2018中考数学试题分类汇编考点16二次函数含解析

合集下载

2018数学中考专题之二次函数解析式(含答案)

2018数学中考专题之二次函数解析式(含答案)

中考专题之二次函数的解析式二次函数是初中数学中考题的一个重要内容,而熟练地求出二次函数的解析式是解决其他二次函数问题的重要保证。

二次函数的定义:二次函数的解析式有三种基本形式:1、一般式:)0(2≠++=a c bx ax y 。

2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h ,k)为顶点,对称轴为直线x=h 。

3、交点式(两根式):y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。

求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。

2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。

3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。

常见题型:一、根据定义求值例1、若1222)(--+=m m x m m y 是二次函数,则m=_____________提醒:一定要注意二次项系数不为0。

二、开放性例2、经过点A (0,3)的抛物线解析式为____________________提示:这种题目,最好设最简单的解析式2ax y =三、平移型例3:将253212++=x x y 的图象是由221x y =怎样平移得到的? 提示:这类平衡问题,由于平移时,抛物线上任何一点平移的方向距离都相同,所以解决这类问题一般观察特殊点(比如顶点),根据特殊点的平移情况来判断平移情况。

四、压轴题中求解析式举例例4、抛物线过过A(-2,0)、B (-3,3)及原点O ,求抛物线的解析式。

分析:此三点不是特殊点,所以用待定系数法直接代入即可。

例5、已知)0(12≠++=a bx ax y 过点A (0,21-)、B (2,0),求函数解析式。

分析:此解析式含两个未知系数,所以将两个点代入得到二元一次方程组可求出解析式;但同时,我们观察出,这两个点比较特殊,是与x 轴的两个交点,所以可以采用交点式求解。

2018年中考数学真题汇编二次函数(含答案)

2018年中考数学真题汇编二次函数(含答案)

中考数学真题汇编:二次函数一、选择题1.给出以下函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y 随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B3.关于二次函数,以下说法正确的选项是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右边C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如下图,以下结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C5.假设抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,取得的抛物线过点( )A. B. C. D.【答案】B6.假设抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。

已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,取得的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时刻t(s)知足函数表达式h=﹣t2+24t+1.那么以下说法中正确的选项是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,假设二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),那么①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部份,与轴的交点在点和之间,对称轴是.关于以下说法:①;②;③;④(为实数);⑤当时,,其中正确的选项是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且通过第三象限的点P.假设点P的横坐标为-1,那么一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同窗在研究函数(b,c是常数)时,甲发觉当时,函数有最小值;乙发觉是方程的一个根;丙发觉函数的最小值为3;丁发觉当时,.已知这四位同窗中只有一名发觉的结论是错误的,那么该同窗是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如下图,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。

人教全国各地中考数学分类:二次函数综合题汇编含答案解析

人教全国各地中考数学分类:二次函数综合题汇编含答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1, ∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0), 将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等, ∴(m-x 0)2+(n-y 0)2=(n+1)2, ∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1. ∵M (m ,n )为抛物线上一动点,∴n=14m 2-m+1, ∴m 2-2x 0m+x 02-2y 0(14m 2-m+1)+y 02=2(14m 2-m+1)+1, 整理得:(1-12-12y 0)m 2+(2-2x 0+2y 0)m+x 02+y 02-2y 0-3=0. ∵m 为任意值,∴000220001110222220230y x y x y y ⎧--⎪⎪-+⎨⎪+--⎪⎩===, ∴0021x y ⎧⎨⎩==, ∴定点F 的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P 的位置;(3)根据点M 到直线l 的距离与点M 到点F 的距离总是相等结合二次函数图象上点的坐标特征,找出关于x 0、y 0的方程组.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元. 【解析】 【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论. (2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题. 【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100, 解得:x =40, 60﹣40=20元,答:这一星期中每件童装降价20元; (2)设利润为w ,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).(Ⅰ)求二次函数的解析式及点A,B的坐标;(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q553)M (1,8),N(2,13)或M′(3,8),N′(2,3).【解析】【分析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).把点Q′坐标代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=5或5(舍弃),∴Q(5,45).(Ⅲ)如图,作MK⊥对称轴x=2于K.①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.∵此时点M的横坐标为1,∴y=8,∴M(1,8),N(2,13),②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,此时M′的横坐标为3,可得M′(3,8),N′(2,3).【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.4.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(3)y=﹣x+3;P点到直线BC 92,此时点P的坐标为(32,154).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,得10930b cb c-++=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的表达式为y=﹣x2+2x+3;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC=2232OB OC+=,∴P点到直线BC的距离的最大值为272928832⨯=,此时点P的坐标为(32,154).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.5.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.6.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0). 【解析】 【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题; (3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ POAC OC=时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3, ∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6), 把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b , 把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩, ∴直线AB 的解析式为y =2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n ,把M (t ,0)代入得2t+n =0,解得n =﹣2t ,∴直线MN 的解析式为y =2x ﹣2t , 解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+ 21(t 3)33=--+, 当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO ,∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=, 解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0);解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【点睛】 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.7.如图,抛物线22y ax bx =++交x 轴于A (1,0)-,(4,0)B 两点,交y 轴于点C ,与过点C 且平行于x 轴的直线交于另一点221(6)()82x x -+=,点P 是抛物线上一动点. (1)求抛物线解析式及点D 的坐标;(2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标;(3)过点P 作直线CD 的垂线,垂足为Q ,若将CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出此时点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;点D 坐标为(32),; (2)P 1(0,2); P 2(412,-2);P 3(3412-,-2) ; (3)满足条件的点P 13 132),(13-132). 【解析】【分析】1)用待定系数法可得出抛物线的解析式,令y=2可得出点D 的坐标(2)分两种情况进行讨论,①当AE 为一边时,AE ∥PD,②当AE 为对角线时,根据平行四边形对顶点到另一条对角线距离相等,求解点P 坐标(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),分情况讨论,①当P 点在y 轴右侧时,②当P 点在y 轴左侧时,运用解直角三角形及相似三角形的性质进行求解即可【详解】解:(1)∵抛物线22y ax bx =++经过A (10)-,,B (40),两点, ∴2016420a b a b -+=⎧⎨++=⎩,解得:12a =-,32b =, ∴抛物线解析式为:213222y x x =-++; 当2y =时,2132222x x -++=,解得:13x =,20x =(舍),即:点D 坐标为(32),.(2)∵A ,E 两点都在x 轴上,∴AE 有两种可能:①当AE 为一边时,AE ∥PD ,此时点P 与点C 重合(如图1),∴1(0,2)P , ②当AE 为对角线时,P 点、D 点到直线AE (即x 轴)的距离相等,∴P 点的纵坐标为2-(如图2),把2y =-代入抛物线的解析式,得:2132222x x -++=-, 解得:13412x =,23412x =, ∴P 点的坐标为3+41(2)-,341(2)2-, 综上所述:1(0,2)P ; 2P 3+412)-;3P 341(2)2- . (3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F , 点P 的坐标为(a ,213222a a -++), ①当P 点在y 轴右侧时(如图3),p CQ x a ==,2132(2)22c p PQ y y a a =-=--++=21322a a -, 又∵CQ O FQ P ''∠+∠=18018090CQ P PQC '︒-∠=︒-∠=︒,90CQ O OCQ ''∠+∠=︒∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒,∴COQ Q FP '', ∴'''Q C Q P CO Q F=, ∵Q C CQ a '==,2CO =,Q P PQ '==21322a a -,∴213222'a a a Q F-=,∴'3Q F a =-,∴(3)OQ OF Q F a a ''=-=--3=,CQ =CQ '2222'2313CO OQ +=+= 即13a =,∴点p 139132-), ②当p 点在y 轴左侧时(如图4),此时0a <,2132022a a -++<,CQ =P x =a -, PQ =2-(213222a a -++)=21322a a -, 又∵90CQ O FQ P CQ P PQC '''∠+∠=∠=∠=︒,90CQ O OCQ ''∠+∠=︒, ∴FQ P OCQ ''∠=∠,又90COQ Q FP ''∠=∠=︒∴COQ Q FP '',∴'''Q C Q P CO Q F=, ∵Q C CQ a '==-,2CO =,Q P PQ '==21322a a -, ∴213222'a a a Q F--=,∴'3Q F a =-, ∴3()3OQ Q F OF a a ''=-=---=,CQ =CQ '2222'2313CO OQ +=+= 此时13a =P 的坐标为(13913--). 综上所述,满足条件的点P 139132-+),(13-913--). 【点睛】此题考查二次函数综合题,解题关键在于运用待定系数法的出解析式,难度较大8.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=1 6-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x -=答:两排灯的水平距离最小是43考点:二次函数的实际应用.9.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 26abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m-++(),∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.10.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式; (2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为49、151296±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213. 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A(﹣4,0),B(1,0)代入y=ax2+2x+c,得168020a ca c-+=⎧⎨++=⎩,解得:2383ac⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x+-,∵过点B的直线y=kx+23,∴代入(1,0),得:k=﹣23,∴BD解析式为y=﹣2233x+;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,即52=52,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC =3CFP O,即523=103t,解得:t=49,∴t的值为49、151296±、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N作NH⊥DD′于点H,此时,DM+MN=D′N最小.则△EOF∽△NHD′设点N坐标为(a,﹣21033a-),∴OENH =OFHD',即52104()33a---=1032a-,解得:a=﹣2,则N点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1,当x=﹣32时,y=﹣54,∴M点坐标为(﹣32,﹣54),此时,DM+MN点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.。

