天津市2017届高三数学理一轮复习专题突破训练:圆锥曲线
高三第一轮复习22----圆锥曲线大题训练题
圆锥曲线大题训练题1.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.2.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |.4. 若动点(,)P x y 在曲线2221(0)4x y b b+=>上变化,则22x y +的最大值为多少?5. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。
5.(2007全国Ⅱ文、理)在直角坐标系xOy 中,以O 为圆心的圆与直线:相切(1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA|、|PO|、|PB|成等比数列,求PA PB ∙的取值范围。
6.(2007北京文、理)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的 外接圆外切,求动圆P 的圆心的轨迹方程.7.设椭圆22a x +22by =1(a >b >0)的左焦点为F 1(-2,0),左准线l 1与x 轴交于点N (-3,0),过点N 且倾斜角为30°的直线l 交椭圆于A 、B 两点.(1)求直线l 和椭圆的方程;(2)求证:点F 1(-2,0)在以线段AB 为直径的圆上;(3)在直线l 上有两个不重合的动点C 、D ,以CD 为直径且过点F 1的所有圆中,求面积最小的圆的半径长.4y 3x =-8.设椭圆2222:1(0)x y C a b a b+=>>过点M,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上9.已知椭圆的中心在原点,一个焦点是)0,2(F ,且两条准线间的距离为)4(>λλ。
高三数学一轮复习必备:圆锥曲线方程及性质
~高三数学(人教版A 版)第一轮复习资料第33讲 圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
高考数学一轮复习专题训练—圆锥曲线的定值问题
圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
普通高中2017高考高三数学第一次模拟试题精选:圆锥曲线02含答案
圆锥曲线0223、已知抛物线24y x =的焦点与圆2240x y mx ++-=的圆心重合,则m 的值是 【答案】2-【解析】抛物线的焦点坐标为(1,0)。
圆的标准方程为222()424m m x y ++=+,所以圆心坐标为(,0)2m -,所以由12m-=得2m =-。
24、双曲线2213x y -=的两条渐近线的夹角的大小等于_______ 【答案】3π【 解析】双曲线的渐近线为3y x =±。
3y x =的倾斜角为6π,所以两条渐近线的夹角为263ππ⨯=。
25、设点P 在曲线22y x =+上,点Q 在曲线y =PQ 的最小值为_______【答案】427 【 解析】在第一象限内,曲线22+=x y 与曲线2-=x y 关于直线y =x 对称,设P 到直线y =x 的距离为d ,则|PQ |=2d ,故只要求d 的最小值d =2)(2|2|2||472212+--+-==x x x x y ,当12x =时,d min ,所以|PQ |min4=26、若双曲线2221(0)4x y b b -=>的一条渐近线过点P (1, 2),则b 的值为_________.【答案】4【 解析】双曲线的渐近线方程为2by x =±,因为点P (1, 2)在第一象限,所以点P (1, 2)在渐近线2b y x =上,所以有22b=,所以4b =。
27、已知抛物线22(0)y px p =>上一点(1,)M m (m >0)到其焦点F 的距离为5,该抛物线的顶点在直线MF 上的射影为点P ,则点P 的坐标为 . 【答案】6448(,)2525【 解析】抛物线的焦点坐标(,0)2p F ,准线方程为2p x =-。
因为1()52pMF =--=,所以解得8p =。
所以抛物线方程为216y x =,即216m =,所以4m =。
即(1,4)M ,则直线MF 的方程为43160x y +-=,斜率为43-。
高三数学理一轮复习专题突破训练:圆锥曲线
高三数学理一轮复习专题突破训练圆锥曲线一、选择、填空题1、(2016年四川省高考)设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为(A (B )23(C (D )1 2、(2015年四川省高考)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A 、B 两点,则||AB =A.B. C. 6 D. 3、(四川省2016届高三预测金卷 )已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ). A. ]210,1( B. ]537,1( C. ]210,537[ D. ),210[+∞ 4、(成都市2016届高三第二次诊断)已知抛物线y=x 2的焦点为F ,经过y 轴正半轴上一点N 作直线l 与抛物线交于A ,B 两点,且OA OB ⋅ =2(O 为坐标原点),点F 关于直线OA 的对称点为C ,则四边形 OCAB 面积的最小值为(A)3 (B)(D)325、(成都市都江堰2016届高三11月调研)已知双曲线)0,0(12222>>=-b a b y a x 的一个焦点与抛物线x y 122=的焦点重合,且双曲线的离心率等于3,则该双曲线的标准方程为( )A .1182722=-y xB .1271822=-x yC .1241222=-y xD .16322=-y x6、(乐山市高中2016届高三第二次调查研究)抛物线24y x =的焦点为F ,经过点F 的直线与抛物线在x 轴上方的部分交于点A ,与准线l 交于点B ,且AK l ⊥于点K ,如果|AF|=|BF|,那么△AKF 的面积为A. 7、(绵阳中学2017届高三上学期入学考试)若圆221:0C x y ax ++=与圆222:2tan 0C x y ax y θ+++=都关于直线210x y --=对称,则sin cos θθ=( )A .25 B. 25- C.637- D. 23- 8、(成都市双流中学2017届高三9月月考)已知椭圆221(09),9x y m m+=<<左、右焦点分别为12F F 、,过1F 的直线交椭圆于A B 、两点,若22||||AF BF +的最大值为10,则m 的值为A.3B.2C.19、(内江市2016届高三第四次(3月)模拟)F 为双曲线12222=-by a x 的右焦点,点P 在双曲线右支上,POF ∆(为坐标原点O )满足5==OP OF ,52=PF ,则双曲线的离心率为 BA. 13+B. 5C. 2D. 310、(成都市双流中学2016届高三5月月考)已知P B A ,,是双曲线12222=-b y a x 上的不同三点,且AB 连线经过坐标原点,若直线PB PA ,的斜率乘积32=⋅PB PA k k ,则该双曲线的离心率=e ( B )A . 25B . 315C . 210D . 211、(成都市双流中学2017届高三9月月考)抛物线2:4C y x =的准线方程为 A.1x =-B.1x =C.2x =-D.2x =12、(遂宁市2016届高三第二次诊断考试)设B 、C 是定点,且均不在平面α上,动点A 在平面α上,且1sin 2ABC ∠=,则点A 的轨迹为 A .圆或椭圆 B .抛物线或双曲线 C .椭圆或双曲线 D .以上均有可能13、(宜宾市2016届高三第二次诊断)已知直线2100x y +-=过双曲线22221x y a b-=()0,0a b >>的焦点,且与该双曲线的一条渐近线垂直,则该双曲线的标准方程为(A) 221169x y -= (B) 221205x y -= (C) 221520x y -= (D) 221916x y -=14、(宜宾市2016届高三第二次诊断)设动直线l :m kx y +=(其中m k ,为整数)与椭圆1121622=+y x 交于不同两点B A ,,与双曲线112422=-y x 交于不同两点D C ,,且 AC BD +=0,则符合上述条件的直线l 共有(A )5条 (B )7条 (C )9条 (D )11条 15、(资阳市资阳中学2017届高三上学期入学考试)如图平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的离心率32e =,12,A A 分别是椭圆的左、右两个顶点,圆1A 的半径为a ,过点2A 作圆1A 的切线,切点为P ,在x 轴的上方交椭圆于点Q .则2PQ QA = .16、(成都市2016届高三第二次诊断)双曲线2225x y a -=l 的一个焦点坐标为(3,0),则该双曲线的离心率为 。
2017年高考数学—圆锥曲线(选择+填空+答案)
2017年高考数学—圆锥曲线(选择+填空+答案)1.(17全国1理10)已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .102.(17全国1文5)已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .1 2C .2 3D .3 23.(17全国1文12)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞UB .[9,)+∞UC .(0,1][4,)+∞UD .[4,)+∞U4.(17全国2理9) 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B D 5.(17全国2文5) 若1a >,则双曲线2221x y a-=的离心率的取值范围是A. +∞)B. )C. (1D. 12(,)6.(17全国2文12 )过抛物线2:4C y x =的焦点F ,C 于点M (M在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.B.C.D.7.(17全国3理5)已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为()A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=8.(17全国3文11)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C D .139.(17天津理(5))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -=(B )22188x y -= (C )22148x y -=(D )22184x y -=10.(17天津文(5))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为(A )221412x y -= (B )221124x y -= (C )2213x y -= (D )2213y x -= 11.(17浙江2)椭圆22194x y +=的离心率是A .3B .3C .23D .5912.(17全国1理15)已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。
普通高中2017高考高三数学第一次模拟试题精选:圆锥曲线04含答案
圆锥曲线044、设点1F ,2F 分别是椭圆12:22=+y x C 的左、右焦点,P 为椭圆C 上任意一点. (1)求数量积21PF PF ⋅的取值范围;(2)设过点1F 且不与坐标轴垂直的直线交椭圆C 于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 【答案】解:(1)由题意,可求得)0,1(1-F ,)0,1(2F . (1分) 设),(y x P ,则有),1(1y x F +=,),1(2y x F -= (3分)[]2,2,21122221-∈=-+=⋅x x y x PF PF (2分) 所以,[]1,021∈⋅PF PF . (1分) (2)设直线AB 的方程为)0)(1(≠+=k x k y , (1分)代入1222=+y x ,整理得0224)21(2222=-+++k x k x k ,(*) (2分) 因为直线AB 过椭圆的左焦点1F ,所以方程*有两个不相等的实根. 设),(11y x A ,),(22y x B ,AB 中点为),(00y x M ,则1242221+-=+k k x x ,122220+-=k k x ,1220+=k ky . (2分) 线段AB 的垂直平分线NG 的方程为)(100x x ky y --=-. (1分)令0=y ,则241211212122222222200++-=+-=+++-=+=k k k k k k k ky x x G .(2分)因为0≠k ,所以021<<-G x .即点G 横坐标的取值范围为⎪⎭⎫⎝⎛-0,21. (1分)5、已知椭圆E 的方程为22143x y +=,右焦点为F ,直线l 的倾斜角为4π,直线l 与圆223x y +=相切于点Q ,且Q 在y 轴的右侧,设直线l 交椭圆E 于两个不同点,A B . (1)求直线l 的方程;(2)求ABF ∆的面积.【答案】(1)设直线l的方程为y x m =+,=,得m =……………………………………3分 又切点Q 在y 轴的右侧,所以m =2分 所以直线l 的方程为y x =…………………………………2分(2)设1122(,),(,)A x y B x y由22143y x x y ⎧=-⎪⎨+=⎪⎩得27120x -+= …………………………2分121212 7x x x x +==12|||7AB x x=-==……………2分又(1,0)F,所以F到直线l的距离12d==……2分所以ABF∆的面积为12||27AB d=……………1分6、如图,已知椭圆171622=+yx的左、右顶点分别为A、B,右焦点为F.设过点),(mtT的直线TA、TB与椭圆分别交于点),(11yxM、),(22yxN,其中0>m,01>y,02<y.(1)设动点P满足3||||22=-PBPF,求点P的轨迹;(2)若31=x,212=x,求点T的坐标.【答案】(1)由已知,)0,4(B ,)0,3(F ,…………(1分)设),(y x P ,……(2分) 由3||||22=-PB PF ,得3])4[(])3[(2222=+--+-y x y x ,…(5分) 化简得,5=x .所以动点P 的轨迹是直线5=x .……(6分)(2)将),3(1y M 和⎪⎭⎫⎝⎛2,21y N 代入171622=+y x 得,⎪⎪⎩⎪⎪⎨⎧=+=+17641171692221y y ,……(1分) 解得⎪⎪⎩⎪⎪⎨⎧==6444116492221y y ,……(2分)因为01>y ,02<y ,所以471=y ,8212-=y .…………(3分) 所以⎪⎭⎫ ⎝⎛47,3M ,⎪⎭⎫ ⎝⎛-821,21N .…………(4分) 又因为)0,4(-A ,)0,4(B , 所以直线MA 的方程为)4(41+=x y ,直线NB 的方程为)4(43-=x y .……(5分) 由⎪⎪⎩⎪⎪⎨⎧-=+=)4(43)4(41x y x y ,…………(6分)解得⎩⎨⎧==38y x .…………(7分)所以点T 的坐标为)3,8(.……(8分)7、某海域有A 、B 两个岛屿,B 岛在A 岛正东4海里处。
高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版
第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。
高考数学一轮复习 第8章 平面解析几何 解答题专项突破(五)圆锥曲线的综合问题创新教学案(含解析)新
解答题专项突破(五) 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程、研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、X 围、探索性问题等,此类命题起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.热点题型1 圆锥曲线中的定点问题典例1(2019·高考)抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.解题思路 (1)根据抛物线C 过点(2,-1),列方程求p ,得抛物线C 的方程,进而得出其准线方程.(2)设直线l 的方程,与抛物线C 的方程联立,用根与系数的关系推出关于M ,N 两点坐标的等量关系,设所求定点坐标为(0,n ),利用DA →·DB →=0列方程式求n的值.规X 解答 (1)由抛物线C :x 2=-2py 经过点(2,-1),得22=-2p (-1),解得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)证明:抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),那么x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),那么DA→=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB→=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB→=x 1x 2y 1y2+(n +1)2 =x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2 =-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).典例2(2019·某某模拟)Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA→=AP →,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点⎝ ⎛⎭⎪⎫0,-35的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?假设是,求出定点的坐标;假设不是,请说明理由.解题思路 (1)设Q (x 0,y 0),P (x ,y ),利用所给条件建立两点坐标之间的关系,利用Q 在圆上可得x ,y 的方程,即为所求.(2)设定点为H ,及直线l 的方程,与椭圆方程联立,利用根与系数的关系,及HM →·HN→=0,得出恒等式,求得定点的坐标. 规X 解答 (1)设Q (x 0,y 0),P (x ,y ),那么x 20+y 20=1,由BA →=AP →,得⎩⎨⎧x 0=x2,y 0=-y ,代入x 20+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)假设存在满足条件的定点,由对称性可知,该定点在y 轴上,设定点为H (0,m ),当直线l 的斜率存在时,设直线l 的方程为y =kx -35, 由⎩⎪⎨⎪⎧y =kx -35,x 24+y 2=1,得(1+4k 2)x 2-245kx -6425=0,设M (x 1,y 1),N (x 2,y 2), 那么x 1+x 2=24k 51+4k 2,x 1x 2=-64251+4k 2,∴y 1+y 2=k (x 1+x 2)-65=-651+4k2,y 1y 2=⎝ ⎛⎭⎪⎫kx 1-35⎝ ⎛⎭⎪⎫kx 2-35=k 2x 1x 2-35k (x 1+x 2)+925=9-100k 2251+4k 2, ∵HM →=(x 1,y 1-m ),HN →=(x 2,y 2-m ), ∴HM →·HN →=x 1x 2+y 1y 2-m (y 1+y 2)+m 2=100m 2-1k 2+25m 2+30m -55251+4k2=0,∵对任意的k 恒成立,∴⎩⎪⎨⎪⎧100m 2-1=0,25m 2+30m -55=0,解得m =1,即定点为H (0,1),当直线l 的斜率不存在时,以MN 为直径的圆也过定点(0,1). 综上,以MN 为直径的圆过定点(0,1). 