整式的乘除专题复习
整式的乘除专题复习
一、幂的运算: 1、同底数幂相乘,底数不变,指数 相加 。
用公式表示为: a m a n a mn (m, n是正整数)
2、幂的乘方,底数不变,指数 相乘 。
n 用公式表示为:( a m) a mn (m, n是正整数)
3、积的乘方,等于每个因式分别 乘方 ,再把所得的 幂 相乘 。
训练: (1)a a a ______
2 5
(3) (a 2 )3 a 4 _______ (4)(ab3 )3 _____ (5) x 3m x m _____ (6)(a ) (2a ) ___
2 3 3 2
(2)(m n) (m n) _______
解:原式 10x 2 5x (10x2 13x 3)
8 x 3
当x 2时,原式 8 ( 2) 3 19
训练: 5x2 (2x 3)(2x 3)其中x 1
三、乘法公式:
1、平方差公式:
(a b)(a b) a b
6a b 1
2
训练:( 6x3 y 3xy2 ) 3xy __________ _ 2 2 训练: ( [ x y) ( x y) ] 2xy __________ _ 训练:先化简,再求值
( [ x y) 2 ( x y( ) x y)] 2 x其中x 3, y 1.5
3 n 1 n 2 (2) 56 x y 8 xy _______ 6 x y ( x y ) _____ 2
整式的乘除专题复习
2 4 7 1 2 6 1 3 2 例:计算 ( a b a b ) ( ab ) 3 9 3 2 4 7 1 2 6 1 2 6 解:原式 ( a b a b ) a b 3 9 9
整式的乘除复习
整式的乘除复习一.知识点复习:(一)幂的运算同底数幂的相乘的法则是 。
幂的乘方法则是 。
积的乘方法则是 。
同底数幂的相除的法则是不为0的数0次幂 不为0的数负整数次幂(二) 整式的乘法1 单项式与单项式相乘2 单项式与多项式相乘3 多项式与多项式相乘(三) 乘法公式 1“两数和乘以它们的差等于 ”。
2“两数和的平方等于 ”.(四) 整式的除法 1、单项式除以单项式的一般步骤是: 1. 2. 32、多项式除以单项式二、基础知识应用:1.计算:(1)32a a ⋅=___________;(2)43)(x =___________;(3)32)(ab =___________; (4)35a a ÷=___________;(5)b a ab 32552⋅-=___________ (6)32348923y x z y x ÷-=___________(7))2)(2(y x y x +-=___________; (8)2)32(b a -=___________; (9))23)(25(b a b a -+=___________;10.(a -b )2=(a +b )2+_____________. 11. (31)-2+π0=_________ 12. 4101×0.2599=__________. 13.2032×1931=( )·( )=___________. 14.用科学记数法表示-0.0000308=___________.15.若多项式252++ky y 是完全平方式,则k =_________。
16.a+b=4,ab=3,a 2+b 2 =________,a-b=________,_____23223=++ab b a b a 。
17.若A÷5ab 2=-7ab 2c 3,则A=_________, 若4x 2yz 3÷B=-8x,则B=_________.18.若4)2)((2-=++x x b ax ,则b a =_________________.19.若=,,则b =a 0=1+b 2-b +2-a 2 20.已知31=+a a ,则221aa +的值是 21.下列运算中正确的是( )A .10552x x x =+B .853)()(x x x -=-⋅--C .33332244)2(y x x y x -=⋅--D .22941)321)(321(y x y x y x -=+-- 22.下列各组数中,互为相反数的是…………………………………………………( )A.(-2)-3与23B.(-2)-2与2-2C.-33与(-31)3D.(-3)-3与(31)3 23.下列各式中正确的是………………………………………………………………( )A.(a +4)(a -4)=a 2-4B.(5x -1)(1-5x )=25x 2-1C.(-3x +2)2=4-12x +9x 2D.(x -3)(x -9)=x 2-2724. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n ,则n 等于 ( )A.10B.11C.12D.1325.下列各式计算正确的是 ( )A.a +2a =3a 2B.(-a 3)2=a 6C.a 3·a 2=a 6D.(a +b )2=a 2 + b 226.计算(1)a 3·a 4·a +(a 2)4+(-2a 4)2 (2)(3x 2y -xy 2+21xy )÷(-21xy ).(3)(a+b+3)(a+b-3) (4) 3232⎪⎭⎫ ⎝⎛-b a 2231⎪⎭⎫ ⎝⎛ab 2343b a27.先化简:)1(5)13)(13()12(2-+-+--x x x x ,再选取一个你喜欢的数代替x 的值。
