圆柱、圆锥、圆台和球课件

合集下载

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).

基本立体图形 第2课时—圆柱、圆锥、圆台、球-高一数学课件(人教A版2019必修第二册)

基本立体图形 第2课时—圆柱、圆锥、圆台、球-高一数学课件(人教A版2019必修第二册)
8.1基本立体图形
第2课时 圆柱、圆锥、圆台、球
圆柱、圆锥、圆台的结构特征
这些几何体 是如何形成 的?它们的 结构特征是
什么?
一、 圆柱的结构特征:
旋转轴 1、定义:以矩形的一边
底面
所在直线为旋转轴,其余
A′
O′
三边旋转形成的曲面所围 成的旋转体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2)垂直于轴的边旋转而成的 圆面叫做圆柱的底面。
母 线
A
O B
轴 成的旋转体叫做圆锥。
侧 (1)旋转轴叫做圆锥的轴。 面 (2) 垂直于轴的边旋转而成
的圆面叫做圆锥的底面。 (3)不垂直于轴的边旋转而
成的曲面叫做圆锥的侧面。
(4)无论旋转到什么位置,不垂直于轴的边都叫做圆 锥的母线。
S

侧面
B
O
母线
A
底面
2、圆锥的表示法:用表示它的轴的字母表 示,如圆锥SO。
圆锥的截面图 轴截面 横截面 斜截面 斜截面
三、圆台的结构特征:
1、定义:用一个平行于圆锥底面的平面去 截圆锥,底面与截面之间的部分,这样的几 何体叫做圆台。
上底面

O'
侧面
O
母线 下底面
2、圆台的表示法:用表示它的轴的字母 表示,如圆台OO′。
思考?
圆柱、圆锥和圆台都是旋转体,当底面发 生变化时,它们能否互相转化?
上底扩大
上底缩小
四、球的结构特征:
1、定义:以半圆的直径所在直线为旋转轴,半 圆面旋转一周形成的几何体,叫做球体。
A
半径
球心
O
B 2、球的表示法:用表示球心的字母表示,
如球O .

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

AA’’
叫做圆柱的侧面。

(4)无论旋转到什么位置,不垂直于轴 线
的边都叫做圆柱的母线。
O’ B’
A
O
B
矩 形
轴 侧 面 底面
3
2.圆柱的表示:用表示它的轴的字母表示,如圆柱OO1。
3.圆柱与棱柱统称为柱体。
O


棱 柱 圆 柱


O1
母 线

底面
4
二、圆锥的结构特征 1.定义:以直角三角形的直角边所在直线为旋转轴,
1.1.6旋转体的结构特征
——圆柱、圆锥、圆台、球
1
旋转一周。。。
矩形
直角三角形
直角梯形
半圆
圆柱
圆锥
圆台

2
一、圆柱的结构特征
圆柱O定1义:以矩形的一边所在直线为旋转轴,
其余三边旋转形成的曲面所围成的旋转体叫做圆柱。
(1)旋转轴叫做圆柱的轴。
(2) 垂直于轴的边旋转而成的圆面叫
O
做圆柱的底面。
(3)平行于轴的边旋转而成的曲面
B
O
E
O
16 C
题型一、旋转体的概念
例 下列叙述中正确的是____③____.(填序号)
①以直角三角形的一边为轴旋转所得的旋转体是圆锥; ②以直角梯形的一腰为轴旋转所得的旋转体是圆台; ③圆锥截去一个小圆锥后剩余部分是圆台; ④用一个平面去截圆锥,得到一个圆锥和一个圆台.
[解题过程] ①中以直角三角形的直角边为轴旋 转所得的旋转体是圆锥,以斜边为轴旋转所得的旋 转体是两个圆锥的组合体.故①不正确. ②中以直角梯形中垂直于底边的腰为轴旋转所得 的旋转体是圆台,以不垂直底边的腰为轴旋转所得 的旋转体是圆柱和圆锥的组合体,故②不正确. ③正确.

