形ABC作同样的平移得到三角形A1B1C1,若点A的坐标为(-4,5),则点A1的坐标为____.【答案】(0,3)【解析】【分析】直接利用P点平移规律,进而得出A点平移规律.【详解】∵三角形ABC中任意一点P(x,y),经过平移后对应点为P1(x+4,y-2),∴点A的坐标为(−4,5),则点A1的坐标为:(−4+4,5−2)整理得:(0,3).故答案为:(0,3).【点睛】此题主要考查了坐标与图形的变化,正确得出平移规律是解题关键.13.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有_____(填写所有正确的序号).【答案】①③④【解析】【分析】根据平行线的判定逐项分析即可.【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥CB;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD,一定能判定AB∥CD的条件有①③④,故答案为:①③④.【点睛】本题考查了平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________【答案】15°【解析】【分析】如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.【详解】由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.____.【答案】±3【解析】【详解】,∴9的平方根是3±.故答案为±3.16. 5.036,=15.906=__________.【答案】503.6【解析】【分析】根据平方根的计算方法和规律计算即可【详解】解100=503.6.故答案为503.6.17.()230y-=,则x y+=______.【答案】1【解析】【分析】根据二次根式和偶次方根的非负性即可求出x,y的值,进而可求答案()230y-=()20,30y=-=∴2,3x y=-=∴231x y+=-+=故答案为1.【点睛】本题考查的是二次根式偶次方根的非负性,能够据此解答出x、y的值是解题的关键. 18.已知点在第四象限,且点P到x轴的距离为5,到y轴的距离为2,那么点P的坐标为_____. 【答案】()2,5-【解析】【分析】第四象限的点的特点是横坐标为正,纵坐标为负,再根据点到坐标轴的距离可确定坐标.【详解】根据第四象限点的特征,P 到x 轴的距离为5,所以纵坐标为-5,P 到y 轴的距离是2,所以横坐标为2,故P 点坐标为()2,5-.【点睛】本题考查坐标系中坐标的性质,熟记四个象限中坐标的符号特征是关键.19.已知2x y 7x 2y 8+=⎧⎨+=⎩,,则x-y=____,x+y=____. 【答案】 (1). -1 (2). 5【解析】【分析】用①-②,即可得到x -y 的值;用①+②,可得3x +3y =15,两边都除以3,即可求出x+y 的值.【详解】2728x y x y +=⎧⎨+=⎩①②,①-②,得,x -y =-1;①+②,得3x +3y =15,∴x +y =5.故答案为-1,5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的特殊值.20.观察下列等式:1+11﹣111+=112,1+12﹣121+=116,1+13﹣131+=1112, …请你根据以上规律,写出第n 个等式_____.()()211111n n n n n n ++=+=++【解析】【分析】根据已知算式得出规律,根据规律求出即可.【详解】解:∵观察下列等式:111111112=+-=+111112216=++=+1111133112=+-=+ …∴第n =1+1n -11n +=1+()11n n +.1n -11n +=1+()11n n +. 【点睛】本题考查了二次根式的性质的应用,关键是能根据题意得出规律.三.解答题21.计算与解方程组(1(2)(3)4311213x y x y -=⎧⎨+=⎩; (4)37528x y x y -=⎧⎨+=⎩.【答案】(1)512;(2);(3)53x y =⎧⎨=⎩;(4)21x y =⎧⎨=-⎩【解析】分析】(1)原式利用算术平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义化简,合并即可得到结果;(3)方程组利用加减消元法求出解即可;(4)方程组利用加减消元法求出解即可.【详解】解:(1)原式=4+2﹣12=512; (2)原式=)==(3)4311213x y x y -=⎧⎨+=⎩①②, 由①+②×3得:10x =50, 解得:x =5,把x =5代入②得:y =3,则方程组的解为53x y =⎧⎨=⎩; (4)37528x y x y -=⎧⎨+=⎩①②, 由①×2+②得:11x =22, 解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点A ',B ',C '的坐标;(3)求三角形ABC 的面积.【答案】(1)图见解析(2)点A′的坐标为(0,0)、B'的坐标为(-3,−5)、C′的坐标为(2,−3)(3)192【解析】【分析】(1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.【详解】(1)如图,△ABC和△’’’A B C为所求;(2)∵把三角形ABC向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C'''.∴点A′的坐标为(0,0)、B'的坐标为(-3,−5)、C′的坐标为(2,−3);(3)三角形ABC的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.【点睛】本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.23.请你补全证明过程:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:EF∥CD证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=90°,∠ACB=90°①()∴∠DGB=∠ACB ②( )∴DG∥AC ③( )∴∠2= ④________ ⑤()又∠1=∠2 ⑥()∴∠1=∠DCA ⑦()∴EF∥CD ⑧()【答案】①垂直的定义,②等量代换,③同位角相等,两直线平行,④∠DCA,⑤两直线平行,内错角相等,⑥已知,⑦等量代换,⑧同位角相等,两直线平行【解析】【分析】先根据垂直的定义得出∠DGB=∠ACB,再由平行线的判定定理得出DG∥AC,故可得出∠2=∠DCA,利用等量代换得出∠1=∠DCA,进而可得出结论.【详解】证明:∵DG⊥BC,AC⊥BC(已知) ,∴∠DGB=90°,∠ACB=90°(垂直的定义),∴∠DGB=∠ACB (等量代换) ,∴DG∥AC (同位角相等,两直线平行) ,∴∠2=∠DCA(两直线平行,内错角相等),又∠1=∠2(已知),∴∠1=∠DCA(等量代换),∴EF∥CD(同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.24.已知关于x 、y 的方程组547ax y x by +=⎧⎨-=⎩①②,甲由于看错了方程①中的a ,得到方程组的解为35x y =⎧⎨=⎩;乙由于看错了方程②中的b ,得到方程组的解为17x y =-⎧⎨=⎩.求原方程组的正确解. 【答案】21x y =⎧⎨=⎩. 【解析】【分析】首先根据甲看错方程①中的a 说明甲所解出的结果满足方程②,所以把35x y =⎧⎨=⎩代入方程②可得:1257b -=即可求出b ;而乙看错方程②中的b 说明乙所解出的结果满足方程①,所以把17x y =-⎧⎨=⎩代入方程①可得:75a -+=即可求出a ;【详解】由题意可得:把35x y =⎧⎨=⎩代入②得:1257b -= 解得:1b =, 把17x y =-⎧⎨=⎩代入①得:75a -+= 解得:2a = ∴原方程组为2547x y x y +=⎧⎨-=⎩ , 解这个方程组得:21x y =⎧⎨=⎩. 【点睛】本题主要考查二元一次方程组的错解问题,充分理解题意,将甲和乙得到的解代入正确的方程中是求解本题的关键. 25.(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐. (1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.【答案】(1)1个大餐厅可供130名员工就餐,1个小餐厅可供40名员工就餐(2)满足全体450名员工的就餐要求,理由见解析.【解析】【分析】(1)设1个大餐厅可供x名员工就餐,1个小餐厅可供y名员工就餐,根据“同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用可供就餐的人数=每个餐厅可供就餐的人数×餐厅数,求出3个大餐厅和2个小餐厅全部开放可供就餐人数,将其与450比较后即可得出结论.【详解】(1)设1个大餐厅可供x名员工就餐,1个小餐厅可供y名员工就餐,依题意,得:2300170x yx y+=⎧⎨+=⎩,解得:13040xy=⎧⎨=⎩.答:1个大餐厅可供130名员工就餐,1个小餐厅可供40名员工就餐.(2)∵3×130+2×40=470(名),470>450,∴如果3个大餐厅和2个小餐厅全部开放,那么能满足全体450名员工的就餐要求.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.26.阅读下面的文字,解答问题:的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:的整数部分是_______,小数部分是_________;(2)a b,求a b+的值.【答案】(1)5(2)0【解析】【分析】(1的范围,即可得出答案;(2a、b的值,再代入求出即可.【详解】(1)∵5<29<6,∴29的整数部分是5,小数部分是29-5,故答案为:5;29-5;(2)∵3<10<4,∴a =10-3, ∵3<15<4,∴b =3,∴10a b +-=10-3+3-10=0.【点睛】本题考查了估算无理数的大小,能估算出29、10、15的范围是解此题的关键. 27.(1)如图1,AB ∥CD ,∠A=38°,∠C=50°,求∠APC 的度数.(提示:作PE ∥AB ). (2)如图2,AB ∥DC ,当点P 在线段BD 上运动时,∠BAP=∠α,∠DCP=∠β,求∠CPA 与∠α,∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P 在段线OB 上运动,请你直接写出∠CPA 与∠α,∠β之间的数量关系______. 【答案】(1)88°(2)∠APC =∠α+∠β,理由见解析(3)∠APC =∠β-∠α 【解析】【分析】(1)过点P 作PE ∥AB ,通过平行线性质来求∠APC . (2)过P 作PE ∥AD 交AC 于E ,推出AB ∥PE ∥DC ,根据平行线的性质得出∠α=∠APE ,∠β=∠CPE ,即可得出答案;(3)若P 在段线OB 上,画出图形,根据平行线的性质得出∠α=∠APE ,∠β=∠CPE ,依据角的和差关系即可得出答案.【详解】(1)如图1,过P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥AB ∥CD ,∴∠A=∠APE,∠C=∠CPE,∵∠A=38°,∠C=50°,∴∠APE=38°,∠CPE=50°,∴∠APC=∠APE+∠CPE=38°+50°=88°;(2)∠APC=∠α+∠β,理由是:如图2,过P作PE∥AB,交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠APE=∠PAB=∠α,∠CPE=∠PCD=∠β,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图3,过P作PE∥AB,交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠PAB=∠APE=∠α,∠PCD=∠CPE=∠β,∵∠APC=∠CPE-∠APE,∴∠APC=∠β-∠α.故答案为:∠APC=∠β-∠α.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;作平行线构造内错角是解决问题的关键.。
人教版七年级下册数学《期中检测试题》(附答案解析)
A.a= bB. a=3bC.a= bD. a=4b
∴阴影部分面积之差 .
∵S始终保持不变,∴3b﹣a=0,即a=3b.
故选B.
【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
【答案】
【解析】
【分析】
根据整式的混合运算法则进行计算即可.
【详解】
故答案为: .
【点睛】本题考查了整式的运算问题,掌握整式的混合运算法则是解题的关键.
A.a= bB. a=3bC.a= bD. a=4b
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
12.已知 是方程ax-y=3的解,则a的值为________.
13.已知方程 ,用含x的代数式表示y,则 _______.
14.若已知公式.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为______.
A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6
C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y2
8.如图,从边长为( )cm的正方形纸片中剪去一个边长为( )cm的正方形( ),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B. C. D.