热点题型2 圆锥曲线中的定值问题典例1 如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段FP 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解题思路 (1)R 是线段FP 的中点,且RQ ⊥FP →RQ 是线段PF 的垂直平分线→|PQ |=|QF |→点Q 的轨迹是以F 为焦点,l 为准线的抛物线→确定焦准距,根据抛物线的焦点坐标,求出抛物线的方程.(2)①求|TS |的依据:a =2r 2-d 2,其中a 为弦长,r 为圆的半径,d 为圆心到弦所在直线的距离.②策略:设曲线C 上点M (x 0,y 0),用相关公式求r ,d ;用x 0,y 0满足的等量关系消元.规X 解答 (1)依题意知,点R 是线段FP 的中点, 且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ∵点Q 在线段FP 的垂直平分线上, ∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=x 0-12+y 20, 那么|TS |=2r 2-d 2=2y 20-2x 0+1,∵点M 在曲线C 上, ∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.典例2(2019·某某三模)给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a2+b2的圆为椭圆C的“准圆〞.假设椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.(1)求椭圆C的方程和其“准圆〞方程;(2)假设点P是椭圆C的“准圆〞上的动点,过点P作椭圆的切线l1,l2交“准圆〞于点M,N.证明:l1⊥l2,且线段MN的长为定值.解题思路(1)根据椭圆的几何性质求a,c,再用b2=a2-c2求b,可得椭圆C 的方程,进而可依据定义写出其“准圆〞方程.(2)分以下两种情况讨论:①l1,l2中有一条斜率不存在;②l1,l2斜率存在.对于①,易知切点为椭圆的顶点;对于②,可设出过P与椭圆相切的直线,并与椭圆方程联立后消元,由Δ=0推出关于椭圆切线斜率的方程,利用根与系数的关系进行证明.规X解答(1)∵椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.∴c=2,a=3,∴b=a2-c2=1,∴椭圆方程为x23+y2=1,∴“准圆〞方程为x2+y2=4.(2)证明:①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,那么l1:x=±3,当l1:x=3时,l1与“准圆〞交于点(3,1),(3,-1),此时l2为y=1(或y=-1),显然直线l1,l2垂直;同理可证当l 1:x =-3时,直线l 1,l 2垂直. ②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中x 20+y 20=4.设经过点P (x 0,y 0)与椭圆相切的直线为 y =t (x -x 0)+y 0,∴由⎩⎨⎧y =t x -x 0+y 0,x 23+y 2=1,得(1+3t 2)x 2+6t (y 0-tx 0)x +3(y 0-tx 0)2-3=0.由Δ=0化简整理,得(3-x 20)t 2+2x 0y 0t +1-y 20=0,∵x 20+y 20=4,∴有(3-x 20)t 2+2x 0y 0t +(x 20-3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-x 20)t 2+2x 0y 0t +(x 20-3)=0,∴t 1·t 2=-1,即l 1,l 2垂直. 综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆〞于点M ,N ,且l 1,l 2垂直. ∴线段MN 为“准圆〞x 2+y 2=4的直径,|MN |=4, ∴线段MN 的长为定值.热点题型3 圆锥曲线中的证明问题典例1抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)假设AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.解题思路 (1)判断△ABD 的形状,求|FD |,|AB |.由△ABD 的面积为1,列方程求p ,得抛物线的方程.(2)将直线AB 的方程与抛物线C 的方程联立,消去y 并整理,结合根与系数的关系用k ,p 表示M ,N 的坐标.求k AN :①斜率公式,②导数的几何意义,两个角度求斜率相等,证明相切.规X 解答 (1)∵AB ∥l ,∴△ABD 为等腰三角形,且FD ⊥AB ,又|FD |=p ,|AB |=2p .∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:显然直线AB 的斜率存在,设其方程为y =kx +p 2,A ⎝ ⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 222p .由⎩⎨⎧y =kx +p 2,x 2=2py消去y 整理得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. ∴M ⎝ ⎛⎭⎪⎫kp ,k 2p +p 2,N ⎝ ⎛⎭⎪⎫kp ,-p 2.∴k AN =x 212p +p 2x 1-kp=x 212p +p 2x 1-x 1+x 22=x 21+p 22px 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp .∴抛物线x 2=2py 在点A 处的切线的斜率k ′=x 1p . ∴直线AN 与抛物线相切.典例2(2019·某某二模)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(1<a <5)上,该椭圆的左顶点A 到直线x -y +5=0的距离为322.(1)求椭圆C 的标准方程;(2)假设线段MN 平行于y 轴,满足(ON →-2OM →)·MN →=0,动点P 在直线x =23上,满足ON →·NP→=2.证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 解题思路 (1)根据椭圆的左顶点A 到直线x -y +5=0的距离为322,列关于a 的等量关系求解,得椭圆C 的方程.(2)设出M ,N ,P 的坐标(注意M 与N 的横坐标相同,P 的横坐标).先用(ON →-2OM →)·MN →=0和ON →·NP →=2推出坐标之间的关系,再利用这些等量关系证明NF →·OP→=0. 规X 解答 (1)设左顶点A 的坐标为(-a,0), ∵|-a +5|2=322,∴|a -5|=3,解得a =2或a =8(舍去), ∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:由题意,设M (x 0,y 0),N (x 0,y 1),P (23,t ),且y 1≠y 0,由(ON →-2OM →)·MN →=0,可得(x 0-2x 0,y 1-2y 0)·(0,y 1-y 0)=0,整理可得y 1=2y 0,由ON →·NP →=2,可得(x 0,2y 0)·(23-x 0,t -2y 0)=2,整理,得23x 0+2y 0t =x 20+4y 20+2=6,由(1)可得F (3,0), ∴NF →=(3-x 0,-2y 0), ∴NF →·OP →=(3-x 0,-2y 0)·(23,t )=6-23x 0-2y 0t =0, ∴NF ⊥OP ,故过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 热点题型4 圆锥曲线中的最值与X 围问题典例1(2019·某某二模)设F 为抛物线C :y 2=2px 的焦点,A 是C 上一点,F A 的延长线交y 轴于点B ,A 为FB 的中点,且|FB |=3.(1)求抛物线C 的方程;(2)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于M ,N 两点,直线l 2与C 交于D ,E 两点,求四边形MDNE 面积的最小值.解题思路(1)由题意画出图形,结合条件列式求得p ,那么抛物线C 的方程可求.(2)由直线l 1的斜率存在且不为0,设其方程为y =k (x -1),与抛物线方程联立,求出|MN |,同理可求|DE |⎝ ⎛⎭⎪⎫实际上,在|MN |的表达式中用-1k 代替k 即可,可得四边形MDNE 的面积表达式,再利用基本不等式求最值.规X 解答 (1)如图,∵A 为FB 的中点,∴A 到y 轴的距离为p4, ∴|AF |=p 4+p 2=3p 4=|FB |2=32,解得p =2. ∴抛物线C 的方程为y 2=4x . (2)由直线l 1的斜率存在且不为0, 设其方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.∵Δ>0,设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=2+4k 2,那么|MN |=x 1+x 2+2=4⎝ ⎛⎭⎪⎫1+1k 2; 同理设D (x 3,y 3),E (x 4,y 4),∴x 3+x 4=2+4k 2, 那么|DE |=x 3+x 4+2=4(1+k 2).∴四边形MDNE 的面积S =12|MN |·|DE |=8⎝ ⎛⎭⎪⎫2+k 2+1k 2≥32.当且仅当k =±1时,四边形MDNE 的面积取得最小值32.典例2 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),假设S △P AM ∶S △PBN =λ,某某数λ的取值X 围.解题思路 (1)求点B 的坐标→根据k AB =12列方程→由题意得a =2,a 2=b 2+c 2,解方程组求a ,b ,c ,写出椭圆C 的标准方程.(2)S △P AM ∶S △PBN =λ――→面积公式PM →与PN →的关系→点M ,N 坐标之间的关系→直线MN 的方程与椭圆C 的方程联立,消去y 整理→用根与系数的关系得出点M ,N 的坐标之间的关系式→推出λ与k 的关系,并根据k >12求X 围,找到λ所满足的不等式,求出λ的取值X 围.规X 解答 (1)因为BF 1⊥x 轴,所以点B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,所以⎩⎪⎨⎪⎧ a =2,b 2a a +c=12,a 2=b 2+c2⇒⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1. (2)因为S △P AM S △PBN=12|P A |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN=2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2), 所以PM→=-λ2PN →. 由(1)可知P (0,-1),设直线MN :y =kx -1⎝ ⎛⎭⎪⎫k >12,M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx -1,x 24+y 23=1,化简得,(4k 2+3)x 2-8kx -8=0.得⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM →=(x 1,y 1+1),PN →=(x 2,y 2+1), 有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,2-λ2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),那么1<2-λ2λ<4且λ>2⇒4<λ<4+2 3.综上所述,实数λ的取值X 围为(4,4+23). 热点题型5 圆锥曲线中的探索性问题典例1(2019·某某一模)抛物线E :y 2=4x ,圆C :(x -3)2+y 2=1.(1)假设过抛物线E的焦点F的直线l与圆C相切,求直线l的方程;(2)在(1)的条件下,假设直线l交抛物线E于A,B两点,x轴上是否存在点M(t,0)使∠AMO=∠BMO(O为坐标原点)?假设存在,求出点M的坐标;假设不存在,请说明理由.解题思路(1)求得抛物线的焦点,设出直线l的方程,运用直线l和圆C相切的条件:d=r,解方程可得所求直线方程.(2)设出A,B的坐标,联立直线l的方程和抛物线E的方程,运用根与系数的关系和直线的斜率公式,依据∠AMO=∠BMO,即k AM+k BM=0列方程化简整理,解方程可得t,即得点M的坐标,从而得到结论.规X解答(1)由题意,得抛物线的焦点F(1,0),当直线l的斜率不存在时,过F的直线不可能与圆C相切,所以直线l的斜率存在.设直线l的斜率为k,方程为y=k(x-1),即kx-y-k=0,由圆心(3,0)到直线l的距离为d=|3k-k|1+k2=2|k|1+k2,当直线l与圆C相切时,d=r=1,解得k=±3 3,即直线l的方程为y=±33(x-1).(2)由(1),当直线l的方程为y=33(x-1)时,设A(x1,y1),B(x2,y2),联立抛物线E的方程可得x2-14x+1=0,那么x 1+x 2=14,x 1x 2=1,x 轴上假设存在点M (t,0)使∠AMO =∠BMO , 即有k AM +k BM =0, 得y 1x 1-t+y 2x 2-t =0, 即y 1(x 2-t )+y 2(x 1-t )=0, 由y 1=33(x 1-1),y 2=33(x 2-1), 可得2x 1x 2-(x 1+x 2)-(x 1+x 2-2)t =0,即2-14-12t =0,即t =-1,M (-1,0)符合题意;当直线l 的方程为y =-33(x -1)时,由对称性可得M (-1,0)也符合条件. 所以存在定点M (-1,0)使∠AMO =∠BMO .典例2(2019·某某模拟)点A (0,-1),B (0,1),P 为椭圆C :x 22+y 2=1上异于点A ,B 的任意一点.(1)求证:直线P A ,PB 的斜率之积为-12;(2)是否存在过点Q (-2,0)的直线l 与椭圆C 交于不同的两点M ,N ,使得|BM |=|BN |?假设存在,求出直线l 的方程;假设不存在,请说明理由.解题思路(1)设点P (x ,y )(x ≠0),代入椭圆方程,由直线的斜率公式,即可得证. (2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交,讨论直线的斜率是否为0,联立直线方程和椭圆方程,运用根与系数的关系和两直线垂直的条件:由|BM |=|BN |想到在△BMN 中,边MN 所在直线的斜率与MN边上的中线所在直线的斜率之积为-1,可得所求直线方程.规X 解答 (1)证明:设点P (x ,y )(x ≠0), 那么x 22+y 2=1,即y 2=1-x 22, ∴k P A ·k PB =y +1x ·y -1x =y 2-1x 2 =⎝ ⎛⎭⎪⎫1-x 22-1x 2=-12,故得证.(2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交.①当直线l 的斜率k ≠0时,设直线l 为y =k (x +2),联立椭圆方程x 2+2y 2=2,化简得(1+2k 2)x 2+8k 2x +8k 2-2=0, 由Δ=64k 4-4(1+2k 2)(8k 2-2)>0, 解得-22<k <22(k ≠0), 设点M (x 1,y 1),N (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k2,∴y 1+y 2=k (x 1+x 2)+4k =k ·-8k 21+2k 2+4k =4k 1+2k 2, 取MN 的中点H ,即H ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,那么y1+y22-1x1+x22·k=-1,即2k1+2k2-1-4k21+2k2·k=-1,化简得2k2+2k+1=0,无实数解,故舍去.②当k=0时,M,N为椭圆C的左、右顶点,显然满足|BM|=|BN|,此时直线l的方程为y=0.综上可知,存在直线l满足题意,此时直线l的方程为y=0.。
2017年高考数学(理)一轮复习精品资料 专题53 圆锥曲线的综合问题(押题专练) 含解析
专题53 圆锥曲线的综合问题1.已知中心在坐标原点的椭圆E的长轴的一个端点是抛物线y2=4错误!x的焦点,且椭圆E的离心率是错误!。
(1)求椭圆E的方程;(2)过点C(-1,0)的动直线与椭圆E相交于A,B两点。
若线段AB 的中点的横坐标是-错误!,求直线AB的方程.【解析】:(1)由题知椭圆E的焦点在x轴上,且a=错误!,又c=ea=错误!×错误!=错误!,故b=错误!=错误!=错误!,故椭圆E的方程为错误!+错误!=1,即x2+3y2=5.(2)依题意,直线AB的斜率存在,设直线AB的方程为y=k(x+1),将其代入x2+3y2=5,消去y,整理得(3k2+1)x2+6k2x+3k2-5=0.设A,B两点坐标分别为(x1,y1),(x2,y2).则错误!由线段AB中点的横坐标是-错误!,得错误!=-错误!=-错误!,解得k=±错误!,符合(*)式。
所以直线AB的方程为x-错误!y+1=0或x+错误!y+1=0。
2.已知圆C:(x+错误!)2+y2=16,点A(错误!,0),Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E。
(1)求轨迹E的方程;(2)过点P(1,0)的直线l交轨迹E于两个不同的点A,B,△AOB(O是坐标原点)的面积S=错误!,求直线AB的方程。
【解析】:(1)由题意|MC|+|MA|=|MC|+|MQ|=|CQ|=4>2错误!,所以轨迹E是以A,C为焦点,长轴长为4的椭圆,即轨迹E的方程为错误!+y2=1.(2)记A(x1,y1),B(x2,y2),由题意,直线AB的斜率不可能为0,而直线x=1也不满足条件,故可设AB的方程为x=my+1。
由错误!消去x得(4+m2)y2+2my-3=0,所以错误!则S=错误!|OP||y1-y2|=错误!错误!=错误!。
由S=错误!,解得m2=1,即m=±1。
故直线AB的方程为x=±y+1,即x+y-1=0或x-y-1=0为所求。
高考数学一轮复习专题03 圆锥曲线面积问题(解析版)