整式的乘除知识点及题型复习
举例说明:如单项 式x^2除以多项式 2x-1,结果为 (x^2)/(2x1)=x+1
除法运算顺序:按照从左到 右的顺序进行除法运算,注 意先处理括号内的内容
除法法则:类似于多项式乘 法,将除法转化为乘法,然 后利用乘法法则进行计算
除法结果的化简:将除法结 果化简到最简形式,注意约
分和合并同类项
除法运算的注意事项:注意 处理符号和运算优先级的问
添加标题
解析:根据速度、时间和距离的关系,速度=距离/时间,所以时间=距离/速度。将已知数值代入公式,得到时间=100千米 /80千米/小时=1.25小时。
添加标题
题目:一架飞机以每小时800千米的速度从甲地飞往乙地,飞行了3小时后,发现方向有误,于是立即改变航向,并以每小时 1000千米的速度飞行了4小时,求飞机到达乙地所需的总时间。
项式。
整式除法的结 果仍为一个多 项式,其各项 系数和次数与 被除式相同。
整式除法的一 般形式为:被 除式=除式×商
式+余式。
在整式除法中, 需要注意除数 不能为0,且各 项系数和次数 必须符合数学
规则。
定义:将一个单项式除以另一个单项式的商称为单项式除以单项式。
运算法则:与单项式乘法类似,按照系数、字母因子的指数分别相除,对于只在被除式 中出现的字母因子,连同其指数一起作为商的一个字母因子。
定义:两个多项式相乘,将一个多项式的每一项与另一个多项式的每一项 相乘,再将所得积相加。 举例:$(x+1)(x+2) = x^2 + 3x + 2$
公式:$(x+a)(x+b) = x^2 + (a+b)x + ab$
注意事项:注意乘法分配律的应用,以及合并同类项时的符号问题。
整式的乘除(重点、难点、考点复习总结)
整式的乘除(重点、难点、考点复习总结)1.知识系统总结2.重点难点易错点归纳(1)几种幂的运算法则的推广及逆用例1:(1)已知52x=4,5y=3,求(53x)2; 54x+2y-2练习:1. 已知a x=2,a y=3, a z=4求a3x+2y-z(2)46×0.256= (-8)2013×0.1252014 =(2)同底数幂的乘除法:底数互为相反数时如何换底能使计算简便判断是否同底:判断底数是否互为相反数:看成省略加号的和,每一项都相反结果就互为相反数换底常用的两种变形:例2:(1)-x7÷(-x)5·(-x)2 (2)(2a-b)7·(-b+2a)5÷(b-2a)8(3)区分积的乘方与幂的乘方例3:计算(1)(x3)2 (2) (-x3)2 (3)(-2x3)2(4)-(2x3)2(4)比较法:逆用幂的乘方的运算性质求字母的值(或者解复杂的、字母含指数的方程)例4:(1)如果2×8n×16n=28n ,求n的值(2)如果(9n)2=316,求n的值(3)3x=,求x的值(4)(-2)x= -,求x的值(5)利用乘方比较数的大小指数比较法:833,1625, 3219底数比较法:355,444,533乘方比较法:a2=5,b3=12,a>0,b>0,比较a,b的大小比较840与6320的大小(6)分类讨论思想例6:是否存在有理数a,使(│a│-3)a =1成立,若存在,求出a的值,若不存在,请说明理由整式的乘法(1)计算法则明确单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的计算法则,尤其注意符号的问题,结果一定要是最简形式。
单项式乘以多项式、多项式乘以多项式最终都是要转化为单项式乘以单项式,通过省略加号的和巧妙简化符号问题。
【例1】计算:(1)(-3x2y)(-xz4)(-2y3zt) (2)-5x n y n+2(3x n+2y-2x n y n-1+y n) (3)(-x+2)(x3-x2)练一练:先化简再求值:[xy(x2-3y)+3xy2](-2xy)+x3y2(2x-y),其中x=-0.25,y=4(2)利用整式的乘法求字母的值①指数类问题:②系数类问题:【例2】已知-2x3m+1y2n与7x m-6y-3-n的积与x4y是同【例3】在x2+ax+b与2x2-3x-1的积中,x3项项,求m与n的值的系数为—5,x2项的系数为-6,求a,b的值(3)新定义题【例4】现规定一种新运算:a*b=ab+a-b,其中a,b为有理数,则(a*b)+[(b-a)*b]=练一练:现规定一种新运算:a※b=ab+a-b,其中a,b为有理数,计算:[(m+n)※n]+[(n-m)※n] 课后提升:1.(-0.7×104)×(0.4×103)×(-10)=2.若(2x-3)(5-2x)=ax2+bx+c,则a= ,b=3.若(-2x+a)(x-1)的结果不含x的一次项,则a=4.