最新人教版七年级下册数学《期中测试题》(附答案)
2021年人教版数学七年级下册期中测试学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是( ) A. 3B.3C. 3±D. 3±2.下列实数是无理数的是( ) A. 1.732 B.3C. 13-D. 03.平面直角坐标系中,点P (2,﹣3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.下列方程组是二元一次方程组的是( )A. 141y x x y ⎧+=⎪⎨⎪-=⎩B. 43624x y y z +=⎧⎨+=⎩C. 41x y x y +=⎧⎨-=⎩D. 22513x y x y +=⎧⎨+=⎩5.如图,点E 在BC 的延长线上,下列条件不能判定//AD CB 的是( )A. 12∠=∠B. 34∠=∠C. D DCE ∠=∠D. 180D BCD ∠+∠=6.在平面直角坐标系中,若x 轴上点P 到y 轴的距离为2,则点P 的坐标为( ) A. ()2,0 B. ()2,0或()2,0- C. ()0,2D. ()0,2或()0,2 -7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“馬”的点的坐标分别为(),(2151),,,则表示棋子“帥”的点的坐标为()A. ()10-,B. ()1,1--C. ()00,D. ()1,2-8.在下列各组,x y 的值中,不是方程345x y +=的解的是( )A. 112xy =⎧⎪⎨=⎪⎩B. 12x y =-⎧⎨=⎩C. 250x y ⎧=⎪⎨⎪=⎩ D. 054x y =⎧⎪⎨=⎪⎩9.已知关于,x y 的二元一次方程组533321x y nx y n +=⎧⎨+=+⎩的解也是方程6x y +=的解,那么n 的值为( )A. 3B. 4C. 3-D. 4-10.如图,点,A B 为定点,直线//,l AB P 是直线l 上一动点.对于下列各值:①线段AB 的长;②APB ∠的度数;③PAB △的周长;④PAB △的面积.其中不会随点P 的移动而变化的是( )A. ①③B. ①④C. ②③D. ②④二、填空题(每题3分,满分18分,将答案填在答题纸上)16 _____.12.如图,因为,,AB l BC l B ⊥⊥为垂足,所以AB 和BC 重合,理由是________________.13.已知18n是正整数,则正整数n的最小值是_______________________.14.已知平面内一点(),M x y,若,x y满足条件0xy=,则点M的位置是______________________.15.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为_____.16.如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③,若∠DEF=x,将图③中∠CFE用x表示为_________三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:()2327323-+---.(2)求()21=4-x中x的值.18.由于受到新冠病毒疫情的影响,某医药厂根据市场调查得知某种消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量比为2:5(按瓶计算),若该厂每天生产这种消毒液22.5吨,为了满足市场需求,求这种消毒液应该分装大、小瓶两种产品各多少瓶.19.完成下面的证明:已知:如图,BE平分ABD DE∠,平分BDC∠,且90aβ∠+∠=︒求证://AB CD.证明:BE 平分ABD DE ∠,平分BDC ∠(已知),2ABD ∴∠=∠ ,2BDC ∠=∠ ,( )()222ABD BDC αβαβ∴∠+∠=∠+∠=∠+∠( )90αβ∠+∠=︒(已知)ABD BDC ∴∠+∠= , ( )//AB CD ∴( )20.如图,在平面直角坐标系中,已知点()()()()3,3,5,1,2,0,,A B C P a b ---是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△111,A B C 点P 的对应点为()16,2P a b +-.(1)直接写出点111,,A B C 的坐标. (2)在图中画出△111A B C . (3)求△111A B C 的面积. 21.已知关于,x y二元一次方程组351ax by x cy +=⎧⎨-=⎩,甲同学正确解得23x y =⎧⎨=⎩,而乙同学粗心,把c 看错了,解得36x y =⎧⎨=⎩,求abc 的值.22.已知:如图,在△ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.23.(1)2的一系列不足近似值和过剩近似值来估计它的大小的过程如下: 因为2211,24==, 所以122,<<因为21.4 1.96=,21.5 2.25=, 所以1.42 1.5,<<因为221.41 1.9881,1.422.0164==, 所以1.412 1.42<<因为221.414 1.999396,1.4152.002225==, 所以1.4142 1.415,<<2 1.41≈(精确到百分位),5(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定102⎤⎦= ;35a ,b 求a b -的值.24.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”S =ah .例如:三点坐标分别为A (1,2),B (-3,1),C (2,-2),则“水平底”a =5,“铅垂高”h =4,“矩面积”S =ah =20.根据所给定义解决下列问题:(1)若已知点D (1,2)、E (-2,1)、F (0,6),则这3点的“矩面积”=_____. (2)若D (1,2)、E (-2,1)、F (0,t )三点的“矩面积”为18,求点F 的坐标;25.探究题:学完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题. (1)小明遇到了下面的问题:如图1,12l l //,点P 在12,l l 内部,探究,,A APB B ∠∠∠之间的关系.小明过点P 作1l 的平行线,可证得APB A B ∠∠∠,,之间的数量关系是:APB ∠= .(2)如图2,若//AC BD ,点P 在,AC BD 的外部,,,A B APB ∠∠∠之间的数量关系是否会发生变化?请证明你的结论.(3)试构造平行线解决以下问题:如图3,一条河流的两岸//,AB CD 当小船行驶到河中E 点时,与两岸码头,B D 所形成的夹角为64(︒即64BED ∠=︒),当小船行驶到河中点F 时,恰好满足,,ABF EBF EDF CDF ∠=∠∠=∠请你求出此时点F 与码头,B D 所形成的夹角BFD ∠的度数.答案与解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是( )A. 3B.C. 3±D.【答案】C【解析】【分析】根据平方根的定义可得.【详解】解:∵()23=9±,∴9的平方根是3±,故答案为:C【点睛】本题考查了平方根的定义,掌握一个正数的平方根有两个,且互为相反数是解题的关键.2.下列实数是无理数的是()A. 1.732 C.13- D. 0【答案】B【解析】【分析】根据无理数的定义:无限不循环小数是无理数逐项判断即得答案.【详解】解:A、1.732是有理数,不是无理数,故本选项不符合题意;BC、13-有理数,不是无理数,故本选项不符合题意;D、0是有理数,不是无理数,故本选项不符合题意.故选:B.【点睛】本题考查了无理数的定义,属于基础概念题型,初中阶段常见无理数有三类:(1)开方开不尽的方根,(2)圆周率π是无理数;(3)有规律但不循环的无限小数是无理数,如0.101001000…(相邻两个1之间依次多1个0).3.在平面直角坐标系中,点P (2,﹣3)在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】 【分析】根据各象限内点的坐标特征解答即可. 【详解】∵横坐标为正,纵坐标为负,∴点()23P -,在第四象限, 故选:D .【点睛】本题考查的是点的坐标与象限的关系,熟记各象限内点的坐标特征是解答本题的关键. 4.下列方程组是二元一次方程组的是( )A. 141y x x y ⎧+=⎪⎨⎪-=⎩B. 43624x y y z +=⎧⎨+=⎩C. 41x y x y +=⎧⎨-=⎩D. 22513x y x y +=⎧⎨+=⎩【答案】C 【解析】 【分析】根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组141y x x y ⎧+=⎪⎨⎪-=⎩中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意; B 、方程组43624x y y z +=⎧⎨+=⎩含有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、方程组41x y x y +=⎧⎨-=⎩是二元一次方程组,所以本选项符合题意;D 、方程组22513x y x y +=⎧⎨+=⎩中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意. 故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键. 5.如图,点E 在BC 的延长线上,下列条件不能判定//AD CB 的是( )A. 12∠=∠B. 34∠=∠C. D DCE ∠=∠D. 180D BCD ∠+∠=【答案】A 【解析】 【分析】根据平行线的判定方法逐项判断即得答案.【详解】解:A 、若12∠=∠,不能判定//AD CB ,故本选项符合题意;B 、若34∠=∠,则可根据内错角相等,两直线平行判定//AD CB ,故本选项不符合题意;C 、若D DCE ∠=∠,则可根据内错角相等,两直线平行判定//AD CB ,故本选项不符合题意; D 、若180D BCD ∠+∠=,则可根据同旁内角互补,两直线平行判定//AD CB ,故本选项不符合题意. 故选:A .【点睛】本题考查了平行线的判定,属于基础题型,熟练掌握平行线的判定方法是解题的关键. 6.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为2,则点P 的坐标为( ) A. ()2,0 B. ()2,0或()2,0- C. ()0,2 D. ()0,2或()0,2 -【答案】B 【解析】 【分析】由于点P 在x 轴上,故只要确定点P 的横坐标即可,由点P 到y 轴的距离为2可得点P 的横坐标为2或﹣2,进而可得答案.【详解】解:因为点P 到y 轴的距离为2, 所以点P 的横坐标为2或﹣2,又因为点P 在x 轴上,所以点P 的坐标是()2,0或()2,0-. 故选:B .【点睛】本题考查了坐标轴上点的坐标特点和点到坐标轴的距离等知识,属于基础题型,熟练掌握基本知识是解题关键.7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“馬”的点的坐标分别为(),(2151),,,则表示棋子“帥”的点的坐标为( )A. ()10-,B. ()1,1--C. ()00,D. ()1,2-【答案】D 【解析】 【分析】根据棋子“炮”和“馬”的点的坐标可得出原点的位置,进而得出答案. 【详解】如图所示:棋子“帥”的点的坐标为:(1,-2). 故选:D .【点睛】本题主要考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系,正确得出原点的位置.8.在下列各组,x y 的值中,不是方程345x y +=的解的是( )A. 112x y =⎧⎪⎨=⎪⎩B. 12x y =-⎧⎨=⎩C. 250x y ⎧=⎪⎨⎪=⎩D. 054x y =⎧⎪⎨=⎪⎩【答案】C【解析】【分析】 把各选项中x 、y 的值逐一代入方程345x y +=计算验证即得答案.【详解】解:A 、当112x y =⎧⎪⎨=⎪⎩时,131452⨯+⨯=,所以112x y =⎧⎪⎨=⎪⎩是方程345x y +=的解,本选项不符合题意;B 、当12x y =-⎧⎨=⎩时,()31425⨯-+⨯=,所以12x y =-⎧⎨=⎩是方程345x y +=的解,本选项不符合题意; C 、当250x y ⎧=⎪⎨⎪=⎩时,26340555⨯+⨯=≠,所以250x y ⎧=⎪⎨⎪=⎩不是方程345x y +=的解,本选项符合题意; D 、当054x y =⎧⎪⎨=⎪⎩时,530454⨯+⨯=,所以054x y =⎧⎪⎨=⎪⎩是方程345x y +=的解,本选项不符合题意. 故选:C .【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键. 9.已知关于,x y 的二元一次方程组533321x y n x y n +=⎧⎨+=+⎩的解也是方程6x y +=的解,那么n 的值为( ) A. 3B. 4C. 3-D. 4- 【答案】D【解析】【分析】注意到两个方程系数的特点,只要用方程②×2-方程①即得x +y 与n 的代数式,进而可得关于n 的方程,解方程即得答案.【详解】解:对方程组533321x y n x y n +=⎧⎨+=+⎩①②,②×2-①,得:2x y n +=-, 因为6x y +=,所以26n -=,解得:n =﹣4.故选:D .【点睛】本题考查了二元一次方程组的特殊解法,属于常考题型,熟练掌握解二元一次方程组的方法、灵活应用整体的思想方法是解题的关键.10.如图,点,A B 为定点,直线//,l AB P 是直线l 上一动点.对于下列各值:①线段AB 的长;②APB ∠的度数;③PAB △的周长;④PAB △的面积.其中不会随点P 的移动而变化的是( )A. ①③B. ①④C. ②③D. ②④【答案】B【解析】【分析】 由A 、B 为定点可得AB 长为定值,进而可判断①;当P 点移动时,∠APB 的度数发生变化,P A +PB 的长也发生变化,于是可判断②、③;由直线l ∥AB 可得P 到AB 的距离为定值,于是可判断④,从而可得答案.【详解】解:∵A 、B 为定点,∴AB 长为定值,∴①线段AB 的长不会随点P 的移动而变化;当P 点移动时,∠APB 的度数发生变化,∴②∠APB 的度数会随点P 的移动而变化;当P 点移动时,P A +PB 的长发生变化,∴③△P AB 的周长会随点P 的移动而变化;∵点A ,B 为定点,直线l ∥AB ,∴P 到AB 的距离为定值,∴④△APB 的面积不会随点P 的移动而变化; 综上,不会随点P 的移动而变化的是①④.故选:B .【点睛】本题考查了平行线的性质、同底等高的三角形的面积相等以及平行线间的距离等知识,熟练掌握上述基本知识是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上) 16 _____.【答案】2【解析】【详解】∵16=4,4的算术平方根是2,∴16的算术平方根是2.【点睛】这里需注意:16的算术平方根和16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.12.如图,因为,,AB l BC l B ⊥⊥为垂足,所以AB 和BC 重合,理由是________________.【答案】在同一平面内,过一点有且只有一条直线与已知直线垂直【解析】【分析】根据垂线的性质解答即可.【详解】解:如图,因为,,AB l BC l B ⊥⊥为垂足,所以AB 和BC 重合,理由是:在同一平面内,过一点有且只有一条直线与已知直线垂直.故答案为:在同一平面内,过一点有且只有一条直线与已知直线垂直.【点睛】此题考查了垂线的性质,正确把握垂线的性质是解题的关键.13.18n n 的最小值是_______________________.【答案】2【解析】【分析】由题意可得:18n 是一个完全平方数,据此解答即可.1832n n =,∵n 2n∴n 的最小整数值是2.故答案为:2.【点睛】本题考查的是二次根式的定义和二次根式的化简,属于常考题型,熟练掌握二次根式的基本知识是解题的关键.14.已知平面内一点(),M x y ,若,x y 满足条件0xy =,则点M 的位置是______________________.【答案】在x 轴或y 轴上【解析】【分析】由题意可得x =0或y =0,然后根据坐标轴上点的坐标特征解答即可.【详解】解:∵,x y 满足条件0xy =,∴x =0或y =0,当x =0时,点()0,M y 在y 轴上;当y =0时,点(),0M x 在x 轴上.∴点M 的位置是在x 轴或y 轴上.故答案:在x 轴或y 轴上.【点睛】本题考查了坐标轴上点的坐标特征,属于基础题型,熟知坐标系中x 轴和y 轴上点的坐标特点是解题的关键.15.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____. 【答案】 4.5112x y x y +=⎧⎪⎨-=⎪⎩ 【解析】【分析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于,x y 的二元一次方程组,此题得解.【详解】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x y x y +=⎧⎪⎨-=⎪⎩故答案为 4.5112x y x y +=⎧⎪⎨-=⎪⎩. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.16.如图①是长方形纸带,将纸带沿EF 折叠成图②,再沿BF 折叠成图③,若∠DEF=x ,将图③中∠CFE 用x 表示为_________【答案】180°-3x【解析】【分析】根据平行线的性质可得∠BFE=∠DEF=x ;根据题意可得图①、②中的∠CFE=180°﹣∠BFE ,以下每折叠一次,减少一个∠BFE ,由此即可表示∠CFE.【详解】∵长方形的对边是平行的,∴∠BFE=∠DEF=x ;∴图①、②中的∠CFE=180°﹣∠BFE ,∴图②中等∠CFB=180°﹣2∠BFE ,∵以下每折叠一次,减少一个∠BFE ,∴图③中的∠CFE=180 °﹣3x .故答案为180°-3x. 【点睛】本题考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17.(1)()2327323-- (2)求()21=4-x 中x 的值.