F 2F 1OyxBA解析几何专题三:圆锥曲线面积问题一、知识储备 1、三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+00002211122'2'1ABP kx y m kx y mS AB d k A A k ∆-+∆-+∆=⋅=+⋅=+2、焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为 112121212'ABF c S F F y y c y y A ∆∆=⋅-=-= 2222222222222224()11||S =||d 22AOB a b a A b B C C AB A B a A b B A B∆+-=+++2222222222()C ab a A b B C a A b B+-=+注意:'A 为联立消去x 后关于y 的一元二次方程的二次项系数3、平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+ 1221m m d CH k-==+222222121212''11()41()41'''B C AB k x x k x x x x k k A A A ∆=+-=++-=+--⋅=+1212221''1ABCDm m m m SAB d k A A k -∆-∆=⋅=+⋅=+注意:'A 为直线与椭圆联立后消去y 后的一元二次方程的系数. 4、范围问题首选均值不等式,其实用二次函数,最后选导数CDHOyxBA均值不等式 222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一正二定三相等” 圆锥曲线经常用到的均值不等式形式列举: (1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论)(2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++ 当且仅当2219k k =时,等号成立 (3)222002200259342593464925y x PQ x y =+⋅+⋅≥+= 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. (4)2282m m S -+===当且仅当228m m =-+时,等号成立(5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立. 二、例题讲解1.(2022·广东高三月考)已知椭圆G :()222210x y a b a b +=>>,且过点()3,1.(1)求椭圆G 的方程;(2)斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -,求PAB ∆的面积.【答案】(1)221124x y +=;(2)92.【分析】(1)根据椭圆离心率、及所过的点,结合椭圆参数关系求参数,写出椭圆方程.(2)设1122(,),(,)A x y B x y ,AB :y x b =+,其线段AB 中垂线为1y x =--,联立椭圆方程并应用韦达定理求12x x +、12x x ,进而可得12y y +,由AB 中点在中垂线上代入求参数b ,进而求||AB 、P 到AB 的距离,即可求△PAB 的面积. 【详解】(1)由题意,22222911a b a b c c e a ⎧==⎪⎪⎪+⎨==+⎪⎪⎪⎩,解得22124a b ⎧=⎪⎨=⎪⎩,故椭圆G 的方程221124x y+=.(2)令AB 为y x b =+,则AB 中垂线方程为(3)21y x x =-++=--, 联立AB 与椭圆方程得:223()12x x b ++=,整理得22463120x bx b ++-=, 若1122(,),(,)A x y B x y ,则1232b x x +=-,2123124b x x -=, △121222by y x x b +=++=,又1212(,)22x x y y ++在AB 中垂线上,△3144b b-=,可得2b =,即123x x +=-,120x x =,△||AB == 又()3,2P -到AB的距离d △19||PABSAB d =⋅=. 2.(2022·全国高三模拟预测)已知双曲线C :22221x ya b -=()0,0a b >>的左、右焦点分别为1F ,2F ,虚轴上、下两个端点分别为2B ,1B ,右顶点为A ,且双曲线过点,22213B F B A ac a ⋅=-.(1)求双曲线1C 的标准方程;(2)设以点1F 为圆心,半径为2的圆为2C ,已知过2F 的两条相互垂直的直线1l ,2l ,直线1l 与双曲线交于P ,Q 两点,直线2l 与圆2C 相交于M ,N 两点,记PMN ∆,QMN ∆的面积分别为1S ,2S ,求12S S +的取值范围.【答案】(1)2213y x -=;(2)[)12,+∞.【分析】(1)由22213B F B A ac a ⋅=-得223a b =,由双曲线过点得22231a b -=,两个方程联立求出a 和b ,可得双曲线1C 的标准方程;(2)设直线1l :2x my =+,根据垂直关系得直线2l :()2y m x =--,求出弦长||MN 和||PQ ,求出121||||2S S MN PQ +=,再根据参数的范围可求出结果. 【详解】(1)由双曲线的方程可知(),0A a ,()10,B b -,()20,B b ,()2,0F c , 则()22,B F c b =-,()1,B A a b =.因为22213B F B A ac a ⋅=-,所以223ac b ac a -=-,即223a b =.①又双曲线过点,所以22231a b -=.② 由①②解得1a =,b = 所以双曲线1C 的标准方程为2213y x -=. (2)设直线1l :2x my =+,()11,P x y ,()22,Q x y , 则由21l l ⊥,得直线2l :()2y m x =--,即20mx y m +-=. 因为圆心()12,0F -到直线MN的距离d ==所以MN =2d <,故2103m ≤<. 联立221,32,y x x my ⎧-=⎪⎨⎪=+⎩消去x 得()22311290m y my -++=, ()222144363136(1)0m m m ∆=--=+>,则1221231m y y m +=--,122931y y m =-,所以()22126113m PQ y m +=-=-,则1212S S PQ MN +=⋅=, 又2103m ≤<,所以[)1212,S S +∈+∞. 即12S S +的取值范围为[)12,+∞. 【点睛】关键点点睛:设直线1l :2x my =+,用m 表示||MN 和||PQ 是本题的解题关键.3.(2022·浙江高三开学考试)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(1(2)16.【分析】(1)由抛物线的焦点坐标求出p 的值,可得出抛物线C 的方程,设点()2,2A t t ,可知0t >,求出M 、N 的纵坐标,利用斜率公式结合已知条件得出1AM MN k k ⋅=-,可得出关于t 的方程,解出正数t 的值,进而可求得直线AF 的斜率;(2)求出点M 、N 的坐标,求得AM 以及点N 到直线AM 的距离d ,可求得AMN 的面积关于t 的表达式,利用基本不等式可求得AMN 面积的最小值. 【详解】(1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-, 进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444A M M N A M M N AM MN A M M N A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴==(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t tt+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---= 所以点N 到直线AM 的距离为()()()222221211t t d tt t++==+,()332331122216AMN t S t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.1.(2022·江苏南京·高三月考)已知抛物线1G :24y x =与椭圆2G :22221x y a b+=(0a b >>)有公共的焦点,2G 的左、右焦点分别为1F ,2F ,该椭圆的离心率为12. (1)求椭圆2G 的方程;(2)如图,若直线l 与x 轴,椭圆2G 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧),且1PFQ ∠与1PF R ∠互补,求1F QR ∆面积S 的最大值.【答案】(1)22143x y +=.(2【分析】(1)由已知条件推导出1c =,结合12e =和隐含条件222a b c =+,即可求出椭圆标准方程; (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,可得110QF RF k k +=,根据已知条件,结合韦达定理、点到距离公式和均值不等式,即可求解. 【详解】解:(1)由题意可得,抛物线的焦点为(1,0),∴椭圆的半焦距1c =,又椭圆的离心率为12,∴12c e a ==,即2a =, 222a b c =+,222413b a c ∴=-=-=,即b =∴椭圆2C 的方程为22143x y +=. (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,∴110QF RF k k +=, ∴1212011y yx x +=++,化简整理,可得1222110x y y x y y +++=①, 设直线PQ 为(0)x my n m =+≠,联立直线与椭圆方程22143x my n x y =+⎧⎪⎨+=⎪⎩,化简整理,可得222(34)63120m y mny n +++-=,∆222224364(34)(312)0b ac m n m n =-=-+->,可得2234n m <+②,由韦达定理,可得21212226312,3434mn n y y y y m m -+=-=++③, 将11x my n =+,22x my n =+代入①,可得12122(1)()0my y n y y +++=④, 再将③代入④,可得2226(4)6(1)3434m n mn n m m -+=++,解得4n =-,PQ ∴的方程为4x my =-,由点(1,0)F -到直线PQ的距离d =,11||2F QRSQR d =⋅= 由②可得,23416m +>,即24m >,设()f m =24m t -=,0t >,()f t ∴= 由均值不等式可知,25625692996t t t t+⋅=, 当且仅当2569t t =时,即163t =,等号成立,当2569t t+取最小值时,()f t 取最大值,即1FQR 面积S 最大,∴()18max f t =, ∴△1FQR 面积S2.(2022·重庆市第十一中学校高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为点与右焦点的连线构成正三角形. (△)求椭圆C 的标准方程;(△)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN ∆的面积最大时,求l 的方程. 【答案】(△)2214x y +=;(△)2y -或2y =-. 【分析】(△)由题意知,c =c a =222b a c =-,即可求得椭圆的方程; (△)设直线:2l y kx =-,()11,M x y ,()22,N x y ,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=,利用韦达定理,弦长公式结合OMN的面积公式得到OMNS =,利用换元结合基本不等式求解. 【详解】(△)由题意知,c =cos 6c a π==, 2a ∴=,2221b a c =-=所以椭圆的方程为2214x y +=.(△)当l x ⊥轴时不合题意,由题意设直线:2l y kx =-,()11,M x y ,()22,N x y . 联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=. 当()216430k ∆=->,即234k >,且1221614k x x k +=-+,1221214x x k =+.从而12||MN x-=.又点O 到直线MN的距离d =所以OMN 的面积1||2OMNSd MN =⋅=t ,则0t >,24444OMNt St t t==++.因为44t t +≥,当且仅当2t =,即2k =±时等号成立,且满足0∆>. 所以,当OMN 的面积最大时,直线l的方程为2y x =-或2y x =-. 【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2022·全国高三月考)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别是()1F和)2F ,点Р在椭圆E 上,且12PF F △的周长是4+ (1)求椭圆E 的标准方程;(2)已知、、A B C 为椭圆E 上三点,若有0OA OB OC ++=,求ABC ∆的面积. 【答案】(1)2214x y +=;(2【分析】(1)根据题设条件和椭圆的定义得到12124PF PF F F ++=+124PF PF +=,得到2a =,进而求得21b =,即可求得椭圆的方程;()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,联立方程组求得1212,x x x x +,根据0OA OB OC ++=,求得2282(,)1414km m C k k -++,结合点到直线的距离公式和面积公式,求得3332ABCOABS S=⋅=;当直线AB 斜率不存在时,得到直线AB 方程为1x =±,求得332ABCABOS S==. 【详解】(1)由题意,双曲线2222:1xy E a b+=的焦点()1F 和)2F ,可得12F F =因为12PF F △的周长是4+12124PF PF F F ++=+所以124PF PF +=,即24a =,可得2a =,又由222431b a c =-=-=, 所以椭圆E 的方程是2214x y +=.()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,()()()112233,,,,,A x y B x y C x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得2221484()40k x kmx m +++-=,则22212122284416(41)0,,1414km m k m x x x x k k -∆=-+>+=-=++ 由0OA OB OC ++=,可得12312300x x x y y y ++=⎧⎨++=⎩,又由122814kmx x k +=-+,可得()12121222214m y y kx m kx m k x x m k +=+++=++=+ 所以332282,1414km m x y k k ==-++, 将()33,x y 代入椭圆方程可得222282441414km m k k ⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,整理得22414m k =+, 又O 到直线AB的距离为d =则()2112OABSk =⋅+= 又由0OA OB OC ++=,可得点O 为ABC 的重心,所以3332ABCOABS S=⋅=; 当直线AB 斜率不存在时,根据坐标关系可得,直线AB 方程为1x =±,可得AB112ABOS ==所以13312ABC ABOSS==⨯综上可得:ABC S △. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.4.(2022·榆林市第十中学高三月考(理))已知1F ,2F 分别是椭圆()2222:10x yE a b a b+=>>的左,右焦点,126F F =,当P 在E 上且1PF 垂直x 轴时,217PF PF =.(1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C ,BM 与x 轴交于点D .(i )证明:四边形ABDC 的面积是定值. (ii )求CDM 的面积的最大值.【答案】(1)221123x y +=;(2)(i )证明见解析;(ii )())max 31CDM S =△.【分析】(1)由通径长公式得21b PF a=,结合椭圆定义可得,a b 关系,再由3c =求得,a b ,得椭圆方程;(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,由三点共线把,s t 用,m n 表示,然后计算四边形面积可得结论;(ii )由(i )只要ABM 面积最大即可,求出椭圆的与AB 平行的切线方程,切点即为M (注意有两个切点,需要确定其中一个),从而得面积最大值. 【详解】解:(1)由题意知21b PF a=,212PF PF a +=,217PF PF =,则182PF a =,得2a b =,又3c =,222a b c =+,解得2a b == 所以E 的标准方程是221123x y +=.(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,因为A ,C ,M 三点共线,则AC AM λ=,解得t =B ,D ,M 三点共线,则BD BM μ=,解得s =,AD s =+BC t =,221123m n +=,66AD BC st ⋅--+==6612m n +==. 162ABDC S AD BC =⋅=. (ii )因为CDM ABM ABDC S S S =-四边形△△, 所以当ABM S △最大时,CDMS 最大.1:2AB l y x =AB 平行的直线()1:02l y x p p =+<, 与221123x y +=联立,消y 得222260x px p ++-=,()2244260pp ∆=--=,解得p =p =(舍去),两平行线AB l ,l间的距离25d =,())max1312ABM S AB d =⋅=△,则())max 31CDM S =△.5.(2022·山西祁县中学高三月考(理))在平面直角坐标系xOy 中,已知(1,0)F ,动点P 到直线6x =的距离等于2||2PF +.动点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)已知(2,0)A ,过点F 的动直线l 与曲线C 交于B ,D 两点,记AOB ∆和AOD ∆的面积分别为1S 和2S ,求12S S +的最大值.【答案】(1)221123x y +=;(2)3.【分析】(1)设点P (x ,y ),再根据动点P 到直线x =6的距离等于2|PF |+2列出方程化简即可;(2)设直线l 的方程为x =my +1,联立直线与(1)中所得的椭圆方程,得出韦达定理,再得出S 1+S 2=12|OA ||y 1-y 2|关于m 的表达式,换元求解最值即可 【详解】(1)设点P (x ,y ),当6x ≥时,P 到直线x =6的距离显然小于PF ,故不满足题意; 故()62,6x x -=<,即4x -=整理得3x 2+4y 2=12,即24x +23y =1.故曲线C 的方程为24x +23y =1.(2)由题意可知直线l 的斜率不为0,则可设直线l 的方程为x =my +1,B (x 1,y 1),D (x 2,y 2).联立221143x my x y =+⎧⎪⎨+=⎪⎩,, 整理得(3m 2+4)y 2+6my -9=0,Δ>0显然成立, 所以y 1+y 2=-2634m m +,y 1y 2=-2934m +, 所以|y 1-y 2|故S 1+S 2=12|OA ||y 1|+12|OA ||y 2|=12|OA ||y 1-y2|.设t t ≥1,则m 2=t 2-1,则S 1+S 2=21231tt +=1213t t+. 因为t ≥1,所以3t +1t≥4(当且仅当t =1时,等号成立).故S 1+S 2=1213t t+≤3, 即S 1+S 2的最大值为3.6.(2022·西藏拉萨中学高三月考(理))(1)一动圆过定点(1,0)A ,且与定圆22:(1)16C x y ++=相切,求动圆圆心的轨迹E 的方程.(2)直线l 经过点A 且不与x 轴重合,l 与轨迹E 相交于P 、Q 两点,求CPQ ∆的面积的最大值.【答案】(1)22143x y +=;(2)3. 【分析】(1)设动圆圆心为(),M x y ,半径为R .由与定圆22:(1)16C x y ++=相切,且点A 的圆C 内,由||44||MC R MA =-=-,即||||4MC MA +=,利用椭圆的定义求解;(2)设l 的方程为:1x my -=,代入22143x y +=,由121||2CPQSCA y y =⋅-,结合韦达定理求解. 【详解】(1)设动圆圆心为(),M x y ,半径为R .定圆C 的圆心(1,0)C -,半径为4. 点A 的圆C 内.||44||||||4MC R MA MC MA ∴=-=-∴+=,且4AC > ,∴轨迹E 是以C 、A 为焦点,长轴长为4的椭圆,所以椭圆方程为:22143x y +=. (2)设l 的方程为:1x my -=,代入22143x y +=, 得()2234690m y my ++-=,设()()1122,,P x y Q x y ⋅, 则122634m y y m -+=+,122934y y m -=+,121||2CPQSCA y y =⋅-,=令21(1)t m t =+,则1212CPQS=1()9f t t t=+在[1,)+∞为增函数1t ∴=,即0m =时,CPQ S △取最大值3.7.(2022·山东高三模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的右焦点F 与抛物线28y x =的焦点重合,一条渐近线的倾斜角为30o . (1)求双曲线C 的方程;(2)经过点F 的直线与双曲线的右支交与,A B 两点,与y 轴交与P 点,点P 关于原点的对称点为点Q ,求证:QABS>【答案】(1)2213x y -=;(2)证明见解析.