中考数学二次函数综合经典题含答案解析

中考数学二次函数综合经典题含答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题)1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.2.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【解析】 【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴2点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=32,∴OP=OC+PC=3+32或OP=PC﹣OC=32﹣3∴P1(0,3+32),P2(0,3﹣32);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=1×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,2当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.3.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ. ①若点P 的横坐标为12-,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524,);②△PQD 面积的最大值为8 【解析】分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+6x+72,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题. 详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:309330a b a b -+⎧⎨++⎩==,解得:12a b -⎧⎨⎩==, ∴抛物线的表达式为y=-x 2+2x+3. (2)(I )当点P 的横坐标为-12时,点Q 的横坐标为72,∴此时点P 的坐标为(-12,74),点Q 的坐标为(72,-94).设直线PQ 的表达式为y=mx+n ,将P (-12,74)、Q (72,-94)代入y=mx+n ,得:17247924m n m n ⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154m n -⎧⎪⎨⎪⎩==,∴直线PQ 的表达式为y=-x+54. 如图②,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+54), ∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8.∵-2<0, ∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154).(II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t , ∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8. 点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.(1)分别判断函数y=﹣x+1,y=1x-,y=x2有没有反向值?如果有,直接写出其反向距离;(2)对于函数y=x2﹣b2x,①若其反向距离为零,求b的值;②若﹣1≤b≤3,求其反向距离n的取值范围;(3)若函数y=223()3()x x x mx x x m⎧-≥⎨--<⎩请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.【答案】(1)y=−1x有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【解析】【分析】(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;(2)①根据题意可以求得相应的b的值;②根据题意和b的取值范围可以求得相应的n的取值范围;(3)根据题目中的函数解析式和题意可以解答本题.【详解】(1)由题意可得,当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,当﹣m=1m-时,m=±1,∴n=1﹣(﹣1)=2,故y=1x-有反向值,反向距离为2,当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距离为零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=223()3() x x x mx x x m⎧-≥⎨--<⎩,∴当x≥m时,﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;当x<m时,﹣m=﹣m2﹣3m,解得,m=0或m=﹣4,∴n=0﹣(﹣4)=4,∴﹣2<m≤2,由上可得,当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN 沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.【答案】(1)(1,4)(2)①点M坐标(﹣12,74)或(﹣32,﹣94);②m的值为3172±或1172±【解析】【分析】(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=2233m mMGBG m-++=-,tan∠BDE=BEDE=12,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到930{3b cc-++==,解得2{3bc==,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=2233m mMGBG m-++=-,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B (3,0), ∴BE=2,∴tan ∠BDE=BE DE =12, ∵∠MBA=∠BDE ,∴2233m m m-++-=12, 当点M 在x 轴上方时,2233m m m-++- =12, 解得m=﹣12或3(舍弃), ∴M (﹣12,74), 当点M 在x 轴下方时,2233m m m--- =12, 解得m=﹣32或m=3(舍弃), ∴点M (﹣32,﹣94), 综上所述,满足条件的点M 坐标(﹣12,74)或(﹣32,﹣94); ②如图中,∵MN ∥x 轴,∴点M 、N 关于抛物线的对称轴对称, ∵四边形MPNQ 是正方形,∴点P 是抛物线的对称轴与x 轴的交点,即OP=1, 易证GM=GP ,即|﹣m 2+2m+3|=|1﹣m|, 当﹣m 2+2m+3=1﹣m 时,解得317±, 当﹣m 2+2m+3=m ﹣1时,解得m=1172±, ∴满足条件的m 317±117±.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.6.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或412或5-41 2;②点M的坐标为(136,﹣176)或(236,﹣76).【解析】分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴PD=2PQ=2×22=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+412,m2=5-412,综上所述,P点的横坐标为4或5+412或5-412;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC 的解析式为y=5x ﹣5,E 点坐标为(12,﹣52, 设直线EM 1的解析式为y=﹣15x+b , 把E (12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125, ∴直线EM 1的解析式为y=﹣15x ﹣125 解方程组511255y x y x =-⎧⎪⎨=--⎪⎩得136176x y ⎧=⎪⎪⎨⎪=-⎪⎩,则M 1(136,﹣176); 作直线BC 上作点M 1关于N 点的对称点M 2,如图2,则∠AM 2C=∠AM 1B=2∠ACB , 设M 2(x ,x ﹣5),∵3=13+62x∴x=236, ∴M 2(236,﹣76). 综上所述,点M 的坐标为(136,﹣176)或(236,﹣76). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.7.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(1,)2+-或317(1,)2--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-.(注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 13172t +=,23172t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛⎫+- ⎪ ⎪⎝⎭或3171,2⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94.【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.9.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,1032;(3)存在,点M 坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆. (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=S △PAM =S △PAC∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩ ∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.10.在平面直角坐标系xOy 中,顶点为A 的抛物线与x 轴交于B 、C 两点,与y 轴交于点D ,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA ,作DE ∥OA 交BA 的延长线于点E ,连接OE 交AD 于点F ,M 是BE 的中点,则OM 是否将四边形OBAD 分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m ,n)是抛物线在第四象限的图象上的点,且m+n =﹣1,连接PA 、PC ,在线段PC 上确定一点M ,使AN 平分四边形ADCP 的面积,求点N 的坐标.提示:若点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2),则线段AB 的中点坐标为(122x x +,122y y +). 【答案】(1)y =﹣x 2+2x ﹣3;(2)OM 将四边形OBAD 分成面积相等的两部分,理由见解析;(3)点N(43,﹣73). 【解析】【分析】 (1)函数表达式为:y =a(x ﹣1)2+4,将点B 坐标的坐标代入上式,即可求解;(2)利用同底等高的两个三角形的面积相等,即可求解;(3)由(2)知:点N是PQ的中点,根据C,P点的坐标求出直线PC的解析式,同理求出AC,DQ 的解析式,并联立方程求出Q点的坐标,从而即可求N点的坐标.【详解】(1)函数表达式为:y=a(x﹣1)2+4,将点B坐标的坐标代入上式得:0=a(3﹣1)2+4,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x﹣3;(2)OM将四边形OBAD分成面积相等的两部分,理由:如图1,∵DE∥AO,S△ODA=S△OEA,S△ODA+S△AOM=S△OEA+S△AOM,即:S四边形OMAD=S△OBM,∴S△OME=S△OBM,∴S四边形OMAD=S△OBM;(3)设点P(m,n),n=﹣m2+2m+3,而m+n=﹣1,解得:m=﹣1或4,故点P(4,﹣5);如图2,故点D作QD∥AC交PC的延长线于点Q,由(2)知:点N是PQ的中点,设直线PC的解析式为y=kx+b,将点C(﹣1,0)、P(4,﹣5)的坐标代入得:45k bk b-+=⎧⎨+=-⎩,解得:11 kb=-⎧⎨=-⎩,所以直线PC的表达式为:y=﹣x﹣1…①,同理可得直线AC的表达式为:y=2x+2,直线DQ∥CA,且直线DQ经过点D(0,3),同理可得直线DQ的表达式为:y=2x+3…②,联立①②并解得:x=﹣43,即点Q(﹣43,13),∵点N是PQ的中点,由中点公式得:点N(43,﹣73).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形面积的计算等,其中(3)直接利用(2)的结论,即点N是PQ的中点,是本题解题的突破点.。

2018-2020年上海市中考数学各地区模拟试题分类(一)——《二次函数》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(一)——《二次函数》(含解析)