【答案】(1)43-(2)3x =或1x =-【解析】分析】(1)分别根据立方根的定义、实数的绝对值和算术平方根的性质化简各项,再合并即可;(2)把x -1看作是4的平方根解答即可.【详解】解:(1)原式(323=-+- 323=-+4=-(2)因为()214x -=,所以12x -=±, 解得3x =或1x =-.【点睛】本题考查了实数的混合运算和利用平方根解方程,属于常考题型,熟练掌握实数的基本知识是解题的关键.18.由于受到新冠病毒疫情的影响,某医药厂根据市场调查得知某种消毒液的大瓶装(500克)和小瓶装(250克)两种产品的销售数量比为2:5(按瓶计算),若该厂每天生产这种消毒液22.5吨,为了满足市场需求,求这种消毒液应该分装大、小瓶两种产品各多少瓶.【答案】这种消毒液应该分装大瓶20000瓶,小瓶50000瓶【解析】【分析】设应该分装大小瓶两种产品x 瓶、y 瓶,根据大瓶装(500g )和小瓶装(250g )两种产品的销售数量比为2:5,每天生产这种消毒液22.5吨(22500000克)列方程组成方程组即可.【详解】解:设这种消毒液应该分装大瓶x 瓶,小瓶y 瓶,由题意,得5002502250000052x y x y +=⎧⎨=⎩解得:2000050000x y =⎧⎨=⎩ 答:这种消毒液应该分装大瓶20000瓶,小瓶50000瓶.【点睛】此题考查列二元一次方程组解决实际问题,注意题目蕴含的数量关系,正确列式解答即可. 19.完成下面的证明:已知:如图,BE 平分ABD DE ∠,平分BDC ∠,且90a β∠+∠=︒求证://AB CD .证明:BE 平分ABD DE ∠,平分BDC ∠(已知),2ABD ∴∠=∠ ,2BDC ∠=∠ ,( )()222ABD BDC αβαβ∴∠+∠=∠+∠=∠+∠( )90αβ∠+∠=︒(已知)ABD BDC ∴∠+∠= , ( )//AB CD ∴( )【答案】α;β;角平分线的定义;等式的性质;180°;等量代换; 同旁内角互补两直线平行【解析】【分析】首先根据角平分线的定义结合等量代换,得到∠ABD+∠BDC=180°,然后再根据同旁内角互补两直线平行可得答案.【详解】∵BE 平分∠ABD ,DE 平分∠BDC (已知),∴∠ABD=2∠α,∠BDC=2∠β( 角平分线的定义),∴∠ABD+∠BDC =2∠α +2∠β =2(∠α +∠β)(等式的性质).∵∠α +∠β =90°(已知),∴∠ABD+∠BDC=180°( 等量代换),∴AB ∥CD ( 同旁内角互补两直线平行).故答案为:α;β;角平分线的定义;等式的性质;180°;等量代换; 同旁内角互补两直线平行.【点睛】本题主要考查了平行线的判定,关键是掌握角平分线定义和平行线的判定方法.20.如图,在平面直角坐标系中,已知点()()()()3,3,5,1,2,0,,A B C P a b ---是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△111,A B C 点P 的对应点为()16,2P a b +-.(1)直接写出点111,,A B C 的坐标.(2)在图中画出△111A B C .(3)求△111A B C 的面积.【答案】(1)()111)311,1,4,2(),(,--A B C ;(2)见解析;(3)4 【解析】【分析】(1)先根据平移前后点P 的坐标确定平移的方式,再根据平移的方式解答即可;(2)先描出平移后点111,,A B C 的坐标,再顺次连接即可,如图;(3)如图,利用111A B C △S =1DEC F S -11A B D S ∆-11B C E S ∆-11A C F S ∆解答即可.【详解】解:(1)因为经过平移,点P (a ,b )对应点的坐标为()16,2P a b +-,所以△ABC 平移的方式为:先向右平移6个单位,再向下平移2个单位;所以平移后点111,,A B C 的坐标为:()1113,11,1,4,2(),()A B C --; (2)如图,△111A B C 即为所求.(3)如图,111A B C △S =1DEC F S -11A B D S ∆-11B C E S ∆-11A C F S ∆111332231314222=⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了平移的性质与作图和坐标系中求图形的面积等知识,属于常考题型,熟练掌握平移的性质是解题的关键.21.已知关于,x y 的二元一次方程组351ax by x cy +=⎧⎨-=⎩,甲同学正确解得23x y =⎧⎨=⎩,而乙同学粗心,把c 看错了,解得36x y =⎧⎨=⎩,求abc 的值. 【答案】﹣9【解析】【分析】将23x y =⎧⎨=⎩代入方程②即可求出c ,将23x y =⎧⎨=⎩与36x y =⎧⎨=⎩分别代入方程①即得关于a 、b 的方程组,解方程组即可求出a 、b ,进一步即可求出结果.【详解】解:对方程组351ax by x cy +=⎧⎨-=⎩①②, 将23x y =⎧⎨=⎩代入方程②,得1031c -=,解得:3c =, 将23x y =⎧⎨=⎩代入方程①,得233a b +=③, 将36x y =⎧⎨=⎩代入方程①,得363a b +=④, 联立③④,得233363a b a b +=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩; 所以()3139abc =⨯-⨯=-.【点睛】本题考查了二元一次方程组的解法,属于常考题型,正确理解题意、熟练掌握代入法与加减法解二元一次方程组的方法是解题的关键.22.已知:如图,在△ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G .(1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.【答案】(1)见解析(2)∠BEF =∠ADG【解析】【分析】(1)根据题意画出图形即可;(2)证出AD ∥EF ,得出∠BEF =∠BAD ,再由平行线的性质得出∠BAD =∠ADG ,即可得出结论.【详解】解:(1)如图所示:(2)∠BEF =∠ADG .理由如下:∵AD ⊥BC ,EF ⊥BC ,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等).∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等).∴∠BEF =∠ADG .【点睛】本题考查了平行线的判定与性质;熟记平行线的判定与性质是关键,注意两者的区别. 23.(1)2的一系列不足近似值和过剩近似值来估计它的大小的过程如下: 因为2211,24==, 所以122,<<因为21.4 1.96=,21.5 2.25=, 所以1.42 1.5,<< 因为221.41 1.9881,1.42 2.0164==, 所以1.412 1.42<< 因为221.414 1.999396,1.415 2.002225==, 所以1.4142 1.415,<< 2 1.41≈(精确到百分位), 5(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣ ①按此规定102⎤⎦= ; 35a ,b 求a b -的值.【答案】(1)2.24;(2)①5,②3【解析】【分析】(1)(2)2的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=--== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.24.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(-3,1),C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.根据所给定义解决下列问题:(1)若已知点D(1,2)、E(-2,1)、F(0,6),则这3点的“矩面积”=_____.(2)若D(1,2)、E(-2,1)、F(0,t)三点的“矩面积”为18,求点F的坐标;【答案】(1)15;(2)(0,7)或(0,-4)【解析】【分析】(1)根据给出的新定义,先求出a和h,然后可求“距面积”;(2)根据题意可以求得a的值,然后再对t进行讨论,即可求得t的值,从而可以求得点F的坐标.【详解】解:(1)由题意可得,∵点D(1,2)、E(-2,1)、F(0,6),∴a=1-(-2)=3,h=6-1=5,∴S=ah=3×5=15,故答案为:15;(2)由题意:“水平底”a=1-(-2)=3,当t>2时,h=t-1,则3(t-1)=18,解得t=7,故点P的坐标为(0,7);当1≤t≤2时,h=2-1=1≠6,故此种情况不符合题意;当t<1时,h=2-t,则3(2-t)=18,解得t=-4,故点P的坐标为(0,-4),所以,点P的坐标为(0,7)或(0,-4)25.探究题:学完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,12l l //,点P 在12,l l 内部,探究,,A APB B ∠∠∠之间的关系.小明过点P 作1l 的平行线,可证得APB A B ∠∠∠,,之间的数量关系是:APB ∠= .(2)如图2,若//AC BD ,点P 在,AC BD 的外部,,,A B APB ∠∠∠之间的数量关系是否会发生变化?请证明你的结论.(3)试构造平行线解决以下问题:如图3,一条河流的两岸//,AB CD 当小船行驶到河中E 点时,与两岸码头,B D 所形成的夹角为64(︒即64BED ∠=︒),当小船行驶到河中点F 时,恰好满足,,ABF EBF EDF CDF ∠=∠∠=∠请你求出此时点F 与码头,B D 所形成的夹角BFD ∠的度数.【答案】(1)A B ∠+∠;(2)会发生变化,APB B A ∠=∠-∠,证明见解析;(3)32∠=BFD【解析】【分析】(1)如图4,根据平行公理的推论可得12////l l PQ ,根据平行线的性质可得∠APQ =∠A ,∠BPQ =∠B ,然后根据角的和差即得结论;(2)如图5,过点P 作//EP AC ,根据平行公理的推论可得////EP BD AC ,根据平行线的性质可得EPA A ∠=∠,EPB B ∠=∠,然后根据角的和差即可得到结论;(3)如图6,过点,E F 分别作//, //,EM AB FN AB FN 与BE 相交于点Q ,根据平行公理的推论可得//////AB FN EM CD ,然后根据平行线的性质、三角形的外角性质、角的和差可得2BED BFD ∠=∠,进而可得结果.【详解】解:(1)如图4,∵12l l //,1//PQ l ,∴12////l l PQ ,∴∠APQ =∠A ,∠BPQ =∠B ,∴∠APB =∠APQ +∠BPQ =A B ∠+∠.故答案为:A B ∠+∠;(2)会发生变化,APB B A ∠=∠-∠.证明:如图5,过点P 作//EP AC ,则EPA A ∠=∠,//AC BD ,//EP BD ∴,EPB B ∴∠=∠,EPB EPA B A ∴∠-∠=∠-∠,即APB B A ∠=∠-∠;(3)如图6,过点,E F 分别作//, //,EM AB FN AB FN 与BE 相交于点,Q//AB CD ,∴//////AB FN EM CD ,,BFN ABF EBF DFN CDF EDF ∴∠=∠=∠∠=∠=∠,2,2,BEM BQN EBF BFN BFN DEM CDF EDF DFN ∴∠=∠=∠+∠=∠∠=∠+∠=∠()2222BEM DEM BFN DFN BFN DFN BFD ∴∠+∠=∠+∠=∠+∠=∠,即264BED BFD ∠=∠=;32BFD ∴∠=.【点睛】本题考查了平行线的性质、平行公理的推论和三角形的外角性质等知识,正确添加辅助线、熟练掌握平行线的判定和性质是解题的关键.。
人教版2020-2021学年第二学期期中考试试卷七年级数学试题及答案
2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等DCBA DCBA ABCDDC BA21122112A B C D6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 .12.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 .13.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.如图,已知90ACB ∠=°.CD AB ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长.2345ODC B A图1DCBAA 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx16.52-+的绝对值是 .17.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,则该主板的周长是_____mm .三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩21.(5分) 完成下面的证明.(在序号后面横线上填写合适的内容) 已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(① ) ∴∠ACB +∠EF D=180°∴② (③ ) ∴∠A=∠2.∠3=∠1.(④ ) 又∵∠A=∠1,∴∠2=∠3(⑤ ) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值.23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8. (1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为多少.25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨?27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t), 如图所示.若三角形ABC 的面积为9,求点D 的坐标.2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 【答案】B2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 【答案】C ;3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 【答案】B ;4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间【答案】A5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )DCBA DCBA ABCDDC BA21122112A B C DA .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等 【答案】A 6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个【答案】A7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 【答案】B8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-【答案】C9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩【答案】D10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,【答案】C2345A 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 . 【答案】312.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 . 【答案】-113.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图【答案】72︒14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____. 【答案】(-2,-2)15.如图,已知.,垂足为,则点到直线的距离为线段 的长;【答案】AC16.52-+的绝对值是 . 【答案】5-217.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图 【答案】34°18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,90ACB ∠=°CD AB ⊥D A CB ODC B A图1DCBA则该主板的周长是_____mm . 【答案】330三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 =4×12+(−2)+(−√2) (x-2)2=9=2−2−√2 x-2=3或x-2=-3 =−√2 x=5或x=-1 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩ 【答案】(1){x =2y =−1 (2){x =6y =521.(5分) 完成下面的证明.已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(①垂直的定义) ∴∠ACB +∠EF D=180°∴②EF ∥AC .(③同旁内角互补,两直线平行) ∴∠A=∠2.∠3=∠1.(④两直线平行,内错角相等) 又∵∠A=∠1, ∴∠2=∠3(⑤等量代换) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值. 解:由题意得:(2a-3)+(5-a)=0,解得:a=-2;x=49. 所以 x=(2a-3)2=(-7)2=49 23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.解:由题意得:x+y=0,联立方程组{2x +7y =−10x +y =0,解得:{x =2y =−2, 把{x =2y =−2代入3x-5y=2a, 得:2a=16,解得:a=8 24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为________. 【答案】(1)设魔方的棱长为x,由x 3=8,解得x=2, 所以魔方的棱长为2;(2)因为魔方的棱长为2,所以魔方每个面的面积为4,正方形ABCD 的面积为魔方每个面的面积的一半,所以阴影部分的面积为2,正方形ABCD 的边长为√2;(3)正方形ABCD 的边长为√2,点A 与1-重合,所以点D 在数轴上表示的数为−1−√2 25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.【答案】(1)根据题意,他们以中心广场为坐标原点,100m 为单位长度建立直角坐标系: y y(2) 张明在游乐园,王励在望春亭,李华在湖心亭; (3)中心广场(0,0),牡丹亭(300,300)26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨? 【答案】解:设1辆大货车可以一次运货x 吨, 1辆小货车可以一次运货y 吨. {3x +2y =175x +4y =29 解得:{x =5y =1 2x +y =2×5+1×3=13(吨)所以2辆大货车与3辆小货车可以一次运货13吨.27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t),如图所示.若三角形ABC 的面积为9,求点D 的坐标.xy【答案】(1)根据题意{2a −b −1=0a +2b −8=0解得:{a =2b =3 所以A 、B 两点的坐标分别为(0,2),(3,0);(2)如图所示,过A 点作x 轴平行线,过B 点作y 轴平行线,过C 点作x 轴,y 轴平行线,交点为P ,Q,R ,根据题意,点C 在第三象限,所以t<0, P(3,t),R(3,2),Q(-2,2),CP=5,CQ=2-t,AQ=2,AR=3,BR=2,BP=- tS ∆ABC =5(2−t )−12×2(2−t )−12×2×3−12×5×(−t )=9, 解得:t =−83所以线段CD 是由线段AB 向左平移2个单位,向下平移143个单位得到的; 所以D 点坐标为(1,-143)PQ1、三人行,必有我师。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