【分析】(1)由题意可得2c =,o tan 30b a ==222c a b =+可求出22,a b ,从而可求出双曲线C 的方程; (2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,可得()02P k -,,()02Q k ,,将直线方程与双曲线方程联立方程组,消去y ,利用根与系数的关系,从而可表示出()()2222248131QABk k Sk +=-,再由直线与双曲线的右支交与,A B 两点,可得231k >,则2310t k =->,代入上式化简可求得结果 【详解】解:(1)由题意得2c =,o tan 30b a ==222c a b =+ 解得2231a b ==,所以双曲线C 的方程为:2213x y -=(2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,得()02P k -,,()02Q k ,, 设()11A x y ,,()22B x y ,,联立()22132x y y k x ⎧-=⎪⎨⎪=-⎩,整理可得()222231121230k x k x k --++=21221231k x x k +=-,212212331k x x k +⋅=- 所以1212QABQPB QPASSSPQ x x =-=-122k x x =- 所以()()2222221212224123124443131QABk k Sk x x x x k k k ⎡⎤+⎛⎫⎡⎤⎢⎥=+-=- ⎪⎣⎦--⎢⎥⎝⎭⎣⎦2()()222248131k k k+=-直线与双曲线右支有两个交点,所以22121222121230,03131k k x x x x k k ++=>⋅=>-- 所以231k >,设2310t k =->,()2221111645334813QABt t St t t ++⎛⎫⋅+⎪⎛⎫⎝⎭==++ ⎪⎝⎭2641564251633383643t ⎛⎫=+->⨯-=⎪⎝⎭所以QAB S >【点睛】关键点点睛:此题考查双曲线方程的求法,考查直线与双曲线的位置关系,解题的关键是将直线方程与双曲线方程联立后,利用根与系数的有关系,从而可表示出()()2222248131QABk k S k+=-,再结合231k >,换元后求其最小值即可,考查计算能力,属于中档题 8.(2022·全国高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为()12,0F -,()22,0F,点(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C 交于不同的两点A ,B ,若OAB ∆的面积为求直线l 的方程.【答案】(1)22122x y -=;(2)2y =+和2y =+. 【分析】(1)根据焦点坐标,可得2c =,所以224a b +=,代入双曲线方程,可得()222221044x y a a a-=<<-,将P 点坐标代入,即可求得a 值,即可得答案;(2)设直线l 的方程为2y kx =+,与双曲线C 联立,可得关于x 的一元二次方程,利用韦达定理,可得1212,x x x x +的表达式,代入弦长公式,即可求得AB ,根据点到直线的距离公式,可求得原点到直线l 的距离d ,代入面积公式,结合题意,即可求得k 的值,即可得答案. 【详解】(1)依题意,2c =,所以224a b +=,则双曲线C 的方程为()222221044x y a a a-=<<-,将点P 代入上式,得22252314a a -=-, 解得250a =(舍去)或22a =, 故所求双曲线的方程为22122x y -=.(2)依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理,得()221460k x kx ---=.因为直线l 与双曲线C 交于不同的两点,A B ,所以()22210(4)2410k k k ⎧-≠⎪⎨-+->⎪⎩,解得1k k ≠±⎧⎪⎨<⎪⎩(*) 设()()1122,,,A x y B x y ,则12122246,11k x x x x k k +==---,所以||AB =又原点O 到直线l 的距离d =所以11||22OABSd AB =⋅==.又OABS=1=,所以4220k k --=,解得k =(*).故满足条件的直线l 有两条,其方程分别为2y =+和2y =+. 【点睛】解题的关键是熟练掌握弦长公式、点到直线的距离公式等知识,并灵活应用,易错点为:解得k 值,需检验是否满足判别式0∆>的条件,考查计算化简的能力,属中档题.9.(2022·全国高三专题练习)已知双曲线22:1164x y C -=的左、右焦点分别为1F ,2F . (1)求与双曲线C 有共同渐近线且过点()2,3的双曲线标准方程; (2)若P 是双曲线C 上一点,且12150F PF ∠=︒,求12F PF △的面积.【答案】(1)221832y x -=;(2)8-【分析】(1)根据题意,设所求双曲线方程为22(0)164x y k k -=≠,代入点()2,3,求得k 值,即可得答案; (2)不妨设P 在C 的右支上,根据双曲线定义,可得1228PF PF a -==,根据方程可得12F F 的值,在12F PF △中,利用余弦定理可得12PF PF 的值,代入面积公式,即可求得答案. 【详解】(1)因为所求双曲线与22:1164x y C -=共渐近线,所以设该双曲线方程为22(0)164x y k k -=≠, 又该双曲线过点()2,3, 所以49164k -=,解得k =-2, 所以所求双曲线方程为:221832y x -=(2)不妨设P 在C 的右支上,则1228PF PF a -==,122F F c == 在12F PF △中,2222121212121212()280cos15022PF PF F F PF PF PF PF PF PF PF PF +--+-︒===解得1232PF PF =- 所以12F PF △的面积1212111sin (328222F P S F PF PF ∠==⨯-⨯=-【点睛】解题的关键是:掌握共渐近线的双曲线方程的设法,即与22221x y a b-=共渐近线的方程可设为:2222(0)x y k k a b -=≠;与22221x y a b -=共焦点的方程可设为:22221x y a b λλ-=+-,再代入点求解即可,考查分析计算的能力,属中档题.10.(2022·浙江高三开学考试)已知抛物线T :()22y px p N +=∈和椭圆C :2215x y +=,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求OAB 面积的最大值. 【答案】(1)4p =;(2【分析】(1)根据椭圆方程求出椭圆的焦点坐标,再根据F 恰是椭圆C 的焦点,即可得出答案;(2)设直线l :2p x my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y ,联立222p x my y px⎧=+⎪⎨⎪=⎩,求得AB 的中点坐标,根据因为MN 恰好被AB 平分,则直线MN 的斜率等于m -,再根据点差法求得直线MN 的斜率,求得2m ,根据由AB 的中点在椭圆内,求得p 的最大值,从而可求得OAB 面积的最大值. 【详解】解:(1)在椭圆中,2224c a b =-=,所以2c =, 因为F 恰是椭圆C 的焦点, 所以22p=,所以4p =; (2)设直线l :2px my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y , 联立222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y mpy p --=, 则212122,y y mp y y p +=⋅=-,则2122x x m p p +=+,故AB 的中点坐标为2,2p m p mp ⎛⎫+ ⎪⎝⎭,又因为MN 恰好被AB 平分,则2342x x m p p +=+,342y y mp +=,直线MN 的斜率等于m -,将M 、N 的坐标代入椭圆方程得:223315x y +=,224415x y +=, 两式相减得:()()()()3434343405x x x x y y y y +-++-=, 故234342110y y m x x m-+=--, 即直线MN 的斜率等于22110m m+-, 所以22110m m m+-=-,解得218m =, 由AB 的中点在椭圆内,得2222()15p m p mp ⎛⎫+ ⎪⎝⎭+<,解得26413p <, 因为p Z ∈,所以p 的最大值是2,12y y -== 则OAB面积212122p S y y p =⨯-==≤, 所以,当2p =时,OAB . 11.(2022·普宁市第二中学高三月考)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4.【分析】(1)由焦点在y 轴正半轴上,且2p =,即可得准线方程;(2)设直线AB 方程为y kx b =+,与抛物线方程联立由韦达定理和向量数量积的坐标运算,解方程可得b 的值,即可得所过的定点;(3)设1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,与抛物线方程联立,运用韦达定理和中点坐标公式求M 、N 两点坐标,由两点间距离公式求FM 、FN 的长,再计算12FMN SFM FN ,由基本不等式求最值即可求解.【详解】 (1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-,(2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y=+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-, 即2440b b -+=,解得:2b =所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0,设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-,所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k + 用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMN S FM FN ====224≥=⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.【点睛】方法点睛:解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系;③利用基本不等式求出参数的取值范围;④利用函数值域的求法,确定参数的取值范围.。
2017年高考数学(理)一轮复习精品资料 专题53 圆锥曲线的综合问题(教学案) 含解析
圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.高频考点一圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例1】椭圆C:错误!+错误!=1(a>b>0)的离心率为错误!,过其右焦点F与长轴垂直的弦长为1。
(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一交点为M,直线PB与椭圆的另一交点为N。
求证:直线MN经过一定点.联立得错误!即(4t2+9)x2+16t2x+16t2-36=0,(8分)可知-2x M=错误!,所以x M=错误!,则错误!同理得到错误!(10分)由椭圆的对称性可知这样的定点在x轴上,不妨设这个定点为Q(m,0),又k MQ=错误!,k NQ=错误!,k MQ=k NQ,所以化简得(8m-32)t2-6m+24=0,令错误!得m=4,即直线MN经过定点(4,0).(13分)探究提高(1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.【变式探究】如图,已知双曲线C:错误!-y2=1(a〉0)的右焦点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA (O为坐标原点).(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y0≠0)的直线l:错误!-y0y=1与直线AF 相交于点M,与直线x=错误!相交于点N。
2017年高考数学—圆锥曲线(解答+答案)
2017年高考数学—圆锥曲线(解答+答案)1.(17全国1理20.(12分))已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1,C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.2.(17全国1文20.(12分))设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.3.(17全国2理20. (12分))设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.(17全国3理20.(12分))已知抛物线2:2C y x =,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线l 与圆M 的方程.5.(17全国3文20.(12分))在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.6.(17北京理(18)(本小题14分))已知抛物线2:2C y px =过点(1,1)P ,过点1(0,)2作直线l 与抛物线C 交于不同的两点,M N ,过点M 作x 轴的垂线分别与直线,OP ON 交于点,A B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.7.(17北京文(19)(本小题14分))已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x . (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点,M N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.8.17山东理(21)(本小题满分13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为22,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.9.(17天津理(19)(本小题满分14分))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程.10.(17天津文(20)(本小题满分14分))已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(ⅰ)求直线FP 的斜率; (ⅱ)求椭圆的方程.11.(17浙江21.(本题满分15分))如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13()()22P x y x -<<,.过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求AP PQ ⋅的最大值.12.(17江苏17.(本小题满分14分))如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线12,l l 的交点Q 在椭圆E 上,求点P 的坐标.参考答案:1.解:(1)由于34,P P 两点关于y 轴对称,故由题设知C 经过34,P P 两点又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上 因此22211,1314b a b ⎧=⎪⎪⎨⎪+=⎪⎩解得2241a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y += (2)设直线2P A 与直线2P B 的斜率分别为12,k k如果l 与x 轴垂直,设:l x t =,由题设知0t ≠,且||2t <,可得,A B的坐标分别为(,t t则1222122k k t t+=-=-,得2t =,不符合题设从而可设:(1)l y kx m m =+≠,将y kx m =+代入2214x y +=得 222(41)8440k x kmx m +++-=由题设可知2216(41)0k m ∆=-+>设1122(,),(,)A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++而 12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=即222448(21)(1)04141m kmk m k k --++-=++ 解得12m k +=-当且仅当1m >-时,0∆>,于是1:2m l y x m +=-+, 所以l 过定点(2,1)-3.解:(1)设(,)P x y ,00(,)M x y ,则000(,0),(,),(0,)N x NP x x y NM y =-=u u u r u u u u r由NP =u u u r u u u r得00,x x y y ==因为00(,)M x y 在C 上,所以22122x y += 因此点P 的轨迹方程为222x y += (2)由题意知(1,0)F -设(3,),(,)Q t P m n -,则(3,),(1,),33OQ t PF m n OQ PF m tn =-=---=+-u u u r u u u r u u u r u u u rg , (,),(3,)OP m n PQ m t n ==---u u u r u u u r由1OQ PQ =u u u r u u u r g 得2231m m tn n --+-=又由(1)知222m n +=,故330m tn +-=所以0OQ PF =u u u r u u u r g ,即OQ PF ⊥u u u r u u u r .又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.解:(1)设1122(,),(,),:2A x y B x y l x my =+由22,2x my y x=+⎧⎨=⎩可得2240y my --=,则124y y =- 又221212,22y y x x ==,故21212()44y y x x ==因此OA 的斜率与OB 的斜率之积为1212414y y x x -==-g ,所以OA OB ⊥ 故坐标原点O 在圆M 上(2)由(1)可得21212122,()424y y m x x m y y m +=+=++=+故圆心M 的坐标为2(+2,)m m ,圆M的半径r =由于圆M 过点(4,2)P -,因此0AP BP ⋅=u u u r u u u r, 故1212(4)(4)(2)(2)0x x y y --+++=, 即121212224()2()200x x x x y y y y -+++++= 由(1)可得12124,4y y x x =-= 所以2210m m --=,解得1m =或12m =-当1m =时,直线l 的方程为10x y --=,圆心M 的坐标为(3,1),圆M的半径为M 的方程为22(3)(1)10x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为229185()()4216x y -++=5.解:(1)不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 (2)BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值。
高三数学一轮复习圆锥曲线综合问题
直线与圆锥曲线的位置关系 [典题导入]
(2014· 长春三校调研)在直角坐标系 xOy 中, 点
1 M2,-2 ,
点 F 为抛物线 C:y=mx2(m>0)的焦点,线段 MF 恰被抛物线 C 平分. (1)求 m 的值; (2)过点 M 作直线 l 交抛物线 C 于 A、B 两点,设直线 FA、FM、 FB 的斜率分别为 k1、k2、k3,问 k1、k2、k3 能否成公差不为零的 等差数列?若能,求直线 l 的方程;若不能,请说明理由.
