高考文科数学圆锥曲线专题复习

合集下载

高考数学圆锥曲线专题复习

高考数学圆锥曲线专题复习

圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C 看作适合某种条件的点的集合或轨迹 上的点与一个二元方程fx,y=0的实数解建立了如下的关系:1曲线上的点的坐标都是这个方程的解;2以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系 若曲线C 的方程是fx,y=0,则点P 0x 0,y 0在曲线C 上⇔fx 0,y=0;点P 0x 0,y 0不在曲线C 上⇔fx 0,y 0≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1x,y=0,f 2x,y=0,则 f 1x 0,y 0=0 点P 0x 0,y 0是C 1,C 2的交点⇔f 2x 0,y 0 =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: 1标准方程圆心在ca,b,半径为r 的圆方程是x-a 2+y-b 2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 22一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为-2D ,-2E,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为x+2D 2+y+2E 2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点-2D ,-2E; 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心Ca,b,半径为r,点M 的坐标为x 0,y 0,则 |MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +. 3直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点②直线和圆的位置关系的判定 i 判别式法ii 利用圆心Ca,b 到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线基本知识4.圆锥曲线的统一定义平面内的动点Px,y到一个定点Fc,0的距离与到不通过这个定点的一条定直线l的距离之比是一个常数ee>0,则动点的轨迹叫做圆锥曲线.其中定点Fc,0称为焦点,定直线l称为准线,正常数e称为离心率.当0<e<1时,轨迹为椭圆,当e=1时,轨迹为抛物线当e>1时,轨迹为双曲线5.坐标变换坐标变换在解析几何中,把坐标系的变换如改变坐标系原点的位置或坐标轴的方向叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.坐标轴的平移公式设平面内任意一点M,它在原坐标系xOy中的坐标是9x,y,在新坐标系x ′O′y′中的坐标是x′,y′.设新坐标系的原点O′在原坐标系xOy 中的坐标是h,k,则x=x′+h x′=x-h1 或2y=y′+k y′=y-k公式1或2叫做平移或移轴公式.中心或顶点在h,k的圆锥曲线方程见下表.方程焦点焦线对称轴椭圆22h)-(xa+22k)-(yb=1 ±c+h,k x=±ca2+hx=hy=k 22h)-(xb+22k)-(ya=1h,±c+k y=±ca2+kx=hy=k双曲线22h)-(xa-22k)-(yb=1 ±c+h,k=±ca2+kx=hy=k 22k)-(ya-22h)-(xb=1 h,±c+h y=±ca2+kx=hy=k抛物线y-k2=2px-h2p+h,k x=-2p+h y=ky-k2=-2px-h -2p+h,k x=2p+h y=kx-h2=2py-k h,2p+k y=-2p+k x=hx-h2=-2py-k h,-2p+k y=2p+k x=h二、知识点、能力点提示一曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;. 双曲线及其标准方程.双曲线的简单几何性质;. 抛物线及其标准方程.抛物线的简单几何性质;考试要求:. 1掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;. 2掌握双曲线的定义、标准方程和双曲线的简单几何性质;. 3掌握抛物线的定义、标准方程和抛物线的简单几何性质;. 4了解圆锥曲线的初步应用;四.对考试大纲的理解高考圆锥曲线试题一般有3题1个选择题, 1个填空题, 1个解答题, 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视;求圆锥曲线的方程复习要点求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1m >0,n >0.定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 例题【例1】 双曲线2224b y x =1b ∈N 的两个焦点F 1、F 2,P 为双曲线上一点,|OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________.解:设F 1-c ,0、F 2c ,0、Px ,y ,则 |PF 1|2+|PF 2|2=2|PO |2+|F 1O |2<252+c 2, 即|PF 1|2+|PF 2|2<50+2c 2,又∵|PF 1|2+|PF 2|2=|PF 1|-|PF 2|2+2|PF 1|·|PF 2|, 依双曲线定义,有|PF 1|-|PF 2|=4, 依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2 ∴16+8c 2<50+2c 2,∴c 2<317,又∵c 2=4+b 2<317,∴b 2<35,∴b 2=1.【例2】 已知圆C 1的方程为()()3201222=-+-y x ,椭圆C 2的方程为12222=+b y a x ()a b >>0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程;解:由,2,22,22222b c a a c e ====得设椭圆方程为.122222=+b y b x设).1,2().,().,(2211由圆心为y x B y x A 又,12,12222222221221=+=+b y b x b y b x两式相减,得.022222122221=-+-b y y b x x 又.1.2.421212121-=--=+=+x x yy y y x x 得即3+-=x y 将得代入,1232222=++-=b y b x x y由.3204)(222122121=-+=-=x x x x x x B A 得.3203722422=-⋅b 解得 .82=b 故所有椭圆方程.181622=+y x【例3】 过点1,0的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程. 解法一:由e =22=a c ,得21222=-a b a ,从而a 2=2b 2,c =b .设椭圆方程为x 2+2y 2=2b 2,Ax 1,y 1,Bx 2,y 2在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,x 12-x 22+2y 12-y 22=0,.)(221212121y y x x x x y y ++-=--设AB 中点为x 0,y 0,则k AB =-02y x , 又x 0,y 0在直线y =21x上,y 0=21x 0,于是-02y x =-1,k AB =-1,设l 的方程为y =-x +1.右焦点b ,0关于l 的对称点设为x由点1,1-b 在椭圆上,得1+21-b 2=2b 2,b 2=89,1692=a .∴所求椭圆C的方程为2291698y x + =1,l的方程为y =-x +1.解法二:由e =21,22222=-=a b a a c 得,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =kx -1, 将l 的方程代入C 的方程,得1+2k 2x 2-4k 2x +2k 2-2b 2=0, 则x 1+x 2=22214k k +,y 1+y 2=kx 1-1+kx 2-1=kx 1+x 2-2k =-2212k k +.直线l :y =21x 过AB 的中点2,22121y y x x ++,则2222122121k k k k +⋅=+-, 解得k =0,或k =-1.若k =0,则l 的方程为y =0,焦点Fc ,0关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-x -1,即y =-x +1,以下同解法一.解法3:设椭圆方程为)1()0(12222>>=+b a by ax直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾; 故可设直线)2()1(-=x k y l 的方程为)()(2211y x B y x A ,,设,22222212ba k a k x x +=+知:21221=+-x x k k ,212222222=+⋅-∴a k b a k k k ,2122=--∴ka b k k ,22=e 又122)(22222222-=+-=--=-=∴e a c a a b k ,x y l -=∴1的方程为直线,222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=∆b b33>∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又,)0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,则b y x b x y b x y -=-⇒⎪⎪⎩⎪⎪⎨⎧+-==-11212100000,, 得:在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3343>=∴b ,1692=∴b , 892=a 所以所求的椭圆方程为:11698922=+y x 【例4】 如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程.解:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图所示的直角坐标系. 设双曲线方程为2222by ax -=1a >0,b >0由e 2=2222)213()(1=+=a b a c ,得23=a b .∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-23x设点P 1x 1, 23x 1,P 2x 2,-23x 2x 1>0,x 2>0,则由点P 分21P P 所成的比λ=21PP PP =2,得P 点坐标为22,322121x x x x -+,又点P 在双曲线222294ay ax -=1上, 所以222122219)2(9)2(a x x a x x --+=1,即x 1+2x 22-x 1-2x 22=9a 2,整理得8x 1x 2=9a 2 ①即x 1x 2= 29②由①、②得a 2=4,b 2=9 故双曲线方程为9422y x -=1.【例5】 过椭圆C :)0(12222>>=+b a b x a y 上一动点P 引圆O :x 2 +y 2 =b 2的两条切线P A 、P B ,A 、B 为切点,直线AB 与x 轴,y 轴分别交于M 、N 两点;1 已知P 点坐标为x 0,y 0 并且x 0y 0≠0,试求直线AB 方程;2 若椭圆的短轴长为8,并且1625||||2222=+ON b OM a ,求椭圆C 的方程;3 椭圆C 上是否存在点P,由P 向圆O 所引两条切线互相垂直若存在,请求出存在的条件;若不存在,请说明理由; 解:1设Ax 1,y 1,Bx 2, y 2切线P A :211b y y x x =+,P B :222b y y x x =+ ∵P 点在切线P A 、P B 上,∴202022101b y y x x b y y x x =+=+∴直线AB 的方程为)0(00200≠=+y x b y y x x2在直线AB 方程中,令y =0,则M 02x b ,0;令x =0,则N0,2y b∴1625)(||||22220220222222==+=+ba b x a y b a ON b OM a ①∵2b =8 ∴b =4 代入①得a 2 =25, b 2 =16 ∴椭圆C 方程:)0(1162522≠=+xy x y 注:不剔除xy ≠0,可不扣分3 假设存在点P x 0,y 0满足P A ⊥P B ,连接O A 、O B 由|P A |=|P B |知,四边形P A O B 为正方形,|OP|=2|O A | ∴220202b y x =+ ① 又∵P 点在椭圆C 上 ∴22202202b a y b x a =+ ②由①②知x2222202222220,)2(b a b a y b a b a b -=--=∵a >b >0 ∴a 2-b 2>01当a 2-2b 2>0,即a >2b 时,椭圆C 上存在点,由P 点向圆所引两切线互相垂直; 2当a 2-2b 2<0,即b <b 时,椭圆C 上不存在满足条件的P 点【例6】 已知椭圆C 的焦点是F 1-3,0、F 23,0,点F 1到相应的准线的距离为33,过F 2点且倾斜角为锐角的直线l 与椭圆C 交于A 、B 两点,使得|F 2B|=3|F 2A|.1求椭圆C 的方程;2求直线l 的方程. 解:1依题意,椭圆中心为O0,0,3=c点F 1到相应准线的距离为1333,322=⨯=∴=b cb, a 2=b 2+c 2=1+3=4∴所求椭圆方程为1422=+y x2设椭圆的右准线l '与l 交于点P,作AM ⊥l ',AN⊥l ',垂足分别为M 、N. 由椭圆第二定义, 得||||||||22AM e AF e AM AF =⇒=同理|BF 2|=e|BN| 由Rt △PAM ~Rt △PBN,得||2||2||21||2AM e A F AB PA ===…9分 l ePA AM PAM ⇒=⨯===∠∴33232121||||cos 的斜率2tan =∠=PAM k .∴直线l 的方程062)3(2=---=y x x y 即【例7】 已知点B -1,0,C1,0,P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅1求点P 的轨迹C 对应的方程;x2已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD ⊥AE,判断:直线DE 是否过定点试证明你的结论.3已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:1设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入【例8】 已知曲线332)0,0(12222=>>=-e b a by ax 的离心率,直线l 过A a ,0、B0,-b 两点,原点O 到l 的距离是.23 Ⅰ求双曲线的方程;Ⅱ过点B 作直线m 交双曲线于M 、N 两点,若23-=⋅ON OM ,求直线m 的方程. 解:Ⅰ依题意,,0,1=--=-+ab ay bx byax l 即方程 由原点O 到l 的距离为23,得2322==+c ab ba ab 又332==ac e 3,1==∴a b故所求双曲线方程为1322=-y xⅡ显然直线m 不与x 轴垂直,设m 方程为y =k x -1,则点M 、N 坐标11,y x 、22,y x 是方程组 ⎪⎩⎪⎨⎧=--=13122y x kx y 的解 消去y ,得066)31(22=-+-kx x k ① 依设,,0312≠-k 由根与系数关系,知136,136221221-=-=+k x x k k x x =1)()1(21212++-+x x k x x k =113613)1(62222+---+k k k k =11362+-k23-=⋅ON OM ∴11362+-k =-23,k=±21 当k=±21时,方程①有两个不等的实数根 故直线l 方程为121,121--=-=x y x y 或【例9】 已知动点P 与双曲线13222=-y x 的两个焦点1F 、2F 的距离之和为定值,且21cos PF F ∠的最小值为91-.1求动点P 的轨迹方程;2若已知)3,0(D ,M 、N 在动点P 的轨迹上且DN DM λ=,求实数λ的取值范围. 解:1由已知可得: 5=c ,912)2(2222-=-+a c a a ∴ 4,92222=-==c a b a∴ 所求的椭圆方程为 14922=+y x . 2方法一:由题知点D 、M 、N 共线,设为直线m,当直线m 的斜率存在时,设为k,则直线m 的方程为 y = k x +3 代入前面的椭圆方程得 4+9k 2 x 2 +54 k +45 = 0 ① 由判别式 045)94(4)54(22≥⨯+⨯-=∆k k ,得952≥k . 再设M x 1 , y 1 , N x 2 , y 2,则一方面有))3(,()3,()3,(222211-=-==-=y x y x DN y x DM λλλλ,得另一方面有 2219454kk x x +-=+,2219445k x x += ②将21x x λ=代入②式并消去 x 2可得94)1(532422+=+k λλ,由前面知, 536402≤<k ∴ 581)1(532492≤+<λλ,解得 551<<λ.又当直线m 的斜率不存在时,不难验证:551==λλ或, 所以 551≤≤λ为所求;方法二:同上得设点M 3cos α,2sin α,N 3cos β,2sin β 则有⎩⎨⎧-=-=)3sin 2(3sin 2cos cos βλαβλα由上式消去α并整理得)(1251813sin 22λλλλβ-+-=, 由于1sin 1≤≤-β∴ 1)(1251813122≤-+-≤-λλλλ, 解得551≤≤λ为所求. 方法三:设法求出椭圆上的点到点D 的距离的最大值为5,最小值为1. 进而推得λ的取值范围为551≤≤λ;求圆锥曲线的方程练习一、选择题1.已知直线x +2y -3=0与圆x 2+y 2+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于B.-3D.-12.中心在原点,焦点在坐标为0,±52的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为二、填空题3.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.已知圆过点P 4,-2、Q -1,3两点,且在y 轴上截得的线段长为43,则该圆的方程为_________.三、解答题5.已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=3104,试求椭圆的方程.6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.已知圆C 1的方程为x -22+y -12=320,椭圆C 2的方程为2222by ax +=1a >b >0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.参考答案一、1.解析:将直线方程变为x =3-2y ,代入圆的方程x 2+y 2+x -6y +m =0, 得3-2y 2+y 2+3-2y +m =0.整理得5y 2-20y +12+m =0,设Px 1,y 1、Qx 2,y 2 则y 1y 2=512m +,y 1+y 2=4.又∵P 、Q 在直线x =3-2y 上, ∴x 1x 2=3-2y 13-2y 2=4y 1y 2-6y 1+y 2+9 故y 1y 2+x 1x 2=5y 1y 2-6y 1+y 2+9=m -3=0,故m =3. 答案:A2.解析:由题意,可设椭圆方程为:2222b x a y + =1,且a 2=50+b 2,即方程为222250b x b y ++=1.将直线3x -y -2=0代入,整理成关于x 的二次方程. 由x 1+x 2=1可求得b 2=25,a 2=75. 答案:C二、3.解析:所求椭圆的焦点为F 1-1,0,F 21,0,2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P .使|PF 1|+|PF 2|最小,利用对称性可解.答案:4522y x + =14.解析:设所求圆的方程为x -a 2+y -b 2=r 2则有⎪⎪⎩⎪⎪⎨⎧=+=-+--=--+-222222222)32(||)3()1()2()4(ra rb a r b a ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⇒2745130122r b a r b a 或由此可写所求圆的方程.答案:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0三、5.