最新2022-2021年七年级下期中数学试题(含答案)
第二学期期中调研测试七年级数学试卷(时间:120分钟 满分:120分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑。
1.求22的值是 A.2 B.2 C.22 D.322.点(5,-6)在第儿象限?A.第一象限B.第二象限C.第三象限D.第四象限3.如图,三角形ABC 中,∠C=90°,则点B 到直线AC 的距离是第3题 第6题 第9题A.线段ABB.线段ACC.线段BCD.无法确定4.将点A(-2,-3)向右平移5个单位长度,得到A 1,则A 1的坐标是A.(-2,8)B.(-2,2)C.(一7,-3)D.(3,-3)5.写出14.3-π的相反数是A.3.14-πB.0C.π+31.4D.-π-3.146.如图,直线a ∥b,∠1=54°,则∠2的度数是A.54°B.126C.36°D.136°7.在平面直角坐标系中,点C 在x 轴上方且y 轴右侧,距离每条坐标轴都是3个单位长度,则点C 的坐标为A.(3,-3)B.(-3,3)C.(3,3)D.(-3,-3)8.比较3,350,16的大小,正确的是 A.350163<< B.163503<< C.350316<< D.165033<<9.在平面直角坐标系中,一只电子狗从原点O 出发,按向上→向右→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则2018A 的坐标为A.(1009,1)B.(1009,0)C.(2022,1)D.(2022,0)10.如图,直线a 、b 分别截∠AOB 的两边,且a ∥b,∠1=∠3-∠4,根据图中标示的角,判断下列各角的度数关系中正确的有?①∠2+∠5>180° ②∠2+∠3<180° ③∠1+∠6>180°④∠2+∠7=180° ⑤∠3+∠4<180°A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,共18分)11.若8x 3 ,则x=____________.12.命题:“同位角相等”是真命题还是假命题?答:__________.13.若点A(一6,y)在第三象限,则y 的取值范围是_______________.14.如图,∠1:∠2:∠3=3:4:5,EF ∥BC,DF ∥AB,则∠A:∠B:∠C=__________.15.设与40最接近的两个整数分别为a 、b(其中a <b),计算()=++5-b -a 1a a _.16.在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:()[]3bd a c 3*,-=B A ,若A(9,-1),且A*B=(12,-2),则点B 的坐标是_______. 三、解答题(共8小题,共72分)17.(本题8分)计算: (1)()3-35+ (2)34-3218.(本题8分)在下面的括号内,填上推理的根据如图,AB 和CD 相交于点O,∠A=∠B.求证∠C=∠D证明:∵∠A=∠B,∴AC ∥BD( )∴∠C=∠D( )19.(本题8分)如图,将平行四边形ABCD 向左平移2个单位长度,然后再向上平移3个单位长度,可以得到平行四边形''''D C B A ,画出平移后的图形,并指出其各个顶点的坐标。
人教版2021年七年级下册数学期中试题带答案
2021年七年级下册期中考试数学试题一、选择题(每小题3分,共30分)1、下列各数中,是无理数的是()。
A.25B.3.14159 C.39-D.1172、如图,直线AB、CD相交于点O,∠AOD+∠BOC=236°,则∠AOC=()。
A.144°B.124°C.72°D.62°(第2题图)3、若点),(baM在第四象限,则点)2,(+--baN在()。
A.第一象限B.第二象限C.第三象限D.第四象限4、如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()。
A.2个B.3个C.4个D.5个(第4题图)5、下列说法错误的是()。
A.0的平方根是0 B.–1的立方根是-1C.2是2的一个平方根D.–3是2)3(-的平方根6、如图所示的网格中各有不同的图案,不能通过平移得到的是()。
A B C D7、在同一平面内,有8条互不重合的直线,8321,,llll ,若21ll⊥,2l∥3l,43ll⊥,4l∥5l……以此类推,则1l和8l的位置关系是()。
A.平行B.垂直 C.平行或垂直 D.无法确定8、如图,数轴上表示1,3的对应点分别为点A,点B。
若点B关于点A的对称点为姓名:学号:点C 则点C 所表示的数是( )。
(第8题图) A .13- B .31- C .32- D .23- 9、如果代数式1-x x有意义,那么的取值范围是( )。
A .x ≥0 B .x ≠1 C .x >0 D .x ≥0且x ≠110、如图a ∥b ,N M ,分别在直线b a ,上,P 为两平行线间一点,那么( )。
(第10题图)A .180°B .270°C .360°D .540°二、填空题(每小题3分,共18分)11、16的算术平方根是 。
12、“同一平面内,垂直于同一条直线的两条直线互相平行”是 命题,改写成“如果…那么…”的形式是 。
2021-2022学年度七年级数学下学期期中考试卷(人教版)
2021-2022学年度七年级数学下学期期中考试卷(人教版)第I 卷(选择题)一、单选题(每小题3分,共30分)1.在1,0,﹣3,2这四个数中,最大的数是( ) A .﹣1B .0C .﹣3D .22.下列计算正确的是( ) A .()224a a -=-B .422a a a ÷=C .23a a a -÷=D .2222b b b ⋅=3.纳米是一种长度单位,1纳米910-=米,已知某种花粉的直径为3500纳米,那么用科学记数法表示该种花粉的直径为( ) A .43.510⨯米B .53.510-⨯米C .93.510-⨯米D .63.510-⨯米4.把一个面积为4的正方形,通过沿虚线折叠得到一个新正方形,它的边长是( ) A .2 B .2C .1D .1.4145.已知关于x 的不等式(3)3a x a 的解集为1x <,则( ) A .3aB .3aC .3a >D .3a <6.如果32.37 1.333=,323.7 2.872≈,那么32370约等于( ) A .28.72 B .0.2872C .13.33D .0.13337.若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥8.若20.3a =-,23b -=-,21()3c -=-,01()3d =-,则( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b9.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了3次才停止,则x 的取值范围是( )A .7<x≤11B .7≤x <11C .7<x <11D .7≤x≤1110.如果()()2283a pa a a q ++-+的乘积不含3a 和2a 项,那么p ,q 的值分别是( )A .0,0p q ==B .3,9p q =-=C .3,8p q ==D .3,1p q ==第II 卷(非选择题)二、填空题(每小题3分,共12分)11.比较大小:4_________22.(填“>”、“<”、“=”) 12.0.1252020×(﹣8)2021=_______.13.已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.14.已知()()222008-20071a a +-=,则()()2008-2007a a -=___.三、解答题15.求下列各式的值:(每小题2分,共8分) (1)4925-; (2)31-; (3)0.16; (4)30.027.16.(5分)解不等式组:536,43,3x x xx +<+⎧⎪⎨-≤-⎪⎩①②并将解集在数轴上表示出来.17.(5分)解不等式组 ()2x 11,2x 31,⎧-≤-⎨+>⎩①②并把它的解集在数轴上表示出来.18.(3分)解不等式组3(2)81522x x x x --≤⎧⎪⎨-⎪⎩>19.(3分)解不等式组:2322112.323x x x x ①②>-⎧⎪⎨-≥-⎪⎩20.(4分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组231213(1)8x x x x -⎧++⎪⎨⎪--<-⎩①②的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?21.(4分)计算 (1)202012-+ (2)()24181x -=22.(2分)利用公式计算:()()22a b a b -+--23.(4分)已知1020a =,1105b -=,求293a b ÷的值.24.(4分)已知24a +的立方根是2,31a b +-的算术平方根是4c ,求3a b c -+的值.25.(4分)已知关于x 、y 的方程组325x y a x y a -=+⎧⎨+=⎩的解满足0x y >>,求a 的取值范围.26.(6分)对于有理数a ,b ,定义min{,}a b 的含义为:当a b ≥时,min{,}a b b =;当a b <时,min{,}a b a =. 例如:{}min 1,22-=-(1)当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时,求x 的取值范围(2)已知}a a=,}b =,且a 和b 为两个连续正整数,则2ab -的立方根为多少?27.(6分)某商家欲购进甲、乙两种抗疫用品共180件,其进价和售价如表:(1)若商家计划销售完这批抗疫用品后能获利1240元,问甲、乙两种用品应分别购进多少件?(请用二元一次方程组求解)(2)若商家计划投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.答案第1页,共5页参考答案:1.D 2.B 3.D 4.B 5.C 6.C 7.D 8.B 9.A 10.D 11.< 12.-813.2≤a <3##3> a ≥2 14.015.(1)75-;(2)1-;(3)0.4;(4)0.316.1522x -<≤【解析】 【分析】先将①的不等式解出来,再解出②的不等式,最后综合即可. 【详解】①式求解得:12x >-②式去分母:()394x x ≤--解得:52x ≤ 解集:1522x -<≤【点睛】本题考查解一元不等式组,按步骤解题即可,注意画图时数轴实心圆与空心圆的区别. 17.112x -<≤ 【解析】 【分析】求解不等式的解集即可. 【详解】 解不等式 ①,得 1x .2≤解不等式 ②,得x 1.>-所以不等式组的解集是 11x 2-<≤. 在数轴上表示如下:【点睛】本题考查了一元一次不等式的求解和数轴表示,属于简单题,熟悉解不等式的一般步骤是解题关键. 18.-1≤x<2答案第2页,共5页【解析】 【详解】试题分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可. 试题解析:()3281522x x x x ⎧--≤⎪⎨-⎪⎩①>② ∵解不等式①得:x≥-1, 解不等式②得:x <2, ∴不等式组的解集为-1≤x <2, 在数轴上表示不等式组的解集为:19.-2≤x <2. 【解析】 【详解】试题分析:分别求出①②两个不等式的解,再求它们的公共集即可.注意②中去分母时每一项都应乘以分母的最小公倍数. 解:解不等式①,得x <2. 解不等式②,得x≥-2. ∴原不等式组的解集为-2≤x <2. 20.数学作业是1,2题 【解析】【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的正整数解即可. 【详解】解:()23121318x x x x -⎧++⎪⎨⎪--<-⎩①②,由①得,2x ; 由②得,2x >-,故此不等式组的解集为:22x -<,x 的正整数解为:1,2.∴今天的数学作业是1,2题. 【点睛】本题考查的是解一元一次不等式组,解题的关键是熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则. 21.(1)3-(2)1112x =,272x =-【解析】 【分析】(1)运用乘方运算法则、二次根式的化简、立方根的运算、绝对值的意义,进行计算,再进行实数的混合运算即可;(2)利用开平方法解方程即可. (1) 解:()220203122723--123(23)=-+-+-答案第3页,共5页1232=-+-+-=(2)解:()24181x -= 两边同除以4得:()28114x -=两边开平方得:1x -= 即912x -=或 912x -=-解得1112x =,272x =-【点睛】本题考查了实数的混合运算、开平方法解方程,关键在于熟练掌握计算顺序和相关法则. 22.224a b - 【解析】 【分析】利用平方差公式进行运算即可. 【详解】解:()()22a b a b -+-- 22(2)a b =--224a b =-【点睛】本题考查了整式乘法的平方差公式,即 22()()a b a b a b +-=-,熟练掌握公式的应用是解题的关键. 23.81 【解析】 【分析】由2()2393a b b a -÷=知,只需要求得a −b 的值,问题即解决;把已知两等式相除即可求得a −b 的值.【详解】22()229(3)333a b a b a b -=÷÷=∵151105b -==∴11010201005a b ÷=÷=即21010a b -= ∴2a b -=∴2224338193a b ⨯=÷== 【点睛】本题考查了幂的乘方,同底数幂的除法等知识,两个关键:不同底的两个幂相除转化为两个同底的幂相除;由已知条件把两个同底的幂相除求得a −b 的值. 24.3a b c -+的值为﹣2 【解析】 【分析】根据立方根和平方根的定义可求出a 、b ,根据无理数的估算可求出c ,然后把a 、b 、c 的值代入所求式子计算即得结果. 【详解】解:∵24a +的立方根是2,31a b +-的算术平方根是4, ∴24a +=8,31a b +-=16,解得:a =2,b =11,答案第4页,共5页∵34<c , ∴c =3,∴3321132a b c -+=⨯-+=-. 【点睛】本题考查了算术平方根和立方根的定义以及无理数的估算,属于基本题型,熟练掌握以上基本知识是解题的关键. 25.a >2 【解析】 【分析】解方程组求得x 与y 的值,根据x >y >0,即可求得a 的取值范围. 【详解】解方程组得212x a y a =+⎧⎨=-⎩ ∵0x y >> ∴2120a a +>->即20212a a a ->⎧⎨+>-⎩ 解不等式组得:a >2. 【点睛】本题是二元一次方程组与一元一次不等式组的综合,考查了二元一次不等式组的解法,解一元一次不等式组等知识,解含有参数a 的二元一次方程组是解题的关键与难点. 26.(1)134x ≥ (2)1-【解析】 【分析】(1)根据题意列出关于x 不等式,解不等式即可求出x 的取值范围;(2)根据题意,由}a a =得到a}b =得到b ≥a 和b 为两个连续正整数,可知a 和b的值,进而求得2ab -的立方根.(1)解:当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时, 由题意得23223x x -+≥ 解得:134x ≥∴x 的取值范围是134x ≥. (2)解:∵}a a =∴a ≤∵a为正整数,且56<,∴15a ≤≤且a 为正整数;∵}b = ∴b ≥∵b为正整数,且56, ∴6b ≥且为正整数∵a和b为两个连续正整数∴5a=,6b=∴2ab-=5×6-31=-1=1-∴2ab-的立方根为1-.【点睛】本题是新定义型题目,考查了解不等式,无理数的估算,立方根等知识,题目难度不大,关键在于读懂题意,列出不等式.27.(1)购进甲种用品100件,乙种用品80件(2)甲种用品61件,乙种用品119件【解析】【分析】(1)设购进甲种用品x件,乙种用品y件,根据“购进甲、乙两种抗疫用品共180件,且销售完这批抗疫用品后能获利1240元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种用品m件,则购进乙种用品(180-m)件,根据“投入资金少于5040元,且销售完这批抗疫用品后获利不少于1314元”,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围,结合m为正整数即可得出各购货方案,再利用总利润=销售每件的利润×销售数量,可分别求出3个购货方案可获得的利润,比较后即可得出结论.(1)设购进甲种用品x件,乙种用品y件,依题意得:180(2014)(4335)1240x yx y+⎧⎨-+-⎩==,解得:10080xy⎧⎨⎩==.答:购进甲种用品100件,乙种用品80件.(2)设购进甲种用品m件,则购进乙种用品(180-m)件,依题意得:1435(180)5040(2014)(4335)(180)1314m mm m+-⎧⎨-+--≥⎩<,解得:60<m≤63,又∵m为正整数,∴m可以取61,62,63,∴共有3种购货方案,方案1:购进甲种用品61件,乙种用品119件;方案2:购进甲种用品62件,乙种用品118件;方案3:购进甲种用品63件,乙种用品117件.方案1可获得的利润为(20-14)×61+(43-35)×119=1318(元);方案2可获得的利润为(20-14)×62+(43-35)×118=1316(元);方案3可获得的利润为(20-14)×63+(43-35)×117=1314(元).∵1318>1316>1314,∴获利最大的购货方案为:购进甲种用品61件,乙种用品119件.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.答案第5页,共5页。