解析
(1)设 A(x1,y1),B(x2,y2),P(x0,y0),
[跟踪训练] 2. (2013· 新课标全国卷Ⅱ高考)平面直角坐标系 xOy 中, 过椭圆 M: x2 y2 + =1(a>b>0)右焦点的直线 x+y- 3=0 交 M 于 A,B a2 b2 1 两点,P 为 AB 的中点,且 OP 的斜率为 . 2 (1)求 M 的方程; (2)C,D 为 M 上两点,若四边形 ACBD 的对角线 CD⊥AB,求 四边形 ACBD 面积的最大值.
2 .在利用代数法解决最值与范围问题时常从 以下五个方面考虑: (1) 利用判别式来构造不等关系,从而确定参 数的取值范围; (2) 利用已知参数的范围,求新参数的范围, 解这类问题的核心是在两个参数之间建立等量 关系; (3) 利用隐含或已知的不等关系建立不等式, 从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5) 利用函数的值域的求法,确定参数的取值 范围.
所以当且仅当 m=1- 7时,u(m)取到最大值. 故当且仅当 m=1- 7时,S 取到最大值. 综上,所求直线 l 的方程为 3x+2y+2 7-2=0.
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
2017高三数学一轮复习圆锥曲线综合题(拔高题-有答案)
(Ⅰ)若 ,求k的值;
(Ⅱ)求四边形AEBF面积的最大值.
23.(2014•福建)已知双曲线E: ﹣ =1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=﹣2x.
(1)求抛物线方程;
(2)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.
30.(2014•萧山区模拟)如图,O为坐标原点,点F为抛物线C1:x2=2py(p>0)的焦点,且抛物线C1上点P处的切线与圆C2:x2+y2=1相切于点Q.
三.解答题(共10小题)
21.(2014•黄冈模拟)已知椭圆 的离心率为 ,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为 ,
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有 成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
②已知点 ,求证: 为定值.
27.(2014•红桥区二模)已知A(﹣2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为 .
(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
4.(2014•焦作一模)已知椭圆 (a>b>0)与双曲线 (m>0,n>0)有相同的焦点(﹣c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项
天津市高三数学理一轮复习专题突破训练:圆锥曲线
天津市高三数学理一轮复习专题突破训练圆锥曲线一、选择、填空题1、(天津市高考)已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y - 2、(天津市高考)已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3 ,且双曲线的一个焦点在抛物线247y x = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -=3、(天津市八校高三12月联考)抛物线:212y x =-的准线与双曲线:22193x y -=的两条渐近线所围成的三角形的面积为( ).A .33B .23C .2D 34、(和平区高三第四次模拟)已知双曲线2213x y -=的渐近线上的一点A 到其右焦点F 的距离等于2,抛物线()220y px p =>过点A ,则该抛物线的方程为( )A .22y x =B .2y x =C .212y x =D .214y x =5、(河北区高三总复习质量检测(三))双曲线22221(00)y x a b a b-=>>,的右焦点F 是抛物线28y x =的焦点,两曲线的一个公共点为P ,且5PF =,则该双曲线的离心率为(A 23(B 5(C 5 (D )26、(河北区高三总复习质量检测(一))已知双曲线22221(00)x y =a >b >a b,-的一条渐近线平行于直线l :+2+5=0x y ,且双曲线的一个焦点在直线l 上,则双曲线的方程为(A )22=1205x y - (B )22=1520x y -(C )2233=125100x y - (D )2233=110025x y -7、(河东区高三第二次模拟)已知双曲线的一个焦点为)0,5(1F 它的 渐近线方程为x y 34±=,则该双曲线的方程为( ) A .191622=-y x B . 191622=-x y C .116922=-y x D . 116922=-x y 8、(河西区高三第二次模拟)已知双曲线1C :1163222=-p y x 0(>a ,)0>b 的左焦点在抛物线2C :)0(22>=p px y 的准线上,则双曲线1C 的离心率为(A )34(B )3(C )332 (D )49、(河西区高三下学期总复习质量调查(一))已知双曲线1C :12222=-by a x (0>a ,0>b )的焦距是实轴长的2倍,若抛物线2C :py x 22=(0>p )的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A )y x 3382=(B )y x 33162=(C )y x 82=(D )y x 162=10、(红桥区高三上学期期末考试)已知双曲线2219x y m -=的一个焦点在圆22450x y x +--=上,则它的渐近线方程为(A ) 43y x =±(B )22y x = (C )23y x =± (D )34y x =±11、(天津市六校高三上学期期末联考)已知双曲线1:2222=-by a x C )0,0(>>b a 与抛物线)0(22>=p px y 的交点为A 、B ,直线AB 经过抛物线的焦点F ,且线段AB 的长等于双曲线的虚轴长,则双曲线的离心率为.A 12+ .B 3 .C 2 .D 212、(天津市十二区县重点高中高三毕业班第一次联考)已知双曲线C :22221(0,0)y x a b a b-=>>的离心率52e =P 是抛物线24y x =上的一动点,P 到双曲线C 的上焦点1(0,)F c 的距离与到直线1x =-6,则该双曲线的方程为A .22123y x -=B . 2214y x -=C .2214x y -= D .22132y x -= 13、(天津市十二区县重点学校高三下学期毕业班联考(二))已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为()1,1--,则双曲线的标准方程为A .22122x y -=B .22144x y -=C .2214x y -= D .2212x y -= 14、(武清区高三5月质量调查(三))已知双曲线()0,012222>>=-b a b y a x 的左、右焦点分别为21,F F ,以点2F 为圆心的圆与双曲线的渐近线相切,切点为P .若3221π=∠PF F ,则双曲线的离心率为( )(A )313 (B )321 (C )5 (D )37二、解答题1、(天津市高考)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程; (Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.2、(天津市高考)已知椭圆2222+=1(0)x y a b a b 的左焦点为F -c (,0),3,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y截得的线段的长为c ,43. (I)求直线FM 的斜率;(II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP 2,求直线OP (O 为原点)的斜率的取值范围.3、(和平区高三第四次模拟)椭圆()2222:10x y C a b a b +=>>的上顶点为()40,,,33b A b P ⎛⎫⎪⎝⎭是椭圆C 上一点,以AP 为直径的圆经过椭圆C 的右焦点F . (Ⅰ)求椭圆C 的方程;(Ⅱ)若动直线l 与椭圆C 只有一个公共点,且x 轴上存在着两个定点,它们到直线l 的距离之积等于1,求出这两个定点的坐标.4、(河北区高三总复习质量检测(三)) 已知圆2219:()24E x y +-=经过椭圆2222:1(0)x y C a b a b+=>>的左、右焦点12F F ,,且与椭圆C 在第一象限的交点为A ,且1F E A ,,三点共线,直线l 交椭圆 C 于M N ,两点,且λ(λ0)MN =OA >.(Ⅰ)求椭圆C 的方程;(Ⅱ)当AMN ∆的面积取到最大值时,求直线l 的方程.F 2F 1xyAE O5、(河北区高三总复习质量检测(一)) 已知椭圆C :22221(0)x y +=a >b >ab的短轴长为2,离心率2=2e .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l :y =kx+m 与椭圆交于不同的两点A B ,,与圆222+=3x y 相切于点M .(i )证明:OA OB ⊥(O 为坐标原点); (ii )设AM λ=BM,求实数λ的取值范围.6、(河东区高三第二次模拟)椭圆)0( 1:2222>>=+b a by a x C 的右顶点为Q ,O 为坐标原点,过OQ 的中点作x 轴的垂线与椭圆在第一象限交于点A ,点A 的纵坐标为c 23,c 为半焦距. (1)求椭圆的离心率; (2)过点A 斜率为21的直线l 与椭圆交于另一点B ,以AB 为直径的圆过点P(21,29),求三角形APB 的面积.7、(河西区高三第二次模拟) 已知抛物线C 的顶点为0(O ,)0,焦点为0(F ,)1.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点F 作直线交抛物线C 于A ,B 两点,若直线AO ,BO 分别交直线2:-=x y l 于M 、N 两点,求MN 的最小值.8、(河西区高三下学期总复习质量调查(一))如图,1F ,2F 分别是椭圆12222=+by a x )0(>>b a 的左、右焦点,B 为上顶点,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(Ⅰ)若点C 的坐标为34(,)31,且22=BF ,求椭圆的方程;(Ⅱ)若AB C F ⊥1,求椭圆的离心率e .OC BAyF 1F 29、(红桥区高三上学期期末考试)已知圆22:4C x y +=. (Ⅰ)直线l 过点(1,2)P ,且与圆C 相切,求直线l 的方程; (Ⅱ)过圆C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON =+(O 为坐标原点),求动点Q 的轨迹方程.(Ⅲ)若点R 的坐标为(1,0),在(Ⅱ)的条件下,求RQ 的最小值.10、(天津市六校高三上学期期末联考)椭圆1:2222=+by a x C )0(>>b a 的焦距为4,且以双曲线1422=-x y 的实轴为短轴,斜率为k 的直线l 经过点)1,0(M ,与椭圆C 交于不同两点A 、B .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)当椭圆C 的右焦点F 在以AB 为直径的圆内时,求k 的取值范围.11、(天津市十二区县重点高中高三毕业班第一次联考)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为41.(Ⅰ)求椭圆E 的离心率e ;(Ⅱ)PQ 是圆C :215)1()2(22=-++y x 的一条直径,若椭圆E 经过P ,Q 两点,求椭圆E 的方程.12、(天津市十二区县重点学校高三下学期毕业班联考(二))已知椭圆22122:1(0)x y C a b a b+=>>和圆2222:(0)C x y r r +=>,已知圆2C 的直径是椭圆1C 2倍,且圆2C 的面积为4π,椭圆1C 的离心率为6,过椭圆1C 的上顶点A 有一条斜率为k (0)k >的直线l 与椭圆1C 的另一个交点是B ,与圆2C 相交于点,.E F(I)求椭圆1C 的方程;(II)当37AB EF =时,求直线l 的方程,并求2F AB ∆的面积(其中2F 为椭圆1C 的右焦点).13、(武清区高三5月质量调查(三)) 已知椭圆)0(12222>>=+b a by ax 的左、右焦点分别为21F F 、,在第一象限椭圆上的一点M 满足212F F MF ⊥,且||3||21MF MF =.(1)求椭圆的离心率;(2)设1MF 与y 轴的交点为N ,过点N 与直线1MF 垂直的直线交椭圆于B A ,两点,若175411=⋅+⋅F F ,求椭圆的方程.参考答案一、填空、选择题1、【答案】D2、【答案】D考点:1.双曲线的标准方程及几何性质;2.抛物线的标准方程及几何性质.3、A4、B5、D6、A7、C8、C9、D10、A11、B12、B13、B14、B二、解答题1、【答案】(Ⅰ)22143x y+=(Ⅱ)),46[]46,(+∞--∞【解析】(2)(Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k . 解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k ky B . 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF .由HF BF ⊥,得0=⋅HF BF ,所以034123449222=+++-k ky k k H ,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(M M MM y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:椭圆的标准方程和几何性质,直线方程2、【答案】3; (II) 22132x y += ;(III) 23223,,⎛⎛-∞ ⎝. 试题解析:(I) 由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有2222221c b k ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭+,解得3k =(II)由(I)得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得223250x cx c +-=,解得53x c =-或x c =,因为点M 在第一象限,可得M 的坐标为23c ⎛⎫ ⎪⎝⎭,由222343()03FM c c c ⎛⎫=++-= ⎪⎝⎭,解得1c =,所以椭圆方程为22132x y += (III)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1yt x =+,即(1)y t x =+(1)x ≠-,与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得226223(1)x t x -=>+ 312x -<<-或10x -<<, 设直线OP 的斜率为m ,得ym x=,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-. ①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是2223m x =-223m ∈②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是2223m x =--,得23,m ⎛∈-∞ ⎝综上,直线OP 的斜率的取值范围是23223,,⎛⎛-∞ ⎝ 考点:1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.3、解:(Ⅰ)∵()()40,,,,,033b Ab P Fc ⎛⎫⎪⎝⎭, ∴()4,0,,33b FA c FP c ⎛⎫=-=-⎪⎝⎭.……………………………………………………………1分由0FA FP ⋅=,得224033b c c -+=.………………………………………………………2分 由点P 在椭圆C 上,得22216199b a b+=,解得22a =.再由222240,332,b c c c b ⎧-+=⎪⎨⎪+=⎩解得21,1c b ==. ∴椭圆C 的方程为2212x y +=.………………………………………………………5分(Ⅱ)当直线l 的斜率存在时,设其方程为y kx m =+,代入椭圆方程,消去y , 整理,得()222214220k x kmx m +++-=.…………………………………………6分 由2216880k m ∆=-+=,得2221m k =+.…………………………………8分 假设存在着定点()()1122,0,,0M M λλ满足题设条件.1M 、2M 到直线l 的距离分别为1d 、2d ,则由()()()()2121212122221111k km k m k m d d k k λλλλλλ++++++⋅===++对于k R ∀∈恒成立,可得121221,0,λλλλ+=⎧⎨+=⎩………………………………………………………10分解得121,1,λλ=⎧⎨=-⎩或121,1.