解:|MF |ma x =a +c ,|MF |min =a -c ,则a +ca -c =a 2-c 2=b 2, ∴b 2=4,设椭圆方程为14222=+y a x ① 设过M 1和M 2的直线方程为y =-x +m② 将②代入①得:4+a 2x 2-2a 2mx +a 2m 2-4a 2=0③设M 1x 1,y 1、M 2x 2,y 2,M 1M 2的中点为x 0,y 0, 则x 0=21x 1+x 2=224a m a +,y 0=-x 0+m =244a m +.代入y =x ,得222444amam a +=+,由于a 2>4,∴m =0,∴由③知x 1+x 2=0,x 1x 2=-2244aa +,又|M 1M 2|=31044)(221221=-+x x x x ,代入x 1+x 2,x 1x 2可解a 2=5,故所求椭圆方程为:4522y x + =1.6.解:以拱顶为原点,水平线为x 轴,建立坐标系,如图,由题意知,|AB |=20,|OM |=4,A 、B 坐标分别为-10,-4、10,-4 设抛物线方程为x 2=-2py ,将A 点坐标代入,得100=-2p ×-4,解得p =, 于是抛物线方程为x 2=-25y .由题意知E 点坐标为2,-4,E ′点横坐标也为2,将2代入得y =-,从而|EE ′|=---4=.故最长支柱长应为米.7.解:由e =22,可设椭圆方程为22222b y b x +=1,又设Ax 1,y 1、Bx 2,y 2,则x 1+x 2=4,y 1+y 2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,即x 1+x 2x 1-x 2+2y 1+y 2y 1-y 2=0. 化简得2121x x y y --=-1,故直线AB 的方程为y =-x +3, 代入椭圆方程得3x 2-12x +18-2b 2=0. 有Δ=24b 2-72>0,又|AB |=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b 2=8.故所求椭圆方程为81622y x +=1.直线与圆锥曲线复习要点直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长即应用弦长公式;涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 例题【例1】 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.解:设椭圆方程为mx 2+ny 2=1m >0,n >0,Px 1,y 1,Qx 2,y 2 由⎪⎩⎪⎨⎧=++=1122ny mx x y 得m +nx 2+2nx +n -1=0,Δ=4n 2-4m +nn -1>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+x 1+x 2+1=0, ∴nm nn m n --+-2)1(2+1=0,∴m +n =2①又2)210()(4=+-+nm mn n m 2, 将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21 故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.【例2】 如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为5,0,倾斜角为4π的直线l 与线段OA 相交不经过点O 或点A 且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组⎪⎩⎪⎨⎧=+=xy mx y 42,消去y ,得x 2+2m -4x +m 2=0……………①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=2m -42-4m 2=161-m >0, 解得m <1,又-5<m <0,∴m 的范围为-5,0设Mx 1,y 1,Nx 2,y 2则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=25+m m -1,从而S △2=41-m 5+m 2 =22-2m ·5+m 5+m ≤235522mm m ++++-3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.【例3】 已知双曲线C :2x 2-y 2=2与点P 1,2;1求过P 1,2点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点;2若Q 1,1,试判断以Q 为中点的弦是否存在.解:1当直线l 的斜率不存在时,l 的方程为x =1, 与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=kx -1, 代入C 的方程,并整理得2-k 2x 2+2k 2-2kx -k 2+4k -6=0………………ⅰ当2-k 2=0,即k =±2时,方程有一个根,l 与C 有一个交点 ⅱ当2-k 2≠0,即k ≠±2时Δ=2k 2-2k 2-42-k 2-k 2+4k -6=163-2k①当Δ=0,即3-2k =0,k =23时,方程有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程无解,l 与C 无交点.综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l 与C 没有交点.2假设以Q 为中点的弦存在,设为AB ,且Ax 1,y 1,Bx 2,y 2,则2x 12-y 12=2,2x 22-y 22=2两式相减得:2x 1-x 2x 1+x 2=y 1-y 2y 1+y 2又∵x 1+x 2=2,y 1+y 2=2 ∴2x 1-x 2=y 1-y 1 即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.【例4】 如图,已知某椭圆的焦点是F 1-4,0、F 24,0,过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点Ax 1,y 1,Cx 2,y 2满足条件:|F 2A |、|F 2B |数列.1求该弦椭圆的方程; 2求弦AC 中点的横坐标;3设弦AC 的垂直平分线的方程为y =kx 求m 的取值范围.解:1由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1.2由点B 4,y B 在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54425-x 1,|F 2C |=54425-x 2,由|F 2A |、|F 2B |、|F 2C |成等差数列,得54425-x 1+54425-x 2=2×59,由此得出:x 1+x 2=8.设弦AC 的中点为Px 0,y 0,则x 0=221x x +=4.3解法一:由Ax 1,y 1,Cx 2,y 2在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9x 12-x 22+25y 12-y 22=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0x 1≠x 2 将kx x y y y y y x x x 1,2,422121021021-=--=+==+ k ≠0代入上式,得9×4+25y 0-k1=0k ≠0即k =3625y 0当k =0时也成立.由点P 4,y 0在弦AC 的垂直平分线上,得y 0=4k +m , 所以m =y 0-4k =y 0-925y 0=-916y 0.由点P 4,y 0在线段BB ′B ′与B 关于x 轴对称的内部, 得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P 4,y 0,所以直线AC 的方程为y -y 0=-k1x -4k ≠0③将③代入椭圆方程92522y x +=1,得9k 2+25x 2-50ky 0+4x +25ky 0+42-25×9k 2=0 所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.当k =0时也成立①以下同解法一.【例5】 已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC ⋅=. 1求双曲线G 的渐近线的方程; 2求双曲线G 的方程;3椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解:1设双曲线G 的渐近线的方程为:y kx =, 则由渐近线与圆2210200x y x +-+==所以,12k =±.双曲线G 的渐近线的方程为:12y x =±. 2由1可设双曲线G 的方程为:224x y m -=.把直线l 的方程()144y x =+代入双曲线方程,整理得2381640x x m ---=. 则8164, 33A B A B mx x x x ++==-∵ 2PA PB PC ⋅=,,,,P A B C 共线且P 在线段AB 上, ∴ ()()()2P A B P P C x x x x x x --=-,即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将代入上式可解得:28m =.所以,双曲线的方程为221287x y -=. 3由题可设椭圆S的方程为:(222128x y a a+=>.下面我们来求出S 中垂直于l 的平行弦中点的轨迹.设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则2211222222128128x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩. 两式作差得:()()()()121212122028x x x x y y y y a-+-++=由于12124y y x x -=--,1201202,2x x x y y y +=+= 所以,0024028x y a -=, 所以,垂直于l 的平行弦中点的轨迹为直线24028x ya-=截在椭圆S 内的部分. 又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,211122a =.所以,256a =,椭圆S 的方程为:2212856x y +=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上也即化线段的关系为横坐标或纵坐标之间的关系是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具.【例6】 设抛物线过定点()1,0A -,且以直线1x =为准线.1求抛物线顶点的轨迹C 的方程;2若直线l 与轨迹C 交于不同的两点,M N ,且线段MN 恰被直线12x =-平分,设弦MN 的垂直平分线的方程为y kx m =+,试求m 的取值范围.解:1设抛物线的顶点为(),G x y ,则其焦点为()21,F x y -.由抛物线的定义可知:12AF A x ==点到直线的距离=.所以2=.所以,抛物线顶点G 的轨迹C 的方程为:2214y x += ()1x ≠.2因为m 是弦MN 的垂直平分线与y 轴交点的纵坐标,由MN 所唯一确定.所以,要求m 的取值范围,还应该从直线l 与轨迹C 相交入手.显然,直线l 与坐标轴不可能平行,所以,设直线l 的方程为1:l y x b k=-+,代入椭圆方程得:由于l 与轨迹C 交于不同的两点,M N ,所以,()22222441440b k b k k ⎛⎫+∆=--> ⎪⎝⎭,即:()222410 0k k b k -+>≠.又线段MN 恰被直线12x =-平分,所以,2212241M N bk x x k ⎛⎫+==⨯- ⎪+⎝⎭.所以,2412k bk +=-.代入可解得:() 022k k -<<≠. 下面,只需找到m 与k 的关系,即可求出m 的取值范围.由于y kx m =+为弦MN 的垂直平分线,故可考虑弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭.在1:l y x b k=-+中,令12x =-,可解得:2011412222k y b k k k k +=+=-=-. 将点1,22P k ⎛⎫-- ⎪⎝⎭代入y kx m =+,可得:32k m =-.所以,0m m <<≠. 从以上解题过程来看,求m 的取值范围,主要有两个关键步骤:一是寻求m 与其它参数之间的关系,二是构造一个有关参量的不等式.从这两点出发,我们可以得到下面的另一种解法:解法二.设弦MN 的中点为01,2P y ⎛⎫- ⎪⎝⎭,则由点,M N 为椭圆上的点,可知:22224444M M N N x y x y ⎧+=⎪⎨+=⎪⎩. 两式相减得:()()()()40M N M N M N M N x x x x y y y y -++-+= 又由于01121, 2, 2M N M N M N M N y y x x y y y x x k -⎛⎫+=⨯-=-+=- ⎪-⎝⎭=,代入上式得:02y k =-.又点01,2P y ⎛⎫- ⎪⎝⎭在弦MN 的垂直平分线上,所以,012y k m =-+. 所以,001324m y k y =+=. 由点01,2P y ⎛⎫- ⎪⎝⎭在线段BB ’上B ’、B 为直线12x =-与椭圆的交点,如图,所以,'0B B y y y <<.也即:0y <<所以,3333044m m -<<≠且 点评:解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项系数和判别式,有时借助图形的几何性质更为方便.涉及弦中点问题,利用韦达定理或运用平方差法时设而不求,必须以直线与圆锥曲线相交为前提,否则不宜用此法.从构造不等式的角度来说,“将直线l 的方程与椭圆方程联立所得判别式大于0”与“弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭在椭圆内”是等价的.【例7】 设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线与抛物线交于A 、B 两点.又M 是其准线上一点.试证:直线MA 、MF 、MB 的斜率成等差数列.证明 依题意直线MA 、MB 、MF 的斜率显然存在,并分别设为1k ,2k ,3k 点A 、B 、M 的坐标分别为A 1x ,1y ,B 2x ,2y ,M 2p -,m由“AB 过点F 2p ,0”得 AB l :2p ty x +=将上式代入抛物线px y 22=中得:0222=--p pty y可知221p y y -=⋅又依“1212px y =及2222px y =”可知 因此22221121p x my p x m y k k +-++-=+而p m p p m k -=---=)2(203故3212k k k =+即直线MA 、MF 、MB 的斜率成等差数列.【例8】 已知a =x,0,b =1,y )3()3(b a b a -⊥+1求点Px,y 的轨迹C 的方程;2若直线l :y=kx+mkm ≠0与曲线C 交于A 、B 两端,D0,-1,且有|AD|=|BD|,试求m 的取值范围;解:1)3,3(),1(3)0,(y x y x a +=+=+∵((a a -⊥+∴((a a -⋅+=0∴0)3(3)3)(3(=-⋅+-+y y x x 得1322=-y x∴P 点的轨迹方程为1322=-y x2考虑方程组⎪⎩⎪⎨⎧=-+=1322y x m kx y 消去y,得1-3k 2x 2-6kmx -3m 2-3=0 显然1-3k 2≠0 △=6km 2-4-3m 2-3=12m 2+1-3k 2>0设x 1,x 2为方程的两根,则221316kkmx x -=+ 故AB 中点M 的坐标为2313k km -,231k m-∴线段AB 的垂直平分线方程为:)313)(1(3122k kmx k k m y ---=--将D0,-1坐标代入,化简得:4m=3k 2-1故m 、k 满足⎪⎩⎪⎨⎧-=>-+134031222k m k m ,消去k 2得:m 2-4m>0 解得:m<0或m>4又∵4m=3k 2-1>-1 ∴m>-41 故m ),4()0,41(+∞⋃-∈.直线与圆锥曲线练习一、选择题1.斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为B.554C.5104D.51082.抛物线y =ax 2与直线y =kx +bk ≠0交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有=x 1+x 2=x 1x 3+x 2x 3 +x 2+x 3=0+x 2x 3+x 3x 1=0二、填空题3.已知两点M 1,45、N -4,-45,给出下列曲线方程:①4x +2y -1=0,②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.在抛物线y 2=16x 内,通过点2,1且在此点被平分的弦所在直线的方程是_________.三、解答题6.已知抛物线y 2=2pxp >0,过动点Ma ,0且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .1求a 的取值范围.2若线段AB 的垂直平分线交x求△NAB 面积的最大值.7.已知中心在原点,顶点A 1、A 2在x e =321的双曲线过点P 6,6.1求双曲线方程.2动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.已知双曲线C 的两条渐近线都过原点,且都以点A 2,0为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.1求双曲线C 的方程.2设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.直线与圆锥曲线参考答案一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎪⎩⎪⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=ak ,x 1x 2=-ab ,x 3=-kb ,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且Ax 1,y 1,Bx 2,y 2,代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,y 1+y 2y 1-y 2=16x 1-x 2.即⇒+=--21212116y y x x y y k AB =8. 故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:1设直线l 的方程为:y =x -a ,代入抛物线方程得x -a 2=2px ,即x 2-2a +px +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2又∵p >0,∴a ≤-4p .2设Ax 1,y 1、Bx 2,y 2,AB 的中点 Cx ,y , 由1知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p .∴线段AB 的垂直平分线的方程为y -p =-x -a -p ,从而N 点坐标为a +2p ,0点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅当a 有最大值-4p 时,S 有最大值为2p 2.7.解:1如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1.2P 、A 1、A 2的坐标依次为6,6、3,0、-3,0, ∴其重心G 的坐标为2,2假设存在直线l ,使G 2,2平分线段MN ,设Mx 1,y 1,Nx 2,y 2.则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34∴l 的方程为y =34x -2+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0.∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:1设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为0,2. ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.2设直线l :y =kx -20<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2. ②把l ′代入双曲线方程得k 2-1x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4k 2-1m 2-2=0. 可得m 2+2k 2=2③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk ,y =10.故B 22,10.。