2020-2021学年度人教版七年级下期中考试数学试卷含答案(word版)
武汉四中2020-2021学年度第二学期期中考试七年级数学试卷一、选择题(3分×10=30分) 下面每个小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母代号填在答题卷中 1. 点()P 1,3- 在A . 第一象限B . 第二象限C . 第三象限D . 第四象限 2. 在同一平面内,不重合的两条直线的位置关系是A . 平行B . 相交C . 平行或相交D . 平行或垂直3. 若式子x 5- 在实数范围内有意义,则x 的取值范围是A . x 5>B . x 5≥C . x 5≠D .x 0≥ 4. 在实数:2,,0,3, 3.14,45π-- 中,无理数的个数有A .1 个B .2 个C .3 个D .4 个5. 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB CD ∥ 的是A .3=4∠∠B .B=DCE ∠∠C .1=2∠∠D .D DAB=180∠+∠︒6. 点()M 4,2 关于x 轴对称的点的坐标是A .()42-,B .()4,2-C .()4,2--D .()2,47. 下列各式中正确的是A .16=4±B .364=4C 9=3-D 132=448. 同一平面内的四条直线满足a b,b c,c d ⊥⊥⊥ ,则下列式子成立的是A .a b ∥B .b d ⊥C .a d ⊥D .b c ∥9. 下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1 的算术平方根是0.01 ;③计算33=523 ;④如果点()P 32n,1- 到两坐标轴的距离相等,则n 1= ;其中是假命题的个数是A .1 个B .2 个C .3 个D .4 个10. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部不包含边界上的点。
观察如图2所示的中心在原点、一边平行于x 轴的正方形:边长为1 的正方形内部有1 个整点,边长为2 的正方形内部有1 个整点,边长为3 的正方形内部有9 个整点,……,则边长为9 的正方形内的整点个数为A .64B .49C .36D .81二、填空题(3分×6=18分)11. 9 的平方根是____________;12. 命题:两个角的和等于平角时,这两个角互为补角。
人教版2021-2022学年七年级第二学期《数学》期中考试题(含答案)
人教版七年级下册数学期中考试试卷一、单选题1.下列各图中,∠1与∠2是对顶角的是( ) A .B .C .D .2的平方根是( ) A .2BC .±2D .3.在下列所给出坐标的点中,在第二象限的是A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3) 47220,-1.414,2π0.1010010001中,无理数有( ) A .2个B .3个C .4个D .5个5.如图所示,点E 在AC 的延长线上,下列条件中能判断//AB CD ( )A .34∠=∠B .12∠=∠C .D DCE ∠=∠D .180D ACD ︒∠+∠=6.下列命题是假命题的是( ) A .对顶角相等B .两直线平行,同旁内角相等C .平行于同一条直线的两直线平行D .同位角相等,两直线平行7.如图,表示的点在数轴上表示时,所在哪两个字母之间( )A .C 与DB .A 与BC .A 与CD .B 与C8.点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( ) A .(4,2)B .(-2,-4)C .(-4,-2)D .(2,4)9.在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点A (-1,4)的对应点为C (4,1);则点B (a ,b )的对应点F 的坐标为( ) A .(a+3,b+5)B .(a+5,b+3)C .(a-5,b+3)D .(a+5,b-3)10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数( )A .10°B .25°C .30°D .35°二、填空题11.若整数x 满足|x|≤3x 的值是 (只需填一个).12.如图,直线AB ,CD ,EF 交于点O ,OG 平分∠BOF ,且CD ⊥EF ,∠AOE=70°,则∠DOG=_____.13.把9的平方根和立方根按从小到大的顺序排列为 .14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (用n 表示)三、解答题 15.计算: (1(22-16.求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=017.如图,直线a ∥b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,求∠2的度数.18.完成下面的证明:如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF ,∠C=∠D . 求证:∠A=∠F.证明:∵∠AGB=∠EHF ∠AGB=________(对顶角相等) ∴∠EHF=∠DGF ∴DB ∥EC__________∴∠________=∠DBA__________ 又∵∠C=∠D ∴∠DBA=∠D∴DF ∥__________________ ∴∠A=∠F__________.19.已知5a+2的立方根是3,3a+b-l 的算术平方根是4,c整数部分. (1)求a ,b ,c 的值; (2)求 a+b+c 的平方根.20.如图,直线AB 是某天然气公司的主输气管道,点C 、D 是在AB 异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道.道有以下两个方案:方案一:只取一个连接点P ,使得像两个小区铺设的支管道总长度最短,在图中标出点P 的位置,保留画图痕迹;方案二:取两个连接点M 和N ,使得点M 到C 小区铺设的支管道最短,使得点N 到D 小区铺设的管道最.短短在途中标出M 、N 的位置,保留画图痕迹;设方案一中铺设的支管道总长度为L 11L 为,方案二中铺设的支管道总长度为2L 为,则L 1与L 2的大小关系为: L 1_____ L 2(填“>”、“<”或)理由是______.21.如图,这是某市部分简图,为了确定各建筑物的位置:()1请你以火车站为原点建立平面直角坐标系. ()2写出市场的坐标为______;超市的坐标为______.()3请将体育场为A 、宾馆为C 和火车站为B 看作三点用线段连起来,得ABC ,然后将此三角形向下平移4个单位长度,画出平移后的111A B C ,并求出其面积.22.如图,长方形OABC 中,O 为直角坐标系的原点,A 、C 两点的坐标分别为(6,0),(0,10),点B 在第一象限内.(1)写出点B 的坐标,并求长方形OABC 的周长;(2)若有过点C 的直线CD 把长方形OABC 的周长分成3:5两部分,D 为直线CD 与长方形的边的交点,求点D 的坐标.23.如图1,已知射线CB ∥OA ,∠C=∠OAB , (1)求证:AB ∥OC ;(2)如图2,E 、F 在CB 上,且满足∠FOB=∠AOB ,OE 平分∠COF. ①当∠C=100°时,求∠EOB 的度数.②若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 【解析】依据对角的定义进行判断即可. 【详解】解:∵互为对顶角的两个角的两边互为反向延长线, ∴A 中∠1和∠2是邻补角,C 中的∠1和∠2是对顶角. 故选:C . 【点睛】本题主要考查的是邻补角、对顶角的定义,熟练掌握相关概念是解题的关键. 2.D 【解析】,然后再根据平方根的定义求解即可. 【详解】=2,2的平方根是的平方根是故选D . 【点睛】正确化简是解题的关键,本题比较容易出错. 3.B 【解析】根据第二象限内点的坐标符号(-,+)进行判断即可. 4.A 【解析】π2,共2个.故选A .点睛:本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式. 5.B 【解析】判断两直线平行,主要利用同位角相等,同旁内角互补,内错角相等 【详解】A 项,∠3与∠4是直线BD 与AC 的内错角,所以不满足.B 项,∠1与∠2是直线AB 与CD 的内错角,所以∠1=∠2,可以得到AB//CD ,选B 项.C 项∠D 与∠DCE 是直线BD 与AE 的内错角,所以不满足.D 项,∠D 与∠ACD 是直线BD 与AE 的同旁内角,所以不满足. 【点睛】本题主要考查平行线的判定法则,同时也考查学生对于同位角,内错角,同旁内角的掌握情况. 6.B 【解析】解:A .对顶角相等是真命题,故本选项正确,不符合题意; B .两直线平行,同旁内角互补,故本选项错误,符合题意;C .平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D .同位角相等,两直线平行是真命题,故本选项正确,不符合题意. 故选B . 7.A 【解析】试题分析:由6.25<7<9可得2.5<<3,所以表示的点在数轴上表示时,所在C 和D 两个字母之间.故答案选A .考点:估算无理数的大小;实数与数轴. 8.B 【解析】解:∵点P 位于x 轴下方,y 轴左侧,∴点P 在第三象限; ∵距离y 轴2个单位长度,∴点P 的横坐标为﹣2;∵距离x轴4个单位长度,∴点P的纵坐标为﹣4;∴点P的坐标为(﹣2,﹣4).故选B.9.D【解析】解:平移中,对应点的对应坐标的差相等,设F(x,y).根据题意得:4﹣(﹣1)=x﹣a;1﹣4=y﹣b,解得:x=a+5,y=b-3;故F的坐标为(a+5,b-3).故选D.点睛:本题考查了点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.10.B【解析】【分析】延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.【详解】如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°,∵GH∥EF,∴∠2=∠AEC=25°,故选B.【点睛】考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.11.﹣2(答案不唯一)【解析】试题分析:∵|x|≤3,∴﹣3≤x≤3.∵x为整数,∴x=﹣3,﹣2,﹣1,0,1,2,3.x=﹣2,3x的值是﹣2或3(填写一个即可).12.55°.【解析】【分析】首先根据对顶角相等可得∠BOF=70°,再根据角平分线的性质可得∠GOF=35°,然后再算出∠DOF=90°,进而可以根据角的和差关系算出∠DOG的度数.【详解】∵∠AOE=70°,∴∠BOF=70°,∵OG平分∠BOF,∴∠GOF=35°,∵CD⊥EF,∴∠DOF=90°,∴∠DOG=90°﹣35°=55°,故答案是:55°.【点睛】考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13.﹣3<3.【解析】【分析】先分别得到3的平方根和立方根,然后比较大小.【详解】∵9的平方根为﹣3,3,9∴把9的平方根和立方根按从小到大的顺序排列为﹣33.故答案是:﹣33.【点睛】考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14.(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).15.(1)8;(2)【解析】【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用绝对值以及二次根式的性质化简得出答案.【详解】解:(1)原式=10+(﹣2 )=8;(2)原式=22=【点睛】考查了实数运算,解题关键是正确化简各数.16.(1)x=;(2)x=34-【解析】试题分析:(1)先求出x2的值,再根据平方根的定义解答;(2)先求出x3的值,再根据立方根的定义解答.试题解析:(1)解:方程两边都除以2得:x2=2,∴x=;(2)移项、方程两边都除以64得:x3=2764-,∴x=34-.17.35°【解析】解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.18.∠DGF 同位角相等,两直线平行 C 两直线平行,同位角相等AC 内错角相等,两直线平行两直线平行,内错角相等【解析】【分析】根据对顶角相等推知∠EHF=∠DGF ,从而证得两直线DB//EC ;然后由平行线的性质得到∠DBA=∠D ,即可根据平行线的判定定理,推知两直线DF//AC ;最后由平行线的性质,证得∠A=∠F . 【详解】AGB EHF ∠∠=,AGB DGF(∠∠=对顶角相等), EHF DGF ∠∠∴=,DB //EC(∴同位角相等,两直线平行), C DBA(∠∠∴=两直线平行,同位角相等),又C D ∠∠=,DBA D ∠∠∴=,DF //AC(∴内错角相等,两直线平行), A F(∠∠∴=两直线平行,内错角相等).故答案为DGF ∠;同位角相等,两直线平行;C ;两直线平行,同位角相等;AC ;内错角相等,两直线平行;两直线平行,内错角相等. 【点睛】本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用. 19.(1)a=5,b=2,c=3.(2)3a-b+c 的平方根是±4. 【解析】试题分析:利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值,代入代数式求出值后,进一步求得平方根即可.试题解析:解:(1)∵5a +2的立方根是3,3a +b ﹣1的算术平方根是4,∴5a +2=27,3a +b ﹣1=16,∴a =5,b =2.∵cc =3;(2)当a =5,b =2,c =3时,3a ﹣b +c =16,3a ﹣b +c 的平方根是±4. 点睛:本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可. 20.(1)答案见解析;(2)>;垂线段最短. 【解析】 【分析】根据题目要求直接连接CD ,以及分别过C ,D 向AB 最垂线即可,利用直角三角形中斜边大于直角边进而得出答案即可. 【详解】 解:如图所示:∵在Rt △CMP 和Rt △PND 中,CP >CM ,PD >DN ,∴CP +PD >CM +DN , ∴L 1>L 2.理由是垂线段最短 故答案为:>;垂线段最短.21.(1)图形见解析;(2)超市(2,﹣3);(3)三角形A′B′C′的面积是7. 【解析】分析:(1)以火车站为原点建立直角坐标系即可; (2)根据平面直角坐标系写出点的坐标即可;(3)根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可. 详解:(1)如图所示:(2)市场坐标(4,3),超市坐标(2,-3);(3)如图所示:△A1B1C1的面积=3×6-12×2×2-12×4×3-12×6×1=7.点睛:此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图形.22.(1)点B的坐标为(6,10),长方形OABC的周长为32;(2)点D的坐标为(2,0)【解析】试题分析:(1)由A、C的坐标得到OA,OC的长.由长方形的性质得到BC,AB的长,从而得到点B的坐标和长方形OABC的周长;(2)由CD把长方形OABC的周长分为3:5两部分,得到被分成的两部分的长分别为12和20.然后分两种情况讨论:①当点D在AB上时,②当点D在OA上时.试题解析:解:(1)∵A(6,0),C(0,10),∴OA=6,OC=10.∵四边形OABC是长方形,∴BC=OA=6,AB=OC=10,∴点B的坐标为(6,10).∵OC=10,OA=6,∴长方形OABC的周长为:2×(6+10)=32.(2)∵CD把长方形OABC的周长分为3:5两部分,∴被分成的两部分的长分别为12和20.①当点D在AB上时,如图,AD=20-10-6=4,所以点D的坐标为(6,4).②当点D在OA上时,如图,OD=12-10=2,所以点D的坐标为(2,0).23.(1)见解析;(2)①35°,②∠OBC:∠OFC的值不发生变化,∠OBC:∠OFC=1:2【解析】【分析】(1)由平行线的性质得到∠C+∠COA=180°,再由∠C=∠OAB,得到∠OAB+∠COA=180°,根据同旁内角互补,两直线平行即可得到结论;(2)①先求出∠COA的度数,由∠FOB=∠AOB,OE平分∠COF,即可得到结论;②∠OBC:∠OFC的值不发生变化.由平行线的性质可得∠OBC=∠BOA,∠OFC=∠FOA.由FOB=∠AOB,得到∠OFC=2∠OBC,从而得出结论.【详解】解:(1)∵CB∥OA,∴∠C+∠COA=180°.∵∠C=∠OAB,∴∠OAB+∠COA=180°,∴AB∥OC;(2)①∠COA=180°-∠C=70°.∵∠FOB=∠AOB,OE平分∠COF,∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=35°;②∠OBC:∠OFC的值不发生变化.∵CB∥OA,∴∠OBC=∠BOA,∠OFC=∠FOA.∵∠FOB=∠AOB,∴∠FOA=2∠BOA,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=1:2.【点睛】本题考查了平行线的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。