03《圆柱、圆锥、圆台和球》课件(新人教B版必修2)

03《圆柱、圆锥、圆台和球》课件(新人教B版必修2)

(5)轴截面是等腰三角 形.
O B
底面
圆台的结构特征 如何描述它们具有的共同结构特征?
圆台 圆柱、圆锥可以看
作是由矩形或三角形绕 用一个平行于圆锥底面的 其一边旋转而成,圆台 平面去截圆锥,底面与截面之 是否也可看成是某图形 间的部分是圆台. 绕轴旋转而成? O’
O
圆台的性质: ①圆台的轴通过两底面圆的圆心,并 且与底面垂直. ②圆台的母线长都相等. ③平行于底面的截面都是圆. ④轴截面(经过圆台轴的平面截圆台所得的 截面)是全等的等腰梯形,腰长就是母线长.
O P
Q
例2.我国首都靠近北纬40°纬线。求北纬 40°纬线的长度约等于多少km(地球半径 约为6 370km).
K
A
A
40°
O
B
轴截面
O
B
解:如图,A是北纬40°纬线上的一点,AK是它的 半径,所以OK⊥AK.设c是北纬40°的纬线长, 因为∠AOB=∠OAK=40°,所以 c =2π·AK = 2π·OAcosOAK
如何描述右图的几何结构特征?
圆锥的结构特征
圆锥
以直角三角形的一条直角边 所在直线为旋转轴,其余两边旋 转形成的曲面所围成的几何体叫 做圆锥.
S
顶点
性质 (1)底面是圆 母 (2)侧面展开图是以母线长为半径的扇形 线 (3)母线相交于顶点 (4)平行于底面的截面是与底 面平行且半径不相等的圆
A
轴 侧 面
(4)经过球面上不同的两点只能作一个大圆. (5)球半径是5,截面圆半径为3,则球心到截 面圆所在平面的距离为4.
( ( × )
√)
经度纬度
经度的定义
纬度的定义
地球的经度
经度纬度

人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

人教版数学必修第二册8.3.2圆柱、圆锥、圆台、球的表面积和体积课件

(2)半径和球心是球的关键要素,把握住这两点,计算球的表
面积或体积的相关题目也就易如反掌了.
跟踪训练
1. (1)两个球的半径相差1,表面积之差为28π,则它们的
364
体积和为________;
3
设大、小两球半径分别为R,r,则由题意可得
− =1
R=4
42 − 4 2 = 28
r=3
∵棱长为a,∴BE=
3
2
3
a× = a.
2
3
3
∴在Rt△ABE中,AE=
2

2
3

6
a.
3
设球心为O,半径为R,则(AE-R)2+BE2=R2,
∴R=
6
6 2
3
a,∴S球=4π×( a) = πa2.
4
4
2
2. 设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个
球面上,则该球的表面积为( B )
∴R=2.
4
3
∴V= πR3=
32
.
3
5.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个
半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这
时容器中水的深度.
由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.
根据切线的性质知,当球在容器内时,水深CP为3r,水面的半径AC
3
2
12
总结提升
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的

2
半径为r1= ,过在一个平面上的四个切点作截面如图.
总结提升
2.长方体的外接球

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)

旋转体的结构特征(圆柱、圆锥、圆台、球)(课堂PPT)
其余两边旋转而成的曲面所围成的几何体叫做圆锥。 S
母线
(1)旋转轴叫做圆锥的轴。
侧面
(2) 垂直于轴的边旋转而成的曲面叫做圆锥
的底面。
直角三角形
O
A
(3)不垂直于轴的边旋转而成的曲面叫做圆锥
的侧面。
底面
(4)无论旋转到什么位置不垂直于轴的边都叫