圆锥曲线知识点梳理文科(供参考)

圆锥曲线知识点梳理文科(供参考)

高考数学圆锥曲线部分知识点梳理一、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。

配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。

(4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交⇔有两个公共点;直线与圆相切⇔有一个公共点;直线与圆相离⇔没有公共点。

②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离22BA C Bb Aa d +++=与半径r 的大小关系来判定。

二、圆锥曲线的统一定义:平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l 的距离之 比是一个常数e(e >0),则动点的轨迹叫做圆锥曲线。

其中定点F(c,0)称为焦点,定直线l 称为准线,正常数e 称为离心率。

当0<e <1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e >1时,轨迹为双曲线。

【备注1】双曲线:⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-b y a x .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλb y a x .【备注2】抛物线: (1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p ,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p ,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下.(2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221px AF p x x +==(AF 叫做焦半径).四、常用结论:1.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan2F PFS b γ∆=. 且γcos 12221+=b PF PF2.设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点,记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2).2cot221θb S FPF =∆3.)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.4. 通径为2p ,这是过焦点的所有弦中最短的.。

高中总复习二轮文科数学精品课件 专题6 直线、圆、圆锥曲线 6.3 直线与圆锥曲线

高中总复习二轮文科数学精品课件 专题6 直线、圆、圆锥曲线 6.3 直线与圆锥曲线
1
=

=
1
- 2 + 3,
4+3 2
即(*)式成立.
所以直线HN过点(0,-2).
综上所述,直线HN恒过定点(0,-2).
-48-96
+
4+3 2

-24
=0=右边,
2
4+3
题后反思 1.求解定值和定点问题的基本思想是一致的,定值是证明求解的
一个量与参数无关,定点问题是求解的一个点(或几个点)的坐标,使得方程
的成立与参数值无关.解这类试题时要会合理选择参数(参数可能是直线的
4
2
2
2
= 3,
= + ,
(2)依题意,直线 BC 的方程为 y-1=k(x+2)(k≠0),
-1 = ( + 2),
联立直线 BC 和椭圆 E 的方程,得 2
消去 y,
2
+ = 1,
4
整理得(1+4k2)x2+(16k2+8k)x+16k2+16k=0,
由Δ>0可得(16k2+8k)2-4(1+4k2)(16k2+16k)>0,解得k<0.
2 6
3
+ 2 x-2,
所以直线HN过点(0,-2).
当过点P的直线MN的斜率存在时,
设直线MN的方程为y+2=k(x-1),点M(x1,y1),N(x2,y2).
+ 2 = (-1),
由 2 2
消去 y,得(4+3k2)x2-6k(k+2)x+3k(k+4)=0,

(完整)文科圆锥曲线大题复习

(完整)文科圆锥曲线大题复习

(完整)文科圆锥曲线大题复习高三数学圆锥曲线专题一.知识要点1、直线的斜率公式:k = tan a= 土二4(x丰x)(a为直线的倾斜角)x - x i 221两种常用的直线方程:(1)点斜式(2)斜截式2、直线与圆的位置关系有:相交、相切、相离三种,其判断方法有:①几何法(常用方法)若圆心到直线的距离为d,圆的半径为r,则:d = r o直线与圆相切d < r o直线与圆相交d > r o直线与圆相离②代数法由直线方程与圆的方程联立方程组,消元得到一个一元二次方程,则:A = 0o直线与圆相切A< 0 o直线与圆相离A> 0 o直线与圆相交3、圆的弦长若圆心到弦的距离为d,圆的半径为r,弦长是/,则l = 2工;r2 —d 2 .4、圆锥曲线的定义(包括长轴,短轴,实轴,虚轴,离心率,双曲线的渐近线等)(1)椭圆:(2)双曲线:(3)抛物线:x2 y2 x2 y25、点P(x , y)和椭圆——+ — = K a > b > 0)的关系:(1)点P(x , y)在椭圆外o -0- +与> 1 ;(2)点P(x , y)0 0 a2 b2 0 0 a2 b2 0 0在椭圆上o x0- +,=1;⑶点P(x , y)在椭圆内o x e- +,< 1a2 b2 0 0a2 b26、直线与圆锥曲线的位置关系:由直线方程与圆锥曲线联立方程组,消元得到一个一元二次方程,则:(1)相交:A> 0 o直线与椭圆相交;A> 0 n直线与双曲线相交,但直线与双曲线相交不一定有A> 0 , 当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故A> 0是直线与双曲线相交的充分条件,但不是必要条件;A> 0 n直线与抛物线相交,但直线与抛物线相交不一定有A> 0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故A> 0也仅是直线与抛物线相交的充分条件,但不是必要条件。

高考文科数学圆锥曲线专题复习

高考文科数学圆锥曲线专题复习

适用标准文案高三文科数学专题复习之圆锥曲线知识概括: 名称椭圆双曲线yy图 象Ox平面内到两定点F 1 ,F 2 的距离的和为Ox平面内到两定点F 1, F 2 的距离的差的绝常数(大于 F 1F 2 )的动点的轨迹叫椭对值为常数(小于F 1 F 2 )的动点的轨圆 即 MF 1MF 2 2a定 义当 2 a ﹥ 2 c 时,轨迹是椭圆,当 2 a = 2 c 时 , 轨 迹 是 一 条 线 段F 1 F 2当 2 a ﹤ 2 c 时,轨迹不存在迹叫双曲线 即 MF 1MF 22a当 2 a ﹤ 2 c 时,轨迹是双曲线当 2 a = 2 c 时,轨迹是两条射线当 2 a ﹥ 2 c 时,轨迹不存在焦点在 x 轴上时:x 2y 2ab1x 2 y 222焦点在 x 轴上时:1a2b2标 准 焦点在 y 轴上时: y2x 2方 程1焦点在 y 轴上时: y2x 2a 2b 21注:依据分母的大小来判断焦点在哪一a 2b 2坐标轴上常 数a,b,ca 2c 2b 2 , ab 0 ,c 2a 2b 2 ,c a 0的 关 a 最大, cb, c b, cbc 最大,能够 a b, ab,ab系焦点在 x 轴上时:xy 0渐 近a b线焦点在 y 轴上时:yx 0ab抛物线:适用标准文案图形yO Flyx F O xl方y2 2 px( p0)y 2 2 px( p0)2 2 py( p0)x2 2 py( p 0)程x焦(p,0)(p,0)(0,p)(0,p )点2222准x pxpypyp线2222(一)椭圆1. 椭圆的性质:由椭圆方程x 2y 2a b 0) a1(2b 2( 1)范围: a x a,- b x a ,椭圆落在 x a,y b 构成的矩形中。

(2)对称性 : 图象对于 y 轴对称。

图象对于 x 轴对称。

图象对于原点对称。

原点叫椭圆的对称中心,简称中心。

x 轴、 y 轴叫椭圆的对称轴。

高考文科数学圆锥曲线专题训练

高考文科数学圆锥曲线专题训练

高考文科数学圆锥曲线专题训练用时:60分钟一、选择题1. θ是任意实数,则方程4sin 22=+θy x 所表示的曲线不可能是 A. 椭圆 B. 双曲线 C. 抛物线 D. 圆2. 已知椭121)(1222=-+t y x 的一条准线方程是8=y ,则实数t 的值是 A. 7或-7B. 4或12C. 1或15D. 03. 双曲线1422=+ky x 的离心率)2,1(∈e ,则k 的取值范围为 A. )0,(-∞ B. (-12,0) C. (-3,0) D. (-60,-12)4. 以112422=-y x 的焦点为顶点,顶点为焦点的椭圆方程为 A.1121622=+y xB.1161222=+y x C.141622=+y xD.116422=+y x 5. 抛物线28mx y =的焦点坐标为 A. )0,81(mB. )321,0(mC. )321,0(m±D. )0,321(m±6. 已知点A (-2,1),x y 42-=的焦点为F ,P 是x y 42-=的点,为使PF PA +取得最小值,P 点的坐标是 A. )1,41(-B. )22,2(-C. )1,41(-- D. )22,2(-- 7. 已知双曲线的渐近线方程为043=±y x ,一条准线方程为095=-y ,则双曲线方程为A.116922=-x yB.116922=-y x C.125922=-x yD.125922=-y x8. 抛物线2x y =到直线42=-y x 距离最近的点的坐标为 A. )45,23(B. )1,1(C. )49,23(D. )4,2(9. 动圆的圆心在抛物线x y 82=上,且动圆与直线02=+x 相切,则动圆必过定点 A. (4,0) B. (2,0) C. (0,2) D. (0,-2)10.中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 12575D. 17525C.1252752B. 1752252A.22222222=+=+=+=+y x y x y x y x二、填空题11. 到定点(2,0)的距离与到定直线8=x 的距离之比为22的动点的轨迹方程为_______. 12.双曲线2222=-my mx 的一条准线是1=y ,则=m ___________.13. 已知点(-2,3)与抛物线)0(22>=p px y 的焦点距离是5,=p ____________. 14.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_______________. 三、解答题15. 已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程。

高三文科数学高考前知识整理专题六: 圆锥曲线

高三文科数学高考前知识整理专题六: 圆锥曲线
概率统计(3 题): 汕头一模 17; 第 6 周综合考试(深圳一模)17; 综合训练 12(中山一模)18;
立体几何(4 题): 汕头一模 18; 广州一模 18; 第 6 周综合考试(深圳一模)18; 综合训练 9(江门一模)18;
数列(4 题): 广州一模 19; 第 6 周综合考试(深圳一模)19; 综合训练 7(中山期末)18; 综合训练 11(湛江一模)19;
M
平面内到两个定点F1、F2的距离的差的绝对值等于F1
F2
常4、数抛2a(物2线a<的|F1定F2 义|)的点的轨迹叫双曲线。
l d .M
平面内到一定点的距离与到一定直线的距离 (定点不在定直线上)的点的轨迹叫抛物线。
.F
椭圆、双曲线、抛物线
名称 定义
标准 方程
椭圆
双曲线
抛物线
|PF|= PM 点F
完成《考前增分特训》P129必做题目(9题) 第1、2、3、4、5、7、8、9、11题;
谢 谢 观 看!
更多精彩内容请登录
二模前复习解答题:
三角(4 题): 汕头一模 16; 综合训练 2(广州期末)16; 综合训练 6(佛山期末)16; 综合训练 8(东莞期末)16;
解析几何(4 题): 汕头一模 20; 第 6 周综合考试(深圳一模)20; 综合训练 3(广州期末)19; 综合训练 6(佛山期末)19;
导数与函数(2 题): 汕头一模 21; 综合训练 2(潮州期末)19;
思维启迪 △PF1F2 中 利 用 余
弦定理求∠F1PF2;
变式训练1 (1)已知椭圆 C:xa22+yb22=1(a>b>0)的离心率为 23.双曲线 x2 -y2=1 的渐近线与椭圆 C 有四个交点,以这四个交点为

