高考文科数学圆锥曲线专题复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三文科数学专题复习之圆锥曲线 知识归纳: 名 称 椭圆

双曲线

图 象

x

O

y

x

O

y

定 义

平面内到两定点21,F F 的距离的和为

常数(大于21F F )的动点的轨迹叫椭

圆即a MF MF 221=+

当2a ﹥2c 时,轨迹是椭圆,

当2a =2c 时,轨迹是一条线段

21F F

当2a ﹤2c 时,轨迹不存在

平面内到两定点21,F F 的距离的差的绝

对值为常数(小于21F F )的动点的轨

迹叫双曲线即122MF MF a -=

当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射线 当2a ﹥2c 时,轨迹不存在

标准

方 程 焦点在x 轴上时: 122

22=+b

y a x

焦点在y 轴上时:122

22=+b

x a y

注:根据分母的大小来判断焦点在哪一

坐标轴上

焦点在x 轴上时:122

22=-b

y a x

焦点在y 轴上时:122

22=-b x a y

常数

c

b a ,,的关 系 2

22b c a +=,0>>b a ,

a 最大,

b

c b c b c ><=,,

222b a c +=,0>>a c

c 最大,可以b a b a b a ><=,,

渐近线

焦点在x 轴上时:

0x y

a b ±= 焦点在y 轴上时:0y x

a b

±=

抛物线:

图形

x

y

O F

l

x

y

O F

l

方程

)0(22

>=p px y )0(22>-=p px y

)0(22>=p py x )0(22>-=p py x

点 )0,2

(p )0,2(p -

)2,0(p

)2,0(p -

线 2

p x -= 2p x =

2p y -=

2

p y =

(一)椭圆

1. 椭圆的性质:由椭圆方程)0(122

22>>=+b a b

y a x

(1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。

(2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心,

简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点

椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c

e =

⇒2)(1a

b e -=。10<

c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例。,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为是椭圆在1=e 时的特例。 2. 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆。其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。

椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 3. 椭圆的准线方程

对于12222=+b y a x ,左准线c a x l 21:-=;右准线c a x l 2

2:=

对于12222=+b

x a y ,下准线c a y l 21:-=;上准线c a y l 2

2:=

焦点到准线的距离c

b c c a c c a p 2

222=

-=-=(焦参数)

(二)双曲线的几何性质: 1. (1)范围、对称性

由标准方程122

22=-b

y a x ,从横的方向来看,直线x =-a,x =a 之间没有图象,从纵的方向来看,随着x

的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。双曲线不

封闭,但仍称其对称中心为双曲线的中心。 (2)顶点

顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21

实轴:21A A 长为2a,a 叫做实半轴长。虚轴:21B B 长为2b ,b 叫做虚半轴长。 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。 (3)渐近线

过双曲线12222=-b

y a x 的渐近线x a b y ±=(0=±b y

a x )

(4)离心率

双曲线的焦距与实轴长的比a

c

a c e ==

22,叫做双曲线的离心率 范围:e>1 双曲线形状与e 的关系:112

2

222-=-=-==e a

c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔。

2. 等轴双曲线

定义:实轴和虚轴等长的双曲线叫做等轴双曲线。

等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e 。

3. 共渐近线的双曲线系

如果已知一双曲线的渐近线方程为x a b y ±

=)0(>±=k x ka

kb

,那么此双曲线方程就一定是:)

0(1)()(22

22>±=-k kb y ka x 或写成λ=-2

2

22

b y a x 。 4. 共轭双曲线

以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。区别:三量a,b,c 中a,b 不同(互换)c 相同。共用一对渐近线。双曲线和它的共轭双曲线的焦点在同一圆上。确定双曲线的共轭双曲线的方法:将1变为-1。

5. 双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=

a c a

c

e 的点的轨迹是双曲线。其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线。常数e 是双曲线的离心率。

相关文档
最新文档