λλ=-⎧⎨=⎩故()()121,0,1,0M M -满足条件.……………………………12分当直线l 的斜率不存在时,经检验,12,M M 仍符合题意.………………………………14分4、解:(Ⅰ)如图,圆E 经过椭圆C 的左、右焦点12F F ,,∴2219(0)24c +-=,解得2c =∵1F E A ,,三点共线, ∴1AF 为圆E 的直径. ∴212AF F F ⊥. ∵2222112981AF AF F F =-=-=, ∴123142AF AF a ==+=+. ∴2a =.由222+a b c =, 得2b =∴椭圆C 的方程为22142x y +=. …………… 5分 (Ⅱ)由(Ⅰ)得,点A 的坐标为(21),, ∵λ(λ0)MN OA =≠ ∴直线l 22l 的方程为22y m =+.联立222142y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩ , 得22220x mx m +-=.设1122()()M x y N x y ,,,,由22(2)4(2)0m m ∆=-->,得22m -<<.∵1221222x x m x x m ⎧+=⎪⎨=-⎪⎩,,∴222222111()4232MN k x x x x x m =+-++-=-111=1. 又点A 到直线l 的距离为63d ,222221162322322(4)(4)2222AMN S MN d m mm m m m ∆==--+=-=1,当且仅当224m =m -,即2m = ∴直线l 的方程为222y =或222y x =. …………… 13分5、解:(Ⅰ)∵22b =,∴1b =.…… 1分又2c e a =,222a b c =+,∴ 22a =. ……3分∴ 椭圆C 的方程为 2212x y +=. …… 4分(Ⅱ)(i )∵直线l :y =kx +m 与圆2223x +y =相切,∴2231m d k =+222(1)3m k =+. ……5分 由2212y =kx +m x y ⎧⎪⎨+=⎪⎩, 消去y 并整理得,222(12)4220k x kmx m +++-=. 设11()A x y ,,22()B x y ,, 则12221224122212km x +x =+k m x x =+k ⎧⎪⎪⎨⎪⎪⎩--. …… 7分 ∵12121212()()OA OB =x x +y y =x x +kx +m kx +m ⋅. 221212(1)()=+k x x +km x +x +m22222224(1)()1212m km =+k +km +m +k +k-- 2222223222(1)2201212m k +k k ===+k +k ----,∴OA OB ⊥. …… 9分(ii )∵直线l :y =kx+m 与椭圆交于不同的两点A B ,,∴222212121122x x +y =+y =,.∴22212211222222222132321323x x +y +AM OA r λ==BMOB rx x +y +---- …… 11分 由(Ⅱ)(i )知1212+=0x x y y ,∴1212=x x y y -,222222121212==(1)(1)22x x x x y y --,即22122142=2+3x x x -.∴2121221+2+323==41+23x x λx . …… 13分∵122x -∴λ的取值范围是122λ≤≤. …… 14分6、(1)由已知可知椭圆过点)23,2(ca A ,代入方程有 14942222=+bc a a ,222223c b a c b +==∴ 224c a =,21=∴e ……5分(2)点)23,(c c A ,直线c x y l +=21:⎪⎪⎩⎪⎪⎨⎧=++=134212222c y c x c x y 解为)0,2(c B -,由已知0=•代入解得2=c …11分 直线042:=+-y x l )3,2(A )0,4(-B 53=AB d1059=-AB P d ,4271059532121=⨯⨯==-∆AB P AB APB d d S ……13分7、(Ⅰ)解:由题意,设抛物线C 的方程为py x 22=(0>p ), 则12=p,2=p , 所以抛物线C 的方程为y x 42=.…………4分(Ⅱ)解:由题意,直线AB 的斜率存在,设1(x A ,)1y ,2(x B ,)2y , 直线AB 的方程为1+=kx y ,…………5分由⎩⎨⎧=+=yx kx y 412,消去y ,整理得0442=--kx x , k x x 421=+,421-=x x ,…………8分从而14221+=-k x x ,…………9分由⎪⎩⎪⎨⎧-==211x y xx y y ,解得点M 的横坐标1112y x x x M -=121114842x x x x -=-=, 同理点N 的横坐标248x x N -=, 所以NM x x MN -=216)(428212121++--=x x x x x x 341282-+=k k , ……11分 令t k =-34,0≠t ,则43+=t k , 当0>t 时,1625222++=t tMN 22>, 当0<t 时,2516)535(222++=t MN 258≥,综上所述,当325-=t ,即34-=k 时,MN 的最小值是258. …………13分 8、(Ⅰ)解:由22=BF ,可知2=a ,…………1分设椭圆方程为12222=+b y x ,代入点34(,)31, 解得12=b ,…………3分所以椭圆的方程为1222=+y x .…………4分(Ⅱ)解:设直线AB 的方程为1=+byc x ,联立方程组⎪⎪⎩⎪⎪⎨⎧=+=+112222b y a x byc x ,得⎪⎪⎩⎪⎪⎨⎧+-=+=222212221)(2c a a c b y c a c a x 或⎩⎨⎧==b y x 220, 所以点A 的坐标为2222(c a c a +,))(2222c a a c b +-,…………7分从而点C 的坐标为2222(c a c a +,))(2222c a c a b +-,…………8分所以直线C F 1的斜率为32223)(c c a c a b +-,直线AB的斜率为c b-, …………10分因为AB C F ⊥1,所以32223)(c c a c a b +-1)(-=-⋅c b,又222c a b -=, 整理得225c a =,55=e…………13分所以椭圆的离心率e 为55.…………14分9、解:(Ⅰ)显然直线l 不垂直于x 轴,设其方程为2(1)y k x -=-,即20kx y k --+= ………2分设圆心到此直线的距离为d ,则2221k d k -+==+,得0k =或43k =-………4分 故所求直线方程为2y =或43100x y +-=. ………5分(Ⅱ)设点M 的坐标为00(,)x y ,Q 点坐标为(,)x y ,则N 点坐标是0(,0)x∵OQ OM ON =+,∴),2(),(00y x y x = 即20xx =,y y =0 ………7分又∵42020=+y x ,∴4422=+y x …………9分由已知,直线m //oy 轴,所以,0≠x ,∴Q 点的轨迹方程是4422=+y x (0≠x ) ………………10分(Ⅲ)设Q 坐标为(x,y),),1(y x -=,RQ 22)1(y x +-=, …………11分又4422=+y x (0≠x )可得:RQ3114344)34(344)1(222≥+-=-+-=x x x . ………………13分[)(]333RQ 34x 4,00,4取到最小值时当=∴⋃-∈x …………14分10、解:(1)∵焦距为4,∴ c=2………………………………………………2分又以双曲线1422=-x y 的实轴为短轴 ∴b=2………………………… 4分∴标准方程为14822=+y x ………………………………………5分 (2)设直线l 方程:y=kx+1,A (x 1,y 1),B (x 2,y 2),由⎪⎩⎪⎨⎧=++=148122y xkx y 得064)21(22=-++kx x k∴x 1+x 2=2214k k +-,x 1x 2=2216k+- ……………………7分由(1)知右焦点F 坐标为(2,0),∵右焦点F 在圆内部,∴BF AF ⋅<0………………………………9分 ∴(x 1 -2)(x 2-2)+ y 1y 2<0即x 1x 2-2(x 1+x 2)+4+k 2 x 1x 2+k (x 1+x 2)+1<0…………………… 10分 ∴222221185214)2(216)1(k k k k k k k +-=++-⋅-++-⋅+<0…………… 12分 ∴k <81……………………………………… 13分11、(I )A()0a ,B()0b ,点M在线段AB 上,满足2BM MA =∴M )3,32(ba……1分412==a b k OM21=∴a b ……2分 23)(12=-=∴a b a c ∴椭圆E 的离心率e 为23 ……4分(II)解法一:由(I )知,椭圆E 的方程为22244xy b . (1) ……5分依题意,圆心)1,2(-C 是线段PQ 的中点,且30=PQ . ……6分 易知,PQ 不与x 轴垂直,设其直线方程为(2)1y k x , ……7分代入(1)得2222(14)8(21)4(21)40k xk k x k b ……8分设),(,),(2211y x Q y x P 则22141)12(8k k k x x ++-=+, 22221414)12(4k b k x x +-+=……9分 由124x x ,得28(21)4,14k k k 解得12k. ……10分 从而21282x x b .于是4254)(25)21(1221221212-=-+=-+=b x x x x x x PQ ……11分 由30=PQ ,得304252=-b ,6422=-b 解得52=b . ……12分故椭圆E 的方程为152022=+y x . ……13分 解法二:由(I )知,椭圆E 的方程为22244xy b .(1) ……5分依题意点Q P 、关于圆)1,2(-C 对称且30=PQ ……6分),(,),(2211y x Q y x P 则⎪⎩⎪⎨⎧=+=+22222221214444by x by x ……7分 两式相减得0)(8)(42121=-+--y y x x 易知PQ 不与x 轴垂直,则21x x ≠ ,212121=--x x y y ……8分∴PQ 的斜率为21,设其直线方程为2211)2(21+=++=x x y ,代入(1)得 028422=-++b x x ∴124x x21282x x b . ……10分于是4254)(25)21(1221221212-=-+=-+=b x x x x x x PQ……11分 由30=PQ ,得304252=-b ,6422=-b 解得52=b . ……12分故椭圆E 的方程为152022=+y x . ……13分 12、解:(Ⅰ)依题意24,0,2r r r ππ=>∴= (1)分222,2r c r c ∴=∴= 2c ∴=………2分又6e =,222a b c +=3,1a b ∴==∴椭圆方程为2213x y += ………4分 (Ⅱ)由1)知圆2C 的圆心(0,0),2,(0,1).O r A =设直线:1l y kx =+圆心O 到直线l 的距离21d k =+, ……………5分22214324211k EF k k +=-=++ ……………6分 22113y kx x y =+⎧⎪⎨+=⎪⎩得22(31)60k x kx ++= 设11(,)B x y 12631k x k -∴=+ …………7分 22222211226166(1)3131k k k k AB x y k k +⎛⎫--⎛⎫∴=+-=+= ⎪ ⎪++⎝⎭⎝⎭ ……………8分 2222611243432371k k k k k AB EF k +++∴===+ 42670k k ∴+-= 22(7)(1)0k k ∴+-= ………10分 2101k k k ∴=>∴=∴直线:1l y x =+ ………11分322AB =,点2F 到直线l 的距离122d =23223(21)2242F AB S ∆∴==…………13分13、(1)由椭圆定义a MF MF 2||||21=+,∵||3||21MF MF =,∴a MF 2||42=,∴2224||16a MF = …………………2分在直角12F MF ∆中,222214||||c MF MF =-,即2224||8c MF =……………4分∴214422=a c ,即22=a c ,∴椭圆的离心率为22…………………5分 (2)∵22=a c ,∴c b c a ==,2,∴椭圆方程为122222=+cy c x ,即022222=-+c y x …………………6分易知点M 的坐标为⎪⎪⎭⎫ ⎝⎛c c 22,,∵点N 是线段2MF 的中点,∴点N 的坐标为⎪⎪⎭⎫⎝⎛c 42,0∵直线1MF 的斜率为42,∴直线AB 的斜率为22-, ∴直线AB 的方程为c x y 4222+-=…………………8分 与椭圆方程联立消去y 得04741722=--c cx x …………………9分设点A 的坐标为()11,y x ,点B 的坐标为()22,y x ,∴1747221⨯-=c x x∵AB 垂直平分线段1MF ,∴172711=⋅=⋅B F A F MB MA …………………10分∴172722,22,2211=⎪⎪⎭⎫ ⎝⎛--⋅⎪⎪⎭⎫ ⎝⎛--c y c x c y c x ∴17274222,4222,2211=⎪⎪⎭⎫ ⎝⎛---⋅⎪⎪⎭⎫ ⎝⎛---c x c x c x c x ∴()()1727422242222121=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--+--c x c x c x c x 化简得17381221=+c x x ,∴173********=+⨯-c c ,∴82=c …………………12分∴8,1622222====c b c a ,∴椭圆的方程为181622=+y x …………………13分。
普通高中2017高考高三数学第一次模拟试题精选:圆锥曲线03含答案
圆锥曲线031、给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O 的圆为椭圆C 的“准圆”.已知椭圆C 的一个焦点为F ,其短轴的一个端点到点F (1)求椭圆C 和其“准圆”的方程;(2)过椭圆C 的“准圆”与y 轴正半轴的交点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,求12,l l 的方程;(3)若点A 是椭圆C 的“准圆”与x 轴正半轴的交点,,B D 是椭圆C 上的两相异点,且BD x ⊥轴,求AB AD ⋅u u u r u u u r的取值范围.【答案】解:(1)由题意知c =a ==1b =,故椭圆C 的方程为2213x y +=,其“准圆”方程为224x y +=. ………………4分(2)由题意可得P 点坐标为(0,2),设直线l 过P 且与椭圆C 只有一个交点,则直线l 的方程可设为2y kx =+,将其代入椭圆方程可得 ………………6分223(2)3x kx ++=,即22(31)1290k x kx +++=,由22(12)36(31)0k k ∆=-+=,解得1k =±, ………………8分 所以直线1l 的方程为2y x =+,2l 的方程为2y x =-+,或直线1l 的方程为2y x =-+,2l 的方程为2y x =+. ………………10分(3)由题意,可设(,),(,)B m n D m n -(m <,则有2213m n +=,又A 点坐标为(2,0),故(2,),(2,)AB m n AD m n =-=--u u u r u u u r, ………………12分故2222(2)44(1)3m AB AD m n m m ⋅=--=-+--u u u r u u u r2244343()332m m m =-+=-, …………………………14分又m <,故243()[0,732m -∈+,所以AB AD ⋅u u u r u u u r的取值范围是[0,7+. …………………………16分2、已知椭圆12222=+by a x 的两个焦点为)0,(1c F -、)0,(2c F ,2c 是2a 与2b 的等差中项,其中a 、b 、c 都是正数,过点),0(b A -和)0,(a B 的直线与原点的距离为23. (1)求椭圆的方程;(2)过点A 作直线交椭圆于另一点M ,求AM 长度的最大值;(3)已知定点)0,1(-E ,直线t kx y +=与椭圆交于C 、D 相异两点.证明:对任意的0>t ,都存在实数k ,使得以线段CD 为直径的圆过E 点.