§10.5 圆锥曲线的综合问题 高考数学(文科,课标Ⅲ)复习专题

§10.5 圆锥曲线的综合问题 高考数学(文科,课标Ⅲ)复习专题

x2 5
+y2


上,
所以

2 0

+y20

1,
即 x20 +5y20 = 5, 故 λ1 +λ2 = 18.
②当 PA 或 PB 与 x 轴垂直或 y0 = 0 时,也易得 λ1 +λ2 = 18.
综上,λ1 +λ2 为定值.
二、圆锥曲线中最值( 范围) 问题
������������������������������������������������
17 48 ,为定值.
综上,

1 AB



1 CD

为定值.
1-1 (2018 广西南宁测试,20) 已知左焦点为 F( - 1,0) 的
椭圆
C:
x2 a2
+ y2 b2
= 1(a>b>0)经过点
A(2,0) .
(1)求椭圆 C 的方程;
(2)已知直线 l 与椭圆 C 分别交于 M、N ( M、N 在 x 轴异
由①②得
m<-
6 3

m>
6 3

( 2) 令
t=
1 m

æ
ç

è

,0
ö
÷

æ
ç
0,
2 øè
6 2
ö
÷

ø
则 | AB | =
t2 +1 ·
-2t4 +2t2 +
3 2

t2 +
1 2
且 O 到直线 AB 的距离 d =

1 m2
ö
÷
ø
x2

2b m

【新课标】备战高考数学专题复习测试题_圆锥曲线(文科)

【新课标】备战高考数学专题复习测试题_圆锥曲线(文科)

高考第一轮复习专题素质测试题圆锥曲线(文科)班别______学号______姓名_______评价______(考试时间120分钟,满分150分,试题设计:隆光诚)一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确) 1.(10四川)抛物线28y x =的焦点到准线的距离是( )A.1B. 2C. 4D. 8 2.(09湖南)抛物线x y 82-=的焦点坐标是( )A .(2,0) B. (- 2,0) C. (4,0) D. (- 4,0)3.(08宁夏)双曲线221102x y -=的焦距为( )4.(08上海)设P 椭圆2212516x y +=上的点,1F 、2F 是椭圆的两个焦点,则12||||PF PF +等于( )A .4B .5C .8D .10 5.(09安徽)下列曲线中,离心率为26的是( )A. 14222=-y xB. 12422=-y xC. 16422=-y x D. 110422=-y x 6.(08北京)“双曲线的方程为116922=-y x ”是“双曲线的准线方程为x =59±”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(09全国Ⅱ)双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r=( )A.3B.2C.3D.6 8.(10广东)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.54 B.53 C. 52 D. 51 9. (10全国Ⅰ)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060, 则12||||PF PF =( )A.2B.4C. 6D. 810.(08天津)设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12, 则此椭圆的方程为( )A .2211216x y += B .2211612x y +=C .2214864x y +=D .2216448x y += 11.(10福建)若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上点的任意一点,则⋅的最大值为( )A.2B.3C.6D.812.(09全国Ⅰ)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( )A. B.2 C.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上)13.(08上海)若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = . 14.(08全国Ⅰ)在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .15.(09宁夏)已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A ,B 两点,若()2,2P 为AB 的中点,则抛物线C 的方程为 .16.(10天津)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,它的一个焦点与抛物线216y x =的焦点相同.则双曲线的方程为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤) 17.(本题满分10分,10福建19)已知抛物线C 的方程C :px y 22=(p >0)过点)2,1(-A . (I )求抛物线C 的方程,并求其准线方程;(II )是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.18.(本题满分12分,09安徽18)已知椭圆12222=+by a x (a >b >0)的离心率为33,以原点为圆心,椭圆短半轴长半径的圆与直线2+=x y 相切. (Ⅰ)求a 与b ;(Ⅱ)设该椭圆的左、右焦点分别为1F 和2F ,直线1l 过2F 且与x 轴垂直,动直线2l 与y 轴垂直,2l 交1l 与点P. 求线段1PF 垂直平分线与2l 的交点M 的轨迹方程,并指明曲线类型.19.(本题满分12分,08陕西21)已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M是线段AB 的中点,过M 作x 轴的垂线交C 于点N . (Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0=⋅NB NA ,若存在,求k 的值;若不存在,说明理由.20.(本题满分12分,09全国Ⅱ22)已知椭圆2222:1(0)x y C a b a b +=>>过右焦点F的直线l 与C 相交于A 、B 两点,当l 的斜率为1是,坐标原点O 到l 的距离为2(Ⅰ)求,a b 的值;(Ⅱ)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP OA OB =+成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.21.( 本题满分12分,10全国Ⅱ22)已知斜率为1的直线l 与双曲线C :22221(0,0)x y a b a b-=>>相交 于B 、D 两点,且BD 的中点为M(1,3). (Ⅰ)求C 的离心率;(Ⅱ)设C 的右顶点为A ,右焦点为F ,17||||=⋅BF DF ,证明:过A 、B 、D 三点的圆与x 轴相切.22.(本题满分12分,08全国Ⅰ22)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.参考答案:一、选择题答题卡: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C BDDBAABBBCC二、填空题13.1-. 14.21. 15.x y 42=. 16.1124x 22=-y . 三、解答题17.解:(Ⅰ)将)2,1(-A 代入px y 22=,得2=p .故所求的抛物线C 的方程为x y 42=,其准线方程为1-=x .(Ⅱ)2-=OA k ,直线OA 的方程为022=+-=y x x y ,即.假设存在符合题意的直线l ,其方程为022=-++-=t y x t x y ,即.由⎩⎨⎧=+-=xy t x y 422,得0222=-+t y y . 因为直线l 与抛物线C 有公共点,所以得084≥+=∆t ,解得21-≥t . 另一方面,由直线OA 与l 的距离55=d ,可得515||=t ,解得1±=t .因为⎪⎭⎫⎢⎣⎡+∞-∈⎪⎭⎫⎢⎣⎡+∞-∉-,211,,211,所以符合题意的直线l 存在,其方程为012=-+y x .18.解:(Ⅰ)31,33222222=-==∴=a b a a c e e .3222=∴a b . 因为圆222b y x =+与直线2+=x y 相切,所以b r d ===+=2112,3,222==∴a b .因此,2,3==b a .(Ⅱ)由(Ⅰ)知21,F F 两点分别为)0,1(),0,1(-,设M(x 、y)是所求轨迹上的任意点,则点设P 的坐标为),1(y .那么线段1PF 中点为)2,0(yN .从而),2(),2,(1y P F y x NM ==,由02221=+=⋅y x P F NM 得x y 42-=. 所以,点M 的轨迹方程是抛物线x y 42-=(除原点). 19.(Ⅰ)证明:41,212==p y x ,设点M 的坐标为),(00y x . 当0=k 时,点M 在y 轴上,点N 与原点O 重合,抛物线C 在点N 处的切线为x 轴,与AB 平行.当0≠k 时,由p x k AB=⋅01得:40kx =. ∴点N 的横坐标为4k.对22y x =求导得:x y 4'=,从而k kk y =⨯=44)4('. 即抛物线C 在点N 处的切线的斜率等于直线AB 的斜率.故抛物线C 在点N 处的切线与AB 平行.(Ⅱ)解:若0=⋅NB NA ,则NB NA ⊥,即︒=∠90ANB .∴||2||2||2||MN BM AM AB ===.482200+=+=k kx y ,∴816848||2220+=-+=-=k k k y y MN N . 由⎩⎨⎧=+=.2,22x y kx y 得0222=--kx x . 设),(),,(2211y x B y x A ,则1,22121-==+x x kx x . ∴)16)(1(21)44)(1(]4))[(1(||2222212212++=++=-++=k k k k x x x x k AB .∴8162)16)(1(21222+⨯=++k k k . 即4)16()16)(1(2222+=++k k k . 化简,得:416122+=+k k ,即42=k .∴2±=k .故存在实数2±=k ,使0=⋅.20.解:(Ⅰ)设(),0,c F 当l 的斜率为1时,其方程为O c y x ,0=--到l 的距离为2200c c=--,故222=c ,1=c . 由 33==a c e 得 3=a ,22c ab -==2.(Ⅱ)设C 上存在点P ,使得当l 绕F 转到某一位置时,有OB OA OP +=成立.椭圆的方程为12322=+y x ,点F 的坐标为(1,0). 设弦AB 的中点为),(y x Q . 由OB OA OP +=可知,四边形OAPB 是平行四边形,点Q 是线段OP 的中点,点P 的坐标为)2,2(y x ,点P 在椭圆上,∴123422=+y x .……………………………………① 若直线l 的斜率不存在,则x l ⊥轴,这时点Q 与)0,1(F 重合,)0,2(=,点P 不在椭圆上,故直线l 的斜率存在.由点差法公式22ab x y k AB -=⋅得:.321-=⋅-x y x y ∴)(3222x x y --=.…………………………………………②由①和②解得:42,43±==y x . ∴当42,43==y x 时,21-=-=x y k AB ,点P 的坐标为)22,23(,直线l 的方程为022=-+y x ;当42,43-==y x 时,21=-=x y k AB ,点P 的坐标为)22,23(-,直线l 的方程为022=--y x .综上,C 上存在点)22,23(±P 使+=成立,此时l 的方程为022=-±y x .21.解:(Ⅰ)由2200D a b x y k B =⋅得322=a b ,2122=+=∴ab e .(Ⅱ)由(Ⅰ)知,C 的方程为22233x y a -=,a c 2=,)0,2(),0,(a F a A ∴.直线l 的方程为2+=x y ,由⎩⎨⎧=-+=222332ay x x y 得0434222=---a x x . 设),(),,(2211y x D y x B ,则243,222121+-==+a x x x x .|2|3344)2(||122121212121a x a x a ax x y a x BF -=-++-=+-=,同理|2|||2a x DF -=.由17|||BF |=⋅DF 得17|845||)(24|222121=++=++-a a a x x x x . 因为a >0,所以178452=++a a . 解得1a =,或95a =-(舍去), 故6)2742(2]4))[(1(||2212212=⨯+⋅=-++=x x x x k BD ,连结MA ,则由A(1,0),M(1,3)知MA 3=,从而MA=MB=MD ,且MA x ⊥轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切,所以过A 、B 、D 三点的圆与x 轴相切.22.解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴d m 4=. 从而d 3||=,d 4||=,d 5||=.又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x ab y =. ∴.tan a b =α 而.34||||tan 2tan ==∠=OA AB AOB α ∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα ∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .∴451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .。

2023年高考文科数学真题汇编圆锥曲线老师版

2023年高考文科数学真题汇编圆锥曲线老师版

直线AE 旳方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 因此直线BM 旳斜率112131BM y y k -+==-.17.(安徽文)设椭圆E 旳方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 旳坐标为(,0)a ,点B 旳坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 旳斜率为510。