2021年人教版数学七年级下册 期中检测卷及答案
人教版七年级下册数学期中检测卷时间:60分钟满分:100分一、选择题(每题3分,共30分)1.小明利用电脑画出了几幅鱼的图案,则由图中所示的图案通过平移得到的图案是 ( )A B C D 2.如图,直线a ,b 相交于一点,若∠1=70°,则∠2的度数是 ( )A.70°B.90°C.110°D.130°3.若x 轴负半轴上的点P 到y 轴的距离为3,则点P 的坐标为 ( ) A.(-3,0) B.(0,-3) C.(3,0) D.(0,3)4.下列运算正确的是 ( ) A .√25=±5B .√-643=4C .±√25=5D .(√-83)2=45.已知a<√7<b ,且a ,b 为两个连续的整数,则a+b= ( )A.3B.5C.6D.76.如图,下列说法错误的是( )A.若a ∥b ,b ∥c ,则a ∥cB.若∠1=∠2,则a ∥cC.若∠3=∠2,则b ∥cD.若∠3+∠5=180°,则a ∥c7.如图是故宫博物院的主要建筑分布图,若分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是 ( ) A.景仁宫(4,2) B.养心殿(-2,3) C.保和殿(1,0) D.武英殿(-3.5,-4)第7题图第8题图8.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°9.已知点P(a,1)不在第一象限,则点Q(0,-a)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴或原点上D.y轴负半轴上10.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“➝”方向排列,依次为(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1),…,根据这个规律,可得第100个点的坐标为()A.(14,0)B.(14,-1)C.(14,1)D.(14,2)二、填空题(每题3分,共18分)11.写出一个比√2大且比√5小的有理数:.12.如图是小明设计的一个关于实数运算的程序图,当输入a的值为81时,输出的值为.13.数学活动中,张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(-200,300).王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是m.14.已知线段AB∥y轴,且AB=3,若点A的坐标为(1,-2),则点B的坐标是.15.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=.16.若∠α的两边与∠β的两边分别平行,且∠α比∠β的2倍少30°,则∠α的度数为.三、解答题(共52分) 17.(8分)计算:(1)|3-π|+√4+√-273-(-1)2 019; (2)√49-|√6-3|+√(-3)2+√-643.18.(6分)若√1-2x 3与√3x -53互为相反数,求(1-√x )2 020的值.19.(8分)在平面直角坐标系中,三角形ABC 的三个顶点的位置如图所示,点A'的坐标是(-2,2).现将三角形ABC 平移,使点A 与点A'重合,点B',C'分别是点B ,C 的对应点. (1)请画出平移后的三角形A'B'C',并写出点B',C'的坐标;(2)若三角形ABC 内一点P 的坐标为(a ,b ),则点P 的对应点P'的坐标是 ; (3)试说明三角形ABC 经过怎样的平移得到三角形A'B'C'.20.(8分)如图,在平面直角坐标系中,点A,B的坐标分别为(a,0),(b,0),且a,b满足|a+2|+√b-4=0,点C的坐标为(0,3).(1)求a,b的值及三角形ABC的面积;,求点M的坐标.(2)若点M在x轴上,且三角形ACM的面积是三角形ABC面积的1321.(10分)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,交射线AM于C,D两点.(1)求∠CBD的度数;(2)当点P运动时,∠APB∶∠ADB的值是否随之发生变化?若不变,请求出这个值;若变化,请找出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.22.(12分)如图,直线MN∥GH,另一直线交GH于点A,交MN于点B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C 在点A 右侧且点D 在点B 左侧时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右侧且点D 在点B 右侧时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左侧且点D 在点B 左侧时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数.期中检测卷题号 1 2 3 4 5 6 7 8 9 10 答案 D C A D B C B B C D 11.2(答案不唯一) 12.8 13.500 14.(1,1)或(1,-5)15.90° 16.110°或30°1.D2.C 【解析】 由题图,知∠1+∠2=180°,∵∠1=70°,∴∠2=180°-∠1=110°.故选C.3.A 【解析】 因为点P 在x 轴的负半轴上,且到y 轴的距离为3,所以点P 的横坐标为-3,纵坐标为0,即点P 的坐标为(-3,0).故选A .4.D 【解析】 √25=5,√-643=-4,±√25=±5,(√-83)2=(-2)2=4,所以选项A ,B ,C 错误,D 正确.故选D. 5.B 【解析】 因为4<7<9,所以2<√7<3,所以a=2,b=3,所以a+b=5.故选B .6.C 【解析】 由平行公理的推论,知A 正确;因为∠1与∠2是直线a ,c 被直线d 截得的内错角,所以由∠1=∠2,可得a ∥c ,故B 正确;因为∠3与∠2是直线d ,e 被直线c 截得的同位角,所以由∠3=∠2得不到b ∥c ,故C 错误;因为∠3与∠5是直线a ,c 被直线e 截得的同旁内角,所以由∠3+∠5=180°,可得a ∥c ,故D 正确.故选C .7.B【解析】根据表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),可得景仁宫(2,4),养心殿(-2,3),保和殿(0,1),武英殿(-3.5,-3),所以A,C,D错误,B正确.故选B.8.B【解析】∵AB∥CD,∴∠BAD=∠ADC=35°.∵DA⊥AC,∴∠CAD=90°,∴∠1+∠BAD=90°,∴∠1=90°-∠BAD=5 5°.故选B.9.C【解析】∵点P(a,1)不在第一象限,∴a≤0,则-a≥0,∴点Q(0,-a)在y轴正半轴或原点上.故选C.10.D【解析】由题图,得第1列有1个点,第2列有2个点……第n列有n个点,且奇数列上的点关于x轴对称,偶数列上的点y轴上方比下方多1个,所以奇数列上点的坐标为(n,n-12),(n,n-12-1),…,(n,1−n2),偶数列上点的坐标为(n,n2),(n,n2-1),…,(n,1-n2).易得第100个点是第14列上自上而下第6个点,所以第100个点的坐标为(14,142-5),即(14,2).故选D.11.2(答案不唯一)12.8【解析】由题中程序图,得输出的值为√81-1=9-1=8.13.500【解析】因为张明的坐标是(-200,300),王丽的坐标是(300,300),所以张明与王丽之间的距离为300-(-200)=300+200=500(m).14.(1,1)或(1,-5)【解析】∵AB∥y轴,点A的坐标为(1,-2),∴点B的横坐标为1.∵AB=3,∴点B 的坐标为(1,1)或(1,-5).15.90°【解析】如图,过点E作EF∥AB,所以∠BAE+∠AEF=180°,所以∠AEF=180°-∠BAE=60°.因为AB∥CD,所以EF∥CD,所以∠FEC=∠C=30°,所以∠AEC=∠AEF+∠CEF=60°+30°=90°.16.110°或30°【解析】∵∠α的两边与∠β的两边分别平行,∴∠α=∠β或∠α+∠β=180°.∵∠α比∠β的2倍少30°,∴∠α=2∠β-30°.①若∠α=∠β,则2∠β-30°=∠β,解得∠β=30°,∴∠α=30°;②若∠α+∠β=180°,则2∠β-30°+∠β=180°,解得∠β=70°,∴∠α=110°.综上,∠α的度数为110°或30°. 17.【解析】(1)|3-π|+√4+√-273-(-1)2 019=π-3+2-3+1=π-3.(2)√49-|√6-3|+√(-3)2+√-643=7+√6-3+3-4=3+√6.18.【解析】 ∵√1−2x 3与√3x -53互为相反数,∴(1-2x )+(3x-5)=0,解得x=4,∴(1-√x )2 020=(1-√4)2 020=(1-2)2 020=(-1)2 020=1.19.【解析】 (1)三角形A'B'C'如图所示.由图可知点B',C'的坐标分别为(-4,1),(-1,-1). (2)(a-5,b-2)(3)将三角形ABC 先向左平移5个单位长度,再向下平移2个单位长度得到三角形A'B'C'.(或将三角形ABC 先向下平移2个单位长度,再向左平移5个单位长度得到三角形A'B'C') 20.【解析】 (1)∵|a+2|+√b -4=0,∴a+2=0,b-4=0,∴a=-2,b=4.∴点A 的坐标为(-2,0),点B 的坐标为(4,0), ∴AB=|4-(-2)|=6.∵点C 的坐标为(0,3),∴CO=3.∴三角形ABC 的面积为12AB×CO=12×6×3=9. (2)设点M 的坐标为(x ,0), 则AM=|x-(-2)|=|x+2|.∵三角形ACM 的面积是三角形ABC 面积的13, ∴12AM×OC=13×9,∴12|x+2|×3=3, ∴x=0或-4,故点M 的坐标为(0,0)或(-4,0).21.【解析】 (1)∵AM ∥BN ,∴∠ABN+∠A=180°,∴∠ABN=180°-60°=120°,∴∠ABP+∠PBN=120°. ∵BC ,BD 分别平分∠ABP 和∠PBN , ∴∠ABP=2∠CBP ,∠PBN=2∠DBP ,∴2∠CBP+2∠DBP=120°,∴∠CBP+∠DBP=60°, ∴∠CBD=∠CBP+∠DBP=60°.(2)不变.∵AM ∥BN ,∴∠APB=∠PBN ,∠ADB=∠DBN.∵BD 平分∠PBN ,∴∠PBN=2∠DBN ,∴∠APB∶∠ADB=2∶1.∴∠APB∶∠ADB的值为2.(3)∵AM∥BN,∴∠ACB=∠CBN.当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN.由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°.22.【解析】(1)如图,过点P作PE∥MN.∵BP平分∠DBA,∴∠DBP=1∠DBA=40°.2∵PE∥MN,∴∠BPE=∠DBP=40°.∵CP平分∠DCA,∴∠ACP=1∠DCA=25°.2∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=∠ACP=25°.∴∠BPC=∠BPE+∠CPE=40°+25°=65°.(2)如图,过点P作PF∥MN.∵∠MBA=80°,∴∠DBA=180°-80°=100°.∵BP平分∠DBA,∴∠DBP=1∠DBA=50°.2∵PF∥MN,∴∠BPF=180°-∠DBP=130°.∵CP平分∠DCA,∴∠PCA=1∠DCA=25°.2∵PF∥MN,MN∥GH,∴PF∥GH,∴∠CPF=∠PCA=25°.∴∠BPC=∠BPF+∠CPF=130°+25°=155°.(3)如图,过点P作PQ∥MN.∵BP平分∠DBA,∴∠DBP=1∠DBA=40°.2∵PQ∥MN,∴∠BPQ=∠DBP=40°.∵∠GCD=50°,∴∠DCA=180°-∠DCG=130°.∴CP平分∠DCA,∴∠PCA=1∠DCA=65°.2∵PQ∥MN,MN∥GH,∴PQ∥GH,∴∠CPQ=180°-∠PCA=115°.∴∠BPC=∠BPQ+∠CPQ=40°+115°=155°.1、三人行,必有我师。
人教版数学七年级下学期《期中考试卷》(带答案解析)
2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题1.下列方程中:①246x +=,②11x x-=,③232x x -,④57x <,⑤322x y -=,⑥3x =其中是一元一次方程的有( )A. 5个B. 4个C. 3个D. 2个 2.在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( )A. 2个B. 3个C. 4个D. 5个 3.下列说法不正确的是( )A. 若x y =,则+=+x a y aB. 若x y =,则--x b y b =C. 若x y =,则55x y =D. 若x y =,则x y a a = 4.已知231x y -=,用含x的代数式表示y 正确的是( ) A. 23y x =B. 312y x +=C. 213x y -=D. 1233y x =-- 5.方程1126x x --=,去分母正确的是( ) A. 6(1)6x x --=B. 3(1)1x x --=C. 3(1)6x x --=D. 316x x --= 6.解方程组327413x y x y +=⎧⎨-=⎩①②比较简单的解法是( ) A. ①×2-②,消去xB. ①-②×2,消去yC. ①×2+②,消去xD. ①+②×2,消去y7.方程12110.30.7x x +--=中小数化为整数,可变形为( ) A. 101021130.7x x +--= B. 101201137x x +--= C. 1012011037x x +--= D. 10102010137x x +--=8.已知方程组221x y k x y +=⎧⎨+=⎩的解满足3x y -=,则k 的值为( ) A. 2 B. 2- C. 1 D. 1-9.“x 的2倍与x 的相反数的差不小于1”,用不等式表示为( )A. 21x x -≥B. 2-(-)1x x ≥C. 21x x ->D. 2()1x x --> 10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26﹣x )=800x B. 1000(13﹣x )=800xC. 1000(26﹣x )=2×800xD. 1000(26﹣x )=800x二、填空题11.方程1--22x =的解是________ 12.已知3x =是方程3-25x a =的解,则a =_________ 13.若7x 3a y 4b 与﹣2x 3y 3b +a 是同类项,则a =_____,b =_____. 14.已知21x y =⎧⎨=-⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a ﹣b 的值为_____. 15.在公式1()2s a b h =+中,120,12,8S b h ===,则a =_______ 16.二元一次方程组2223x y x y x +-==+的解是____. 17.解方程3121226x x +-=-,有下列步骤:①3(31)12(21)x x +=--,②9312-21x x +=+,③921213x x -=++,④716x =,⑤167x =,其中首先发生错误的一步是_________. 18.a b c d ,,,为有理数,现规定一种运算:a c b d =ad bc -, 那么当2(1)x - 4518=时x 的值为__________. 19.中国古代的数学专著《九章算术》有方程组问题“五只雀六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两、y 两,则根据题意,可列方程组为_________. 20.某商店连续两次降价10%后商品的价格是81元,则该商品原来的价格是_______元 三、解答题21.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-= (4)8423x y x y +=⎧⎪⎨+=⎪⎩ (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩22.当x 为何值时,整式31x +的值是整式74x +的5倍?23.已知关于x 、y 的二元一次方程组26322x y m x y m +=⎧⎨-=⎩的解满足二元一次方程5360x y -=,求m 的值? 24. 某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.四、填空或选择题25.若437ax y x +=-是关于,x y 的二元一次方程,则a 的取值范围是A. 2a ≠-B. 0a ≠C. 3a ≠D. -1a ≠26.已知215x +=,则x =_________27.若0x <,则下列不等式成立的是:①0x >,②20x >,③10x +>,④-0x >_________A .①②③B .①②④C .③④D .①③28.若14,2a b a c +=+=,则23()2()4b c b c ---+=________ 29.不论x 取何值时,等式34ax b x --=恒成立,则a b +=________30.对有理数x ,y 定义一种新运算“*”:x *y =ax +by ,其中a ,b 为常数.等式右边是通常加法和乘法运算.已知3*5=15,4*7=28,那么a +b =________.31.已知::1:2:3x y z =,且234x y z -+=,则-x y z +=________五、解答下列各题32.小明在解方程21152x x a -++=时,方程左边的“+1”没有乘以10,因此求得方程的解为4x =,试求a 的值及方程的正确解?33.已知关于x 、y 的方程22(4)(2)(6)8k x k x k y k -+++-=+,试问:①当k 为何值时此方程为一元一次方程? ②当k 为何值时此方程为二元一次方程?34.