做圆锥的母线。
5
2.圆锥的表示:用表示它的轴的字母表示,如圆锥SO。
扇环
延长线交于一点

不可 展开

平行于底面 与两底面是平行且 平行于底面且半
的截面 半径相等的圆
径不相等的圆
轴截面
矩形
等腰三角形
与两底面是平行但 全体截
半径不相等的圆 面都是
等腰梯形
圆圆
29
达 1.(2014•福建)以边长为1的正方形的一边所在所在直线为旋转轴,将该正
标 方形旋转一周所得圆柱的侧面积等于( A )
25
课堂小结
以上我们学习了柱、锥、台、球等简单几何体的结构特征.
26
简单几何体的结构特征
柱体
锥体
台体

棱柱 圆柱 棱锥 圆锥
棱台 圆台
27
棱柱、棱锥、棱台的结构特征比较
结构特征
棱柱
棱锥
棱台
定义
底面
侧面
侧棱
平行于底面 的截面
过不相邻两 侧棱的截面
两底面是全等 的多边形 平行四边形
平行且相等
与两底面是全等 的多边形
平行四边形
多边形 三角形
两底面是相似的 多边形
梯形
相交于顶点 延长线交于一点
与底面是相似 的多边形

圆柱、圆锥、圆台、球的表面积和体积 课件-高一数学人教A版(2019)必修第二册

圆柱、圆锥、圆台、球的表面积和体积 课件-高一数学人教A版(2019)必修第二册

二、圆柱、圆锥、圆台的体积
例2 (1)(多选)圆柱的侧面展开图是长12 cm,宽8 cm的矩形,则这个
圆柱的体积可能是
√288 A. π
cm3
√192 B. π
cm3
C.288π cm3
D.192π cm3
解析 当圆柱的高为 8 cm 时,V=π×122π2×8=2π88(cm3), 当圆柱的高为 12 cm 时,V=π×28π2×12=1π92(cm3).
V柱 Sh
V柱
1 3
Sh
1 V台 3 (S
SS' S' )h
复习 棱柱、棱锥、棱台的表面积:
围成它们的各个面的面积的和,即侧面积+底面积
我们知道了多面体的表面积,那你认为旋转体——圆柱、圆锥、圆 台、球的表面积又是怎样的呢?
圆柱、圆锥、圆台的表面积是围成它们的各个面的面积和,即 侧面积+底面积
变式2 (1)设圆台的高为3,如图,在轴截面中母线AA1与底面直径AB的夹角为60°, 轴截面中的一条对角线垂直于腰,则圆台的体积为________.
解析 设上、下底面半径,母线长分别为r,R,l.
作A1D⊥AB于点D, 则A1D=3,∠A1AB=60°, 又∠BA1A=90°, ∴∠BA1D=60°,
1 3
Sn
R
1 3
R(Si
S2
S3
...
Sn
)
1 3
RS
因为 S 4πR2 所以球的体积为 V 4 R3
3
Si
hi
Vi
Si
R
O
Vi
2
PART TWO
题型探究
题型一 求圆柱、圆锥、圆台的表面积 【例1】 圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面半径也相等.

圆柱、圆锥、圆台、球的表面积和体积(PPT)新教材人教A(2019)必修(第二册)

圆柱、圆锥、圆台、球的表面积和体积(PPT)新教材人教A(2019)必修(第二册)