(1)求E 旳离心率e;(2)设点C 旳坐标为(0,-b ),N 为线段AC 旳中点,证明:MN ⊥AB 。

∴a b 3231=5525451511052222222=⇒=⇒=-⇒=⇒e a c a c a a b (Ⅱ)由题意可知N 点旳坐标为(2,2b a -)∴a b a ba a bb K MN 56652322131==-+= abK AB-=∴1522-=-=⋅a b K K AB MN ∴MN ⊥AB18.(福建文)已知椭圆2222:1(0)x y E a b a b+=>>旳右焦点为F .短轴旳一种端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 旳距离不不不小于45,则椭圆E 旳离心率旳取值范围是( A ) A . 3(0,]2 B .3(0,]4 C .3[,1)2 D .3[,1)4119.(新课标2文)已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线旳原则方程为 .2214x y -= 20.(陕西文)已知抛物线22(0)y px p =>旳准线通过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,由于准线通过点(1,1)-,因此2p =, 因此抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.21.(陕西文科)如图,椭圆2222:1(0)x y E a b a b+=>>通过点(0,1)A -,且离心率为22.(I)求椭圆E 旳方程;2212x y += 22.(天津文)已知双曲线22221(0,0)x y a b ab 旳一种焦点为(2,0)F ,且双曲线旳渐近线与圆222y 3x 相切,则双曲线旳方程为( D )(A)221913x y (B) 221139x y (C)2213x y(D) 2213y x23.(广东文)已知中心在原点旳椭圆C 旳右焦点为(1,0)F ,离心率等于21,则C 旳方程是( D )30旳等腰三角形,则122文) 设椭圆221y b 0,0a b 旳一条渐近线平行于直线210x ,双曲线旳上,则双曲线旳方程为( A )2120y (B )221205x y (C )2331100y D )223310025x y 1) 已知双曲线C :221x y (0,0a b >>)旳离心率为52,则C 14x B .13y =±12x ± D .y x[9,)+∞ [9,)+∞ [4,)+∞[4,)+∞【解析】当0m <上存在点M 满足120,则603ab=即33m≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603a b ≥=,即33m ≥,得9m ≥,故m 旳取值范围为(0,1][9,)⋃+∞,选A. 41、(·全国Ⅱ文,5)若a >1,则双曲线x 2a 2-y 2=1旳离心率旳取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)3.【答案】C 【解析】由题意得双曲线旳离心率e =a 2+1a .∴e 2=a 2+1a 2=1+1a 2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e < 2.故选C.42.(·全国Ⅱ文,12)过抛物线C :y 2=4x 旳焦点F ,且斜率为3旳直线交C 于点M (M 在x 轴上方),l 为C 旳准线,点N 在l 上且MN ⊥l ,则M 到直线NF 旳距离为( )A. 5 B .2 2 C .2 3 D .3 34.【答案】C 【解析】抛物线y 2=4x 旳焦点为F (1,0),准线方程为x =-1.由直线方程旳点斜式可得直线MF旳方程为y =3(x -1).联立得方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎨⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴旳上方,∴M (3,23).∵MN ⊥l ,∴N (-1,23).∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4旳等边三角形.∴点M 到直线NF 旳距离为2 3. 故选C.43.(·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)旳左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径旳圆与直线bx -ay +2ab =0相切,则椭圆C 旳离心率为( ) A .63 B .33 C .23 D .135.【答案】A 【解析】由题意知以A 1A 2为直径旳圆旳圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切,∴圆心到直线旳距离d =2aba 2+b 2=a ,解得a =3b , ∴b a =13,∴e =c a =a 2-b 2a = 1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63.44.(·天津文,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)旳右焦点为F ,点A 在双曲线旳渐近线上,△OAF 是边长为2旳等边三角形(O 为原点),则双曲线旳方程为( ) A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=16.【答案】D 【解析】根据题意画出草图如图所示⎝⎛⎭⎫不妨设点A 在渐近线y =ba x 上.由△AOF 是边长为2旳等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线旳渐近线y =b a x 上,∴ba =tan 60°= 3.又a 2+b 2=4,∴a =1,b =3,∴双曲线旳方程为x 2-y 23=1.故选D. 45.(·全国Ⅲ文,14)双曲线x 2a 2-y 29=1(a >0)旳一条渐近线方程为y =35x ,则a =________.1.【答案】5【解析】∵双曲线旳原则方程为x 2a 2-y 29=1(a >0),∴双曲线旳渐近线方程为y =±3a x .又双曲线旳一条渐近线方程为y =35x ,∴a =5.46、(·北京文,10)若双曲线x 2-y 2m=1旳离心率为3,则实数m =________. 【答案】2【解析】由双曲线旳原则方程知a =1,b 2=m ,c =1+m ,故双曲线旳离心率e =ca =1+m =3,∴1+m =3,∴m =2.47、(·全国Ⅱ理,16)已知F 是抛物线C :y 2=8x 旳焦点,M 是C 上一点,FM 旳延长线交y 轴于点N .若M 为FN 旳中点,则|FN |=________.【解析】如图,不妨设点M 位于第一象限内,抛物线C 旳准线交x 轴于点A ,过点M 作准线旳垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 旳中点,PM ∥OF ,∴|MP |=12|FO |=1.1212121111442222BMy y K x x x x ----==---- (1x +=()12200x x ++= 又设AB :y=x +m 代入2x +20=0∴m=7故AB :x +y=7新课标Ⅱ文)设O 为坐标原点,动点M 在椭圆C :x 22+。

高三数学文科圆锥曲线大题训练(20个)(含答案)

高三数学文科圆锥曲线大题训练(20个)(含答案)

高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C x y +=. (1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.2.已知椭圆的中心在坐标原点O,长轴长为离心率2e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ ∆的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.3.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的一个顶点为(2,0)A -(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.4.已知离心率为2的椭圆2222:1(0)x y C a b a b +=>>与直线2x =相交于,P Q 两点(点P 在x 轴上方),且2PQ =.点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ ∠=∠. (1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.5.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. (1)求椭圆的标准方程;(2)设直线()0y kx m k =+≠与椭圆相交于不同的两点M 、N ,当AM AN =时,求m 的取值范围.6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程; (2)求点Q 的轨迹方程;(3)求ABQ ∆面积的最大值及此时点Q 的坐标.7.如图,B A ,分别是椭圆C :)0(12222>>=+b a by a x 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项. (1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A ,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ 垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.8.已知椭圆()2222:10x y C a b a b +=>>()0,1.圆22221:C x y a b +=+.(1)求椭圆C 的方程;(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM +=0是否成立?请说明理由.9.已知抛物线C :22(0)y px p =>的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN =.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN ⋅的最小值.10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C . (1)求曲线C 方程;(2)点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、 Q ,APQ ∆面积的最小值及此时点A 的坐标.11.已知点)1,2(A 在抛物线:E 2x ay =上,直线1:l 1y kx =+(R k ∈,且0k ≠)与抛物线E 相交于C B ,两点,直线AC AB ,分别交直线2:l 1y =-于点S ,T .(1)求a 的值;(2)若S T =1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2(1)求椭圆C 的方程;(2)B A ,为椭圆C 上满足AOB ∆E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OP tOE =,求实数t 的值.13.已知点()2,1P 在抛物线()21:20C x py p =>上,直线l 过点()0,2Q 且与抛物线1C 交于A 、B 两点。

高考数学(文科,通用)复习课件:专题6第3讲圆锥曲线中的热点问题

高考数学(文科,通用)复习课件:专题6第3讲圆锥曲线中的热点问题

∴ S P F1Q =3 -31t +132+43,
∵0<1t <13,∴ S P F1Q ∈(0,3),
∴当直线PQ与x轴垂直时 S P F1Q 最大,且最大面积为3.
设△PF1Q内切圆半径为r,
则S
P F1Q

1 2
(|PF1|+|QF1|+|PQ|)·r与x轴垂直,△PF1Q内切圆面积
设△ABD的面积为S,
则 S=12|AB|·|PD|=8 44+k2k+2 3,
所以 S=
32 4k2+3+
13 ≤ 4k2+3 2
32 4k2+3·
13 =161313, 4k2+3
当且仅当 k=± 210时取等号. 所以所求直线 l1 的方程为 y=± 210x-1.
求最值及参数范围的方法有两种:①根据题目给
(1)定值问题就是在运动变化中寻找不变量的问题,
基本思想是使用参数表示要解决的问题,证明要解
决的问题与参数无关.在这类试题中选择消元的方向
是非常关键的.
思 (2)由直线方程确定定点,若得到了直线方程的点斜
维 升
式:y-y0=k(x-x0),则直线必过定点(x0,y0);若
华 得到了直线方程的斜截式:y=kx+m,则直线必过
最大,
∴P→F2=F→2Q,∴λ=1.
热点二 圆锥曲线中的定值、定点问题
例2 (2012·福建)如图,等边三角形OAB
的边长为8 3,且其三个顶点均在抛物线
E:x2=2py(p>0)上.
(1)求抛物线E的方程;
思维启迪
既然圆过y轴上的点,即满足
→→ MP·MQ
=0,对任意P、Q恒
成立可待定M(0,y1),也可给定特殊的P点,猜想M点坐标, 再证明.