2018-2020年上海市中考数学各地区模拟试题分类(一)——《二次函数》一.选择题1.(2019•闵行区一模)已知二次函数y=ax2+bx+c的图象如图所示,那么根据图象,下列判断中不正确的是()A.a<0 B.b>0 C.c>0 D.abc>0 2.(2019•金山区一模)已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A.a<0、b>0、c>0 B.a<0、b<0、c>0C.a<0、b>0、c<0 D.a<0、b<0、c<03.(2019•浦东新区一模)已知二次函数y=﹣(x+3)2,那么这个二次函数的图象有()A.最高点(3,0)B.最高点(﹣3,0)C.最低点(3,0)D.最低点(﹣3,0)4.(2019•闵行区一模)将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣2)2﹣4 B.y=2(x﹣1)2+3C.y=2(x﹣1)2﹣3 D.y=2x2﹣35.(2019•浦东新区一模)如果将抛物线y=x2+4x+1平移,使它与抛物线y=x2+1重合,那么平移的方式可以是()A.向左平移2个单位,向上平移4个单位B.向左平移2个单位,向下平移4个单位C.向右平移2个单位,向上平移4个单位D.向右平移2个单位,向下平移4个单位6.(2019•嘉定区一模)下列函数中,是二次函数的是()A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=1﹣x2D.y=7.(2019•金山区一模)下列函数是二次函数的是()A.y=x B.y=C.y=x﹣2+x2D.y=8.(2019•长宁区一模)抛物线y=2(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)9.(2019•黄浦区一模)在平面直角坐标系中,如果把抛物线y=﹣2x2向上平移1个单位,那么得到的抛物线的表达式是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2+1 D.y=﹣2x2﹣1 10.(2019•杨浦区模拟)二次函数的复习课中,夏老师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k为实数).夏老师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生独立思考后,黑板上出现了一些结论.夏老师作为活动一员,又补充了一些结论,并从中选择了如下四条:①存在函数,其图象经过点(1,0);②存在函数,该函数的函数值y始终随x的增大而减小;③函数图象有可能经过两个象限;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.上述结论中正确个数为()A.1个B.2个C.3个D.4个11.(2018•虹口区二模)如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2D.y=(x﹣1)2.12.(2018•金山区二模)如果将抛物线y=﹣2x2向上平移1个单位,那么所得新抛物线的表达式是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2﹣1 D.y=﹣2x2+1 13.(2018•浦东新区模拟)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣214.(2018•金山区一模)将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A.向下平移3个单位B.向上平移3个单位C.向左平移4个单位D.向右平移4个单位15.(2018•黄浦区一模)已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>0二.填空题16.(2020•静安区一模)某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为x(x>0),六月份的营业额为y万元,那么y关于x的函数解析式是.17.(2020•金山区一模)如果一条抛物线经过点A(2,5),B(﹣3,5),那么它的对称轴是直线.18.(2020•静安区一模)已知二次函数y=a2x2+8a2x+a(a是常数,a≠0),当自变量x分别取﹣6、﹣4时,对应的函数值分别为y1、y2,那么y1、y2的大小关系是:y1y2(填“>”、“<”或“=”).19.(2020•浦东新区一模)将抛物线y=﹣3x2向下平移4个单位,那么平移后所得新抛物线的表达式为.20.(2020•浦东新区一模)二次函数y=﹣2(x+1)2的图象在对称轴左侧的部分是.(填“上升”或“下降”)21.(2020•青浦区一模)如果抛物线y=ax2﹣1的顶点是它的最低点,那么a的取值范围是.22.(2020•金山区一模)抛物线y=2x2﹣1在y轴左侧的部分是.(填“上升”或“下降”)23.(2020•松江区一模)在直角坐标平面中,将抛物线y=2(x+1)2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线表达式是.24.(2020•嘉定区一模)将抛物线y=x2+4x+5向右平移2个单位后,所得抛物线的表达式为.三.解答题25.(2020•金山区二模)在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),其顶点为C.(1)求抛物线的解析式和顶点C的坐标;(2)我们把坐标为(n,m)的点叫做坐标为(m,n)的点的反射点,已知点M在这条抛物线上,它的反射点在抛物线的对称轴上,求点M的坐标;(3)点P是抛物线在第一象限部分上的一点,如果∠POA=∠ACB,求点P的坐标.26.(2020•徐汇区二模)如图,抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和B,与y轴交于点C,顶点为点D.(1)求抛物线的表达式、点B和点D的坐标;(2)将抛物线y=ax2﹣2ax+3向右平移后所得新抛物线经过原点O,点B、D的对应点分别是点B',D',联结B'C,B'D',CD',求△CB'D'的面积.27.(2020•闵行区一模)如图,已知一个抛物线经过A(0,1),B(1,3),C(﹣1,1)三点.(1)求这个抛物线的表达式及其顶点D的坐标;(2)联结AB、BC、CA,求tan∠ABC的值;(3)如果点E在该抛物线的对称轴上,且以点A、B、C、E为顶点的四边形是梯形,直接写出点E的坐标.28.(2020•虹口区一模)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C(0,3),点P在该抛物线的对称轴上,且纵坐标为2.(1)求抛物线的表达式以及点P的坐标;(2)当三角形中一个内角α是另一个内角β的两倍时,我们称α为此三角形的“特征角”.①当D在射线AP上,如果∠DAB为△ABD的特征角,求点D的坐标;②点E为第一象限内抛物线上一点,点F在x轴上,CE⊥EF,如果∠CEF为△ECF的特征角,求点E的坐标.29.(2020•虹口区一模)在平面直角坐标系中,将抛物线C1:y=x2﹣2x向左平移2个单位,向下平移3个单位得到新抛物线C2.(1)求新抛物线C2的表达式;(2)如图,将△OAB沿x轴向左平移得到△O′A′B′,点A(0,5)的对应点A′落在平移后的新抛物线C2上,求点B与其对应点B′的距离.30.(2020•青浦区一模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.参考答案一.选择题1.解:(A)由图象的开口方向可知:a<0,故A正确;(B)由对称轴可知:x=<0,∴b<0,故B错误;(C)由图象可知:c>0,故C正确;(D)∵a<0,b<0,c>0,∴abc>0,故D正确;故选:B.2.解:由图象开口可知:a<0,由图象与y轴交点可知:c<0,由对称轴可知:<0,∴a<0,b<0,c<0,故选:D.3.解:在二次函数y=﹣(x+3)2中,a=﹣1<0,∴这个二次函数的图象有最高点(﹣3,0),故选:B.4.解:由“上加下减,左加右减”的原则可知,将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后,得以新的抛物线的表达式是,y=2(x﹣2+1)2﹣3,即y=2(x﹣1)2﹣3,故选:C.5.解:∵抛物线y=x2+4x+1=(x+2)2﹣3的顶点坐标为(﹣2,﹣3),抛物线y=x2+1的顶点坐标为(0,1),∴顶点由(﹣2,﹣3)到(0,1)需要向右平移2个单位再向上平移4个单位.故选:C.6.解:A、y=2x+1,是一次函数,故此选项错误;B、y=(x﹣1)2﹣x2,是一次函数,故此选项错误;C、y=1﹣x2,是二次函数,符合题意;D、y=,是反比例函数,不合题意.故选:C.7.解:A、y=x属于一次函数,故本选项错误;B、y=的右边不是整式,不是二次函数,故本选项错误;C、y=x﹣2+x2=x2+x﹣2,符合二次函数的定义,故本选项正确;D、y=的右边不是整式,不是二次函数,故本选项错误;故选:C.8.解:∵y=2(x+2)2﹣3∴抛物线的顶点坐标是(﹣2,﹣3)故选:B.9.解:把抛物线y=﹣2x2向上平移1个单位,则得到的抛物线的表达式是:y=﹣2x2+1.故选:C.10.解:①将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0,此选项正确.②当k=0时,y=﹣x+1,该函数的函数值y始终随x的增大而减小;此选项正确;③当k=0时,y=﹣x+1,经过3个象限,当k≠0时,△=(4k+1)2﹣4×2k(﹣k+1)=24k2+1>0,∴抛物线必与x轴相交,∴图象必经过三个象限,此选项错误;④当k=0时,函数无最大、最小值;k≠0时,y=﹣,当k>0时,有最小值,最小值为负;当k<0时,有最大值,最最大值为正;此选项正确.正确的是①②④.故选:C.11.解:∵抛物线y=x2向左平移1个单位后,所得新抛物线的表达式为y=(x+1)2,故选:C.12.解:∵将抛物线y=﹣2x2向上平移1个单位,∴平移后的抛物线的解析式为:y=﹣2x2+1.故选:D.13.解:抛物线y=(x﹣1)2的顶点坐标为(1,0),∵向左平移2个单位,∴平移后的抛物线的顶点坐标为(﹣1,0),∴所得抛物线的表达式为y=(x+1)2.故选:A.14.解:y=﹣(x+1)2+4=﹣x2﹣2x+3向下平移3个单位,使它经过原点y=﹣x2﹣2x,故选:A.15.解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<0,﹣>1,c>0,∴b>﹣2a,∴b+2a>0.故选:D.二.填空题(共9小题)16.解:根据题意,得y=200(1+x)2=200x2+400x+200.故答案为y=200x2+400x+200.17.解:因为A(2,5),B(﹣3,5)的纵坐标相同,∴A、B关于x==﹣对称,∴抛物线的对称轴x=﹣,故答案为x=﹣.18.解:y=a2x2+8a2x+a=a2(x2+8x)+a=a2(x+4)2+a﹣16a2,∴对称轴x=﹣4,∵x分别取﹣6、﹣4时,在对称轴左侧,∴y随x的增大而减小,∴y1>y2,故答案为>.19.解:∵抛物线y=﹣3x2向下平移4个单位,∴抛物线的解析式为y=﹣3x2﹣4,故答案为:y=﹣3x2﹣4.20.解:∵﹣2<0,∴二次函数的开口向下,则图象在对称轴左侧的部分y随x值的增大而增大,故答案为上升.21.解:∵抛物线y=ax2﹣1的顶点是它的最低点,∴抛物线的开口向上,∴a>0,故答案为a>0.22.解:抛物线y=2x2﹣1的对称轴x=0,抛物线开口向上,∴在对称轴左侧y随x的增加而减小,故答案为下降.23.解:抛物线y=2(x+1)2向上平移1个单位后的解析式为:y=2(x+1)2+1.再向右平移1个单位所得抛物线的解析式为:y=2x2+1.故答案为:y=2x2+1.24.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线y=x2+4x+5向右平移2个单位后,所得抛物线的表达式为y=x2+1.故答案为:y=x2+1.三.解答题(共6小题)25.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,∴顶点C(1,4).(2)设M(m,﹣m2+2m+3),∴M的反射点为(﹣m2+2m+3,m),∵M点的反射点在抛物线的对称轴上,∴﹣m2+2m+3=1,∴m2﹣2m﹣2=0,解得m=1±,∴M(1+,1)或(1﹣,1).(3)如图,设P(a,﹣a2+2a+3).∵A(3,0),B(0,3),C(1,4),∴BC=,AB=3,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴tan∠ACB===3,∵∠POA=∠ACB,∴tan∠POA=3,∴=3,整理得:a2+a﹣3=0解得a=或(舍弃),∴P(,).26.解:(1)将点A的坐标代入抛物线表达式得:0=a+2a+3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;抛物线的对称轴为:x=1,点D的坐标为:(1,4),令y=0,y=﹣x2+2x+3=0,解得:x=3或﹣1,令x=0,则y=3,故点B的坐标为:(3,0)、点C(0,3);故抛物线的表达式为:y=﹣x2+2x+3,B的坐标为(3,0)、点D的坐标为(1,4);(2)设抛物线向右平移了m个单位,则B'、D'的坐标分别为:(m+3,0)、(m+1,4),平移后抛物线的表达式为:y=﹣(x﹣m﹣1)2+4,∵新抛物线经过原点O,∴当x=0时,y=﹣(0﹣m﹣1)2+4=0,解得:m=1或﹣3(舍去﹣3),故点B'、D'的坐标分别为:(4,0)、(2,4),如下图,过点D′作D′H∥y轴交B′C于点H,设直线B′C的表达式为:y=kx+b,则,解得:,故直线B′C的表达式为:y=﹣x+3,当x=2时,y=,故D′H=4﹣=;+S△D′HB′=×D′H×OB′=××4=5.△CB'D'的面积=S△D′HC27.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0).由题意可得:解得:∴抛物线的解析式为:y=x2+x+1,∵y=x2+x+1=(x+)2+,∴顶点D的坐标(﹣,);(2)如图,过点B作BF⊥x轴于F,延长CA交BF于点D,过点A作AM⊥BC于M,∴BF=3,∵A(0,1),C(﹣1,1),∴AC∥x轴,∴CD⊥BF,∴CD=BD=2,AD=1,CA=1,∴BC=2,∠BCD=∠CBD=45°,∵AM⊥BC,∴∠MAC=∠MCA=45°,∴CM=AM,∴CM=AM==,∴BM=BC﹣CM=,∴tan∠ABC==;(3)∵A(0,1),B(1,3),C(﹣1,1),∴直线AC解析式为:y=1,直线AB解析式为:y=2x+1,直线BC解析式为:y=x+2,若BE∥AC,则点E的纵坐标为3,且点E在对称轴上,∴点E(﹣,3);若CE∥AB,则CE的解析式为;y=2x+3,∵点E在对称轴上,∴x=﹣,∴y=2,即点E(﹣,2);若AE∥BC,则AE解析式为:y=x+1,∵点E在对称轴上,∴x=﹣,∴y=,即点E(﹣,),综上所述:点E的坐标为(﹣,3)或(﹣,2)或(﹣,).28.解:(1)抛物线y=﹣x2+bx+c与y轴交于点C(0,3),则c=3,将点A的坐标代入抛物线表达式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+3;点P(1,2);(2)由点A、P的坐标知,∠PAB=60°,直线AP的表达式为:y=(x+1)…①,当α=60°,∠DBA==30°时,△ABD为直角三角形,由面积公式得:y D×AB=AD•BD,即y D×4=2×,解得:y D=,点D在AP上,故点D(0,);当∠ADB=β时,则∠ABD=90°,故点D(3,4);综上,点D的坐标为:(0,)或(3,4);(3)∠CEF为△ECF的特征角,则△CEF为等腰直角三角形,过点E分别作x轴、y轴的垂线交于点M、N,则△CNE≌△EMF(AAS),则EN=EM,即x=y,x=y=﹣x2+2x+3,解得:x=,故点E(,).29.解:(1)由抛物线C1:y=x2﹣2x=(x﹣1)2﹣1知,将其向左平移2个单位,向下平移3个单位得到新抛物线C2的表达式是:y=(x﹣1+2)2﹣1﹣3,即y=(x+1)2﹣4;(2)由平移的性质知,点A与点A′的纵坐标相等,所以将y=5代入抛物线C2,得(x+1)2﹣4=5,则x=﹣4或x=2(舍去)所以AA′=4,根据平移的性质知:BB′=AA′=4,即点B与其对应点B′的距离为4个单位.30.解:(1)∵对称轴为直线x=2,点A的坐标为(1,0),∴点B的坐标是(3,0).将A(1,0),B(3,0)分别代入y=x2+bx+c,得.解得.则该抛物线解析式是:y=x2﹣4x+3.由y=x2﹣4x+3=(x﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P作PN⊥x轴于N,过点C作CM⊥PN,交NP的延长线于点M,∵∠CON=90°,∴四边形CONM是矩形.∴∠CMN=90°,CO=MN、∴y=x2﹣4x+3,∴C(0,3).∵B(3,0),∴OB=OC=3.∵∠COB=90°,∴∠OCB=∠BCM=45°.又∵∠ACB=∠PCB,∴∠OCB﹣∠ACB=∠BCM﹣∠PCB,即∠OCA=∠PCM.∴tan∠OCA=tan∠PCM.∴=.故设PM=a,MC=3a,PN=3﹣a.∴P(3a,3﹣a),将其代入抛物线解析式y=x2﹣4x+3,得(3a)2﹣4(3﹣a)+3=3﹣a.解得a1=,a2=0(舍去).∴P(,).(3)设抛物线平移的距离为m,得y=(x﹣2)2﹣1﹣m.∴D(2,﹣1﹣m).如图2,过点D作直线EF∥x轴,交y轴于点E,交PQ延长线于点F,∵∠OED=∠QFD=∠ODQ=90°,∴∠EOD+∠ODE=90°,∠ODE+∠QDP=90°.∴∠EOD=∠QDF.∴tan∠EOD=tan∠QDF,∴=.∴=.解得m=.故抛物线平移的距离为.。

2018年中考数学二次函数压轴题集锦(50道含解析)

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l 与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m (m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B (3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC 交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP 为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt △A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y 轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax 2+x +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+x +c 的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形.(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;。

中考数学培优 易错 难题(含解析)之二次函数及答案解析

中考数学培优 易错 难题(含解析)之二次函数及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716 (3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m 2=-,22m 2=(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m =-或1m =-时,△BDM 为直角三角形.2.如图,在平面直角坐标系中,抛物线y=ax 2+bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK :S △PBQ =5:2,求K 点坐标.【答案】(1)y=38x 2﹣34x ﹣3(2)运动1秒使△PBQ 的面积最大,最大面积是910 (3)K 1(1,﹣278),K 2(3,﹣158) 【解析】【详解】 试题分析:(1)把点A 、B 的坐标分别代入抛物线解析式,列出关于系数a 、b 的解析式,通过解方程组求得它们的值;(2)设运动时间为t 秒.利用三角形的面积公式列出S △PBQ 与t 的函数关系式S △PBQ =﹣910(t ﹣1)2+910.利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的解析式为y=34x ﹣3.由二次函数图象上点的坐标特征可设点K 的坐标为(m ,38m 2﹣34m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △CBK =94.则根据图形得到:S △CBK =S △CEK +S △BEK =12EK•m+12•EK•(4﹣m ),把相关线段的长度代入推知:﹣34m 2+3m=94.易求得K 1(1,﹣278),K 2(3,﹣158). 解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得 423016430a b a b --=⎧⎨+-=⎩, 解得3834a b ⎧=⎪⎪⎨⎪=-⎪⎩, 所以该抛物线的解析式为:y=38x 2﹣34x ﹣3; (2)设运动时间为t 秒,则AP=3t ,BQ=t .∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3). 在Rt △BOC 中,.如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO ,∴△BHQ ∽△BOC , ∴HB OC BG BC=,即Hb 35t =, ∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910. 当△PBQ 存在时,0<t <2∴当t=1时, S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0).把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩, 解得3k 4c 3⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为y=34x ﹣3. ∵点K 在抛物线上. ∴设点K 的坐标为(m ,38m 2﹣34m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .则点E 的坐标为(m ,34m ﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=9 10.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.3.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c 的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t >3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213 (03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.4.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m 、n 的值分别为 5,-5.5.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .(1)当抛物线F 经过点C 时,求它的解析式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.【答案】(1) 221y x x =+-;(2)12y y >.【解析】【分析】 (1)根据抛物线F :y=x 2-2mx+m 2-2过点C (-1,-2),可以求得抛物线F 的表达式; (2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小.【详解】(1) ∵抛物线F 经过点C (-1,-2),∴22122m m -=++-.∴m 1=m 2=-1.∴抛物线F 的解析式是221y x x =+-.(2)当x=-2时,2442P y m m =++-=()222m +-. ∴当m=-2时,P y 的最小值为-2.此时抛物线F 的表达式是()222y x =+-.∴当2x ≤-时,y 随x 的增大而减小.∵12x x <≤-2,∴1y >2y .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.6.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得: 660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值; (3)如图2,∵PH ⊥OB 于H , ∴∠DHB=∠AOB=90°, ∴DH ∥AO , ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE ∥x 轴、PD ⊥x 轴, ∴∠DPE=90°,若△PDE 为等腰直角三角形, 则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4, 即点P (4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.7.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元. (1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2. 【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