【答案】解:(1)在椭圆中,由已知得222222b a b ac +=-= ········································ 1分过点),0(b A -和)0,(a B 的直线方程为1=-+by a x ,即0=--ab ay bx ,该直线与原点的距离为23,由点到直线的距离公式得:2322=+ba ab ······················································ 3分解得:1,322==b a ;所以椭圆方程为11322=+y x ··························································· 4分 (2)(文)设),(y x M ,则)1(322y x -=,422)1(2222++-=++=y y y x AM,其中11≤≤-y ···································································································································· 6分 当21=y 时,2AM 取得最大值29,所以AM 长度的最大值为223 ······························· 9分(3)将t kx y +=代入椭圆方程,得0336)31(222=-+++t ktx x k ,由直线与椭圆有两个交点,所以0)1)(31(12)6(222>-+-=∆t k kt ,解得3122->t k ································ 11分设),(11y x C 、),(22y x D ,则221316k ktx x +-=+,222131)1(3k t x x +-=⋅,因为以CD 为直径的圆过E 点,所以0=⋅,即0)1)(1(2121=+++y y x x , ······································ 13分 而))((2121t kx t kx y y ++==221212)(t x x tk x x k +++,所以01316)1(31)1(3)1(22222=++++-+-+t kkt tk k t k ,解得t t k 3122-= ·································· 14分 如果3122->t k 对任意的0>t 都成立,则存在k ,使得以线段CD 为直径的圆过E 点.09)1(31)312(2222222>+-=---tt t t t t ,即3122->t k .所以,对任意的0>t ,都存在k ,使得以线段CD 为直径的圆过E 点. 16分3、设直线0,11≠+=p p x k y L :交椭圆)0(12222>>=+Γb a b y a x :于D C 、两点,交直线x k y L 22=:于点E .(1)若E 为CD 的中点,求证:2221ab k k -=⋅;(2)写出上述命题的逆命题并证明此逆命题为真;(3)请你类比椭圆中(1)、(2)的结论,写出双曲线中类似性质的结论(不必证明).【答案】(1)解法一:设),(11y x C ),(22y x D ),(00y x E02)(12222212212222221=-+++⇒⎪⎩⎪⎨⎧=++=b a p a x pa k x k a b b y ax p x k y ……… …2分 212221212k a b pa k x x +-=+∴ ,p k a b pa k k y y 22212221121++-⋅=+212222k a b pb +=… ……4分 又2121221021022x x y y k y y y x x x ++=⇒⎪⎪⎩⎪⎪⎨⎧+=+=21222pa k pb -=2221a b k k -=⋅∴…… ………7分 解法二(点差法):设),(11y x C ),(22y x D ),(00y x E)1(12121=+b a ,)2(12222=+ba 两式相减得0))(())((2212122121=+-++-by y y y a x x x x 即0)(2)(222102210=-+-b y y y a x x x ……………………… ………3分222020221211k a b y a x b x x y y k ⋅-=⋅⋅-=--=∴ 2221a b k k -=⋅∴ ………………………………………………………………………7分(2)逆命题:设直线p x k y L +=11:交椭圆)0(12222>>=+Γb a b y a x :于D C 、两点,交直线x k y L 22=:于点E .若2221ab k k -=⋅,则E 为CD 的中点. ……9分证法一:由方程组02)(12222212212222221=-+++⇒⎪⎩⎪⎨⎧=++=b a p a x pa k x k a b b y ax p x k y …………………………………… ……………10分 因为直线p x k y L +=11:交椭圆Γ于D C 、两点,所以0>∆,即022212>-+p b k a ,设),(11y x C 、),(22y x D 、),(00y x E则2122212102k a b pa k x x x +-=+=∴ ,212222102k a b pb y y y +=+=……………………12分 ⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧=+=xk y k k p x x k y p x k y 21221又因为2221a b k k -=⋅Θ,所以 ⎪⎪⎩⎪⎪⎨⎧=+===+-=-=0212222021221212y k a b p b x k y x k a b p k a k k px ,故E 为CD 的中点.……………………………14分 证法二:设),(11y x C ),(22y x D ),(00y x E则)1(12121=+b a ,)2(12222=+ba 两式相减得0))(())((2212122121=+-++-by y y y a x x x x 即)()(21221221211y y a x x b x x y y k +⋅+⋅-=--=………………………………………………………9分 又0022221,x y k a b k k =-=⋅Θ,002121y x x x y y =++即0212211x pkx x x p x k p x k +=++++ ……………………………………………………12分12112x pk x x p k +=++∴得0212x x x =+0212y y y =+∴,即E 为CD 的中点.……………………………14分(3)设直线0,11≠+=p p x k y L :交双曲线)0,0(12222>>=-Γb a b y a x :于D C 、两点,交直线x k y L 22=:于点E .则E 为CD 中点的充要条件是2221ab k k =⋅. (16)分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市2017届高三数学理一轮复习专题突破训练圆锥曲线一、选择、填空题1、(2016年天津市高考)已知双曲线2224=1x y b-(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y - 2、(2015年天津市高考)已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点()2,3 ,且双曲线的一个焦点在抛物线247y x = 的准线上,则双曲线的方程为(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -=3、(天津市八校2016届高三12月联考)抛物线:212y x =-的准线与双曲线:22193x y -=的两条渐近线所围成的三角形的面积为( ).A .33B .23C .2D .34、(和平区2016届高三第四次模拟)已知双曲线2213x y -=的渐近线上的一点A 到其右焦点F 的距离等于2,抛物线()220y px p =>过点A ,则该抛物线的方程为( )A .22y x =B .2y x =C .212y x =D .214y x =5、(河北区2016届高三总复习质量检测(三))双曲线22221(00)y x a b a b-=>>,的右焦点F 是抛物线28y x =的焦点,两曲线的一个公共点为P ,且5PF =,则该双曲线的离心率为 (A )233 (B )52(C )5 (D )2 6、(河北区2016届高三总复习质量检测(一))已知双曲线22221(00)x y =a >b >a b,-的一条渐近线平行于直线l :+2+5=0x y ,且双曲线的一个焦点在直线l 上,则双曲线的方程为 (A )22=1205x y - (B )22=1520x y -(C )2233=125100x y - (D )2233=110025x y -7、(河东区2016届高三第二次模拟)已知双曲线的一个焦点为)0,5(1F 它的 渐近线方程为x y 34±=,则该双曲线的方程为( ) A .191622=-y x B . 191622=-x y C .116922=-y x D . 116922=-x y 8、(河西区2016届高三第二次模拟)已知双曲线1C :1163222=-py x 0(>a ,)0>b 的左焦点在抛物线2C :)0(22>=p px y 的准线上,则双曲线1C 的离心率为(A )34(B )3(C )332 (D )49、(河西区2016届高三下学期总复习质量调查(一))已知双曲线1C :12222=-by a x (0>a ,0>b )的焦距是实轴长的2倍,若抛物线2C :py x 22=(0>p )的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A )y x 3382=(B )y x 33162=(C )y x 82=(D )y x 162=10、(红桥区2016届高三上学期期末考试)已知双曲线2219x y m-=的一个焦点在圆22450x y x +--=上,则它的渐近线方程为(A ) 43y x =±(B )223y x =±(C )23y x =± (D )34y x =±11、(天津市六校2016届高三上学期期末联考)已知双曲线1:2222=-by a x C )0,0(>>b a 与抛物线)0(22>=p px y 的交点为A 、B ,直线AB 经过抛物线的焦点F ,且线段AB 的长等于双曲线的虚轴长,则双曲线的离心率为.A 12+ .B 3 .C 2 .D 212、(天津市十二区县重点高中2016届高三毕业班第一次联考)已知双曲线C :22221(0,0)y x a b a b -=>>的离心率52e =,点P 是抛物线24y x =上的一动点,P 到双曲线C 的上焦点1(0,)F c 的距离与到直线1x =-的距离之和的最小值为6,则该双曲线的方程为 A .22123y x -= B . 2214y x -= C .2214x y -= D .22132y x -= 13、(天津市十二区县重点学校2016届高三下学期毕业班联考(二))已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为3,且双曲线的一条渐近线与抛物线的准线的交点坐标为()1,1--,则双曲线的标准方程为A .22122x y -= B .22144x y -= C .2214x y -= D .2212x y -= 14、(武清区2016届高三5月质量调查(三))已知双曲线()0,012222>>=-b a by ax 的左、右焦点分别为21,F F ,以点2F 为圆心的圆与双曲线的渐近线相切,切点为P .若3221π=∠PF F ,则双曲线的离心率为( )(A )313 (B )321(C )5 (D )37二、解答题1、(2016年天津市高考)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.2、(2015年天津市高考)已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c ,43|FM|=3.(I)求直线FM 的斜率;(II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.3、(和平区2016届高三第四次模拟)椭圆()2222:10x y C a b a b +=>>的上顶点为()40,,,33b A b P ⎛⎫⎪⎝⎭是椭圆C 上一点,以AP 为直径的圆经过椭圆C 的右焦点F . (Ⅰ)求椭圆C 的方程;(Ⅱ)若动直线l 与椭圆C 只有一个公共点,且x 轴上存在着两个定点,它们到直线l 的距离之积等于1,求出这两个定点的坐标.4、(河北区2016届高三总复习质量检测(三)) 已知圆2219:()24E x y +-=经过椭圆2222:1(0)x y C a b a b+=>>的左、右焦点 12F F ,,且与椭圆C 在第一象限的交点为A ,且1F E A ,,三点共线,直线l 交椭圆 C 于M N ,两点,且λ(λ0)MN =OA >.(Ⅰ)求椭圆C 的方程;(Ⅱ)当AMN ∆的面积取到最大值时,求直线l 的方程.F 2F 1xyAE O5、(河北区2016届高三总复习质量检测(一)) 已知椭圆C :22221(0)x y +=a >b >ab的短轴长为2,离心率2=2e .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l :y =kx+m 与椭圆交于不同的两点A B ,,与圆222+=3x y 相切 于点M .(i )证明:OA OB ⊥(O 为坐标原点); (ii )设AM λ=BM,求实数λ的取值范围.6、(河东区2016届高三第二次模拟)椭圆)0( 1:2222>>=+b a by a x C 的右顶点为Q ,O 为坐标原点,过OQ 的中点作x 轴的垂线与椭圆在第一象限交于点A ,点A 的纵坐标为c 23,c 为半焦距. (1)求椭圆的离心率; (2)过点A 斜率为21的直线l 与椭圆交于另一点B ,以AB 为直径的圆过点P(21,29),求三角形APB 的面积.7、(河西区2016届高三第二次模拟) 已知抛物线C 的顶点为0(O ,)0,焦点为0(F ,)1.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点F 作直线交抛物线C 于A ,B 两点,若直线AO ,BO 分别交直线2:-=x y l 于M 、N 两点,求MN 的最小值.8、(河西区2016届高三下学期总复习质量调查(一))如图,1F ,2F 分别是椭圆12222=+by a x )0(>>b a 的左、右焦点,B 为上顶点,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(Ⅰ)若点C 的坐标为34(,)31,且22=BF ,求椭圆的方程; (Ⅱ)若AB C F ⊥1,求椭圆的离心率e .OC BAyxF 1F 29、(红桥区2016届高三上学期期末考试)已知圆22:4C x y +=. (Ⅰ)直线l 过点(1,2)P ,且与圆C 相切,求直线l 的方程; (Ⅱ)过圆C 上一动点M 作平行于y 轴的直线m ,设m 与x 轴的交点为N ,若向量OQ OM ON=+(O 为坐标原点),求动点Q 的轨迹方程. (Ⅲ)若点R 的坐标为(1,0),在(Ⅱ)的条件下,求RQ的最小值.10、(天津市六校2016届高三上学期期末联考)椭圆1:2222=+by a x C )0(>>b a 的焦距为4,且以双曲线1422=-x y 的实轴为短轴,斜率为k 的直线l 经过点)1,0(M ,与椭圆C 交于不同两点A 、B .(Ⅰ)求椭圆C 的标准方程;(Ⅱ)当椭圆C 的右焦点F 在以AB 为直径的圆内时,求k 的取值范围.11、(天津市十二区县重点高中2016届高三毕业班第一次联考)设椭圆E 的方程为()222210x y a b a b +=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为41.(Ⅰ)求椭圆E 的离心率e ;(Ⅱ)PQ 是圆C :215)1()2(22=-++y x 的一条直径,若椭圆E 经过P ,Q 两点,求椭圆E 的方程.12、(天津市十二区县重点学校2016届高三下学期毕业班联考(二))已知椭圆22122:1(0)x y C a b a b+=>>和圆2222:(0)C x y r r +=>,已知圆2C 的直径是椭圆1C 焦距长的2倍,且圆2C 的面积为4π,椭圆1C 的离心率为63,过椭圆1C 的上顶点A 有一条斜率为k (0)k >的直线l 与椭圆1C 的另一个交点是B ,与圆2C 相交于点,.E F (I)求椭圆1C 的方程;(II)当37AB EF =g 时,求直线l 的方程,并求2F AB ∆的面积(其中2F 为椭圆1C 的右焦点).13、(武清区2016届高三5月质量调查(三)) 已知椭圆)0(12222>>=+b a by ax 的左、右焦点分别为21F F 、,在第一象限椭圆上的一点M 满足212F F MF ⊥,且||3||21MF MF =. (1)求椭圆的离心率;(2)设1MF 与y 轴的交点为N ,过点N 与直线1MF 垂直的直线交椭圆于B A ,两点,若175411=⋅+⋅B F A F MB MA ,求椭圆的方程.参考答案一、填空、选择题 1、【答案】D2、【答案】D考点:1.双曲线的标准方程及几何性质;2.抛物线的标准方程及几何性质. 3、A 4、B 5、D 6、A 7、C 8、C 9、D 10、A 11、B 12、B 13、B 14、B二、解答题1、【答案】(Ⅰ)22143x y +=(Ⅱ)),46[]46,(+∞--∞ 【解析】(2)(Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k . 解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k k y B . 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF .由HF BF ⊥,得0=⋅HF BF ,所以034123449222=+++-k ky k k H,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(MM M M y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:椭圆的标准方程和几何性质,直线方程2、【答案】(I) 33; (II) 22132x y += ;(III) 23223,,333⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭. 