随着“低碳生活、绿色出行”理念的普及,新能源汽车在逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车,3辆B 型汽车的进价共计80万元;3两A 型汽车,2两B 型汽车的进价共计95万元.(1)问A 、B 两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利800元,销售1辆B 型汽车可获利500元;在②的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润多少元?答案与解析一、选择题1.下列方程中:①246x +=,②11x x-=,③232x x -,④57x <,⑤322x y -=,⑥3x =其中是一元一次方程的有( )A. 5个B. 4个C. 3个D. 2个 【答案】D【解析】【分析】根据一元一次方程的定义对每一项进行判断即可.【详解】①式中含有一个未知数且次数是1,故①是;②式中含有一个未知数但最高次数不是1,故②不是;③式不是方程,故③不是;④式是不等式,故④不是;⑤式含有两个未知数,故⑤不是;⑥式中含有一个未知数且次数是1,故⑥是;综上,①⑥是一元一次方程,故选:D .【点睛】本题考查了一元一次方程的定义,掌握知识点是解题关键.2.在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( )A. 2个B. 3个C. 4个D. 5个 【答案】C【解析】【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得.【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式,共4个,故选:C .【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.3.下列说法不正确的是( )A. 若x y =,则+=+x a y aB. 若x y =,则--x b y b =C. 若x y =,则55x y =D. 若x y =,则x y a a = 【答案】D【解析】【分析】根据等式的基本性质对四个选项进行逐一分析即可.【详解】解:A 、由等式的基本性质1可知,若x y =,则+=+x a y a ,故本项正确;B 、由等式的基本性质1可知,若x y =,则--x b y b =,故本项正确;C 、由等式的基本性质2可知,若x y =,则55x y =,故本项正确;D 、当a=0时,x y a a =无意义,故本项错误; 故选:D .【点睛】本题主要考查了等式的基本性质,解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.4.已知231x y -=,用含x 的代数式表示y 正确的是( ) A. 23y x = B. 312y x += C. 213x y -= D. 1233y x =-- 【答案】C【解析】【分析】把x 看做已知数求解即可.【详解】∵2x ﹣3y =1,∴2x ﹣1=3y ,∴21=3x y -, 故选:C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .5.方程1126x x --=,去分母正确的是( ) A. 6(1)6x x --=B. 3(1)1x x --=C. 3(1)6x x --=D. 316x x --= 【答案】C【解析】【分析】先找出分母的最小公倍数,然后给等式两边同时乘以分母的最小公倍数,即可求解; 【详解】 1126x x --= ∴ 给等式两边同时乘以6可得:()316x x --=故选:C.【点睛】本题主要考查一元一次方程中的去分母问题,熟练掌握去分母的方法是求解本题的关键.6.解方程组327413x y x y +=⎧⎨-=⎩①②比较简单的解法是( ) A. ①×2-②,消去xB. ①-②×2,消去yC. ①×2+②,消去xD. ①+②×2,消去y【答案】D【解析】【分析】应用加减消元法,判断出解法不正确的是哪一个即可. 【详解】解:327413x y x y +=⎧⎨-=⎩①② ①×2-②,不能消去x ,A 不符合题意; ①-②×2,不能消去y ,B 不符合题意; ①×2+②,不可以消去x ,C 不符合题意;①+②×2,可以消去y,D符合题意;故选:D【点睛】本题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.7.方程12110.30.7x x+--=中小数化为整数,可变形为()A. 101021130.7x x+--= B.101201137x x+--=C. 1012011037x x+--= D.10102010137x x+--=【答案】D【解析】【分析】根据分数的基本性质,给分子、分母同乘以10化简即可.【详解】∵1211 0.30.7x x+--=,∴(1)10(21)101 0.3100.710x x+⨯-⨯-=⨯⨯,即101020101 37x x+--=,故选D【点睛】本题考查了解一元一次方程,根据分数的基本性质给分子、分母同乘以10将方程化简是解答本题的关键.8.已知方程组221x y kx y+=⎧⎨+=⎩的解满足3x y-=,则k的值为()A. 2B. 2-C. 1D. 1-【答案】B【解析】【分析】将方程组中两方程相减可得x-y=1-k,根据x-y=3可得关于k的方程,解之可得.【详解】解:2? 21? x y kx y+=⎧⎨+=⎩①②②-①,得:x-y=1-k,∵x-y=3,∴1-k=3,解得:k=-2,故选:B .【点睛】本题考查了二元一次方程组的解及解法:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.本题用整体代入的方法达到了简便计算的目的.9.“x 的2倍与x 的相反数的差不小于1”,用不等式表示为( )A. 21x x -≥B. 2-(-)1x x ≥C. 21x x ->D. 2()1x x -->【答案】B【解析】【分析】 x 的2倍与x 的相反数的差表示为2-(-)x x ,不小于表示的意思是大于或等于,从而可得出不等式.【详解】解:“x 的2倍与x 的相反数的差不小于1”,用不等式表示为2-(-)1x x ≥.故选:B .【点睛】本题主要考查了列不等式,解决本题的关键是理解“不小于1”用数学符号表示为:“≥1”. 10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26﹣x )=800x B. 1000(13﹣x )=800x C. 1000(26﹣x )=2×800x D. 1000(26﹣x )=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程. 二、填空题11.方程1--22x =的解是________ 【答案】1【解析】【分析】直接系数化1,将方程化为x=a 的形式,即可得解.【详解】解:系数化1得:x=1 ,方程的解为:x=1,故答案为:x=1【点睛】本题考查解一元一次方程,解一元一次方程,就是利用等式的性质将方程化为x=a 的形式. 12.已知3x =是方程3-25x a =的解,则a =_________【答案】2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:9-2a=5,解得:a=2.故答案为:2.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.若7x 3a y 4b 与﹣2x 3y 3b +a 是同类项,则a =_____,b =_____.【答案】 (1). 1, (2). 1.【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【详解】由题意,得3a =3,3b +a =4b ,解得a =1,b =1,故答案为1,1.【点睛】考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.14.已知21x y =⎧⎨=-⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a ﹣b 的值为_____. 【答案】5【解析】【分析】把方程组的解代入方程组,得出关于a 、b 的方程组,求出方程组的解,再代入求出即可.【详解】解:根据题意得,2-72+1a b a b =⎧⎨=⎩①② , ①+②,得:4a =8,解得:a =2,②﹣①,得:2b =﹣6,解得:b =﹣3,∴a ﹣b =2﹣(﹣3)=5,故答案为5.【点睛】此题考查二元一次方程组的解,解题关键在于掌握解二元一次方程组的方法.15.在公式1()2s a b h =+中,120,12,8S b h ===,则a =_______ 【答案】18【解析】【分析】把s=120,b=12,h=8代入公式,即可得出关于a 的方程,求出方程的解即可.【详解】解:把s=120,b=12,h=8代入公式1()2s a b h =+ 得:120=12×(a+12)×8, 解得:a=18,故答案为:18.【点睛】本题考查了解一元一次方程,能得出关于a 的一元一次方程是解此题的关键.16.二元一次方程组2223x y x y x +-==+的解是____. 【答案】51x y =-⎧⎨=-⎩; 【解析】 解:原方程可化为:22223x y x x y x +⎧=+⎪⎪⎨-⎪=+⎪⎩,化简为:46x y x y -=-⎧⎨+=-⎩,解得:51x y =-⎧⎨=-⎩.故答案为51x y =-⎧⎨=-⎩. 点睛:本题考查二元一次方程的解法,解题的关键是将原方程化为方程组,本题属于基础题型.17.解方程3121226x x +-=-,有下列步骤:①3(31)12(21)x x +=--,②9312-21x x +=+,③921213x x -=++,④716x =,⑤167x =,其中首先发生错误的一步是_________. 【答案】③【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,得到结果,即可做出判断.【详解】解:去分母得:3(3x+1)=12-(2x-1),去括号得:9x+3=12-2x+1,移项得:9x+2x=12+1-3,合并得:11x=10,解得:x=1011, 其中首先发生错误的是③.故答案为:③.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.a b c d ,,,为有理数,现规定一种运算:a c b d=ad bc -, 那么当2(1)x - 4518=时x 的值为__________.【答案】3【解析】【分析】根据新定义的运算即可求出答案.【详解】∵()254118x ⨯--=,∴解得:3x =,故答案为:3. 【点睛】本题考查了一元一次方程的应用,解题的关键是能将已知中规定的运算法则运用于所求的等式中.19.中国古代的数学专著《九章算术》有方程组问题“五只雀六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两、y 两,则根据题意,可列方程组为_________.【答案】561645x y x y y x +=⎧⎨+=+⎩【解析】【分析】设雀重x 两,燕重y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设雀重x 两,燕重y 两,由题意得,561645x y x y y x+=⎧⎨+=+⎩, 故答案为:561645x y x y y x +=⎧⎨+=+⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.20.某商店连续两次降价10%后商品的价格是81元,则该商品原来的价格是_______元【答案】100【解析】【分析】可设该商品原来的价格是x 元,根据等量关系式:原价×(1-降低率)2=81,列出方程即可求解.【详解】解:设原价为x .x(1-10%)2=81,解得x=100.故答案为:100【点睛】考查一元一次方程的应用;解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题21.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-= (4)8423x y x y +=⎧⎪⎨+=⎪⎩ (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩【答案】(1) 1x =; (2) 7x =; (3) 17x =-; (4) 80x y =⎧⎨=⎩; (5) 822x y z =⎧⎪=⎨⎪=⎩【解析】【分析】(1)先移项,再系数化为1即可得到答案;(2)先去括号再移项合并,最后系数化为1即可得到答案;(3)先通分,再去括号移项合并即可得到答案;(4)②式×2-①式可以求出y 的值,再计算x 的值即可得到答案;(5)先消x ,得到关于z 、y 的二元一次方程组,求解得到z 、y 的值,再求解x 的值即可得到答案;【详解】解:(1)213x +=即:2312x =-=,解得:1x =;(2) 5234x x -=+()去括号得:52312x x -=+,移项得:214x =,解得:7x =;(3)321123x x -+-= 等式两边同时×6得:3(3)2(21)6x x --+= , 去括号移项得:34629x x -=++,即:17x =-;(4)8423x y x y +=⎧⎪⎨+=⎪⎩①②, ②式×2得:2283x y +=③, ③式-①式得:103y -=, 解得:0y = ,把0y =代回①式得:8x =,所以解为:80x y =⎧⎨=⎩; (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩①②③,把③式3分别代到①②式消去x 得到:41242522y y z y y z ++=⎧⎨++=⎩, 化简得:5126522y z y z +=⎧⎨+=⎩ 即:255606522y z y z +=⎧⎨+=⎩, 解得:22y z =⎧⎨=⎩, 把y=2代到③式得到:8x =,故三元一次方程组的解集为:822x y z =⎧⎪=⎨⎪=⎩【点睛】本题主要考查了解一元一次方程、二元一次方程组、三元一次方程组,掌握用消元法求解二元一次方程组以及三元一次方程组是解题的关键;22.当x 为何值时,整式31x +的值是整式74x +的5倍?【答案】-2【解析】【分析】根据题意,列出关于x 的一元一次方程,即可求解.【详解】由题意得:31x +=5(74x +),31x +=3520x +,∴x=-2.答:当x =-2时,整式31x +的值是整式74x +的5倍.【点睛】本题主要考查解一元一次方程,根据题意,列出一元一次方程,是解题的关键.23.已知关于x 、y 的二元一次方程组26322x y m x y m+=⎧⎨-=⎩的解满足二元一次方程5360x y -=,求m 的值? 【答案】15【解析】【分析】通过加减消元法,用含m 的代数式表示x ,y ,再结合5360x y -=,即可求解.【详解】26322x y m x y m +=⎧⎨-=⎩①②, ①×2+②,得:42+3212+2x y x y m m +-=,解得:2x m =,把2x m =代入①,得:46m y m +=,解得:2y m =.把2x m =,2y m =代入5360x y -=,得:10660m m -=,解得:m=15.【点睛】本题主要考查解二元一次方程以及解的定义,熟练掌握加减消元法,是解题的关键.24. 某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.【答案】甲、乙两个工程队分别整治了120m ,240m【解析】【分析】设甲队整治了x 天,则乙队整治了20-x 天,由两队一共整治了360m 为等量关系建立方程求出其解即可.【详解】设甲队整治了x 天,则乙队整治了天,由题意,得24x+16(20-x)=360,解得:x=5,∴乙队整治了20-5=15天,∴甲队整治的河道长为:24×5=120m ;乙队整治的河道长为:16×15=240m . 【点睛】:本题考查一元一次方程的应用.能正确理解题中的等量关系是解题关键四、填空或选择题25.若437ax y x +=-是关于,x y 的二元一次方程,则a 的取值范围是A. 2a ≠-B. 0a ≠C. 3a ≠D. -1a ≠【答案】C【解析】【分析】根据二元一次方程的定义,即可得到答案.【详解】∵437ax y x +=-是关于,x y 的二元一次方程,∴(3)47a x y -+=-是关于,x y 的二元一次方程,∴3a ≠.故选C .【点睛】本题主要考查二元一次方程的定义,熟练掌握“含两个未知数,未知数的次数为1,且等号两边都是整式的方程,式二元一次方程”是解题的关键.26.已知215x +=,则x =_________【答案】2或-3【解析】【分析】根据绝对值的意义,可知215x +=±,进而即可求解. 【详解】∵215x +=,∴215x +=±, ∴2x =或3x =-.故答案是:2或-3.【点睛】本题主要考查绝对值定义,熟练掌握绝对值的定义,是解题的关键.27.若0x <,则下列不等式成立的是:①0x >,②20x >,③10x +>,④-0x >_________ A .①②③ B .①②④ C .③④ D .①③【答案】B【解析】【分析】根据求绝对值的法则,即可判断①;根据平方的意义,即可判断②;根据不等式的性质,即可判断③;根据不等式的性质,即可判断④.【详解】①∵0x <, ∴0=->x x ,故①正确;②∵0x <,∴20x >,故②正确;③∵0x <,10x +>不一定成立,故③错误;④∵0x <,∴-0x >,故④正确.综上所述:不等式成立的是:①②④.故选B .【点睛】本题主要考查不等式的基本性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 28.若14,2a b a c +=+=,则23()2()4b c b c ---+=________ 【答案】6【解析】【分析】由条件可得b c -的值,然后代入求值,即可. 【详解】∵14,2a b a c +=+=, ∴7()()2b c a b a c -=+-+=, ∴23()2()4b c b c ---+=2773()2224-⨯+=6. 故答案是:6.【点睛】本题主要考查代数式的值,掌握整体代入的思想方法,是解题的关键.29.不论x 取何值时,等式34ax b x --=恒成立,则a b +=________【答案】1【解析】【分析】根据等式恒成立的条件可知,当x 取特殊值0或1时都成立,可将条件代入,即可求出a 与b 的值.