初中数学中考复习:16二次函数(含答案)

初中数学中考复习:16二次函数(含答案)

中考总复习:二次函数—巩固练习(提高)【巩固练习】一、选择题1. 如图,两条抛物线、与分别经过点,且平行于轴的两条平行线围成的阴影部分的面积为()A.4 B.6 C.8 D.10 2.反比例函数图象上有三个点,,,其中,则,,的大小关系是()A.B. C. D.3.函数与在同一坐标系中的大致图象是( )4.二次函数的图,象如图所示,那么、、、这四个代数式中,值为正的有()A.4个B.3个C.2个D.1个21世纪教育网5.如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连结DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是( )在函数A. C. D.P,P,P…P.P=xC最多.已知抛物线与抛物线的形状相同,顶点在直线上,且顶点到轴的距离为.已知二次函数,(为常数),当取不同的值时,其图象构成一个.下图分别是当,,,时二次函数的图象这条直线的解析式是.2-6x+1(m是常数).如图,直线交轴于点,交轴于两点的抛物线交轴于另一点=x第15题图X 1X 2X 3y 1y 2y 3(1)求点E 、F 的坐标(用含m 的式子表示);(2)连接OA ,若△OAF 是等腰三角形,求m 的值;(3)如图(2),设抛物线y=a(x -m -6)2+h 经过A 、E 两点,其顶点为M ,连接AM ,若∠OAM=90°,求a 、h 、m 的值. 【答案与解析】一、选择题1.【答案】C ;2.【答案】B ;【解析】利用图象法解,如图所示,y 3最大,由反比例函数的性质,在同一象限,k>0时,y 随着x的增大而减小,易得.3.【答案】C ;【解析】两个解析式的比例系数都是k ,那么分两种情况讨论一:k >0时y =图像经过一、三象限,y =kx -k 中,-k <0故图像经过一、三、四象限,符合条件的只有C ,k <0时y =的图像分布在二、四象限,y =kx -k 中-k >0故图像经过一、二、四象限,此时A ,B ,D 选项都不符合条件.4.【答案】A ;【解析】由抛物线开口方向判定的符号,由对称轴的位置判定的符号,由抛物线与轴交点位置判定的符号.由抛物线与轴的交点个数判定的符号,∵,a >0,∴>0.若轴标出了1和-1,则结合函数值可判定、、的符号.5.【答案】C ;【解析】这是一个动点问题.很容易由△ADE∽△DPC得到,从而得出表达式;也可连结PA,由得到表达式,排除(A)、(B).因为点P在BC边上运动,当点P与点C重合时,DP与边DC重合,此时DP最短,x=3;当点P与点B重合时,DP与对角线BD重合,此时DP最长,x=5,即x的临界值是3和5.又因为当x取3和5时,线段AE的长可具体求出,因此x的取值范围是3≤x≤5.正确答案选(C).6.【答案】A;【解析】正方形OABC,点B在函数上(x>0)∴设B(x,y),z则x=y,由=x解得,x=1∴正方形OABC边长为1.E点在曲线上,设,由正方形ADEF可知,AD= DE即m-1=,解得 (负根已舍)∴AD=m-1= ,即正方形ADEF的边长为点E坐标为,故选A.二、填空题7.【答案】(4025,);【解析】8.【答案】4;【解析】C1(3,0)、C2(2,0)、C3(-8,0)、C4(,0).9.【答案】x1=﹣1,x2=3;【解析】依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1,x2=3.10.【答案】-2;【解析】由题意得A(0,c),C ,把C 的坐标代入y=ax2+c得ac=-2.11.【答案】或或或;【解析】,顶点(1,5)或(1,-5).因此或或或.12.【答案】;【解析】可以取,时,分别求出抛物线的两个顶点,然后带入y=kx+b,求出解析式.三、解答题13.【答案与解析】解:⑴当x=0时,.所以不论为何值,函数的图象经过轴上的一个定点(0,1).⑵①当时,函数的图象与轴只有一个交点;②当时,若函数的图象与轴只有一个交点,则方程有两个相等的实数根,所以,.综上,若函数的图象与轴只有一个交点,则的值为0或9.14.【答案与解析】解:(1)设抛物线的解析式为:y=ax2+bx+c。

2018年中考数学真题汇编--二次函数压轴题(含答案解析)

2018年中考数学真题汇编--二次函数压轴题(含答案解析)