计算:(1)(-5x-6y+z)(3x-6y) (2)-2xy(x2-3y2)- 4xy(2x2+y2)平方差公式(1)公式:(a+b)(a-b)=a2-b2注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式,只要不是单独的数字或字母,写成平方的差时都要加括号公式的验证:根据面积的不同表达方式是验证整式乘法公式常用的方法(2)平方差公式的不同变化形式【例1】计算下列各式:(1)(-5x+2y)(-2y-5x)= (2)(2a-1)(2a+1)(4a2+1)=(3)20132-2012×2014 =练一练:1、(2y-x-3z)(-x-2y-3z)=2、99×101×10001=3、 3×(22+1)×(24+1)×(28+1)×…×(232+1)+1=(3)平方差公式的逆用【例2】∣x+y-3∣+(x-y+5)2=0,求3x2-3y2的值练一练:已知实数a,b满足a+b=2,a-b=5,求(a+b)3(a-b)3的值.课后提升:1.已知下列式子:①(x-y)(-x-y);②(-x+y)(x-y);③(-x-y)(x+y);④(x-y)(y-x).其中能利用平方差公式计算的是2.(-a-3)( )=9-a23.如果a2-2k=(a-0.5)(a+0.5),那么k=4.为了美化城市,经统一规划,将一正方形的南北方向增加3米,东西方向缩短3米,将改造后的长方形草坪面积与原来的正方形草坪面积相比()A.增加6平方米B.增加9平方米C.减少9平方米D.保持不变5.解方程:(3x+4)(3x-4)=9(x-2)26.计算:(2+1)×(22+1)×(24+1)×…×(22014+1)完全平方公式(1)公式:(a±b)2=a2±2ab +b2首平方,尾平方,2倍乘积放中央,同号加,异号减注意:公式中的a,b既可以是具体的数字,也可以是单项式或多项式【例1】计算下列各式:(2x-5y)2 = (-mn+1)2 =(-t2-2)2=(2)完全平方公式的推广应用①直接推广②间接推广【例2】计算(a-2b+3c)2【例3】已知x+y+z=10,xy+xz+yz=8,求x2+y2+z2的值(3)利用完全平方公式求字母的值【例4】两数和的平方的结果是x2+(a-1)x+25,则a的值是()A.-9B.1C.9或-11D.-9或11(4)利用完全平方公式进行简化计算【例5】计算:(1)1992 (2)3.012(5)完全平方公式的变形应用【例6】(1)已知m+n=7,mn=10,求8m2+8n2的值(2)已知(x+y)2=16,(x-y)2=4,求xy的值课后提升:1.下列展开结果是2mn-m2-n2的式子是()A.(m+n)2B.(-m+n)2C.-(m-n)2D.-(m+n)22.(x+2y-z)2=3.若∣x+y-7∣+(xy-6)2=0,则3x2+3y2=4.若代数式x2+3x+2可以表示为 (x-1)2+a(x-1)+b的形式,则a+b的值是5.计算:(2x-y)2(2x+y)2整式的除法(1)计算法则整式乘法的逆运算,可以互相验证。
整式的乘除知识点及题型复习.docx
整式运算考点 1、幂的有关运算①a m a n② ( am )n③ ( ab) n④a m a n⑤a 0⑥ ap(m 、 n 都是正整数) (m 、 n 都是正整数) (n 是正整数)( a ≠ 0, m 、n 都是正整数,且 m>n )(a ≠0)(a ≠0,p 是正整数)幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A ) a 3 a 2 a 6( B ) ( a 2 )3 a 5(C ) a 8 a 2 a 4( D ) (ab 2 ) 2a 2b 4练习:10x 3________.1、x2、a 10 310 a 32。
aa 6 =123、3 3 =。
24、23(3)2=。
5、下列运算中正确的是()A . x 3y3x 6; B . (m 2 ) 3m 5 ; C . 2x21; . ( a)6( a)3a 32x 2D6、计算 amanpa 8的结果是()A 、 amnp8B 、 amn p 8C 、 a mp np 8D 、 a mn p 87、下列计算中,正确的有( )① a 3 a 2 a 5 ② ab 422③ a 3a 2 a a 2 7a 2 。
ab abab 2 ④ aa 5 A 、①②B 、①③C 、②③D 、②④8、在① x x 5② x 7 y xy ③x 2 3④ x 2 y 3y 3 中结果为 x 6 的有()A 、①B 、①②C 、①②③④D 、①②④提高点 1:巧妙变化幂的底数、指数例:已知: 2a3 , 32b 6 ,求 23 a 10 b 的值;1、 已知 xa2 , xb3 ,求 x2 a 3b的值。
2、 已知 3m 6 , 9n 2 ,求 32m 4n 1的值。
3、 若 am4 , an8 ,则 a 3m 2n__________。
第一章 整式的乘除 知识点总复习
7、多项式乘以多项式 法则:多项式乘以多项式,先用一个多项式的每一项去 乘另一个多项式的每一项,再把所得的积相加。
6
8、平方差公式 法则:两数的和乘以这两数的差,等于这两数的平方差。 数学符号表示:
第一章 整式的乘除
1
一、整式的有关概念
1、单项式:数与字母乘积,这样的代数式叫单项式。单独 一个数或字母也是单项式。 2、单项式的系数:单项式中的数字因数。 3、单项式的次数:单项式中所有的字母的指数和。 4、多项式:几个单项式的和叫多项式。 5、多项式的项及次数:组成多项式中的单项式叫做多项式 的项,多项式中次数最高项的次数叫多项式的次数。
(a b)2 a2 2ab b2 其中a, b既可以是数,也可以是代数式.