(2)球的表面积(体积)计算中蕴涵的数学思想 ①函数方程思想:根据球的表面积与体积公式可知,球的 半径 R,球的表面积 S,球的体积 V 三个量“知一求二”. ②转化思想:空间问题平面化. (3)球体的截面的特点 ①球既是中心对称的几何体,又是轴对称的几何体,它的 任何截面均为圆,它的三视图也都是圆. ②利用球半径、截面圆半径、球心到截面的距离构建直角 三角形是把空间问题转化为平面问题的主要途径.
(2)用一个完全相同的几何体把题中几何体补成一 个圆柱,如图,则圆柱的体积为 π×22×5=20π,故所
求几何体的体积为 10π.
(3)设圆台的上、下底面半径分别为 r 和 R,母线长为 l,高为 h, 则 S 上=πr2=π,S 下=πR2=4π,∴r=1,R=2,S 侧=π(r+R)l=6π,
答案:A
2.[变条件]将本例(3)变为:圆柱内接于球,圆柱 的底面半径为 3,高为 8,则球的表面积为 ________.
解析:如图,由条件知,O1A=3,OO1=4,所以 OA=5, 所以球的表面积为 100π. 答案:100π
(4)求圆台的体积转化为求圆锥的体积. 根据台体的 定义进行“补形”,还原为圆锥,采用“大圆锥”减去 “小圆锥”的方法求圆台的体积.
3.与球的体积、表面积有关的问题 (1)球的表面积(体积)与半径之间的函数关系 S 球=4πR2 V 球=43πR3 从公式看,球的表面积和体积的大小,只与球的半径 相关,给定 R 都有惟一确定的 S 和 V 与之对应,故表面 积和体积是关于 R 的函数.
3.常见的几何体与球的切、接问题的解决策略 (1)处理有关几何体外接球或内切球的相关问题时,要注意球心 的位置与几何体的关系,一般情况下,由于球的对称性,球心总在 几何体的特殊位置,比如中心、对角线的中点等. (2)解决此类问题的实质就是根据几何体的相关数据求球的直 径或半径,关键是根据“切点”和“接点”,作出轴截面图,把空 间问题转化为平面问题来计算.

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆

2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).

新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =

圆柱,圆锥,圆台和球的结构特征PPT49页

圆柱,圆锥,圆台和球的结构特征PPT49页
圆柱,圆锥,圆台和球的结构特征
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.3圆柱、圆锥、圆台和球
一、圆柱、圆锥、圆台定义
1、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱。

注意:圆柱和棱柱统称为柱体
2、圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲所围成的几何体叫做圆锥。

注意:圆锥和棱锥统称为锥体
3、(1)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

(2)圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之
间的部分叫做圆台。

注意:棱台和圆台统称为台体。

4、相关概念:
(1)轴:旋转轴叫做它们的轴;
(2)高:在轴上的这条边叫做它们的高;
(3)底面:垂直于轴的边旋转而成的圆面叫做它们的底面;
(4)侧面:不垂直于轴的边旋转而成的曲面叫做它们的侧面;(5)母线:无论旋转到什么位置,不垂直于轴的边叫做它们的母线。

(6)轴截面:过轴的截面叫做它们的轴截面
5、表示方法:用表示它的轴的字母表示,如圆柱OO’ .
6、有关性质:
(1)用平行于底面的平面去截,截面都是圆。

(2)圆柱、圆锥、圆台的轴截面分别是全等的矩形、全等的等腰三角形、全等的等腰梯形;
7、侧面展开图
(1)圆柱的侧面展开图是矩形。

(2)圆锥的侧面展开图是扇形.
(3)圆台的侧面展开图是扇环.
二、球及相关概念:
球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。

注意:球面也可看作空间中到一定点的距离等于定长的点的集合2.相关概念:
(1)球心:形成球的半圆的圆心叫做球心;
(2)半径:连接球面上一点和球心的线段叫球的半径;
(3)直径:连接球面上的两点且通过球心的线段叫球的直径;
3.球的表示方法:用表示球心的字母表示,如球O .
4.球的截面性质:
(1)球的截面是圆面,
(2)球心和截面圆心的连线垂直于截面;
(3)r=其中r为截面圆半径,R为球的半径,d为球心O 到截面圆的距离,即O到截面圆心O1的距离;
(4)大圆:球面被经过球心的平面截得的圆叫做球的大圆,小圆:被不经过球心的平面截得的圆叫做球的小圆;
四.组合体
由柱、锥、台、球等基本几何体组合而成的几何体称为组合体。

组合体可以通过把它们分解为一些基本几何体来研究。

相关文档
最新文档