试题解析:(I) 由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有2222221kc c b k ⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭+⎝⎭,解得33k =. (II)由(I)得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得223250x cx c +-=,解得53x c =-或x c =,因为点M 在第一象限,可得M 的坐标为23,3c c ⎛⎫ ⎪⎝⎭,由222343()033FM c c c ⎛⎫=++-=⎪⎝⎭,解得1c =,所以椭圆方程为22132x y += (III)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1yt x =+,即(1)y t x =+(1)x ≠-,与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得226223(1)x t x -=>+,解得312x -<<-或10x -<<, 设直线OP 的斜率为m ,得ym x=,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-. ①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是2223m x =-,得223,33m ⎛⎫∈ ⎪⎝⎭②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是2223m x =--,得23,3m ⎛⎫∈-∞- ⎪⎝⎭综上,直线OP 的斜率的取值范围是23223,,333⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭考点:1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式. 3、解:(Ⅰ)∵()()40,,,,,033b A b P F c ⎛⎫⎪⎝⎭,∴()4,0,,33b FA c FP c ⎛⎫=-=- ⎪⎝⎭ .……………………………………………………………1分由0FA FP ⋅= ,得224033b c c -+=.………………………………………………………2分由点P 在椭圆C 上,得22216199b a b+=,解得22a =.再由222240,332,b c c c b ⎧-+=⎪⎨⎪+=⎩解得21,1c b ==. ∴椭圆C 的方程为2212x y +=.………………………………………………………5分(Ⅱ)当直线l 的斜率存在时,设其方程为y kx m =+,代入椭圆方程,消去y ,整理,得()222214220k x kmx m +++-=.…………………………………………6分由2216880k m ∆=-+=,得2221m k =+.…………………………………8分 假设存在着定点()()1122,0,,0M M λλ满足题设条件.1M 、2M 到直线l 的距离分别为1d 、2d ,则由()()()()2121212122221111k km k m k m d d k k λλλλλλ++++++⋅===++对于k R ∀∈恒成立,可得121221,0,λλλλ+=⎧⎨+=⎩………………………………………………………10分解得121,1,λλ=⎧⎨=-⎩或121,1.λλ=-⎧⎨=⎩故()()121,0,1,0M M -满足条件.……………………………12分当直线l 的斜率不存在时,经检验,12,M M 仍符合题意.………………………………14分 4、解:(Ⅰ)如图,圆E 经过椭圆C 的左、右焦点12F F ,,∴2219(0)24c +-=,解得2c =.∵1F E A ,,三点共线,∴1AF 为圆E 的直径. ∴212AF F F ⊥.∵2222112981AF AF F F =-=-=, ∴123142AF AF a ==+=+. ∴2a =.由222+a b c =, 得2b =.∴椭圆C 的方程为22142x y +=. …………… 5分 (Ⅱ)由(Ⅰ)得,点A 的坐标为(21),, ∵λ(λ0)MN OA =≠∴直线l 的斜率为22,设直线l 的方程为22y x m =+.联立2222142y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩ , 得22220x mx m ++-=. 设1122()()M x y N x y ,,,,由22(2)4(2)0m m ∆=-->,得22m -<<.∵1221222x x m x x m ⎧+=-⎪⎨=-⎪⎩,,∴222222111()4232MN k x x x x x x m =+-+⋅+-=-111=1. 又点A 到直线l 的距离为63d m =,222221162322322(4)(4)2222AMN S MN d m mm m m m ∆==-⋅-+=-=1≤,当且仅当224m =m -,即2m ±=时,等号成立.∴直线l 的方程为222y x =+ 或222y x =-. …………… 13分5、解:(Ⅰ)∵22b =,∴1b =.…… 1分又22c e a ==,222a b c =+,∴ 22a =. ……3分∴ 椭圆C 的方程为 2212x y +=. …… 4分(Ⅱ)(i )∵直线l :y =kx +m 与圆2223x +y =相切,∴2231m d k ==+,即222(1)3m k =+. ……5分由2212y =kx +m x y ⎧⎪⎨+=⎪⎩, 消去y 并整理得,222(12)4220k x kmx m +++-=. 设11()A x y ,,22()B x y ,, 则12221224122212km x +x =+k m x x =+k ⎧⎪⎪⎨⎪⎪⎩--. …… 7分 ∵12121212()()OA OB=x x +y y =x x +kx +m kx +m ⋅.221212(1)()=+k x x +km x +x +m22222224(1)()1212m km=+k +km +m +k +k-- 2222223222(1)2201212m k +k k ===+k +k----, ∴OA OB ⊥. …… 9分(ii )∵直线l :y =kx +m 与椭圆交于不同的两点A B ,,∴222212121122x x +y =+y =,.∴22212211222222222132321323x x +y +AM OA r λ====BMOB rx x +y +----. …… 11分 由(Ⅱ)(i )知1212+=0x x y y ,∴1212=x x y y -,222222121212==(1)(1)22x x x x y y --,即22122142=2+3x x x -.∴2121221+2+323==41+23x x λx . …… 13分∵122x -≤≤,∴λ的取值范围是122λ≤≤. …… 14分6、(1)由已知可知椭圆过点)23,2(ca A ,代入方程有 14942222=+b c a a ,222223c b a c b +==∴ 224c a =,21=∴e ……5分(2)点)23,(c c A ,直线c x y l +=21:⎪⎪⎩⎪⎪⎨⎧=++=134212222c y c x c x y 解为)0,2(c B -,由已知0=∙PB PA 代入解得2=c …11分 直线042:=+-y x l )3,2(A )0,4(-B 53=AB d1059=-AB P d ,4271059532121=⨯⨯==-∆AB P AB APB d d S ……13分 7、(Ⅰ)解:由题意,设抛物线C 的方程为py x 22=(0>p ), 则12=p,2=p , 所以抛物线C 的方程为y x 42=.…………4分(Ⅱ)解:由题意,直线AB 的斜率存在,设1(x A ,)1y ,2(x B ,)2y , 直线AB 的方程为1+=kx y ,…………5分由⎩⎨⎧=+=y x kx y 412,消去y ,整理得0442=--kx x , k x x 421=+,421-=x x ,…………8分 从而14221+=-k x x ,…………9分由⎪⎩⎪⎨⎧-==211x y xx y y ,解得点M 的横坐标1112y x x x M -=121114842x x x x -=-=, 同理点N 的横坐标248x x N -=, 所以NM x x MN -=216)(428212121++--=x x x x x x 341282-+=k k , ……11分 令t k =-34,0≠t ,则43+=t k , 当0>t 时,1625222++=tt MN 22>, 当0<t 时,2516)535(222++=t MN 258≥,综上所述,当325-=t ,即34-=k 时,MN 的最小值是258. …………13分 8、(Ⅰ)解:由22=BF ,可知2=a ,…………1分设椭圆方程为12222=+b y x ,代入点34(,)31, 解得12=b ,…………3分 所以椭圆的方程为1222=+y x .…………4分(Ⅱ)解:设直线AB 的方程为1=+byc x ,联立方程组⎪⎪⎩⎪⎪⎨⎧=+=+112222b y a x b y cx,得⎪⎪⎩⎪⎪⎨⎧+-=+=222212221)(2c a a c b y c a ca x 或⎩⎨⎧==b y x 220, 所以点A 的坐标为2222(c a c a +,))(2222c a a c b +-,…………7分从而点C 的坐标为2222(c a c a +,))(2222c a c a b +-, …………8分所以直线C F 1的斜率为32223)(c c a c a b +-,直线AB的斜率为cb-, …………10分因为AB C F ⊥1,所以32223)(c c a c a b +-1)(-=-⋅cb,又222c a b -=, 整理得225c a =,55=e …………13分 所以椭圆的离心率e 为55.…………14分9、解:(Ⅰ)显然直线l 不垂直于x 轴,设其方程为2(1)y k x -=-,即20kx y k --+= ………2分设圆心到此直线的距离为d ,则2221k d k -+==+,得0k =或43k =-………4分故所求直线方程为2y =或43100x y +-=. ………5分(Ⅱ)设点M 的坐标为00(,)x y ,Q 点坐标为(,)x y ,则N 点坐标是0(,0)x∵OQ OM ON =+ ,∴),2(),(00y x y x = 即20x x =,y y =0 ………7分 又∵42020=+y x ,∴4422=+y x …………9分由已知,直线m //oy 轴,所以,0≠x ,∴Q 点的轨迹方程是4422=+y x (0≠x ) ………………10分(Ⅲ)设Q 坐标为(x,y),),1(y x RQ -=, 2RQ 22)1(y x +-=, …………11分 又4422=+y x (0≠x )可得:2RQ3114344)34(344)1(222≥+-=-+-=x x x . ………………13分[)(]333RQ ,34x 4,00,4取到最小值时当=∴⋃-∈x …………14分10、解:(1)∵焦距为4,∴ c=2………………………………………………2分又以双曲线1422=-x y 的实轴为短轴 ∴b =2………………………… 4分∴标准方程为14822=+y x ………………………………………5分 (2)设直线l 方程:y=kx+1,A (x 1,y 1),B (x 2,y 2),由⎪⎩⎪⎨⎧=++=148122y xkx y 得064)21(22=-++kx x k∴x 1+x 2=2214k k +-,x 1x 2=2216k+- ……………………7分由(1)知右焦点F 坐标为(2,0),∵右焦点F 在圆内部,∴BF AF ⋅<0………………………………9分 ∴(x 1 -2)(x 2-2)+ y 1y 2<0即x 1x 2-2(x 1+x 2)+4+k 2 x 1x 2+k (x 1+x 2)+1<0…………………… 10分 ∴222221185214)2(216)1(k k k k k k k +-=++-⋅-++-⋅+<0…………… 12分∴k <81……………………………………… 13分 11、(I )A()0a ,B()0b ,点M在线段AB上,满足2BM MA =∴M )3,32(b a ……1分412==a b k OM 21=∴a b ……2分 23)(12=-=∴a b a c∴椭圆E 的离心率e 为23……4分 (II)解法一:由(I )知,椭圆E 的方程为22244x y b +=. (1) ……5分 依题意,圆心)1,2(-C 是线段PQ 的中点,且30=PQ . ……6分易知,PQ 不与x 轴垂直,设其直线方程为(2)1y k x =++, ……7分 代入(1)得2222(14)8(21)4(21)40k x k k x k b +++++-= ……8分设),(,),(2211y x Q y x P 则22141)12(8k k k x x ++-=+, 22221414)12(4k b k x x +-+=……9分 由124x x +=-,得28(21)4,14k k k +-=-+解得12k =. ……10分从而21282x x b =-. 于是4254)(25)21(1221221212-=-+=-+=b x x x x x x PQ ……11分 由30=PQ ,得304252=-b ,6422=-b 解得52=b . ……12分故椭圆E 的方程为152022=+y x . ……13分 解法二:由(I )知,椭圆E 的方程为22244x y b +=.(1) ……5分 依题意点Q P 、关于圆)1,2(-C 对称且30=PQ ……6分),(,),(2211y x Q y x P 则⎪⎩⎪⎨⎧=+=+22222221214444by x by x ……7分 两式相减得0)(8)(42121=-+--y y x x 易知PQ 不与x 轴垂直,则21x x ≠ ,212121=--x x y y ……8分∴PQ 的斜率为21,设其直线方程为2211)2(21+=++=x x y ,代入(1)得028422=-++b x x ∴124x x +=-21282x x b =-. ……10分 于是4254)(25)21(1221221212-=-+=-+=b x x x x x x PQ……11分 由30=PQ ,得304252=-b ,6422=-b 解得52=b . ……12分故椭圆E 的方程为152022=+y x . ……13分 12、解:(Ⅰ)依题意24,0,2r r r ππ=>∴= ………1分222,2r c r c ∴=∴=g 2c ∴= ………2分又Q 63e =,222a b c +=3,1a b ∴==∴椭圆方程为2213x y += ………4分 (Ⅱ)由1)知圆2C 的圆心(0,0),2,(0,1).O r A =设直线:1l y kx =+圆心O 到直线l 的距离211d k =+, ……………5分22214324211k EF k k +=-=++ ……………6分 22113y kx x y =+⎧⎪⎨+=⎪⎩得22(31)60k x kx ++= 设11(,)B x y 12631k x k -∴=+ …………7分 222222112226166(1)313131k k k k AB x y k k k +⎛⎫--⎛⎫∴=+-=+= ⎪ ⎪+++⎝⎭⎝⎭……………8分 2222226112434323731131kk k k k AB EF k k k +++∴=∙==+++g 42670k k ∴+-= 22(7)(1)0k k ∴+-= ………10分 2101k k k ∴=>∴=Q ∴直线:1l y x =+ ………11分322AB =,点2F 到直线l 的距离1212d +=2132213(21)2242F AB S ∆++∴==…………13分13、(1)由椭圆定义a MF MF 2||||21=+,∵||3||21MF MF =,∴a MF 2||42=,∴2224||16a MF = …………………2分在直角12F MF ∆中,222214||||c MF MF =-,即2224||8c MF =……………4分 ∴214422=a c ,即22=a c ,∴椭圆的离心率为22…………………5分 (2)∵22=a c ,∴c b c a ==,2,∴椭圆方程为122222=+cy c x ,即022222=-+c y x …………………6分易知点M 的坐标为⎪⎪⎭⎫ ⎝⎛c c 22,,∵点N 是线段2MF 的中点,∴点N 的坐标为⎪⎪⎭⎫⎝⎛c 42,0∵直线1MF 的斜率为42,∴直线AB 的斜率为22-, ∴直线AB 的方程为c x y 4222+-=…………………8分与椭圆方程联立消去y 得04741722=--c cx x …………………9分 设点A 的坐标为()11,y x ,点B 的坐标为()22,y x ,∴1747221⨯-=c x x∵AB 垂直平分线段1MF ,∴172711=⋅=⋅B F A F MB MA …………………10分 ∴172722,22,2211=⎪⎪⎭⎫ ⎝⎛--⋅⎪⎪⎭⎫ ⎝⎛--c y c x c y c x ∴17274222,4222,2211=⎪⎪⎭⎫ ⎝⎛---⋅⎪⎪⎭⎫ ⎝⎛---c x c x c x c x ∴()()1727422242222121=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--+--c x c x c x c x 化简得17381221=+c x x ,∴173********=+⨯-c c ,∴82=c …………………12分 ∴8,1622222====c b c a ,∴椭圆的方程为181622=+y x …………………13分。