即 : (a b)2 a 2 2ab b2
特别说明:完全平方公式是根据乘方的意义和 多项式乘法法则得到的。
切记! (a b)2 a2 b2 8
(二)整式的除法
1、单项式除以单项式
法则:单项式除以单项式,把它们的系数、相同字母的 幂分别相除后,作为商的一个因式,对于只在被除式里 含有的字母,则连同它的指数一起作为商的一个因式。
特别注意:多项式的次数不是组成多项式的所有项指数和。
6、整式:单项式与多项式统称整式。(分母含有字母的代 数式不数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。
a • a a 数学符号表示:
mn
(其中m、n为正整数)
mn
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
(a ) a 数学符号表示:
mn
mn
第13章整式的乘除复习课件
1 ( 2) ( 2) ( 3) ( 3) 1
23
3
4
42
11311 5 3 2 8 3 8 24
2. 己知10m=4 , 10n=5 , 求103m+2n 的值。
解 10 m 4 10 n 5 10 3m2n 10 3m 10 2n (10 m )3 (10 n )2 43 52 1600
3. 先化简,后求值:3x(-4x3y2)2-(2x2y)3·5xy 其中 x=1, y=2 .
解 x y 4 xy 21 ( x y)2 16 即 x2 2xy y 2 16 x2 y 2 16 2xy 16 2 21 58
19. 根据己知条件,确定m ,n 的 值
(a)己知:25m·2·10n=57·24
解 25m 2 10n 52m 2 (2 5)n 52m n 21 n 57 24
( x2 32 x2 32 )( x2 32 x2 32 ) 36 x2
(13). (2x 3y)(4x2 6xy 9 y2 ) (5x 6 y) (25x2 30xy 36y2 )
解 : 原式 (2x)3 (3y)3 (5x)3 (6 y)3 8x3 27 y3 125x3 216y3 243y3 117x3
解 原式 [2x2 x2 y2 ][( x)2 y2 2 y2 ]
(x2 y2 )( x2 y2 ) (x2 y2 )2
[(1)2 (2)2 ]2 25
11.
己知
x 1 3, x
求
x3
1 x3
的值.
解
x1 3 x
故
x2
2
1 x
1 x3
(x
1 )(x2 x
1 )(x 2 x
整式的乘除复习
整式的乘除复习考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数) ③=n ab )( (n 是正整数) ④=÷n m a a (a ≠0,m 、n 都是正整数,且m>n )⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数)幂的四种运算:1、同底数幂的乘法:⑴语言叙述:同底数幂相乘,底数不变,指数相加;⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ; ⑶逆运用:a m+n = a m ·a n2、幂的乘方:⑴语言叙述:幂的乘方,底数不变,指数相乘;⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ;3、积的乘方:⑴语言叙述:积的乘方,等于每个因式乘方的积;⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;4、同底数幂的除法:⑴语言叙述:同底数幂相除,底数不变,指数相减;⑵字母表示:a m ÷a n = a m-n ;(a ≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n⑷零指数与负指数: 01a =(a ≠0); 1p p a a-=(a ≠0); 例:在下列运算中,计算正确的是( ) (A )326a a a ⋅=(B )235()a a = (C )824a a a ÷=(D )2224()ab a b = 练习: 1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。
3、23132--⎛⎫-+ ⎪⎝⎭ = 。
4、322(3)---⨯- = 。
5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122xx-=; D .633()()a a a -÷-=- 6、计算()8p m n a a a ⋅÷的结果是( ) A 、8mnp a - B 、()8m n p a ++ C 、8mp np a +- D 、8mn p a +-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。
整式的乘除复习课件
运算步骤:首先确定系数相乘,然 后相同字母的幂相乘,最后将剩余 的字母和指数不变。
注意事项:注意相同字母的幂相乘 时,底数不变,指数相加。
举例说明:例如单项式2x^3与单项 式3y^2相乘,结果是6x^3y^2。
单项式与多项式的乘法
定义:单项式与多项式相乘,就是单项式中的每一项与多项式中的每一项相乘 运算顺序:先乘方,再乘除,最后加减 乘法分配律:$(a+b)(m+n)=am+an+bm+bn$ 注意事项:注意符号和指数的运算
巩固练习题及解析
整式的乘除运算规则练习 常见错误分析 解题技巧分享 综合应用题解析
学生自我评价与反馈
学生自我评价:对整式的乘除运算的掌握程度进行自我评价,包括概念理解、运算技 巧等方面。
反馈内容:针对复习内容提出自己的疑问和建议,以便教师更好地了解学生的学习情 况,为后续教学提供参考。
巩固练习:提供一些与整式的乘除运算相关的练习题,让学生通过练习巩固所学知识, 提高解题能力。