2018年中考数学真题汇编--二次函数压轴题1.(2018·甘肃)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2.(2018·盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(−1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为−1,求△DPQ面积的最大值,并求此时点D的坐标;2(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.3.(2018·邵阳)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+ 2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边?若存在,求tan∠MAN的值;若不存的Rt△AMN,使△AMN的面积为△ABC面积的13在,请说明理由.4.(2018·随州)如图1,抛物线C1:y=ax2−2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(−1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=−1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.5.(2018·杭州临安)如图,△OAB是边长为2+√3的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;x2+bx+c经过点A′和E时,求抛物线与x轴的交点(2)当A′E//x轴,且抛物线y=−16的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.6.(2018·荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=−2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当1x2−1x1=12时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=√(x1−x2)2+(y1−y2)2)7.(2018·安顺)如图,已知抛物线y=ax2+bx+C(a≠0)的对称轴为直线x=−1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物成的解析式;(2)在抛物线的对称轴x=−1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=−1上的一个动点,求使△BPC为直角三角形的点P的坐标.8.(2018·株洲)如图,已知二次函数y=ax2−5√3x+c(a>0)的图象抛物线与x 轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=√3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60∘,抛物线的对称轴l与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+1,连接AF,满足∠ADB=∠AFE,求2a该二次函数的解析式.9.(2018·永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,−3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.10.(2018·南通)已知,正方形ABCD,A(0,−4),B(l,−4),C(1,−5),D(0,−5),抛物线y=x2+mx−2m−4(m为常数),顶点为M.(1)抛物线经过定点坐标是______,顶点M的坐标(用m的代数式表示)是______;(2)若抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45∘时,求m的值.11.(2018·湘潭)如图,点P为抛物线y=14x2上一动点.(1)若抛物线y=14x2是由抛物线y=14(x+2)2−1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,−1),过点P作PM⊥l 于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.12.(2018·宜昌)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(−6,0),B(0,4).过点C(−6,1)的双曲线y=kx(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=______,k=______,点E的坐标为______;(2)当1≤t≤6时,经过点M(t−1,−12t2+5t−32)与点N(−t−3,−12t2+3t−72)的直线交y轴于点F,点P是过M,N两点的抛物线y=−12x2+bx+c的顶点.①当点P在双曲线y=kx 上时,求证:直线MN与双曲线y=kx没有公共点;②当抛物线y=−12x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.13.(2018·浙江)已知,点M为二次函数y=−(x−b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>−(x−b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(14,y1),D(34,y2)都在二次函数图象上,试比较y1与y2的大小.14.(2018·恩施)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(−1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.15.(2018·孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(−2,0),B(0,−6),将Rt△AOB绕点O按顺时针方向分别旋转90∘,180∘得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为______,点E的坐标为______;抛物线C1的解析式为______.抛物线C2的解析式为______;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记ℎ=PM+NM+√2BM,求h与x的函数关系式,当−5≤x≤−2时,求h的取值范围.2018年最新中考数学压轴精选15题二次函数类【答案】1. 解:(1)将点B 和点C 的坐标代入函数解析式,得 {c =39a+6+c=0,解得{c =3a=−1,二次函数的解析是为y =−x 2+2x +3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上, 如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C(0,3),∴E(0,32),∴点P 的纵坐标32,当y =32时,即−x 2+2x +3=32,解得x 1=2+√102,x 2=2−√102(不合题意,舍), ∴点P 的坐标为(2+√102,32);(3)如图2,P 在抛物线上,设P(m,−m 2+2m +3), 设直线BC 的解析式为y =kx +b , 将点B 和点C 的坐标代入函数解析式,得 {b =33k+3=0, 解得{b =3k=−1.直线BC 的解析为y =−x +3, 设点Q 的坐标为(m,−m +3),PQ =−m 2+2m +3−(−m +3)=−m 2+3m . 当y =0时,−x 2+2x +3=0, 解得x 1=−1,x 2=3, OA =1,AB =3−(−1)=4,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ =12AB ⋅OC +12PQ ⋅OF +12PQ ⋅FB =12×4×3+12(−m 2+3m)×3 =−32(m −32)2+758,当m =32时,四边形ABPC 的面积最大. 当m =32时,−m 2+2m +3=154,即P 点的坐标为(32,154). 当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758.2. 解:(1)将A(−1,0)、B(3,0)代入y =ax 2+bx +3,得:{9a +3b +3=0a−b+3=0,解得:{b =2a=−1, ∴抛物线的表达式为y =−x 2+2x +3.(2)(I)当点P 的横坐标为−12时,点Q 的横坐标为72, ∴此时点P 的坐标为(−12,74),点Q 的坐标为(72,−94). 设直线PQ 的表达式为y =mx +n , 将P(−12,74)、Q(72,−94)代入y =mx +n ,得: {−12m +n =7472m +n =−94,解得:{m =−1n =54, ∴直线PQ 的表达式为y =−x +54.如图②,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54), ∴DE =−x 2+2x +3−(−x +54)=−x 2+3x +74,∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+6x +72=−2(x −32)2+8.∵−2<0,∴当x =32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t,−t 2+2t +3),点Q 的坐标为(4+t,−(4+t)2+2(4+t)+3), 利用待定系数法易知,直线PQ 的表达式为y =−2(t +1)x +t 2+4t +3. 设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3), ∴DE =−x 2+2x +3−[−2(t +1)x +t 2+4t +3]=−x 2+2(t +2)x −t 2−4t , ∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+4(t +2)x −2t 2−8t =−2[x −(t +2)]2+8.∵−2<0,∴当x =t +2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.3. 解:(1)y =x 2+2x +1=(x +1)2的图象沿x 轴翻折,得y =−(x +1)2.把y =−(x +1)2向右平移1个单位,再向上平移4个单位,得y =−x 2+4, ∴所求的函数y =ax 2+bx +c 的解析式为y =−x 2+4; (2)∵y =x 2+2x +1=(x +1)2, ∴A(−1,0),当y =0时,−x 2+4=0,解得x =±2,则D(−2,0),C(2,0); 当x =0时,y =−x 2+4=4,则B(0,4),从点A ,C ,D 三个点中任取两个点和点B 构造三角形的有:△ACB ,△ADB ,△CDB , ∵AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,∴△BCD 为等腰三角形,∴构造的三角形是等腰三角形的概率=13; (3)存在.易得BC 的解析是为y =−2x +4,S △ABC =12AC ⋅OB =12×3×4=6, M 点的坐标为(m,−2m +4)(0≤m ≤2),①当N 点在AC 上,如图1,∴△AMN 的面积为△ABC 面积的13, ∴12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,M 点的坐标为(0,4),N(0,0),则AN =1,MN =4, ∴tan∠MAC =MN AN=41=4;当m =1时,M 点的坐标为(1,2),N(1,0),则AN =2,MN =2,∴tan∠MAC =MN AN=22;②当N 点在BC 上,如图2, BC =√22+42=2√5,∵12BC ⋅AN =12AC ⋅BC ,解得AN =3×42√5=6√55, ∵S △AMN =12AN ⋅MN =2, ∴MN =4AN =2√53, ∴∠MAC =MNAN =2√536√55=59; ③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t , 由②得AH =6√55,则BH =√(√17)2−(6√55)2=7√55, ∵∠NBG =∠HBA , ∴△BNM ∽△BHA , ∴MN AH=BNBH ,即MN 6√55=√17−t7√55,∴MN=6√17−6t7,∵12AN⋅MN=2,即12⋅(√17−t)⋅6√17−6t7=2,整理得3t2−3√17t+14=0,△=(−3√17)2−4×3×14=−15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或59.4. 解:(1)∵点A的坐标为(−1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2−2ax+c,得:{c=3a+2a+c=0,解得:{c=3a=−1,∴抛物线C1的解析式为y=−x2+2x+3=−(x−1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=−x2+2x+3−k,即y=−(x−1)2+4−k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=√3B′D=√3m,则点B′的坐标为(m+1,0),点G′的坐标为(1,√3m),将点B′、G′的坐标代入y=−(x−1)2+4−k,得:{−m 2+4−k=04−k=√3m,解得:{k1=4m1=0(舍),{m2=√3k2=1,∴k=1;(3)设M(x,0),则P(x,−x 2+2x +3)、Q(x,−x 2+2x +2), ∴PQ =OA =1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y =−1于点H ,则∠QHN =∠OMQ =90∘, 又∵△AOQ ≌△PQN ,∴OQ =QN ,∠AOQ =∠PQN , ∴∠MOQ =∠HQN , ∴△OQM ≌△QNH(AAS),∴OM =QH ,即x =−x 2+2x +2+1, 解得:x =1±√132(负值舍去), 当x =1+√132时,HN =QM =−x 2+2x +2=√13−12,点M(1+√132,0),∴点N 坐标为(1+√132+√13−12,−1),即(√13,−1); 或(1+√132−√13−12,−1),即(1,−1); 如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=−(−x2+2x+2)−1,解得:x=−1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=−(−x2+2x+2)=6,∴点N的坐标为(4+6,−1)即(10,−1),或(4−6,−1)即(−2,−1);综上点M1(1+√132,0)、N1(√13,−1);M2(1+√132,0)、N2(1,−1);M3(4,0)、N3(10,−1);M4(4,0)、N4(−2,−1).5. 解:(1)由已知可得∠A′OE=60∘,A′E=AE,由A′E//x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=√3b,OE=2b,√3b+2b=2+√3,所以b=1,A′、E的坐标分别是(0,1)与(√3,1).(2)因为A′、E在抛物线上,所以{1=c1=−16⋅(√3)2+√3b+c,所以{c=1b=√36,函数关系式为y=−16x2+√36x+1,由−16x2+√36x+1=0,得x1=−√3,x2=2√3,与x轴的两个交点坐标分别是(−√3,0)与(2√3,0).(3)不可能使△A′EF成为直角三角形.∵∠FA′E=∠FAE=60∘,若△A′EF 成为直角三角形,只能是∠A′EF =90∘或∠A′FE =90∘ 若∠A′EF =90∘,利用对称性,则∠AEF =90∘, A 、E 、A 三点共线,O 与A 重合,与已知矛盾; 同理若∠A′FE =90∘也不可能, 所以不能使△A′EF 成为直角三角形. 6. 解:(1)根据题意得,{−b2a=−216a +4b +c =8c =0,∴{a =14b =1c =0, ∴抛物线解析式为y =14x 2+x ;(2)∵直线y =kx +4与抛物线两交点的横坐标分别为x 1,x 2, ∴14x 2+x =kx +4, ∴x 2−4(k −1)x −16=0,根据根与系数的关系得,x 1+x 2=4(k −1),x 1x 2=−16, ∵1x 2−1x 1=12,∴2(x 1−x 2)=x 1x 2, ∴4(x 1−x 2)2=(x 1x 2)2,∴4[(x 1+x 2)2−4x 1x 2]=(x 1x 2)2, ∴4[16(k −1)2+64]=162, ∴k =1;(3)如图,取OB 的中点C , ∴BC =12OB , ∵B(4,8), ∴C(2,4), ∵PQ//OB ,∴点O 到PQ 的距离等于点O 到OB 的距离, ∵S △POQ :S △BOQ =1:2, ∴OB =2PQ ,∴PQ =BC ,∵PQ//OB , ∴四边形BCPQ 是平行四边形, ∴PC//AB ,∵抛物线的解析式为y =14x 2+x②,令y =0, ∴14x 2+x =0, ∴x =0或x =−4, ∴A(−4,0), ∵B(4,8),∴直线AB 解析式为y =x +4,设直线PC 的解析式为y =x +m , ∵C(2,4),∴直线PC 的解析式为y =x +2②,联立①②解得,{x =2√2y =2√2+2(舍)或{x =−2√2y =−2√2+2,∴P(−2√2,−2√2+2).7. 解:(1)依题意得:{−b2a =−1a +b +c =0c =3,解之得:{a =−1b =−2c =3,∴抛物线解析式为y =−x 2−2x +3 ∵对称轴为x =−1,且抛物线经过A(1,0), ∴把B(−3,0)、C(0,3)分别代入直线y =mx +n ,得{n =3−3m+n=0,解之得:{n =3m=1,∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小.把x =−1代入直线y =x +3得,y =2, ∴M(−1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)设P(−1,t), 又∵B(−3,0),C(0,3),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1=3−√172,t 2=3−√172;综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172) 或(−1,3−√172).8. 解:(1)抛物线的对称轴是:x =−b 2a =−−5√32a=√3,解得:a =52;(2)由题意得二次函数解析式为:y =15x 2−5√3x +c , ∵二次函数与x 轴有两个交点, ∴△>0,∴△=b 2−4ac =(−5√3)2−4×15c , ∴c <54;(3)∵∠BOD =90∘,∠DBO =60∘, ∴tan60∘=ODOB =cOB =√3, ∴OB =√33c , ∴B(√33c,0),把B(√33c,0)代入y =ax 2−5√3x +c 中得:ac 23−5√3⋅√3c 3+c =0,ac 23−5c +c =0,∵c ≠0, ∴ac =12, ∴c =12a,把c =12a代入y =ax 2−5√3x +c 中得:y =a(x 2−5√3x a+12a 2)=a(x −4√3a)(x −√3a), ∴x 1=4√3a,x 2=√3a, ∴A(√3a ,0),B(4√3a,0),D(0,12a ), ∴AB =4√3a −√3a=3√3a ,AE =3√32a, ∵F 的纵坐标为3+12a , ∴F(5√32a ,6a+12a),过点A作AG⊥DB于G,∴BG=12AB=AE=3√32a,AG=92a,DG=DB−BG=8√3a −3√32a=13√32a,∵∠ADB=∠AFE,∠AGD=∠FEA=90∘,∴△ADG∽△AFE,∴AEAG =FEDG,∴3√32a92a=6a+12a13√32a,∴a=2,c=6,∴y=2x2−5√3x+6.9. 解:(1)设抛物线的表达式为:y=a(x−1)2+4,把(0,3)代入得:3=a(0−1)2+4,a=−1,∴抛物线的表达式为:y=−(x−1)2+4=−x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,∵E(0,3),,易得的解析式为:y=3x−3,当x=1时,y=3×1−3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),∴NQ=(−m2+2m+3)−(−2m+6)=−m2+4m−3,∵AD//NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90∘,∴△QMN∽△ADB,∴QNMN =ABBD,∴−m2+4m−3MN =2√52,∴MN=−√55(m−2)2+√55,∵−√55<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90∘,∴△NGP∽△ADB,∴PGNG =BDAD=24=12,∴PG=12NG=12m,∴OP=OG−PG=−m2+2m+3−12m=−m2+32m+3,∴S△PON=12OP⋅GN=12(−m2+32m+3)⋅m,当m=2时,S△PON=12×2(−4+3+3)=2.10. (2,0);(−m2,−14m2−2m−4)11. 解:(1)∵抛物线y=14(x+2)2−1的顶点为(−2,−1)∴抛物线y=14(x+2)2−1的图象向上平移1个单位,再向右2个单位得到抛物线y=14x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,14a2)∴PM=PF=14a2+1∵PB=a ∴Rt△PBF中BF=√PF2−PB2=√(14a2+1)2−a2=14a2−1∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+QM的最小值当Q、P、M三点共线时,QP+QM有最小值为点Q纵坐标5.∴QP+PF的最小值为5.,4)12. 6;−6;(−3213. 解:(1)点M为二次函数y=−(x−b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=−(0−b)2+4b+1=5,解得b=2,二次函数的解析是为y=−(x−2)2+9,当y=0时,−(x−2)2+9=0,解得x1=5,x2=−1,∴A(5,0).由图象,得当mx+5>−(x−b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=−x+5,联立EF,AB得方程组{y =−x +5y=4x+1, 解得{x =45y =215,∴点E(45,215),F(0,1). 点M 在△AOB 内,1<4b +1<215∴0<b <45.当点C ,D 关于抛物线的对称轴对称时,b −14=34−b ,∴b =12, 且二次函数图象开口向下,顶点M 在直线y =4x +1上, 综上:①当0<b <12时,y 1>y 2, ②当b =12时,y 1=y 2, ③当12<b <45时,y 1<y 2.14. 解:(1)由OC =2,OB =3,得到B(3,0),C(0,2),设抛物线解析式为y =a(x +1)(x −3), 把C(0,2)代入得:2=−3a ,即a =−23,则抛物线解析式为y =−23(x +1)(x −3)=−23x 2+43x +2;(2)抛物线y =−23(x +1)(x −3)=−23x 2+43x +2=−23(x −1)2+83, ∴D(1,83),当四边形CBPD 是平行四边形时,由B(3,0),C(0,2),得到P(4,23); 当四边形CDBP 是平行四边形时,由B(3,0),C(0,2),得到P(2,−23); 当四边形BCPD 是平行四边形时,由B(3,0),C(0,2),得到P(−2,143); (3)设直线BC 解析式为y =kx +b , 把B(3,0),C(0,2)代入得:{b =23k+b=0,解得:{k =−23b =2, ∴y =−23x +2,设与直线BC 平行的解析式为y =−23x +b , 联立得:{y =−23x +by =−23x 2+43x +2, 消去y 得:2x 2−6x +3b −6=0,当直线与抛物线只有一个公共点时,△=36−8(3b −6)=0, 解得:b =72,即y =−23x +72, 此时交点M 1坐标为(32,52);可得出两平行线间的距离为√1313,同理可得另一条与BC 平行且平行线间的距离为√1313的直线方程为y =−23x +12,联立解得:M 2(3−3√22,√2−12),M 3(3+3√22,−√2−12),此时S =1.15. (−6,0);(2,0);y =−12x 2−4x −6;y =−12x 2−2x +6【解析】1. (1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.2. (1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+6x +72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+4(t +2)x −2t 2−8t ,再利用二次函数的性质即可解决最值问题. 本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S △DPQ =−2x 2+6x +72;(II)利用三角形的面积公式找出S △DPQ =−2x 2+4(t +2)x −2t 2−8t .3. (1)利用配方法得到y =x 2+2x +1=(x +1)2,然后根据抛物线的变换规律求解;(2)利用顶点式y =(x +1)2得到A(−1,0),解方程−x 2+4=0得D(−2,0),C(2,0)易得B(0,4),列举出所有的三角形,再计算出AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,然后根据等腰三角形的判定方法和概率公式求解;(3)易得BC 的解析是为y =−2x +4,S △ABC =6,M 点的坐标为(m,−2m +4)(0≤m ≤2),讨论:①当N 点在AC 上,如图1,利用面积公式得到12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,求出AN =1,MN =4,再利用正切定义计算tan∠MAC 的值;当m =1时,计算出AN =2,MN =2,再利用正切定义计算tan∠MAC 的值;②当N 点在BC 上,如图2,先利用面积法计算出AN =6√55,再根据三角形面积公式计算出MN =2√53,然后利用正切定义计算tan∠MAC 的值;③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t ,由②得AH =6√55,利用勾股定理可计算出BH =7√55,证明△BNM ∽△BHA ,利用相似比可得到MN =6√17−6t 7,利用三角形面积公式得到12⋅(√17−t)⋅6√17−6t7=2,根据此方程没有实数解可判断点N 在AB 上不符合条件,从而得到tan∠MAN 的值为1或4或59. 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的判定、概率公式;理解二次函数图象的图象变换规律,会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4. (1)由点A 的坐标及OC =3OA 得点C 坐标,将A 、C 坐标代入解析式求解可得;(2)设抛物线C 2的解析式为y =−x 2+2x +3−k ,即y =−(x −1)2+4−k ,′作G′D ⊥x 轴于点D ,设BD′=m ,由等边三角形性质知点B′的坐标为(m +1,0),点G′的坐标为(1,√3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,−x2+2x+3)、Q(x,−x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN 均为钝角知△AOQ≌△PQN,延长PQ交直线y=−1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解.本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.5. (1)当A′E//x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+√3,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能:①∠A′EF=90∘,根据折叠的性质,∠A′EF=∠AEF=90∘,此时A′与O重合,与题意不符,因此此种情况不成立.②∠A′FE=90∘,同①,可得出此种情况也不成立.因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形.本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强.6. (1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x1+x2=4(k−1),x1x2=−16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC//AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.7. (1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8. (1)根据抛物线的对称轴公式代入可得a的值;(2)根据已知得:抛物线与x轴有两个交点,则△>0,列不等式可得c的取值范围;(3)根据60∘的正切表示点B的坐标,把点B的坐标代入抛物线的解析式中得:ac=12,则c=12a,从而得A和B的坐标,表示F的坐标,作辅助线,构建直角△ADG,根据已知的角相等可得△ADG∽△AFE,列比例式得方程可得a和c的值.本题是二次函数综合题,涉及的知识点有:代入法的运用,根与判别式的关系,对称轴公式,解方程,三角形相似的性质和判定,勾股定理等知识,第3问有难度,利用特殊角的三角函数表示A、B两点的坐标是关键,综合性较强.9. (1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,先求的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),表示NQ=−m2+4m−3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.10. 解:(1)y=x2+mx−2m−4=(x2−4)+m(x−2)=(x−2)(x+2+m),当x=2时,y=0,∴抛物线经过定点坐标是(2,0).∵抛物线的解析式为y=x2+mx−2m−4,∴顶点M的对称轴为直线x=−b2a =−m2当x═−m2时,y=(−m2)2+m⋅(−m2)−2m−4=−14m2−2m−4故答案为:(2,0);(−m2,−14m2−2m−4).(2)设x=−m2,y=−14m2−2m−4则m=−2x,带入y=−m2,−14m2−2m−4.整理得y=−x2+4x−4即抛物线的顶点在抛物线y=−x2+4x−4上运动.其对称轴为直线x=2,当抛物线顶点直线x=2右侧时即m<−4时,抛物线y=x2+mx−2m−4与正方形ABCD 无交点.当m>−4时,观察抛物线的顶点所在抛物线y=−x2+4x−4恰好过点A(0,−4),此时m= 0当抛物线y=x2+mx−2m−4过点C(1,−5)时−5=1+m−2m−4,得m=2∴抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点时m的范围为:0≤m≤2(3)由(2)抛物线顶点M在抛物线y=−x2+4x−4上运动当点M在线段AB上方时,过点B且使∠ABM=45∘的直线解析式为y=−x−3联立方程−x2+4x−4=−x−3求交点横坐标的x1=5+√212(舍去)x2=5−√212m=−5+√21当点M在线段AB下方时过点B且使∠ABM=45∘的直线解析式为y=x−5联立方程−x2+4x−4=x−5求交点横坐标为x1=3+√132(舍去)x2=3−√132m=−3+√13∴m的值为−5+√21或−3+√13(1)判断函数图象过定点时,可以分析代入的x值使得含m的同类项合并后为系数为零.(2)由(1)中用m表示的顶点坐标,可以得到在m变化时,抛物线顶点M抛物线在y=−x2+ 4x−4上运动,分析该函数图象和正方形ABCD的顶点位置关系可以解答本题;(3)由已知点M在过点B且与AB夹角为45∘角的直线与抛物线在y=−x2+4x−4的交点上,则问题可解.本题考查含有字母参数的二次函数图象及其性质,解答过程中注意数形结合,关注m的变化过程中,抛物线的变化趋势.11. (1)找到抛物线顶点坐标即可找到平移方式.(2)①设出点P坐标,利用PM=PF计算BF,求得F坐标;②利用PM=PF,将QP+PF转化为QP+QM,利用垂线段最短解决问题.本题以二次函数为背景,考查了数形结合思想、转换思想和学生解答问题的符号意思.12. 解:(1)∵A点坐标为(−6,0)∴OA=6∵过点C(−6,1)的双曲线y=kx∴k=−6y=4时,x=−64=−32∴点E 的坐标为(−32,4) 故答案为:6,−6,(−32,4)(2)①设直线MN 解析式为:y 1=k 1x +b 1 由题意得:{−12t 2+5t −32=k 1(t −1)+b 1−12t 2+3t −72=k 1(−t −3)+b 1 解得{k 1=1b =−12t 2+4t −12∵抛物线y =−12x 2+bx +c 过点M 、N∴{−12t 2+5t −32=−12(t −1)2+b(t −1)+c−12t 2+3t −72=−12(−t −3)2+b(−t −3)+c 解得{c =5t −2b=−1∴抛物线解析式为:y =−12x 2−x +5t −2 ∴顶点P 坐标为(−1,5t −32) ∵P 在双曲线y =−6x 上∴(5t −32)×(−1)=−6∴t =32此时直线MN 解析式为: 联立{y =x +358y =−6x∴8x 2+35x +49=0∵△=352−4×8×48=1225−1536<0∴直线MN 与双曲线y =−6x 没有公共点.②当抛物线过点B ,此时抛物线y =−12x 2+bx +c 与矩形OADB 有且只有三个公共点 ∴4=5t −2,得t =65当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点 ∴10t−32=4,得t =1110∴t =65或t =1110③∵点P 的坐标为(−1,5t −32)∴y P =5t −32当1≤t ≤6时,y P 随t 的增大而增大 此时,点P 在直线x =−1上向上运动 ∵点F 的坐标为(0,−12t 2+4t −12)∴y F =−12(t −4)2+152∴当1≤t ≤4时,随者y F 随t 的增大而增大 此时,随着t 的增大,点F 在y 轴上向上运动∴1≤t ≤4当t =1时,直线MN :y =x +3与x 轴交于点G(−3,0),与y 轴交于点H(0,3) 当t =4−√3时,直线MN 过点A .当1≤t ≤4时,直线MN 在四边形AEBO 中扫过的面积为S =12×(32+6)×4−12×3×3=212(1)根据题意将先关数据带入(2)①用t 表示直线MN 解析式,及b ,c ,得到P 点坐标带入双曲线y =kx 解析式,证明关于t 的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B 和在BD 上时的情况;③由②中部分结果,用t 表示F 、P 点的纵坐标,求出t 的取值范围及直线MN 在四边形OAEB 中所过的面积.本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t 表示相关点坐标.13. (1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案; (2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M 的纵坐标的范围,又利用了二次函数的性质:a <0时,点与对称轴的距离越小函数值越大.14. (1)由OC 与OB 的长,确定出B 与C 的坐标,再由A 坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD 是平行四边形;当四边形BCPD 是平行四边形;四边形BDCP 是平行四边形时,利用平移规律确定出P 坐标即可;(3)由B 与C 坐标确定出直线BC 解析式,求出与直线BC 平行且与抛物线只有一个交点时交点坐标,。