2023年高考数学(文科)一轮复习讲义——圆锥曲线的综合问题 第一课时 定点问题

2023年高考数学(文科)一轮复习讲义——圆锥曲线的综合问题 第一课时 定点问题

第一课时 定点问题题型一 直线过定点问题例1 (2020·全国Ⅰ卷)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →·GB →=8,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.(1)解 由题设得A (-a ,0),B (a ,0),G (0,1). 则AG→=(a ,1),GB →=(a ,-1). 由AG →·GB →=8,得a 2-1=8, 解得a =3或a =-3(舍去). 所以椭圆E 的方程为x 29+y 2=1.(2)证明 设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 易知直线P A 的方程为y =t9(x +3), 所以y 1=t9(x 1+3).易知直线PB 的方程为y =t3(x -3), 所以y 2=t3(x 2-3).可得3y 1(x 2-3)=y 2(x 1+3).① 由于x 229+y 22=1, 故y 22=-(x 2+3)(x 2-3)9,②由①②可得27y 1y 2=-(x 1+3)(x 2+3), 结合x =my +n ,得(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.③ 将x =my +n 代入x 29+y 2=1, 得(m 2+9)y 2+2mny +n 2-9=0. 所以y 1+y 2=-2mnm 2+9,y 1y 2=n 2-9m 2+9.代入③式,得(27+m 2)(n 2-9)-2m (n +3)mn +(n +3)2(m 2+9)=0. 解得n =-3(舍去)或n =32. 故直线CD 的方程为x =my +32, 即直线CD 过定点⎝ ⎛⎭⎪⎫32,0.若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0.综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0.感悟提升 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.训练1 已知点P ⎝ ⎛⎭⎪⎫-1,32是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别是椭圆的左、右焦点,|PF 1|+|PF 2|=4. (1)求椭圆C 的标准方程;(2)设直线l 不经过P 点且与椭圆C 相交于A ,B 两点.若直线P A 与直线PB 的斜率之和为1,问:直线l 是否过定点?证明你的结论. 解 (1)由|PF 1|+|PF 2|=4,得a =2, 又P ⎝ ⎛⎭⎪⎫-1,32在椭圆上,代入椭圆方程有1a 2+94b 2=1,解得b =3,所以椭圆C 的标准方程为x 24+y 23=1. (2)当直线l 的斜率不存在时, 设A (x 1,y 1),B (x 1,-y 1),k 1+k 2=y 1-32-y 1-32x 1+1=1,解得x 1=-4,与椭圆无交点,不符合题意;当直线l 的斜率存在时,设直线l 的方程y =kx +m ,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2-12=0,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2, Δ=48(4k 2-m 2+3)>0. 由k 1+k 2=1,整理得(2k -1)x 1x 2+⎝ ⎛⎭⎪⎫k +m -52(x 1+x 2)+2m -4=0,即(m -4k )(2m -2k -3)=0.当m =k +32时,此时,直线l 过P 点,不符合题意;当m =4k 时,Δ=4k 2-m 2+3>0有解,此时直线l :y =k (x +4)过定点(-4,0).题型二 圆过定点问题例2 (2021·湖南三湘名校联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b ≥1)的离心率为22,它的上焦点到直线bx +2ay -2=0的距离为23. (1)求椭圆C 的方程;(2)过点P ⎝ ⎛⎭⎪⎫13,0的直线l 交椭圆C 于A ,B 两点,试探究以线段AB 为直径的圆是否过定点.若过,求出定点坐标;若不过,请说明理由. 解 (1)由题意得,e =c a =22. 又a 2=b 2+c 2, 所以a =2b ,c =b . 又|2ac -2|4a 2+b 2=23,a >b ≥1,所以b 2=1,a 2=2, 故椭圆C 的方程为y 22+x 2=1.(2)当AB ⊥x 轴时,以线段AB 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -132+y 2=169.当AB ⊥y 轴时,以线段AB 为直径的圆的方程为x 2+y 2=1. 可得两圆交点为Q (-1,0).由此可知,若以线段AB 为直径的圆过定点,则该定点为Q (-1,0). 下证Q (-1,0)符合题意. 设直线l 的斜率存在,且不为0, 其方程设为y =k ⎝ ⎛⎭⎪⎫x -13,代入y 22+x 2=1,并整理得(k 2+2)x 2-23k 2x +19k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 23(k 2+2),x 1x 2=k 2-189(k 2+2), 所以QA →·QB →=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+k 2⎝ ⎛⎭⎪⎫x 1-13⎝ ⎛⎭⎪⎫x 2-13 =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫1-13k 2(x 1+x 2)+1+19k 2=(1+k 2)·k 2-189(k 2+2)+⎝⎛⎭⎪⎫1-13k 2·2k 23(k 2+2)+1+19k 2 =0.故QA→⊥QB →,即Q (-1,0)在以线段AB 为直径的圆上.综上,以线段AB 为直径的圆恒过定点(-1,0).感悟提升 1.定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k =0或k 不存在时.2.圆过定点问题,一般从圆的直径所对的圆心角为直角入手,利用垂直关系找到突破口,从而解决问题.训练2 (2022·江西红色七校联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为22,且椭圆上一点到两个焦点的距离之和为2 2. (1)求椭圆C 的标准方程;(2)过点S ⎝ ⎛⎭⎪⎫-13,0的动直线l 交椭圆C 于A ,B 两点,试问:在x 轴上是否存在一个定点T ,使得无论直线l 如何转动,以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 解 (1)由椭圆的定义可得2a =22, 则a =2,∵椭圆C 的离心率e =c a =22, ∴c =1,则b =a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),由⎩⎪⎨⎪⎧x =my -13,y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立, 则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T , 则TA ⊥TB ,TA →=⎝ ⎛⎭⎪⎫my 1-t -13,y 1,TB →=⎝ ⎛⎭⎪⎫my 2-t -13,y 2,则TA →·TB →=⎝ ⎛⎭⎪⎫my 1-t -13⎝ ⎛⎭⎪⎫my 2-t -13+y 1y 2 =(m 2+1)y 1y 2-m ⎝ ⎛⎭⎪⎫t +13(y 1+y 2)+⎝ ⎛⎭⎪⎫t +132=-16(m 2+1)-m ⎝ ⎛⎭⎪⎫t +13×12m18m 2+9+⎝ ⎛⎭⎪⎫t +132 =⎝ ⎛⎭⎪⎫t +132-(12t +20)m 2+1618m 2+9=0, ∵点T 为定点,∴t 为定值,与m 无关, ∴12t +2018=169,解得t =1,此时TA →·TB→=⎝ ⎛⎭⎪⎫432-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0). 综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .圆锥曲线中的“伴侣点”问题在圆锥曲线的很多性质中,常常出现一对活跃的点A (m ,0)和B ⎝ ⎛⎭⎪⎫a 2m ,0,这一对点总是同时出现在圆锥曲线的对称轴上,形影不离,相伴而行,我们把这对特殊的点形象地称作圆锥曲线的“伴侣点”.圆锥曲线的“伴侣点”在我们研究圆锥曲线的性质中具有重要的地位,蕴涵着圆锥曲线许多有趣的性质. 例 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),设A (m ,0)和B ⎝ ⎛⎭⎪⎫a 2m ,0(0<m <a )是x 轴上的两点,过点A 作斜率不为0的直线l ,使得l 交双曲线于C ,D 两点,作直线BC 交双曲线于另一点E .证明:直线DE 垂直于x 轴. 证明 设点C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 则直线l 的方程为y =y 1x 1-m(x -m ). 把直线l 的方程代入双曲线方程,整理得(b 2x 21-a 2y 21-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -a 2y 21m 2-a 2b 2(x 1-m )2=0, 由b 2x 21-a 2y 21=a 2b 2(点C 在双曲线上),上面方程可化简为(a 2b 2-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -a 2[(y 21+b 2)m 2+b 2x 21-2b 2mx 1]=0, 又因为b 2x 21-a 2y 21=a 2b 2, 所以a 2(y 21+b 2)=b 2x 21,代入上式,方程又可化简为(a 2b 2-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -b 2x 21m 2-a 2b 2x 21+2a 2b 2mx 1=0,由已知,显然a 2b 2-2b 2mx 1+b 2m 2≠0,于是x 1x 2=-x 21m 2+a 2x 21-2a 2mx 1a 2-2mx 1+m 2,因为x 1≠0,得x 2=-x 1m 2+a 2x 1-2a 2ma 2-2mx 1+m 2(*) 同理,直线BC 的方程为y =y 1x 1-a 2m ⎝ ⎛⎭⎪⎫x -a 2m , 所以只要把(*)中m 换成a 2m,就可以得到x 3=-x 1⎝ ⎛⎭⎪⎫a 2m 2+a 2x 1-2a 2a 2m a 2-2a 2m x 1+⎝ ⎛⎭⎪⎫a 2m 2=-x 1m 2+a 2x 1-2a 2m a 2-2mx 1+m 2, 所以x 2=x 3,故直线DE 垂直于x 轴.1.已知抛物线C 的顶点在原点,焦点在坐标轴上,点A (1,2)为抛物线C 上一点. (1)求抛物线C 的方程;(2)若点B (1,-2)在抛物线C 上,过点B 作抛物线C 的两条弦BP 与BQ ,如k BP ·k BQ =-2,求证:直线PQ 过定点.(1)解 若抛物线的焦点在x 轴上,设抛物线方程为y 2=ax ,代入点A (1,2),可得a =4,所以抛物线方程为y 2=4x .若抛物线的焦点在y 轴上,设抛物线方程为x 2=my ,代入点A (1,2),可得m =12,所以抛物线方程为x 2=12y .综上所述,抛物线C 的方程是y 2=4x 或x 2=12y .(2)证明 因为点B (1,-2)在抛物线C 上,所以由(1)可得抛物线C 的方程是y 2=4x .易知直线BP ,BQ 的斜率均存在,设直线BP 的方程为y +2=k (x -1),将直线BP 的方程代入y 2=4x ,消去y ,得 k 2x 2-(2k 2+4k +4)x +(k +2)2=0.设P (x 1,y 1),则x 1=(k +2)2k 2,所以P ⎝⎛⎭⎪⎫(k +2)2k 2,2k +4k . 用-2k 替换点P 坐标中的k ,可得Q ((k -1)2,2-2k ),从而直线PQ 的斜率为2k +4k -2+2k(k +2)2k 2-(k -1)2=2k 3+4k-k 4+2k 3+4k +4=2k-k 2+2k +2,故直线PQ 的方程是 y -2+2k =2k -k 2+2k +2·[x -(k -1)2]. 在上述方程中,令x =3,解得y =2, 所以直线PQ 恒过定点(3,2).2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-3,0),F 2(3,0),且经过点A ⎝ ⎛⎭⎪⎫3,12.(1)求椭圆C 的标准方程;(2)过点B (4,0)作一条斜率不为0的直线l 与椭圆C 相交于P ,Q 两点,记点P 关于x 轴对称的点为P ′.证明:直线P ′Q 经过x 轴上一定点D ,并求出定点D 的坐标.(1)解 由椭圆的定义,可知 2a =|AF 1|+|AF 2|=(23)2+⎝ ⎛⎭⎪⎫122+12=4.解得a =2.又b 2=a 2-(3)2=1.∴椭圆C 的标准方程为x 24+y 2=1. (2)证明 由题意,设直线l 的方程为 x =my +4(m ≠0).设P (x 1,y 1),Q (x 2,y 2),则P ′(x 1,-y 1).由⎩⎨⎧x =my +4,x 24+y 2=1,消去x ,可得(m 2+4)y 2+8my +12=0. ∵Δ=16(m 2-12)>0,∴m 2>12. ∴y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.∵k P ′Q =y 2+y 1x 2-x 1=y 2+y 1m (y 2-y 1).∴直线P ′Q 的方程为 y +y 1=y 2+y 1m (y 2-y 1)(x -x 1).令y =0,可得x =m (y 2-y 1)y 1y 1+y 2+my 1+4.∴x =2my 1y 2y 1+y 2+4=2m ·12m 2+4-8m m 2+4+4=24m-8m+4=1.∴D (1,0).∴直线P ′Q 经过x 轴上定点D ,其坐标为(1,0).3.如图,已知直线l :y =kx +1(k >0)关于直线y =x +1对称的直线为l 1,直线l ,l 1与椭圆E :x 24+y 2=1分别交于点A ,M 和A ,N ,记直线l 1的斜率为k 1.(1)求kk 1的值;(2)当k 变化时,求证:直线MN 恒过定点,并求出该定点的坐标.(1)解 设直线l 上任意一点P (x ,y )关于直线y =x +1对称的点为P 0(x 0,y 0), 直线l 与直线l 1的交点为(0,1),所以l :y =kx +1,l 1:y =k 1x +1,k =y -1x ,k 1=y 0-1x 0, 由y +y 02=x +x 02+1,得y +y 0=x +x 0+2,①由y -y 0x -x 0=-1,得y -y 0=x 0-x ,②由①②得⎩⎪⎨⎪⎧y =x 0+1,y 0=x +1,所以kk 1=yy 0-(y +y 0)+1xx 0=(x +1)(x 0+1)-(x +x 0+2)+1xx 0=1. (2)证明 由⎩⎨⎧y =kx +1,x 24+y 2=1,得 (4k 2+1)x 2+8kx =0,设M (x M ,y M ),N (x N ,y N ),所以x M =-8k 4k 2+1,所以y M =1-4k 24k 2+1.同理可得x N =-8k 14k 21+1=-8k4+k 2,y N =1-4k 214k 21+1=k 2-44+k 2. k MN =y M -y N x M -x N =1-4k 24k 2+1-k 2-44+k 2-8k 4k 2+1--8k4+k 2 =8-8k 48k (3k 2-3)=-k 2+13k , 直线MN :y -y M =k MN (x -x M ),即y -1-4k 24k 2+1=-k 2+13k ⎝ ⎛⎭⎪⎪⎫x --8k 4k 2+1, 即y =-k 2+13k x -8(k 2+1)3(4k 2+1)+1-4k 24k 2+1=-k 2+13k x -53.所以当k 变化时,直线MN 过定点⎝ ⎛⎭⎪⎫0,-53. 4.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是双曲线C 2:x 2m 2-y 2=1的左、右焦点,且C 1与C 2相交于点⎝ ⎛⎭⎪⎫233,33. (1)求椭圆C 1的标准方程;(2)设直线l :y =kx -13与椭圆C 1交于A ,B 两点,以线段AB 为直径的圆是否恒过定点?若恒过定点,求出该定点;若不恒过定点,请说明理由.解 (1)将⎝ ⎛⎭⎪⎫233,33代入x 2m 2-y 2=1,解得m 2=1, ∴a 2=m 2+1=2,将⎝ ⎛⎭⎪⎫233,33代入x 22+y 2b 2=1,解得b 2=1,∴椭圆C 1的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1,整理得(9+18k 2)x 2-12kx -16=0, ∴x 1+x 2=12k 9+18k 2,x 1x 2=-169+18k 2, Δ=144k 2+64(9+18k 2)>0.由对称性可知,以AB 为直径的圆若恒过定点,则定点必在y 轴上. 设定点为M (0,y 0),则MA →=(x 1,y 1-y 0),MB →=(x 2,y 2-y 0) MA →·MB →=x 1x 2+(y 1-y 0)(y 2-y 0) =x 1x 2+y 1y 2-y 0(y 1+y 2)+y 20=x 1x 2+k 2x 1x 2-k 3(x 1+x 2)-y 0⎣⎢⎡⎦⎥⎤k (x 1+x 2)-23+19+y 20 =(1+k 2)x 1x 2-k ⎝ ⎛⎭⎪⎫13+y 0(x 1+x 2)+y 20+23y 0+19 =18(y 20-1)k 2+9y 20+6y 0-159+18k 2=0,∴⎩⎪⎨⎪⎧y 20-1=0,9y 20+6y 0-15=0,解得y 0=1, ∴M (0,1),∴以线段AB 为直径的圆恒过定点(0,1).。

完整版)高三圆锥曲线知识点总结

完整版)高三圆锥曲线知识点总结

完整版)高三圆锥曲线知识点总结第八章《圆锥曲线》专题复一、椭圆方程1.椭圆的第一定义:设F1.F2是平面内两个定点,对于任意点P,有PF1 +PF2 = 2a (a。

0),则称所有满足该性质的点P的轨迹为椭圆。

椭圆的方程为 PF1 + PF2 = 2a,无轨迹为 PF1 + PF2 = 2a,以F1,F2为端点的线段。

2.椭圆的方程形式:①椭圆的标准方程:i。

中心在原点,焦点在x轴上。

x^2/a^2 + y^2/b^2 = 1 (a。

b)。

ii。

中心在原点,焦点在y轴上:x^2/b^2 + y^2/a^2 = 1 (a。

b)。

②一般方程:Ax^2 + By^2 = 1 (A,B不同时为0)。

③椭圆的参数方程:x = a*cosθ,y = b*sinθ (θ ∈ [0,π])。

注意:椭圆参数方程的推导:设点N(acosθ,bsinθ),则有PF1 + PF2 = 2a,即√[(acosθ - c)^2 + (bsinθ)^2] + √[(acosθ + c)^2 + (bsinθ)^2] = 2a,整理得到x = a*cosθ,y = b*sinθ。

3.椭圆的性质:①顶点:(±a,0)或(0,±b)。

②轴:对称轴为x轴,y轴;长轴长2a,短轴长2b。

③焦点:(±c,0)或(0,±c),其中c = √(a^2 - b^2)。

④焦距:F1F2 = 2c,c = √(a^2 - b^2)。

⑤准线:x = ±a/e 或 y = ±b/e,其中e为离心率。

⑥离心率:e = c/a。

⑦焦半径:y = ±(b^2 - x^2)^(1/2) 或 x = ±(a^2 - y^2)^(1/2)。

⑧通径:垂直于x轴且过焦点的弦叫做通径,坐标为(±c,d/2),其中d为通径长度。

4.共离心率的椭圆系的方程:椭圆 x^2/a^2 + y^2/b^2 = 1 的离心率是e = c/a (c = √(a^2 -b^2)),方程 x^2/a^2 + y^2/b^2 = t (t。

圆锥曲线(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)

圆锥曲线(文科)解答题20题-备战高考数学冲刺横向强化精练精讲(解析版)