除法法则:多项式 除以多项式时,按 照除法的分配律和 结合律进行计算, 即先计算括号内的 除法,再计算乘法, 最后进行加法或减 法。
注意事项:在多 项式除以多项式 时,需要注意除 数不能为零,且 结果是一个商式 和一个余式的形 式。
举例:以多项式 a(x) = 2x^3 + 3x^2 - 4x + 5 和 b(x) = x^2 x + 2 为例,进 行多项式除以多 项式的运算。
添加副标题
整式的乘除复习课件
汇报人:PPT
目录
CONTENTS
01 添加目录标题 03 整式乘法运算
02 整式乘除的回顾 04 整式除法运算
整式的乘除知识点及题型复习
整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。
3、23132--⎛⎫-+ ⎪⎝⎭= 。
4、322(3)---⨯- = 。
5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。
A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。
整式的乘除复习
(a ) a
4 4
a , [(b ) ] b
8 2 3 4 4n2 4 m
234
b
24
( x )
2 2 n 1
x
, (a ) (a ) (a )
m 4
2m 2
2. 己知10m=4 , 10n=5 , 求103m+2n 的值。
解 10 4
m
10 5
n 3m
5、单项式乘以单项式
法则:单项式乘以单项式,把它们的系数、相同 字母的幂分别相乘,其余的字母则连同它的指数 不变,作为积的一个因式。 练习:计算下列各式。
(1)(5 x ) (2 x y ), (2)( 3ab) (4b )
3 2 2 3
(3)( a ) b (a b ),
m 2 3 2n
练习: 1、计算下列各式。
(1)( 2a ) ( x 2 y 3c), (2)( x 2)( y 3) ( x 1)( y 2) 1 (3)( x y )( 2 x y ) 2
2、计算下图中阴影部分的面积
2b
b a
8、平方差公式
法则:两数的和乘以这两数的差,等于这两数的 平方差。 数学符号表示:
(一)整式的乘法
1、同底数的幂相乘
法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示:
(其中m、n为正整数)
a a a
m n
4 8 2 2
m n
练习:判断下列各式是否正确。
a a 2a , b b b , m m 2m
3 3 3 4
2
( x) ( x) ( x) ( x) x
2 2 3 3 5 1 2 (4)( a bc ) ( c ) ( ab c) 3 4 3
整式的乘除复习
第一章 整式的运算回顾与思考【学习目标】巩固整式运算公式,能熟练运用整式的运算公式,并形成知识网络。
【学习过程】一.知识点梳理一.预习检测(写过程,写在旁边)1、25x x ⋅= , 2y y y y y ⋅+⋅⋅= .2、合并同类项:2223xy xy -= .3、33282n⨯=, 则=n .4、5a b +=, 5ab =. 则22a b += .5、()()3232x x -+= .6、如果2249x mxy y -+是一个完全平方式, 则m 的值为 .7、52a a a ÷÷= ,43(2)(3)x x ÷= . 8、()2a b ++ ()2a b =-.9、222217ab a c ⎛⎫⋅-= ⎪⎝⎭.10、32(612)(3)x x x x -+÷-= .11、 边长分别为a 和2a 的两个正方形按如图(I)的样式摆放,则图中阴影部分的面积为 .12、用科学计数法来表示:0.0000000007018= 用小数来表示,51.23110-⨯=13、用乘法公式进行计算 2201320142012-⨯ 22202404201201-⨯+222222()()a b a b +-- 123(a 2b)()33a b -+二.典型例题例1:已知(x+y)2=1, (x-y)2=49,求x 2+y 2与xy 的值.新 课 标 第 一 网例2:2222a b a b 14ab a b +++=已知,求、的值例3:化简求值:(1)23)1)(1()2(2=-+-+a a a a ,其中 .(2)2211(32)(32)(32)9(),m n 22m n m n m n m n -++--+=-=其中,例4:已知(a 2+pa +8)与(a 2-3a +q)的乘积中不含a 3和a 2项,求p 、q 的值例5:已知:△ABC 的三边长分别为a .b .c ,且a .b .c 满足等式2222)()(3c b a c b a ++=++,试说明该三角形是等边三角形.例6.已知21,y x +=求代数式22(1)(4y y x +--)的值。
《整式的乘除》复习
01 Chapter单项式多项式单项式与多项式的定义0102整式运算的基本法则单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
平方差公式:两数和乘两数差,等于两数平方差。
完全平方公式:首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。
整式的乘除运算规则02 Chapter多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
例如,$(x+y)(x-y)=x^2-y^2+xy-xy=x^2-y^2$。
多项式乘多项式详细描述总结词详细描述掌握除法法则,能熟练进行整式除法运算。
详细描述整式除法需遵循一定的法则,学生需了解并掌握这些法则,如单项式除以单项式时,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式等。