【详解】∵不论x 取何值等式3=4ax b x --恒成立,∴x=0时,b=-3,x=1时,a=4,即a=4,b=-3,∴a+b=4+(-3)=1,故答案为:1.【点睛】本题主要考查等式的性质,解题的关键是需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.30.对有理数x ,y 定义一种新运算“*”:x *y =ax +by ,其中a ,b 为常数.等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么a +b =________.【答案】-11【解析】【分析】根据新定义运算规律可列出关于a ,b 的一元二次方程组,然后求解方程组即可.【详解】根据题意,得35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, 则a +b =-35+24=-11.故答案为﹣11.【点睛】本题主要考查解一元二次方程组.31.已知::1:2:3x y z =,且234x y z -+=,则-x y z +=________ 【答案】43【解析】【分析】设x=k ,y=2k ,z=3k (k ≠0),结合234x y z -+=,求出k 的值,进而即可求解.【详解】∵::1:2:3x y z =,∴设x=k ,y=2k ,z=3k (k ≠0),∵234x y z -+=,∴2(2)3(3)4k k k -⨯+⨯=,解得:k=23, ∴-x y z +=-232k k k k +==43. 故答案是:43. 【点睛】本题主要考查代数式求值,掌握设k 值法,是解题的关键.五、解答下列各题32.小明在解方程21152x x a -++=时,方程左边的“+1”没有乘以10,因此求得方程的解为4x =,试求a 的值及方程的正确解?【答案】a=-1,方程的正确解为:x=13.【解析】【分析】根据题意求出a 的值,再把a 的值代入原方程,即可求解.【详解】由题意得:2(21)15()x x a -+=+的解是:4x =,把4x =代入2(21)15()x x a -+=+得:2(241)15(4)a ⨯⨯-+=⨯+,解得:a=-1, ∴原方程为:211152x x --+=, ∴2(21)105(1)x x -+=-,解得:x=13.综上所述:a=-1,方程的正确解为:x=13.【点睛】本题主要考查解一元一次方程,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.33.已知关于x 、y 的方程22(4)(2)(6)8k x k x k y k -+++-=+,试问:①当k 为何值时此方程为一元一次方程? ②当k 为何值时此方程为二元一次方程?【答案】①当k=-2时,此方程为一元一次方程;②当k=2时,此方程为二元一次方程.【解析】【分析】①根据一元一次方程的定义,即可求解;②根据二元一次方程的定义,即可求解.【详解】①∵当240k -=且20k +=时,即:k=-2时,方程22(4)(2)(6)8k x k x k y k -+++-=+变为:86y -=,∴当k=-2时,此方程为一元一次方程;②∵当240k -=且20k +≠且60k -≠时,即:k=2时,方程22(4)(2)(6)8k x k x k y k -+++-=+变为:4410x y -=,∴当k=2时,此方程为二元一次方程.【点睛】本题主要考查一元一次方程和二元一次方程的定义,熟练掌握它们的定义,是解题的关键.34.随着“低碳生活、绿色出行”理念的普及,新能源汽车在逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A型汽车,3辆B型汽车的进价共计80万元;3两A型汽车,2两B型汽车的进价共计95万元.(1)问A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利800元,销售1辆B型汽车可获利500元;在②的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润多少元?【答案】(1)A型汽车每辆进价为25万元,B型汽车每辆进价为10万元;(2)一共有三种购买方案:购进A型汽车2辆,购进B型汽车15辆;购进A型汽车4辆,购进B型汽车10辆;购进A型汽车6辆,购进B型汽车5辆;(3)购进A型汽车2辆,购进B型汽车15辆,可获得最大利润,利润为9100元.【解析】【分析】(1)设A型汽车每辆进价为a万元,B型汽车每辆进价为b万元,根据“2辆A型汽车,3辆B型汽车的进价共计80万元;3两A型汽车,2两B型汽车的进价共计95万元”列出二元一次方程组,即可求解;(2)设A型汽车购进x辆,B型汽车购进y辆,列出二元一次方程,结合x,y为正整数,即可求解;(3)列出利润的表达式,分别求出(2)小题三种方案的利润,进行比较,即可可得结论.【详解】(1)设A型汽车每辆进价为a万元,B型汽车每辆进价为b万元,由题意得:23803295a ba b+=⎧⎨+=⎩,解得:2510ab=⎧⎨=⎩,答:A型汽车每辆进价为25万元,B型汽车每辆进价为10万元;(2)设A型汽车购进x辆,B型汽车购进y辆,由题意得:25x+10y=200,∵x,y为正整数,∴215xy=⎧⎨=⎩或410xy==⎧⎨⎩或65xy=⎧⎨=⎩,答:一共有三种购买方案:购进A型汽车2辆,购进B型汽车15辆;购进A型汽车4辆,购进B型汽车10辆;购进A型汽车6辆,购进B型汽车5辆;(3)由题意可得:利润=800x+500y,购进A型汽车2辆,购进B型汽车15辆,利润为9100元;购进A型汽车4辆,购进B型汽车10辆,利润为8200元;购进A型汽车6辆,购进B型汽车5辆,利润为7300元.答:购进A型汽车2辆,购进B型汽车15辆,可获得最大利润,利润为9100元.【点睛】本题主要考查二元一次方程(组)的实际应用,找出数量关系,列出二元一次方程组或代数式,是解题的关键.。
福建省福清市2020-2021年人教版七年级下期中考试数学试题及答案(A卷全套)
福建省福清市2020-2021年人教版七年级下期中考试数学试题及答案(A卷全套)福清市20214-2021学年度第二学期七年级期中考试数学参考答案一、选择题(共10小题,每小题3分,共30分) 1 2 3 4 5 6 7 8 910 BBCCACCBDB二、填空题(共7题,每小题2分,共14分)11. < 12.如果两个角是对顶角,那么它们相等。
13. 35? 14. 2- 15. 0或1-或1 16. ①③④ 17. ()9,4 三、解答题(共6题,共56分) 18、(1)计算:①232+- ② 23(2)98--+-解:原式=232+-……3分解:原式=432-- ……3分=3 …………5分=1-…………5分 (2)一个数的两个不同..平方根分别为3a +与26a -,求该数. 解:根据题意可得:3260a a ++-=……………2分解得1a =……………3分34a +=,则2416=则这个数为16……………5分 19. 按图填空, 并注明理由(本题6分). 证明: ∵1=2∠∠ (已知) ∴DB ∥EC ( 内错角相等,两直线平行) ∴4E ∠=∠ ( 两直线平行,内错角相等 ) 又∵3E ∠=∠ ( 已知) ∴34∠=∠ ( 等量代换 ) ∴AD ∥BE . (每空1分)2021(本题9分) (1)1(4,7)A1(1,2)B1(6,4)C ……………3分(2)如图所示…………………5分图9(3)111111(25)523259.5222A B C S ?=+?-??-??=…7分 (4) 24,25D ?? ???或14,25D ??-……9分21.解:原绿化带的面积=2210100()m =……2分扩大后绿化带的面积=24100400()m ?=………4分40020()m =答:扩大后绿化带的边长为20m 。
…………………6分22.解:(1)猜想:AB ∥CD ,理由如下………1分AE ∥BC ,∴180A B ∠+∠=?(两直线平行,同旁内角互补) …3分A C ∠=∠∴180B C ∠+∠=?∴AB ∥CD (同旁内角互补,两直线平行) ………………5分(2)AE ∥BC∴23∠=∠(两直线平行,内错角相等)…………………6分180A ABC ∠+∠=?(两直线平行,同旁内角相等) 13∠=∠ ∴123∠=∠=∠,22ABC ∠=∠ 又22AEF ∠=∠∴22180A ABC A A AEF ∠+∠=∠+∠=∠+∠=?…8分180AEF AED ∠+∠=?∴A AED C ∠=∠=∠即AED C ∠=∠…………………………9分 (请酌情给分) 23.解:(1)正方形ABCO 的周长为24∴4OA OC BC AB ====…………………………1分则(6,6)B ,(6,0)C …………………………3分(2)设经过t 秒满足题意,则OM AN t ==,6MC NB t ==-…………………4分长方形AOMN 的周长=662122t t ++=+…………………………5分长方形NMCB 的周长=662(6)242t t ++-=-………………………6分则5 122(242)4t t +=- 解得:4t =…………………………7分 (3)分类讨论由AE BE ⊥可得:90AEB ∠=? ①若E 在AB 上方,AO ∥BC ∥l∴180OAE MEA ∠+∠=?,180CBE MEB ∠+∠=? ∴360OAE MEA CBE MEB ∠+∠+∠+∠=?90AEB MEA MEB ∠=∠+∠=?36090270OAE CBE ∠+∠=?-?=?……………9分②若E 在AB 下方……………7分AO ∥BC ∥l∴OAE AEN ∠=∠,CBE NEB ∠=∠∴90OAE CBE AEN NEB AEB ∠+∠=∠+∠=∠=?即90OAE CBE ∠+∠=?综上所述,270OAE CBE ∠+∠=?或90OAE CBE ∠+∠=?…11分(不同解法,请酌情给分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1F E
D
C
B
A G
深圳市安平中学2021年期中考试
七 年 级 (下) 数 学 试 题
(时间:12021,满分100分)
题号
一
二
三
总分
1~10
11~18 19 20 21 22 23 24 25 得分
温馨提示:亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。
请认真审题,看清要求,仔细答题;考试时,可以使用计算器,但未注明精确度的计算问题不得采取近似计算,应根据题型特点把握使用计算器的时机。
相信你一定会有出色的表现! 一、填空题(本大题共10题,每小题3分,共30分,直接把最简答案填写在题中的横线上)
1、(2021江苏宿迁)在平面直角坐标系中,已知点A(﹣4,0)、B(0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 .
2. (2021江苏淮安)如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= . 3、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是 _____________ 。
4、如果电影院中“5排7号”记作(5 ,7),那么(3,4)表示的意义是 _________ 。
5、如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是 ________________________。
135度
A
B
C
O
(第5题) (第8题) (第9题) (第10题) 6、将点A(—1,2)先向左平移2个单位,再向上平移3个单位得到B ,那么点B 的坐标是 _ _____ 。
7、在ABC ∆中,3,8AB BC ==,则AC 的取值范围是 _______ 。
8、如图,点O 是直线AB 上一点,且∠AOC=135度,则∠BOC= 度。
9、如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=__ _。
10、如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 .
二、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,只有一项是符合题目
C
E
F
1
要求的,请选出来,并将正确一项的序号填在括号内
.) 11、下列图中,∠1与∠2是对顶角的是( )。
D
C
B
A
1
21
2
1
2
2
1
12.下列长度的三条线段能组成三角形的是( )
A .1,2,3
B .3,4,8
C .5,6,10
D . 5,6,11 13、下列图形中,哪个可以通过图1平移得到( )。
图1
A B C
D
14、在同一平面内,不重合的两条直线的位置关系是( )。
A .平行
B .相交
C .平行或相交
D .平行、相交或垂直
15、下列图形中,正确画出AC 边上的高的是( )。
16、若用同一种正多边形瓷砖铺地面,能铺满地面的正多边形是( )。
A .正五边形
B .正六边形
C .正七边形
D .正八边形
17、有下列两个命题:①若两个角是对顶角,则这两个角相等;②若一个三角形的两个内角分别为30°和60°,
则这个三角形是直角三角形。
说法正确的是( )。
A .命题①、②都正确
B .命题①正确,命题②不正确
C .命题①不正确,命题②正确
D .命题①、②都不正确 18、如图,DH ∥EG ∥BC ,DC ∥EF ,那么与∠EFB 相等的角 (不包括∠EFB)的个数为( )
A .2个
B .3个
C .4个
D .5个
三、解答题(本大题共7小题,满分46分.解答应写出文字说明、证明过程或演算步骤.)
H G 第(5)题
F D E
C
B
A
19、(5分)如图,已知直线a b 、被直线c 所截,a ∥b ,如果2115∠=,求∠1的度数。
c
b
a
2
1
20216分)如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2,∠C =∠D 。
试说明:AC ∥DF 。
解:因为 ∠1=∠2(已知)
∠1=∠3,∠2=∠4( ) 所以∠3=∠4(等量代换)
所以 ∥ ( ) 所以 ∠C =∠ABD ,( ) 又因为 ∠C =∠D(已知) 所以∠D=∠ABD(等量代换)
所以 AC ∥DF( )
21、(6分)在平面直角坐标系中,顺次连结A(-2,0)、B(4,0)、C(-2,-3)各点,试求: (1)A 、B 两点之间的距离。
(2)点C 到X 轴的距离。
(3)△ABC 的面积。
22、(6分)如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北偏西45°
方向,求∠BAC及∠BCA的度数?
23、(7分)如图,直线CD与直线AB相交于C,根据下列语句画图、解答。
(1)过点P作PQ∥CD,交AB于点Q(2)过点P作PR⊥CD,垂足为R
(3)若∠DCB=12021猜想∠PQC是多少度?并说明理由.
A
D
C
B
24、(8分)如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,∠A=60°,∠BDC=100°.
求∠BDE的度数。
B C
E D
25、(8分)已知:如图,在ABC
∆中,AD是BC边上的高,AE是BAC
∠平分线.
50
B
∠=,10
DAE
∠=。
(1)求BAE
∠的度数;(2)求C
∠的度数.
B
C
A
E D
2
1F E
D
C
B
A
G
参考答案
一、填空题(本大题共10题,每小题3分,共30分,直接把最简答案填写在题中的横线上)
1、(2021江苏宿迁)在平面直角坐标系中,已知点A(﹣4,0)、B(0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 (4,2) .
2. (2021江苏淮安)如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2=
110° .
3、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是 三角形的稳定性 。
4、如果电影院中“5排7号”记作(5 ,7),那么(3,4)表示的意义是 3排4号 。
5、如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是 同位角相等,两直线平行。
135度
A
B
C
O
(第5题) (第8题) (第9题)
6、将点A(—1,2)先向左平移2个单位,再向上平移3个单位得到B ,那么点B 的坐标是 (—3,5) 。
7、在ABC ∆中,3,8AB BC ==,则AC 的取值范围是 5<AC <11 。
8、如图,点O 是直线AB 上一点,且∠AOC=135度,则∠BOC= 45 度。
9、如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=__54°__。
10、如图,把长方形ABCD 沿EF 对折,若∠1=500,
则∠AEF 的度数等于 1150 .
二、选择题(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中,只有一项是符合题目
要求的,请选出来,并将正确一项的序号填在括号内.) 11、下列图中,∠1与∠2是对顶角的是( D )。
A
B
C
D
E
F
1
D
C
B
A
1
2
1
2
1
2
2
1
12.下列长度的三条线段能组成三角形的是( C )
A.1,2,3 B.3,4,8 C.5,6,10 D.5,6,11
13、下列图形中,哪个可以通过图1平移得到( C )。
图1A B C D
14、在同一平面内,不重合的两条直线的位置关系是( C )。
A.平行B.相交C.平行或相交D.平行、相交或垂直
15、下列图形中,正确画出AC边上的高的是( D )。
16、若用同一种正多边形瓷砖铺地面,能铺满地面的正多边形是( B )。
A.正五边形B.正六边形C.正七边形D.正八边形
17、有下列两个命题:①若两个角是对顶角,则这两个角相等;②若一个三角形的两个内角分别为30°和60°,
则这个三角形是直角三角形。
说法正确的是( A )。
A.命题①、②都正确B.命题①正确,命题②不正确
C.命题①不正确,命题②正确D.命题①、②都不正确
18、如图,DH∥EG∥B C,DC∥EF,那么与∠EFB相等的角
(不包括∠EFB)的个数为( D )
A.2个B.3个C.4个D.5个
三、解答题(本大题共7小题,满分46分.解答应写出文字说明、证明过程或演算步骤.)
19、(5分)如图,已知直线a b
、被直线c所截,a∥b,如果2115
∠=,求∠1的度数。
H
G
第(5)题
F
D
E
C
B
A。