圆锥曲线(文科)解答题20题1.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.【答案】(1)12;(2)1C :2211612x y+=,2C : 28y x =.【分析】(1)根据题意求出2C 的方程,结合椭圆和抛物线的对称性不妨设,A C 在第一象限,运用代入法求出,,,A B C D 点的纵坐标,根据4||||3CD AB =,结合椭圆离心率的公式进行求解即可;(2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可; 【详解】解:(1)因为椭圆1C 的右焦点坐标为:(c,0)F ,所以抛物线2C 的方程为24y cx =,其中22c a b -不妨设,A C 在第一象限,因为椭圆1C 的方程为:22221x ya b+=,所以当x c =时,有222221c y b y a b a +=⇒=±,因此,A B 的纵坐标分别为2b a ,2b a-;又因为抛物线2C 的方程为24y cx =,所以当x c =时,有242y c c y c =⋅⇒=±, 所以,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⋅=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,3b c =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,3)c ,(0,3)c ,2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =. 所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.2.(2021年全国高考乙卷数学(文)试题)已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,进而可得20025910y x +=,再由斜率公式及基本不等式即可得解. 【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--, 所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++, 当00y =时,0OQ k =; 当00y ≠时,0010925OQ k y y =+, 当00y >时,因为0092530y y +≥, 此时103OQk <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.【点睛】关键点点睛:解决本题的关键是利用平面向量的知识求得点Q 坐标的关系,在求斜率的最值时要注意对0y 取值范围的讨论.3.(2021年全国高考甲卷数学(理)试题)抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析 【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ⊥,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +⋅与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论. 【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-,20,1120,21OP OQ OP OQ y p p ⊥∴⋅=-=-=∴=,所以抛物线C 的方程为2y x =,(0,2),M M 与1x =相切,所以半径为1,所以M 的方程为22(2)1x y -+=;(2)设111222333(),(,),(,)A x y A x y A x y若12A A 斜率不存在,则12A A 方程为1x =或3x =, 若12A A 方程为1x =,根据对称性不妨设1(1,1)A , 则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意; 若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为3)y x -,又131********A A y y k y x x y y -====∴=-+, 330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切; 若直线121323,,A A A A A A 斜率均存在, 则121323121323111,,A A A A A A k k k y y y y y y ===+++, 所以直线12A A 方程为()11121y y x x y y -=-+, 整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=, 直线23A A 的方程为2323()0x y y y y y -++=, 12A A 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-=所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-⋅=--,M 到直线23A A 的距离为:21223122123213|2|21()1()1y y y y y -+=+++--22112222111111(1)4y y y y +===+-+,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切. 【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +⋅与1y 关系,把23,y y 的关系转化为用1y 表示.4.(2019年全国统一高考数学试卷(理科)(新课标Ⅲ))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或2【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则21221,1d t d t =+=+.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =.又因为212y x =,所以y'x =.则切线DA 的斜率为1x ,故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-=+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭,由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0=t 或1t =±.当0=t 时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.5.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点. (1)若2POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(1) 31e =;(2)4b =,a 的取值范围为[42,)+∞. 【分析】(1)先连结1PF ,由2POF 为等边三角形,得到1290F PF ∠=,2PF c =,13PF c =;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点(,)P x y 存在,当且仅当12162y c ⋅=,1y yx c x c⋅=-+-,22221x y a b +=,根据三个式子联立,结合题中条件,即可求出结果. 【详解】(1)连结1PF ,由2POF 为等边三角形可知:在12F PF △中,1290F PF ∠=,2PF c =,13PF c ,于是1223a PF PF c c =+=, 故椭圆C 的离心率为3113c e a ===+; (2)由题意可知,满足条件的点(,)P x y 存在,当且仅当12162y c ⋅=,1y y x c x c⋅=-+-,22221x y a b +=, 即16c y = ① 222x y c += ②22221x y a b += ③ 由②③以及222a b c =+得422b y c =,又由①知22216y c=,故4b =;由②③得22222()a x c b c=-,所以22c b ≥,从而2222232a b c b =+≥=,故42a ≥当4b =,42a ≥P . 故4b =,a 的取值范围为[42,)+∞. 【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.【答案】(1)2或6; (2)见解析. 【分析】(1)设(),A t t -,(),B t t -,根据AB 4=,可知t =M 必在直线y x =上,可设圆心(),M a a ;利用圆心到20x +=的距离为半径和MA MB r ==构造方程,从而解出r ;(2)当直线AB 斜率存在时,设AB 方程为:y kx =,由圆的性质可知圆心M 必在直线1=-y x k 上;假设圆心坐标,利用圆心到20x +=的距离为半径和r MA =构造方程,解出M 坐标,可知M 轨迹为抛物线;利用抛物线定义可知()1,0P 为抛物线焦点,且定值为1;当直线AB 斜率不存在时,求解出M 坐标,验证此时()1,0P 依然满足定值,从而可得到结论. 【详解】 (1)A 在直线0x y +=上 ∴设(),A t t -,则(),B t t -又AB 4= 2816t ∴=,解得:t =M 过点A ,B ∴圆心M 必在直线y x =上设(),M a a ,圆的半径为rM 与20x +=相切 2r a ∴=+又MA MB r ==,即((222a a r +=((()2222a a a ∴+=+,解得:0a =或4a =当0a =时,2r ;当4a =时,6r =M ∴的半径为:2或6(2)存在定点()1,0P ,使得1MA MP -= 说明如下:A ,B 关于原点对称且AB 4=∴直线AB 必为过原点O 的直线,且2OA =①当直线AB 斜率存在时,设AB 方程为:y kx = 则M 的圆心M 必在直线1=-y x k上设(),M km m -,M 的半径为rM 与20x +=相切 2r km ∴=-+又222224r MA OA OMk m m ==+++22224km k m m ∴-+++,整理可得:24m km =-即M 点轨迹方程为:24y x =,准线方程为:1x =-,焦点()1,0FMA r =,即抛物线上点到2x =-的距离 ∴1MA MF =+ 1MA MF ∴-=∴当P 与F 重合,即P 点坐标为()1,0时,1MA MP -=②当直线AB 斜率不存在时,则直线AB 方程为:0x =M ∴在x 轴上,设(),0M n224n n ∴++0n =,即()0,0M 若()1,0P ,则211MA MP -=-=综上所述,存在定点()1,0P ,使得MA MP -为定值. 【点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决本定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,进而验证定值符合所有情况,使得问题得解.7.(2019年北京市高考数学试卷(文科))已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点. 【答案】(Ⅰ)2212x y +=;(Ⅱ)见解析. 【分析】(Ⅰ)由题意确定a ,b 的值即可确定椭圆方程;(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM ,ON 的表达式,结合韦达定理确定t 的值即可证明直线恒过定点. 【详解】(Ⅰ)因为椭圆的右焦点为(1,0),所以1225; 因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=. (Ⅱ)设1122(,),(,)P x y Q x y联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k-=+++=+. 直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-. 因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0=t ,所以直线方程为y kx =,所以直线l 恒过定点(0,0). 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭ 当203y ≠时,∴直线CD 的方程为:0022*******22000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020年北京市高考数学试卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 【答案】(Ⅰ)22182x y +=;(Ⅱ)1.【分析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值. 【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦ 2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.10.(2020年天津市高考数学试卷)已知椭圆22221(0)x y a b a b +=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【分析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解. 【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=, 所以,椭圆的方程为221189x y +=; (Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥, 根据题意可知,直线AB 和直线CP 的斜率均存在,设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++,所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121kk k -⎛⎫ ⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程. 11.(2020年新高考全国卷Ⅰ数学高考试题(山东))已知椭圆C :22221(0)x y a b a b+=>>2()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【详解】(1)由题意可得:2222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2) 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()22212k 4260x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为2,1A ()不在直线MN 上,所以210k m +-≠, 故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==, 若D 与P 重合,则12DQ AP =, 故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.【点睛】关键点点睛:本题的关键点是利用AM AN ⊥得 ·0AM AN =,转化为坐标运算,需要设直线MN 的方程,点()()1122,,,M x y N x y ,因此需要讨论斜率存在与不存在两种情况,当直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,与椭圆方程联立消去y 可12x x +,12x x 代入·0AM AN =即可,当直线MN 的斜率不存在时,可得()11,N x y -,利用坐标运算以及三角形的性质即可证明,本题易忽略斜率不存在的情况,属于难题. 12.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1) y =x –1,(2)()()223216x y -+-=或()()22116144x y -++=. 【详解】分析:(1)根据抛物线定义得12AB x x p =++,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线l 的方程;(2)先求AB 中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.详解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由()214y k x y x ⎧=-⎨=⎩得()2222240k x k x k -++=. 216160k ∆=+=,故212224k x x k ++=.所以()()21224411k AB AF BF x x k +=+=+++=. 由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为()23y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则()()002200051116.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为()()223216x y -+-=或()()22116144x y -++=.点睛:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(),a b 和半径r 有关,则设圆的标准方程依据已知条件列出关于,,a b r 的方程组,从而求出,,a b r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.13.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠. 【答案】(1)112y x =+或112y x =--;(2)见解析. 【分析】(1)首先根据l 与x 轴垂直,且过点()20A ,,求得直线l 的方程为2x =,代入抛物线方程求得点M 的坐标为()2,2或()2,2-,利用两点式求得直线BM 的方程;(2)设直线l 的方程为2x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立. 【详解】(1)当l 与x 轴垂直时,l 的方程为2x =,可得M 的坐标为()2,2或()2,2-. 所以直线BM 的方程为112y x =+或112y x =--; (2)设l 的方程为2x ty =+,()11,M x y 、()22,N x y ,由222x ty y x =+⎧⎨=⎩,得2240y ty --=,可知122y y t +=,124y y =-. 直线BM 、BN 的斜率之和为()()()()()()()()21122112121212122244222222BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()1212121224244202222ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补,所以ABM ABN ∠=∠.综上,ABM ABN ∠=∠. 【点睛】该题考查的是有关直线与抛物线的问题,涉及到的知识点有直线方程的两点式、直线与抛物线相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.14.(2018年全国卷Ⅲ文数高考试题文档版)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+. 【答案】(1)证明见解析 (2)证明见解析 【详解】分析:(1)设而不求,利用点差法,或假设直线方程,联立方程组,由判别式和韦达定理进行证明.(2)先求出点P 的坐标,解出m ,得到直线l 的方程,联立直线与椭圆方程由韦达定理进行求解.详解:(1)设()11A x y ,,()22B x y ,,则2211143x y +=,2222143x y +=. 两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m =-.由题设得211,043m m +<>∴302m <<,故12k <-. (2)由题意得F (1,0).设()33P x y ,,则()()()()33112211100x y x y x y -+-+-=,,,,. 由(1)及题设得()31231x x x =-+=,()31220y y y m =-+=-<. 又点P 在C 上,所以34m =,从而312P ⎛⎫- ⎪⎝⎭,,3||=2FP . 于是()()222211111||1131242x xFA x y x ⎛⎫=-+-+-- ⎪⎝⎭.同理2||=22x FB -. 所以()121|43|||2FA FB x x +=-+=. 故2||=||+||FP FA FB .点睛:本题主要考查直线与椭圆的位置关系,第一问利用点差法,设而不求可减小计算量,第二问由已知得求出m ,得到FP ,再有两点间距离公式表示出,FA FB ,考查了学生的计算能力,难度较大.15.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版))设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析. 【详解】(1)设P (x ,y ),M (00,x y ),则N (0,0x ),00NP (x ,),NM 0,x y y =-=()由NP 2NM =得00x x y y ==,. 因为M (00,x y )在C 上,所以22x 122y +=. 因此点P 的轨迹为222x y +=.由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则()()OQ 3t PF 1m n OQ PF 33m tn =-=---⋅=+-,,,,, ()OP m n PQ 3m t n ==---,,(,).由OP PQ 1⋅=得-3m-2m +tn-2n =1,又由(1)知222m n +=,故3+3m-tn=0.所以OQ PF 0⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,21运用推理,到最后必定参数统消,定点、定值显现.16.(2017年全国1卷(文数))设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1;(2)y =x +7. 【分析】(1)设A (x 1,y 1),B (x 2,y 2),直线AB 的斜率k =1212y y x x --=124x x+,代入即可求得斜率;(2)由(1)中直线AB 的斜率,根据导数的几何意义求得M 点坐标,设直线AB 的方程为y =x +m ,与抛物线联立,求得根,结合弦长公式求得AB ,由AM BM ⊥知,|AB |=2|MN |,从而求得参数m . 【详解】解:(1)设A (x 1,y 1),B (x 2,y 2),则x 1≠x 2,y 1=214x ,y 2=224x ,x 1+x 2=4,于是直线AB 的斜率k =1212y y x x --=124x x+=1.(2)由y =24x ,得y ′=2x .设M (x 3,y 3),由题设知32x =1,解得x 3=2,于是M (2,1). 设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =24x 得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±1m + 从而|AB |2x 1-x 2|=()421m +由题设知|AB |=2|MN |,即()421m +2(m +1), 解得m =7.所以直线AB 的方程为y =x +7.17.(2016年全国2卷(文数))已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.试卷第22页,共26页(Ⅰ)当AM AN =时,求AMN 的面积 (Ⅱ) 当2AM AN =时,证明:32k <<. 【答案】(Ⅰ)14449;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示AM ,同理用k 表示AN ,再由2AM AN =求k 的取值范围. 试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又(2,0)A -,因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =.因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (Ⅱ)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故22121212134k AM x k k+=++=+. 由题设,直线AN 的方程为,故同理可得2121k k AN +=. 由2AM AN =得222343+4kk k =+,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22()121233(21)0f t t t t +=-'=-≥,所以()f t 在(0,)+∞单调递增.又(3)153260,(2)60f f ==,因此()f t 在(0,)+∞有唯一的零点,且零点k 在(3,2)32k <. 【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】对于直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立进行求解,注意计算的准确性.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.2318.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【答案】(1)2;(2)没有. 【分析】(Ⅰ)先确定2,,t N t ON p ⎛⎫ ⎪⎝⎭的方程为py x t =,代入22y px =整理得2220px t x -=,解得21220,t x x p ==,因此22(,2)t H t p ,所以N 为OH 的中点,即||2||OH ON =. (Ⅱ)直线MH 的方程为2py t x t-=,与22y px =联立得22440y ty t -+=,解得122y y t ==,即直线MH 与C 只有一个公共点,即可得出结论.【详解】(Ⅰ)由已知得()20,,,2t M t P t p ⎛⎫⎪⎝⎭. 又N 为M 关于点P 的对称点,故2,,t N t ON p ⎛⎫ ⎪⎝⎭的方程为py x t =,代入22y px =整理得2220px t x -=, 解得21220,t x x p ==,因此22(,2)t H t p, 所以N 为OH 的中点,即||2||OH ON =. (Ⅱ)直线MH 与C 除H 以外没有其它公共点. 理由如下: 直线MH 的方程为2py t x t-=,即2()t x y t p =-,代入22y px =,得22440y ty t -+=,解得122y y t ==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点. 【点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系试卷第24页,共26页是一个很宽泛的考试内容,主要由求值、求方程、求定值、求最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.19.(2021·新疆昌吉·高三阶段练习(文))已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分別为12,A A ,右焦点为F (1,0),且椭圆C 的离心率为12,M ,N 为椭圆C 上任意两点,点P 的坐标为(4,t )(t ≠0),且满足1122,AM MP A N NP λλ==. (1)求椭圆C 的方程; (2)证明:M ,F ,N 三点共线. 【答案】(1)22143x y +=; (2)证明见解析. 【分析】(1)根据椭圆的焦点坐标及离心率求椭圆参数,写出椭圆方程即可.(2)设()()1122,,,M x y N x y ,由题设易知1,,A M P 共线,2,,A N P 共线,利用向量共线的坐标表示有()()22112222292x y y x +=-,再由M ,N 在椭圆上可得()12122580x x x x -++=,最后由11(1,)FM x y =-,22(1,)FN x y =-结合分析法证明结论. (1)椭圆C 的右焦点为(1,0)F ,且离心率为12,∴a =2,c =1,则b 2=a 2-c 2=3, ∴椭圆C 的方程为22143x y +=.(2)由(1)知,12,A A 的坐标分别为(2,0),(2,0)-,设()()1122,,,M x y N x y , ∴111(2,)AM x y =+,1(6,)A P t =,222(2,)A N x y =-,2(2,)A P t =, ∵11AM MP λ=,22A N NP λ=,25∴1,,A M P 三点共线,2,,A N P 三点共线,即()()11226222y t x y t x ⎧=+⎪⎨=-⎪⎩,整理得1122322y x y x +=-,两边平方得()()22112222292x y y x +=-,① 又M ,N 在椭圆上,则22112222334334y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,代入①并化简得()12122580x x x x -++=,又11(1,)FM x y =-,22(1,)FN x y =-,∴要证M ,F ,N 三点共线,只需证()()211211y x y x -=-,即112211y x y x -=-,只需证()112221321x x x x +-=--,整理得()12122580x x x x -++=,∴M ,F ,N 三点共线. 【点睛】关键点点睛:第二问,设()()1122,,,M x y N x y ,由向量共线得1122322y x y x +=-,利用分析法结合向量共线的坐标表示只需证112211y x y x -=-,最后由M ,N 在椭圆上求证即可.20.(2021·宁夏·石嘴山市第三中学高三阶段练习(文))已知椭圆C :()222210x y a b a b +=>>的左焦点为F ,离心率为12,过点F 且垂直于x 轴的直线交C 于,A B 两点,3AB =(1)求椭圆的标准方程;(2)若直线l 过点()4,0M -且与椭圆相交于A ,B 两点,求ABF 面积最大值及此时直线l 的斜率. 【答案】 (1)22143x y += (2332114± 【分析】(1)根据题意得22221223c a ba abc ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,再解方程即可得答案; (2)设直线l 的方程为4x my =-,设()11,A x y ,()22,B x y ,进而将直线l 的方程与椭圆试卷第26页,共26页方程联立,并结合韦达定理得ABFS =,再令)0t t =>,结合基本不等式求解即可. (1)解:由题知:2222122231c a a bb ac a b c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎪⎩ 所以椭圆22:143x y C +=.(2)设直线l 的方程为4x my =-,设()11,A x y 、()22,B x y ,与椭圆方程联立得224143x my x y =-⎧⎪⎨+=⎪⎩,消去x 得()223424360m y my +-+=.则()()2225764363414440m m m ∆=-⨯+=->,所以24m >.由根与系数的关系知1222434m y y m +=+,1223634y y m =+,所以1232ABFSy y =-=①令)0t t =>,则①式可化为21818163163ABFt St t t ==++当且仅当163t t =,即t =.此时3m =±l的斜率为14±.27。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1高三文科数学专题复习之圆锥曲线 知识归纳: 名 称 椭圆双曲线图 象xOyxOy定 义平面内到两定点21,F F 的距离的和为常数(大于21F F )的动点的轨迹叫椭圆即a MF MF 221=+当2a ﹥2c 时,轨迹是椭圆,当2a =2c 时,轨迹是一条线段21F F当2a ﹤2c 时,轨迹不存在平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线即122MF MF a -=当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射线 当2a ﹥2c 时,轨迹不存在标准方 程 焦点在x 轴上时: 12222=+by a x焦点在y 轴上时:12222=+bx a y注:根据分母的大小来判断焦点在哪一坐标轴上焦点在x 轴上时:12222=-by a x焦点在y 轴上时:12222=-b x a y常数cb a ,,的关 系 222b c a +=,0>>b a ,a 最大,bc b c b c ><=,,222b a c +=,0>>a cc 最大,可以b a b a b a ><=,,渐近线焦点在x 轴上时:0x ya b ±= 焦点在y 轴上时:0y xa b±=抛物线:2图形xyO FlxyO Fl方程)0(22>=p px y )0(22>-=p px y)0(22>=p py x )0(22>-=p py x焦点 )0,2(p )0,2(p -)2,0(p)2,0(p -准线 2p x -= 2p x =2p y -=2p y =(一)椭圆1. 椭圆的性质:由椭圆方程)0(12222>>=+b a by a x(1)范围:a x b -a ,x a ≤≤≤≤-,椭圆落在b y ±=±=a ,x 组成的矩形中。