03 Chapter符号错误运算顺序幂的运算性质030201易错点的总结复杂运算在整式的乘除运算中,符号的变化经常容易让人困惑。
解决办法是注意观察符号的变化规律,并理解其意义。
符号变化分配律应用难点解析及解决办法例题1$(x + y)^{2} \cdot (x - y)^{3} \div (x^{2} - y^{2})^{2}$解答$(x + y)^{2} \cdot (x - y)^{3} \div (x^{2} - y^{2})^{2} = (x^{2} + 2xy + y^{2}) \cdot (x^{3} - 3x^{2}y + 3xy^{2} - y^{3}) \div (x^{4} - 2x^{2}y^{2} + y^{4}) = x^{5} - 3x^{4}y + 3x^{3}y^{2} - x^{2}y^{3} \div x^{4} - 2x^{2}y^{2} + y^{4} = x - 3xy + 3y^{2} - y^{3}$$(3a + 5b)^{2}(7a + 9b)^{3} \div (4a^{2} + 6ab + 7b^{2})^{2}$例题2$(3a + 5b)^{2}(7a + 9b)^{3} \div (4a^{2} + 6ab + 7b^{2})^{2} = (9a^{2} + 30ab + 25b^{2})(7a^{3} + 27a^{2}b + 81ab^{2} + 9b^{3}) \div (16a^{4} + 48a^{3}b + 56a^{2}b^{2} + 6ab^{3} + 7b^{4}) = (63a^{5} + 810a^{4}b + 1890a^{3}b^{2} + 1575a^{2}b^{3} + 675ab^{4} + 175b^{5}) \div (16a^{4} + 48a^{3}b + 56a^{2}b^{2} + 6ab^{3} + 7b^{4}) = (4.5a + b)^{5}$解答04 Chapter与因式分解的交叉运用与方程的交叉运用与分式的交叉运用与其他数学知识的交叉运用实际生活中的整式乘除问题面积计算路程计算建立数学模型解决实际问题数学建模与解决实际问题05 Chapter题目解析$(3x + 5y)^{2}$解析此题考查的是完全平方公式,即$(a + b)^{2} = a^{2} + 2ab + b^{2}$。
整式的乘除专题复习
整式的乘除专题复习一、幂的运算:〔一〕幂的四种运算法那么:同底数幂的乘法:m n m n a a a +⋅=〔m 、n 为正整数〕 幂的乘方:()m n mn a a =〔m 、n 为正整数〕 积的乘方:()n n n ab a b =〔n 为正整数〕 同底数幂的除法:〔1〕a a a m n m n ÷=-〔a m n ≠0,、为正整数,m n >)〔2〕零指数幂:)0(10≠=a a ,〔3〕负整数指数幂:p p aa 1=-〔0≠a ,p 是正整数〕。
〔二〕科学记数法:把一个绝对值大于10(或者小于1)的数记为a ×10n 或a ×10-n 的形式的记法。
(其中1≤|a|<10) 〔三〕幂的大小比拟:重点掌握1. 底数比拟法:在指数一样的情况下,通过比拟底数的大小,来确定两个幂的大小。
2. 指数比拟法:在底数一样的情况下,通过比拟指数的大小,来确定两个幂的大小。
〔三〕应注意的问题:1.注意法那么的①拓展性②广泛性③可逆性④灵活性2. 注意科学记数法中n 确实定方法。
二、整式的乘法运算:整式的乘法运算包括①单项式与单项式相乘②单项式与多项式相乘③多项式与多项式相乘。
要理解掌握法那么,进展整式的乘法运算应注意把握以下几点: 1.积的符号 2.积的项数〔不要漏乘〕 3.积的形式 4. 运算顺序 5.数学学习方法:①类比方法②转化思想 三、乘法公式: 1. 平方差公式:〔a+b 〕(a-b)= , 常见的几种变化有:① 位置变化:(x+y)(-y+x)=②符号变化:(-x+y)(-x-y)= ③ 指数变化:(x 3+y 2)(x 3-y 2)=④系数变化:(2a+b)(2a-b)=⑤ 换式变化:[xy+(z+m)][xy-(z+m)]=⑥项数变化:(x-y+z)(x-y-z)= ⑦ 连用变化:(x+y)(x-y)(x 2+y 2)= ⑧逆用变化:(x-y+z)2-(x+y-z)2=2.完全平方公式:2)(b a += ;2)(b a -= 。
第一章整式的乘除全章复习
第⼀章整式的乘除全章复习第⼀章整式的乘除全章复习⼀、考点突破(1)掌握正整数幂的乘除运算性质,能⽤代数式和⽂字语⾔准确地表述这些性质,并能运⽤它们进⾏计算。
(2)掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并进⾏计算。
(3)能熟练地运⽤乘法公式(平⽅差公式和完全平⽅公式)进⾏乘法运算。
⼆、重难点提⽰重点:幂的运算是整式乘法的基础,整式运算常以混合运算的形式出现,其中乘除运算最终都要转化为单项式的乘法运算。
难点:乘法公式的灵活运⽤既是重点也是难点。