2018年中考数学二次函数压轴题汇编及解析

2018年中考数学二次函数压轴题汇编及解析

2018年中考数学二次函数压轴题汇编及解析1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB 及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c 与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.3.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M 的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y 轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.4.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.6.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).(1)求该抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.①当点P'落在该抛物线上时,求m的值;②当点P'落在第二象限内,P'A2取得最小值时,求m的值.7.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.8.已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.9.已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M (1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.10.在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.11.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P 在该抛物线上(P点与A、B两点不重合),如果△ABP 的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.(1)直接写出抛物线y=﹣x2+1的勾股点的坐标.(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P (1,)是抛物线C的勾股点,求抛物线C的函数表达式.=S△ABP的Q (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ点(异于点P)的坐标.12.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.13.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.14.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);=S△ABD?若存在(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.15.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB 的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.16.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(),C();(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=.17.已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.18.已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B 的左侧),与y轴正半轴相交于点C,过点A作AD⊥x 轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.19.如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B 在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.(1)若△OAC为等腰直角三角形,求m的值;(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m 的式子表示);(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE 的中点,此时对于该抛物线上任意一点P(x0,y0)总有n+≥﹣4my02﹣12y0﹣50成立,求实数n的最小值.20.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.21.在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,且经过点A (0,)(1)若此抛物线经过点B(2,﹣),且与x轴相交于点E,F.①填空:b=(用含a的代数式表示);②当EF2的值最小时,求抛物线的解析式;(2)若a=,当0≤x≤1,抛物线上的点到x轴距离的最大值为3时,求b 的值.22.如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D 作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x 轴,交直线AD 于M,交抛物线于点N,连接CM,求△PCM面积的最大值;。

2018-2020年山东中考数学各地区模拟试题分类(潍坊专版)(4)——二次函数(含解析)

2018-2020年山东中考数学各地区模拟试题分类(潍坊专版)(4)——二次函数(含解析)