(2)对称性:图象关于y 轴对称。

图象关于x 轴对称。

图象关于原点对称。

原点叫椭圆的对称中心,简称中心。

x 轴、y 轴叫椭圆的对称轴。

从椭圆的方程中直接可以看出它的范围,对称的截距。

(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。

加两焦点)0,(),0,(21c F c F -共有六个特殊点。

21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。

长分别为b a 2,2。

b a ,分别为椭圆的长半轴长和短半轴长。

椭圆的顶点即为椭圆与对称轴的交点。

(4)离心率:椭圆焦距与长轴长之比。

a ce =⇒2)(1ab e -=。

10<<e 。

椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例。

,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为是椭圆在1=e 时的特例。

2. 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆。

其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。

椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 3. 椭圆的准线方程对于12222=+b y a x ,左准线c a x l 21:-=;右准线c a x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c a y l 22:=3焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数)(二)双曲线的几何性质: 1. (1)范围、对称性由标准方程12222=-by a x ,从横的方向来看,直线x =-a,x =a 之间没有图象,从纵的方向来看,随着x的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。

双曲线不封闭,但仍称其对称中心为双曲线的中心。

(2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a,a 叫做实半轴长。

虚轴:21B B 长为2b ,b 叫做虚半轴长。

双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。

(3)渐近线过双曲线12222=-by a x 的渐近线x a b y ±=(0=±b ya x )(4)离心率双曲线的焦距与实轴长的比aca c e ==22,叫做双曲线的离心率 范围:e>1 双曲线形状与e 的关系:1122222-=-=-==e ac a a c a b k ,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。

由此可知,双曲线的离心率越大,它的开口就越阔。

2. 等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线。

等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e 。

3. 共渐近线的双曲线系如果已知一双曲线的渐近线方程为x a b y ±=)0(>±=k x kakb,那么此双曲线方程就一定是:)0(1)()(2222>±=-k kb y ka x 或写成λ=-2222b y a x 。

4. 共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。

区别:三量a,b,c 中a,b 不同(互换)c 相同。

共用一对渐近线。

双曲线和它的共轭双曲线的焦点在同一圆上。

确定双曲线的共轭双曲线的方法:将1变为-1。

5. 双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c ace 的点的轨迹是双曲线。

其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线。

常数e 是双曲线的离心率。

46. 双曲线的准线方程:对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 21:-=,相对于右焦点)0,(2c F 对应着右准线ca x l 22:=;焦点到准线的距离cb p 2=(也叫焦参数)。

对于12222=-b x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 21:-=;相对于上焦点),0(2c F 对应着上准线ca y l 22:=。

(三)抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y )满足不等式x ≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。

(2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。

(3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y =0时,x =0,因此抛物线()022>=p px y 的顶点就是坐标原点。

(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示。

由抛物线的定义可知,e =1。

【典型例题】例1. 根据下列条件,写出椭圆方程(1)中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8; (2)和椭圆9x2+4y2=36有相同的焦点,且经过点(2,-3);(3)中心在原点,焦点在x 轴上,从一个焦点看短轴两端的视角为直角,焦点到长轴上较近顶点的距离是510-。

分析:求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a2=b2+c2及已知条件确定a2、b2的值进而写出标准方程。

解:(1)焦点位置可在x 轴上,也可在y 轴上5因此有两解:112x 16y 112y 16x 2222=+=+或(2)焦点位置确定,且为(0,5±),设原方程为22221y x a b+=,(a>b>0),由已知条件有⎪⎩⎪⎨⎧=+=-14952222b ab a 10,1522==⇒b a ,故方程为110x 15y 22=+。

(3)设椭圆方程为12222=+by a x ,(a>b>0)由题设条件有⎩⎨⎧-=-=510c a cb 及a2=b2+c2,解得b =10,5=a故所求椭圆的方程是15y 10x 22=+。

例2. 直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上? 解:把1+=kx y 代入1322=-y x整理得:022)3(22=---ax x a ……(1) 当3±≠a 时,2424a -=∆由∆>0得6a 6<<-且3±≠a 时,方程组有两解,直线与双曲线有两个交点若A 、B 在双曲线的同一支,须32221-=a x x >0,所以3〈-a 或3>a 。

故当36-<<-a 或63<<a 时,A 、B 两点在同一支上;当33<<-a 时,A 、B 两点在双曲线的两支上。

例3. 已知抛物线方程为)1x (p 2y 2+=(p>0),直线m y x l =+:过抛物线的焦点F 且被抛物线截得的弦长为3,求p 的值。

解:设l 与抛物线交于1122(,),(,),|| 3.A x y B x y AB =则 由距离公式|AB|=|y y |2|y y |k11)y y ()x -(x 21212221221-=-+=-+6则有2129().2y y -=由02y x ,)1(221222=-+⎪⎩⎪⎨⎧+=+-=+p py ,x p y p y x 得消去.,2.04)2(2212122p y y p y y p p -=-=+∴>+=∆从而212212214)()(y y y y y y -+=-即294)2(22=+-p p 由于p>0,解得43=p例4. 过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y=21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.解法一:由e=22=a c ,得21222=-ab a ,从而a2=2b2,c=b. 设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上. 则x12+2y12=2b2,x22+2y22=2b2,两式相减得, (x12-x22)+2(y12-y22)=0,.)(221212121y y x x x x y y ++-=--设AB 中点为(x0,y0),则kAB=-2y x , 又(x0,y0)在直线y=21x 上,y0=21x0,于是-2y x =-1,kAB=-1, 设l 的方程为y=-x+1.右焦点(b,0)关于l 的对称点设为(x ′,y ′), ⎩⎨⎧-='='⎪⎪⎩⎪⎪⎨⎧++'-='=-''b y x b x y bx y 11 1221解得则 由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=89,1692=a . ∴所求椭圆C 的方程为2291698y x + =1,l 的方程为y=-x+1. 解法二:由e=21,22222=-=a b a a c 得,从而a2=2b2,c=b. 设椭圆C 的方程为x2+2y2=2b2,l 的方程为y=k(x -1),BAy=12xoy xF 2F 17将l 的方程代入C 的方程,得(1+2k2)x2-4k2x+2k2-2b2=0, 则x1+x2=22214k k +,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-2212kk +.直线l :y=21x 过AB 的中点(2,22121y y x x ++),则2222122121k k k k +⋅=+-, 解得k=0,或k=-1.若k=0,则l 的方程为y=0,焦点F(c,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k=0舍去,从而k=-1,直线l 的方程为y=-(x -1),即y=-x+1,以下同解法一. 解法3:设椭圆方程为)1()0(12222>>=+b a b y a x直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾。

相关文档
最新文档