三、知识脉络图四、知识点拨知识要点符号描述重点提⽰同底数幂的乘法 n m n m a a a +=?指数相加幂的乘⽅ mn n m a a =)( 指数相乘积的乘⽅ n n n b a ab =)(积的乘⽅等于乘⽅的积同底数幂的除法 n m n m a a a -=÷ 0≠a ,n m > 零指数幂10=a0≠a单项式乘以单项式系数、字母、指数单项式乘以多项式 ac ab c b a +=+)(依据乘法分配律多项式乘以多项式 bd bc ad ac d c b a +++=++))((不要漏乘平⽅差公式 22))((b a b a b a -=-+ 公式的使⽤条件完全平⽅公式2222)(b ab a b a +±=±不要漏掉“中间项” 单项式除以单项式系数、字母、指数多项式除以单项式 c b a ac ab +=÷+)(注意除式不为零和不要漏除例题解析:知识点1:化简问题例题化简2222)()()()(z y x z y x z y x z y x ++-++-+-++++【注意】:)(2)()(2222b a b a b a +=-++本题体现了简化运算的两种常⽤⼿段:(1)将复杂算式中的相同部分看成整体可⼤⼤简化算式(2)熟练运⽤完全平⽅公式的变形形式,往往也能起到简化算式的作⽤知识点2:求值问题例题1 若)0(42210>==a a b ,求2)5141()5141)(5141(b a b a b a +--+的值例题2 已知022=-+m m ,求2012323++m m 的值知识点3:证明问题例题已知c b a ,,分别是△ABC 的三边,求证:04)(222222<--+b a c b a知识点4:找规律问题例题观察下列各式,并回答问题:2514321=+ 21115432=+ 21916543=+…(1)请写出⼀个具有普遍性的结论,并给出证明(2)计算2003200220012000+1(写成⼀个数的平⽅的形式)知识点5:应⽤问题例题1 如图所⽰,矩形ABCD 被分成六个⼤⼩不⼀的正⽅形,已知中间的正⽅形⾯积为4,求矩形ABCD 中最⼤正⽅形与最⼩正⽅形的⾯积之差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘除专题复习一、幕的运算: (一)幕的四种运算法则: 同底数幕的乘法: 幕的乘方:(a m )n 积的乘方:(ab )n 同底数幕的除法: m n a a =a= a mn(m n 为正整数) = a n b n(n 为正整数) (1) a m -a n =a m 』(a 工 0, m 、m^ (m n 为正整数) (2)零指数幕: a 0 =1(a H 0) , (3)负整数指数幕: n 为正整数, a"」 a P 1)的数记为 (aHO , P 是正整数)。
(二) 科学记数法:把一个绝对值大于10(或者小于 法。
(其中 K |a| < 10) (三) 幕的大小比较: 重点掌握1.底数比较法:在指数相同的情况下,通过比较底数的大小,来确定两个幕的大小。
2.指数比较法:在底数相同的情况下,通过比较指数的大小,来确定两个幕的大小。
(三)应注意的问题: 1. 注意法则的①拓展性②广泛性③可逆性④灵活性 2. 注意科学记数法中n 的确定方法。
二、 整式的乘法运算: 整式芮乘法运算包-括①卑项式与项式捋乘 ②卑项式与多项戎叩.唳@多取弍月•多项弍相 乘「要理解掌提法爪・送行型式豹架法运算X 注意把喔以、[点: 1.积的符号2.积的项数(不要漏乘)3.5.数学学习方法:①类比方法②转化思想 三、 乘法公式: 1.平方差公式:(a+b (a-b )= ________ , 常见的几种变化有: ①③ ⑤ ⑦ 积的形式4. aX lO n 或aX l0-n 的形式的记 运算顺序 位置变化: 指数变化: 换式变化: 连用变化: (X 勺 x-y +x 尸 _______ 3 2 3 2(X r (X -y 尸 ------- [xy 飞 Z F)] Ixy -(Z二 2 9 (x W I x -y j(x +y 尸_2 2(X -y +z )-(x W-z )二______ (a +b) = _____ ②符号变化: ④系数变化: ⑥项数变化: (f+y X —x -y 尸— (2a +b '(2a -b Y= {x -y +z \x -y -z ^_ ⑧逆用变化: 2.完全平方公式: 常见的变形有: ① a 2+b 2=(a+b )2 =(a-b ) 2 2③(a+b ) + (a-b ) = ___ 拓展:a 2+b 2+c 2= (a+b+c ) 2 ________ ,a 2+a注意:1.掌握公式特征,认清公式中的“两数”, 2.为使用公式创造条件3.公式的推广4.公式的变换,灵活运用变形公式5. 乘法公式的逆运用 四、整式的除法: 1. 单项式的除法法则:分三步进行,对比单项式的乘法法则理解掌握,注意符号 2. 多项式除以单项式的法则: 应注意逐项运算(转化成单项式的除法),留心各项的符号.;(a-b)2= ®( a -b) 2=(a+b)2 _________ 2 2 ④(a+b) - (a-b)= 2( , -J, 2 . 亠,2 , = (a+a ) + = (a-a ) +.自我检测精品文库1. 计算(一a) 3 •( a 2) 3 •(— a) (A) a 11 ( B) a 112. 下列计算正确的是 .......... (A) (C)3. 4m - (A) 2的结果正确的是 ..........(C)— a 10(D) a13 )2 (n + 1) n + 1 2x 宁 x = x x *( x 宁 x )= x 4n 的结果是 ........ 22(mn) ( B) 16, (B) (xy) 8*(xy) 4_(xy) 2/4n 2n 2n .(D x * x -x _ 1mn 4. 若a 为正整数,且x 2a _5, (B) 525. 下列算式中,正确的是 .... / Z 2. 3\ 5 / I 2\ 10 I 5 (A) (a b ) *( ab ) _ ab(A) 5 (C) 4mn ( D) 16m +n (2x 3a )2十4x 4a 的值为 ............(C) 25 (D) 101(B) ( 1) 3 (D) 3.24 X 10—4_0.0000324 6. 已知n 是大于1的自然数,则(-c ) 2 .