2018-2020年山东中考数学各地区模拟试题分类(潍坊专版)(4)——二次函数一.选择题(共12小题)1.(2020•潍坊一模)已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或B.6或或﹣10C.﹣19或6 D.6或或﹣192.(2020•寿光市二模)已知二次函数y=ax2+bx+c,其中y与x的部分对应值如表:x﹣2 ﹣1 0.5 1.5y 5 0 ﹣3.75 ﹣3.75 下列结论正确的是()A.abc<0B.4a+2b+c>0C.若x<﹣1或x>3时,y>0D.方程ax2+bx+c=5的解为x1=﹣2,x2=33.(2020•青州市一模)表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y… 6 m11 k11 m 6 …根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④4.(2020•潍坊三模)在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(,),且当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是()A.﹣1≤m≤0 B.2≤m<C.2≤m≤4 D.<m≤5.(2020•安丘市一模)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥06.(2019•潍坊一模)如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②3a+c=0;③ax2+bx≤a+b;④若M(﹣0.5,y1)、N(2.5,y2)为函数图象上的两点,则y1<y2.其中正确的是()A.①③④B.①②3④C.①②③D.②③④7.(2019•临朐县二模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1.有下列4个结论:①abc>0;②4a+2b+c>0;③2c<3b;④a+b>m(am+b)(m是不等于1的实数).其中正确的结论个数有()A.1个B.2个C.3个D.4个8.(2019•寿光市二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c =2;③a;④b>1,其中正确的结论个数是()A.1个B.2 个C.3 个D.4 个9.(2019•潍坊二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④10.(2018•安丘市模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:(1)abc<0;(2)b2>4ac;(3)3a+2c=0;(4)5a+3b+2c<0.其中正确的有几个()A.1个B.2个C.3个D.4个11.(2018•高密市二模)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个12.(2018•诸城市一模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤二.填空题(共1小题)13.(2020•潍坊一模)已知二次函数y=x2+2mx+3的图象交y轴于点B,交直线x=5于点C,设二次函数图象上的一点P(x,y)满足0≤x≤5时,y≤3,则m的取值范围为.三.解答题(共27小题)14.(2020•安丘市一模)如图,已知的圆心为点(3,0),抛物线y=ax2﹣x+c过点A,与⊙A交于B、C两点,连接AB、AC,且AB⊥AC,B、C两点的纵坐标分别是2、1.(1)求B、C点坐标和抛物线的解析式;(2)直线y=kx+1经过点B,与x轴交于点D.点E(与点D不重合)在该直线上,且AD=AE,请判断点E是否在此抛物线上,并说明理由;(3)如果直线y=k1x﹣1与⊙A相切,请直接写出满足此条件的直线解析式.15.(2020•潍坊一模)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B (4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的一点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)求tan∠OAB的值.(4)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.16.(2020•潍坊一模)国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售过程中发现:A型汽车的每周销售量y A(台)与售价x A(万元/台)满足函数关系y A=﹣x A+18;B型汽车的每周销售量y B(台)与售价x B(万元/台)满足函数关系y B=﹣x B+14.若A型汽车的售价比B型汽车的售价高1万元/台,设每周销售这两种车的总利润为w万元.求当B型号的汽车售价为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?17.(2020•寿光市二模)如图,抛物线y=x2+bx+c交x轴于B,C两点,交y轴于点A,直线y=﹣x+3经过点A,B.(1)求抛物线的解析式.(2)点P是直线AB下方的抛物线上一动点,过点P作PE⊥x轴于点E,交直线AB于点F,设点P的横坐标为m,若PF=3PE,求m的值.(3)N是第一象限对称轴右侧抛物线上的一点,连接BN,AC,抛物线的对称轴上是否存在点M,使得△BMN与△AOC相似,且∠BMN为直角,若存在,请直接写出点M的坐标;若不存在,请说明理由.18.(2020•潍坊三模)如图,西游乐园景区内有一块矩形油菜花田地(单位:m),现在其中修建一条观花道(阴影所示),供游人赏花,设改造后观花道的面积为ym2.(1)求y与x的函数关系式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.6≤x≤1,求改造后油菜花地所占面积的最大值.19.(2020•潍坊一模)如图,在平面直角坐标系xOy中,将抛物线y=﹣x2+bx+c与直线y=﹣x+1相交于点A(0,1)和点B(3,﹣2),交x轴于点C,顶点为点F,点D是该抛物线上一点.(1)求抛物线的函数表达式;(2)如图1,若点D在直线AB上方的抛物线上,求△DAB的面积最大时点D的坐标;(3)如图2,若点D在对称轴左侧的抛物线上,且点E(1,t)是射线CF上一点,当以C、B、D为顶点的三角形与△CAE相似时,求所有满足条件的t的值.20.(2020•青州市一模)某超市销售一种商品,成本价为50元/千克,规定每千克售价不低于成本价,且不高于85元经市场调查,该商品每天的销售量y(千克)与售价x(元/千克)满足一次函数关系,部分数据如表:售价x(元/千克)50 60 70销售量y(千克)120 100 80 (1)求y与x之间的函数表达式.(2)设该商品每天的总利润为W(元),则当售价x定为多少元/千克时,超市每天能获得最大利润?最大利润是多少元?(3)如果超市要获得每天不低于1600元的利润,且符合超市自己的规定,那么该商品的售价x的取值范围是多少?请说明理由.21.(2020•青州市一模)如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.22.(2020•安丘市三模)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x≤14)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x≤7 8≤x≤14售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+40023.(2020•奎文区一模)金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:(1)求y与x之间的函数解析式;(2)求这一天销售羊肚菌获得的利润W的最大值;(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.24.(2020•奎文区一模)如图,抛物线y=﹣+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.25.(2020•诸城市一模)某厂生产某种零件,该厂为鼓励销售商订货,提供了如下信息:①每个零件的成本价为40元;②若订购量在100个以内,出厂价为60元;若订购量超过100个时,每多订1个,订购的全部零件的出厂单价就降低0.02元;③实际出厂单价不能低于51元.根据以上信息,解答下列问题:(1)当一次订购量为个时,零件的实际出厂单价降为51元.(2)设一次订购量为x个时,零件的实际出厂单价为P元,写出P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂价﹣成本).26.(2019•潍坊一模)如图1,已知抛物线y1=x2+mx与抛物线y2=ax2+bx+c的形状相同,开口方向相反,且相交于点A(﹣3,﹣6)和点B(1,6).抛物线y2与x轴正半轴交于点C,P为抛物线y2上A、B两点间一动点,过点P作PQ∥y轴,与y1交于点Q.(1)求抛物线y1与抛物线y2的解析式;(2)四边形APBQ的面积为S,求S的最大值,并写出此时点P的坐标;(3)如图2,y2的对称轴为直线l,PC与l交于点E,在(2)的条件下,直线l上是否存在一点T,使得以T、E、C为顶点的三角形与△APQ相似?如果存在,求出点T的坐标;如果不存在,说明理由.27.(2019•临朐县二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O,C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,NE⊥AD于点E,求NE的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t.是否存在t,使以点M,C,D,N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.28.(2019•临朐县二模)某商场经营某种品牌的玩具,购进时的单价是30元,经市场预测,销售单价为40元时,可售出600个;面销售单价每涨1元,销售量将减少10个设每个销售单价为x元.(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?29.(2019•临朐县一模)经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y(万元/kg),y与时间t(天)函数关系可用线段AB和BC上的一些不连续的点来表示(t为整数),如图所示.其中线段BC的函数关系式为y=﹣+m.该商品在销售期内每天的销量如下表:时间(t)0<t≤50 50<t≤100每天的销量(kg)200 t+150 (1)分别求出当0<t≤50和50<t≤100时y与t的函数关系式;(2)设每天的销售收入为w(万元),则当t为何值时,w的值最大?求出最大值30.(2019•寿光市二模)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.31.(2019•临朐县三模)如图,西游乐园景区内有一块矩形油菜花田地(单位:m),现在其中修建一条观花道(阴影所示),供游人赏花,设改造后观花道的面积为ym2.(1)求y与x的函数关系式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤x≤1,求改造后油菜花田地所占面积的最大值.32.(2019•潍坊模拟)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.(1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;(2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:(3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P 点的坐标;若不存在,说明理由.33.(2018•安丘市模拟)如图,在直角坐标系中,二次函数经过A(﹣2,0),B(2,2),C(0,2)三个点.(1)求该二次函数的解析式.(2)若在该函数图象的对称轴上有个动点D,求当D点坐标为何值时,△ACD的周长最小.(3)在直线y=x上是否存在一点E,使得△ACE为直角三角形?有,请求出E点坐标;没有,说明理由.34.(2018•青州市二模)阅读1:a、b为实数,且a>0,b>0,因为≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:函数y=x+(常数m>0,x>0),由阅读1结论可知:x+≥2=2,所以当x=即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:(1)已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为.(2)已知函数y1=x+1(x>﹣1)与函数y2=x2+2x+17(x>﹣1),当x=时,的最小值为.(3)某民办学校每天的支出总费用包含以下三个部分:一是教职工工资12800元;二是学生生活费每人20元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.02.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)35.(2018•潍坊二模)某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:销售价格x(元/个)…30 40 50 60 …销售量y(万个)… 5 4 3 2 …同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的数据,用所学过的函数知识,直接写出y与x的函数解析式;(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请你结合函数图象求出销售价格x(元个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?36.(2018•青州市三模)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.37.(2018•青州市三模)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为W元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?38.(2018•高密市二模)如图1,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(﹣1,0),B(4,0),∠ACB=90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.39.(2018•高密市二模)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?40.(2018•寿光市模拟)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元)0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?2018-2020年山东中考数学各地区模拟试题分类(潍坊专版)(4)——二次函数参考答案与试题解析一.选择题(共12小题)1.(2020•潍坊一模)已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或B.6或或﹣10C.﹣19或6 D.6或或﹣19【答案】C【解答】解:∵二次函数y=﹣x2+mx+m=﹣(x﹣)2++m,∴抛物线的对称轴为x=,∴当<﹣2时,即m<﹣4,∵当﹣2≤x≤4时,y的最大值是15,∴当x=﹣2时,﹣(﹣2)2﹣2m+m=15,得m=﹣19;当﹣24时,即﹣4≤m≤8时,∵当﹣2≤x≤4时,y的最大值是15,∴当x=时,+m=15,得m1=﹣10(舍去),m2=6;当>4时,即m>8,∵当﹣2≤x≤4时,y的最大值是15,∴当x=4时,﹣42+4m+m=15,得m=(舍去);由上可得,m的值是﹣19或6;故选:C.2.(2020•寿光市二模)已知二次函数y=ax2+bx+c,其中y与x的部分对应值如表:x﹣2 ﹣1 0.5 1.5y 5 0 ﹣3.75 ﹣3.75 下列结论正确的是()A.abc<0B.4a+2b+c>0C.若x<﹣1或x>3时,y>0D.方程ax2+bx+c=5的解为x1=﹣2,x2=3【答案】C【解答】解:∵x=0.5,y=﹣3.75;x=1.5,y=﹣3.75,∴抛物线的对称轴为直线x=1,∵抛物线与x轴的另一个交点坐标为(3,0),∵设y=a(x+1)(x﹣3),把(﹣2,5)代入得5=a×(﹣2+1)(﹣2﹣3),解得a=1,∴y=x2﹣2x﹣3,∴abc>0,所以A选项错误;4a+2b+c=4﹣4﹣3=﹣3<0,所以B选项错误;∵抛物线开口向上,抛物线与x轴的交点坐标为(﹣1,0),(3,0),∴x<﹣1或x>3时,y>0,所以C选项正确;方程ax2+bx+c=5表示为x2﹣2x﹣3=5,解得x1=﹣2,x2=4,所以D选项错误.故选:C.3.(2020•青州市一模)表中所列x、y的7对值是二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7x…x1x2x3x4x5x6x7…y… 6 m11 k11 m 6 …根据表中提供约信息,有以下4个判断:①a<0;②6<m<11;③当x=时,y的值是k;④b2≥4a(c﹣k);其中判断正确的是()A.①②③B.①②④C.①③④D.②③④【答案】B【解答】解:∵x1<x2<x3<x4<x5<x6<x7,其对应的函数值是先增大后减小,∴抛物线开口向下,∴a<0,①符合题意;∴6<m<11<k,∴6<m<11,②符合题意;根据图表中的数据知,只有当x==x4时,抛物线的顶点坐标纵坐标是k,即y的值是k,③不符合题意;∵≥k,a<0,∴4ac﹣b2≤4ak,∴b2≥4a(c﹣k),④符合题意.综上,可得判断正确的是:①②④.故选:B.4.(2020•潍坊三模)在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(,),且当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是()A.﹣1≤m≤0 B.2≤m<C.2≤m≤4 D.<m≤【答案】C【解答】解:令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为=,解得a=﹣1,c=﹣,故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,如图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x ≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,∴2≤m≤4,故选:C.5.(2020•安丘市一模)已知二次函数y=ax2+bx+c(a≠0)与x轴交于点(x1,0)与(x2,0),其中x1<x2,方程ax2+bx+c﹣a=0的两根为m、n(m<n),则下列判断正确的是()A.m<n<x1<x2B.m<x1<x2<n C.x1+x2>m+n D.b2﹣4ac≥0【答案】B【解答】解:当a>0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴上方,它们的横坐标分别为m、n,∴m<x1<x2<n;当a<0,∵方程ax2+bx+c﹣a=0的两根为m、n,∴二次函数y=ax2+bx+c与直线y=a的交点在x轴下方,它们的横坐标分别为m、n,∴m<x1<x2<n.故选:B.6.(2019•潍坊一模)如图,二次函数y=ax2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②3a+c=0;③ax2+bx≤a+b;④若M(﹣0.5,y1)、N(2.5,y2)为函数图象上的两点,则y1<y2.其中正确的是()A.①③④B.①②3④C.①②③D.②③④【答案】C【解答】解:①由图象可知:a<0,c>0,由对称轴可知:>0,∴b>0,∴abc<0,故①正确;②由对称轴可知:=1,∴b=﹣2a,∵抛物线过点(3,0),∴0=9a+3b+c,∴9a﹣6a+c=0,∴3a+c=0,故②正确;③当x=1时,y取最大值,y的最大值为a+b+c,当x取全体实数时,ax2+bx+c≤a+b+c,即ax2+bx≤a+b,故③正确;④(﹣0.5,y1)关于对称轴x=1的对称点为(2.5,y1):∴y1=y2,故④错误;故选:C.7.(2019•临朐县二模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1.有下列4个结论:①abc>0;②4a+2b+c>0;③2c<3b;④a+b>m(am+b)(m是不等于1的实数).其中正确的结论个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:①由图象可知:a<0,c>0,∵﹣>0,∴b>0,∴abc<0,故①错误;②由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故②正确;③当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故③正确;④当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故④正确.故选:C.8.(2019•寿光市二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c =2;③a;④b>1,其中正确的结论个数是()A.1个B.2 个C.3 个D.4 个【答案】C【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①错误,当x=1时,y=a+b+c=2,故②正确,当x=﹣1时,y=a﹣b+c<0,由a+b+c=2得,a+c=2﹣b,则a﹣b+c=(a+c)﹣b=2﹣b﹣b<0,得b>1,故④正确,∵,a>0,得a>>,故③正确,故选:C.9.(2019•潍坊二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④【答案】C【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,所以③正确;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,而x=﹣1时,y>0,即a﹣b+c>0,∴a+2a+c>0,所以④错误.故选:C.10.(2018•安丘市模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:(1)abc<0;(2)b2>4ac;(3)3a+2c=0;(4)5a+3b+2c<0.其中正确的有几个()A.1个B.2个C.3个D.4个【答案】B【解答】解:(1)由图象可知:a>0,c<0,由对称轴可知:<0,∴b>0,∴abc<0,故(1)正确;(2)抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故(2)正确;(3)由于对称轴可知:=﹣1,∴b=2a,由于抛物线过点(1,0),∴a+b+c=0,∴3a+c=0,故(3)错误;(4)由于b=2a,c=﹣3a5a+3b+2c=5a+6a﹣6a=5a>0,故(4)错误;故选:B.11.(2018•高密市二模)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【答案】B【解答】解:∵x=﹣=2,∴4a+b=0,故①正确.由函数图象可知:当x=3时,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故②正确.∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0又∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵抛物线开口向下,∴a<0,∴7a﹣3b+2c<0,故③错误;∵抛物线的对称轴为x=2,C(7,y3),∴(﹣3,y3).∵﹣3<﹣,在对称轴的左侧,∴y随x的增大而增大,∴y1=y3<y2,故④错误.方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5,过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根,依据函数图象可知:x1<﹣1<5<x2,故⑤正确.故选:B.12.(2018•诸城市一模)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤【答案】C【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤正确.综上所述,③④⑤正确.故选:C.二.填空题(共1小题)13.(2020•潍坊一模)已知二次函数y=x2+2mx+3的图象交y轴于点B,交直线x=5于点C,设二次函数图象上的一点P(x,y)满足0≤x≤5时,y≤3,则m的取值范围为m≤﹣2.5.【答案】见试题解答内容【解答】解:∵a=1>0,故抛物线开口向上,故y在x=0或x=5时取得最大值,当x=0时,y=x2+2mx+3=3,则x=5时,y=x2+2mx+3=25+10m+3≤3,解得:m≤﹣2.5;故答案为:m≤﹣2.5.三.解答题(共27小题)14.(2020•安丘市一模)如图,已知的圆心为点(3,0),抛物线y=ax2﹣x+c过点A,与⊙A交于B、C两点,连接AB、AC,且AB⊥AC,B、C两点的纵坐标分别是2、1.(1)求B、C点坐标和抛物线的解析式;(2)直线y=kx+1经过点B,与x轴交于点D.点E(与点D不重合)在该直线上,且AD=AE,请判断点E是否在此抛物线上,并说明理由;(3)如果直线y=k1x﹣1与⊙A相切,请直接写出满足此条件的直线解析式.【答案】见试题解答内容【解答】解:(1)过点B、C分别作x轴的垂线交于点R、S,∵∠BAR+∠RBA=90°,∠BAR+∠CAS=90°,∴∠RAB=∠SCA,又∵AB=AC,∴△BRA≌△ASC(AAS),∴AS=BR,AR=CS,∵B、C两点的纵坐标分别是2、1,∴AS=BR=2,AR=CS=1,故点B、C的坐标分别为(2,2)、(5,1),将点B、C坐标代入抛物线y=ax2﹣x+c,,解得,,故抛物线的表达式为y=x2﹣x+11;(2)∵直线y=kx+1经过点B(2,2),∴2=2k+1,得k=,即直线y=x+1,当y=0时,0=x+1,得x=﹣2,即点D的坐标为(﹣2,0),∵点A、B、C、D的坐标分别为(3,0)、(2,2)、(5,1)、(﹣2,0),∴,AD=5,∵点E在直线BD上,∴设E的坐标为(x,x+1),∵AD=AE,∴,解得:x1=﹣2(舍去),x2=6,∴点E(6,4),当x=6时,y=+11=4,∴点E在抛物线上;(3)①当切点在x轴下方时,设直线y=k1x﹣1与⊙A相切于点H,直线与x轴、y轴分别交于点K、G(0,﹣1),连接GA,∵AR=1,BE=2,∠BRA=90°,点A(3,0),点G(0,﹣1),∴AB=,AG=,∴AH=AB=,∵∠AHK=∠KOG=90°,∠HKA=∠OKG,∴△KOG∽△KHA,∴,即:,解得:KO=2或(舍去),∴点K的坐标为(﹣2,0),把点K的坐标代入y=k1x﹣1,得0=﹣2k1﹣1,得k1=,∴直线的表达式为;②当切点在x轴上方时,直线的表达式为:y=2x﹣1;故满足条件的直线解析式为或y=2x﹣1.15.(2020•潍坊一模)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B (4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)若点P为线段OA上方抛物线上的一点,过点P作x轴的垂线,交OA于点Q,求线段PQ长度的最大值.(3)求tan∠OAB的值.(4)在抛物线的对称轴上是否存在一点N,使得△BAN为以AB为腰的等腰三角形,若不存在,请说明理由,若存在,请直接写出点N的坐标.【答案】见试题解答内容【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),由点O(0,0),A(3,3)得直线OA的解析式为:y=x,设点P(p,﹣p2+4p),则点Q(p,p),PQ=y P﹣y Q=﹣p2+4p﹣p=﹣p2+3p=﹣(p﹣)2+,当p=时,PQ的值最大,最大值为;(3)如图1,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,∵A(3,3),∴AE=3,OE=3,∴△AOE为等腰直角三角形,∴∠AOE=45°,OA=OE=3,在等腰Rt△BOD中,OB=4,∴OD=BD=2,∴AD=OA﹣OD=3﹣2=,∴tan∠OAB==2;(4)存在,设点N(2,a),若AB=AN,∵点A(3,3),B点(4,0),点N(2,a),∴=,。