(—c 厂等于 .......... (A) (―c F 二 (B) -2nc (C) -c 2n(D) c 7. .................................................................................................. (— a+ 1) (a+ 1) ( a 2 + 1)等于 . (4)(A) a — 1 (C) (0.00001 ) 0_( 9999) 02n 4(B) a + 1(C) a 4+ 2a 2 + 1 (D) 1— a 4 8. ............................................................................................... 若(x + m)(x — 8)中不含x 的一次项,贝U m 的值为 .................. (A) 89. 下列多项式乘法,能用平方差公式进行计算的是 ........... (A) (x+y)( —x —y) (B) (2x+3y)(2x —3z) (C) (—a —b)(a — b) (D) (m-n)(n — m)10. 代数式xy —x — — y 等于 (4)2 12 1 2 1 (B) ( — x — -y) (C) (-y — x)(D) — ( x — - y) 2 2 2 2_5, (a — b) 2_ 3,则a 2+ b 2与ab 的值分别是 ............ (B)— 8 (C) 0 (D) 8 或一8 1 (A) (x — -y)2 11. 若(a+ b) 1 (A) 8 与― 2 (B) 4与- (D) 4与 1 12. 要使4x 2 +mx + -成为一个两数和的完全平方式,则 (4)(A) m = -2 (B) m = 2 二.填空题: 13. 14. (O m=1 (D) m = ±2 15. 6 2/ 2、 3 a ・a * (— a ) _________ . (_0.25)2007 沢42008 = _______ 21 5 (2x2 — 4x — 10xy)*( )_ ^x — 1— 5y. 2 2 16. _____________________________ 若 3m ・3n= 1,贝U n+ n = ___________________ . 17. 已知 x m -x n •x 3=( x 2) 7,则当 n = 6 时 m= 18. _______________________________ 若 3x = a, 3y = b,贝U 3x —y = _________________ . 19. 用科学记数法表示下列各数:—210000= 220. ____________________________________ ,—0.00305=精品文库23.如果等式(2a 1厂=1,则a的值为24.已知—(b-C)2=(a-b)(c-a),且aH0,4三.计算:25.(1) 3a3bc3(-0.25ab3c2) [(-2ab)3]2(5)( +3y) 2-(4- 3y)2;(S — 2t) (-S— 2t) — ( s —2t) 2;(8) (2x+3) 2-2(2X+3)(3X-2)+(3X-2)2(9) (2a— 3b+ 1) 2;(10) (x2— 2x — 1) (X2+ 2x—1);3 Z 1 .2、2、/ 3 3 2 *( - ab ) X _ a b ;3 4oJ +转〕+5十5)22 3 1 2 2 (2) — 6ab(x-y) ”-ab 〈y-x)3(7) ( xy +1)2( xy-1) 2精品文库四.巧用乘法公式计算:226. (1) 99 — 98X 100;(2) 20022; 2(3) 89 +179精品文库(4)(7+1 (7+1) (7+1) (7+1) (f+D (73+1)111 11⑸(1-尹(1- 32) ( 1- 42) -( 1-异(1- 102)的值.27. 已知 X 2-2x + y 2+6y +10 =0 ,求 y x的值五.解答题:28. 已知(a+ b ) 2 = 9, (a — b) 2= 5,求 a 2+ b 2, ab 的值.29. 已知,求f a -丄丫和a 2+4的值. a I a 丿 a3 2 2已知 2a — b= 5, ab= 3,求 4a + b — 1 的值.2解答题: 23 2已知X + X — 1 = 0,求X + 2x + 3的值.30. 六.31.32.若(X +px+ q) (x — 2x — 3) 展开后不含X 2, X 3项,求P 、q 的值.33 证明:(a-1)(a 2-3)+a 2(a+1)-2(a 3-2a-4)-a 的值与a 无关 34你能说明为什么对于任意自然数 n,代数式n(n+7)-(n-3)(n-2) 的值都能被6整除吗?35.比较下列一组数的大小. (1 ) 4488, 5366, 6244 ⑵ 8131,2741,96136. (13分)认真观察下列二项式乘方展开式的系数规律与贾宪三角形,你就会发现他们有着紧密的联系并有一定的规律可寻。
=1 1=a+b 2 2 - ■ . 2 =a +2ab +b 3 3 _ 2. _ ■ 2 ■ 3=a +3a b+3ab +b 4 4,3, 2 .3,4 =a +4a b+6a b +4ab +b 5 5-4, — 3・2 — 2・3-・4・! =a +5a b+10a b +10a b +5ab +b(a+b ) (a+b ) (a+b ) (a+b)(a+b ) (a+b )1 3 3 1 4 I 5 1 5 1 6 4 10 1 10 5 •第 0行 第1行 第2行 ••第 …第 …第⑴根据你观察到的规律,先写出贾宪三角形的第 6行: 再写出(a+b) 6的展开式:(a+b) 6 ⑵用你所学的知识验证 (a+b) 3= a 3+3a 2b+3ab 2+b 3⑶在贾宪三角形中,假定最上面的数字 1作为第0行,将每一行的数字相加,则得数字串: 1, 2, 8 , 16 , 32 ,……,请你根据这串数字的规律,写出第 n 行的数字和: 除此之外,我们还能发现很多数字规律,请你找一找,然后根据规律写出(a+b)50展开式中a 49b 的项的系数。