中考数学易错题专题复习-二次函数练习题含答案解析

中考数学易错题专题复习-二次函数练习题含答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可. 详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+)=23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论: 当PA =PE 29n +212n ++()n =1,此时P (﹣1,1); 当PA =AE 29n +16425+=n =11,此时点P 坐标为(﹣1,11);当PE =AE 212n ++()16425+=n =﹣219P 坐标为:(﹣1,﹣219±).综上所述:P点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.2.如图,二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.【答案】(1)二次函数的解析式为:y=-x2-x+2;;(2)最大值为1,此时N(-1,2);(3)M的坐标为(-1,0)或(50)或(-32,0);(4)点P的坐标为:(-1,2)或(-73,-109).【解析】【分析】(1)利用交点式求二次函数的解析式;(2)求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:①如图4,点P1与点C关于抛物线的对称轴对称时符合条件;②如图5,图3中的M(-32,0)时,MB=MC,设CM与抛物线交于点P2,则△CP2Q∽△BCO,P2为直线CM的抛物线的交点.【详解】(1)∵二次函数y=ax2+bx+c的图象交x轴于A(-2,0),B(1,0),设二次函数的解析式为:y=a(x+2)(x-1),把C(0,2)代入得:2=a(0+2)(0-1),a=-1,∴y=-(x+2)(x-1)=-x2-x+2,∴二次函数的解析式为:y=-x2-x+2;(2)如图1,过N作ND∥y轴,交AC于D,设N(n,-n2-n+2),设直线AC的解析式为:y=kx+b,把A(-2,0)、C(0,2)代入得:202k bb-+⎧⎨⎩==,解得:12 kb⎧⎨⎩==,∴直线AC的解析式为:y=x+2,∴D(n,n+2),∴ND=(-n2-n+2)-(n+2)=-n2-2n,∴S△ANC=12×2×[-n2-2n]=-n2-2n=-(n+1)2+1,∴当n=-1时,△ANC的面积有最大值为1,此时N(-1,2),(3)存在,分三种情况:①如图2,当BC=CM1时,M1(-1,0);②如图2,由勾股定理得:BC=22251=,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=5,此时,M2(1-5,0),M3(1+5,0);③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=32,∵M4在x轴的负半轴上,∴M4(-32,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(-1,0)或(50)或(-32,0);(4)存在两种情况:①如图4,过C作x轴的平行线交抛物线于P1,过P1作P1Q⊥BC,此时,△CP 1Q ∽△BCO ,∴点P 1与点C 关于抛物线的对称轴对称, ∴P 1(-1,2),②如图5,由(3)知:当M(-32,0)时,MB=MC ,设CM 与抛物线交于点P 2, 过P 2作P 2Q ⊥BC ,此时,△CP 2Q ∽△BCO ,易得直线CM 的解析式为:y=43x+2, 则24232y x y x x ⎧=+⎪⎨⎪=--+⎩, 解得:P 2(-73,-109),综上所述,点P 的坐标为:(-1,2)或(-73,-109).【点睛】本题是二次函数的综合题,计算量大,考查了利用待定系数法求函数的解析式、利用函数解析式求其交点坐标、三角形相似的性质和判定、等腰三角形的性质和判定,是一个不错的二次函数与几何图形的综合题,采用了分类讨论的思想,第三问和第四问要考虑周全,不要丢解.3.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .(1)当抛物线F 经过点C 时,求它的解析式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.【答案】(1) 221y x x =+-;(2)12y y >.【解析】 【分析】(1)根据抛物线F :y=x 2-2mx+m 2-2过点C (-1,-2),可以求得抛物线F 的表达式; (2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小. 【详解】(1) ∵抛物线F 经过点C (-1,-2), ∴22122m m -=++-. ∴m 1=m 2=-1.∴抛物线F 的解析式是221y x x =+-.(2)当x=-2时,2442P y m m =++-=()222m +-.∴当m=-2时,P y 的最小值为-2. 此时抛物线F 的表达式是()222y x =+-. ∴当2x ≤-时,y 随x 的增大而减小. ∵12x x <≤-2, ∴1y >2y . 【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.4.如图1,在矩形ABCD 中,DB =6,AD =3,在Rt △PEF 中,∠PEF =90°,EF =3,PF =6,△PEF (点F 和点A 重合)的边EF 和矩形的边AB 在同一直线上.现将Rt △PEF 从A 以每秒1个单位的速度向射线AB 方向匀速平移,当点F 与点B 重合时停止运动,设运动时间为t 秒,解答下列问题:(1)如图1,连接PD ,填空:PE = ,∠PFD = 度,四边形PEAD 的面积是 ;(2)如图2,当PF 经过点D 时,求△PEF 运动时间t 的值;(3)在运动的过程中,设△PEF 与△ABD 重叠部分面积为S ,请直接写出S 与t 的函数关系式及相应的t 的取值范围.【答案】(1)3009+93;(233)见解析. 【解析】分析:(1)根据锐角三角形函数可求出角的度数,然后根据勾股定理求出PE 的长,再根据梯形的面积公式求解.(2)当PF 经过点D 时,PE ∥DA ,由EF=3,PF=6,可得∠EPD=∠ADF=30°,用三角函数计算可得3(3)根据题意,分三种情况:①当0≤t 3时,3<3时,③3≤t≤6时,根据三角形、梯形的面积的求法,求出S 与t 的函数关系式即可. 详解:(1)∵在Rt △PEF 中,∠PEF=90°,EF=3,PF=6∴sin ∠P=1=2EF PF ∴∠P=30° ∵PE ∥AD∴∠PAD=300,根据勾股定理可得3 所以S 四边形PEAD =12×(3+3)993 ; (2)当PF 经过点D 时,PE ∥DA ,由EF=3,PF=6,得∠EPF=∠ADF=30°, 在Rt △ADF 中,由AD=3,得33 ; (3)分三种情况讨论:①当0≤t <3时, PF 交AD 于Q ,∵AF=t ,AQ=3t ,∴S=12×t×3t=32t ; ②当3≤t <3时,PF 交BD 于K ,作KH ⊥AB 于H ,∵AF=t ,∴BF=33-t ,S △ABD =93, ∵∠FBK=∠FKB ,∴FB=FK=33-t ,KH=KF×sin600=9-3t,∴S=S △ABD ﹣S △FBK =23993,2t t -+- ③当3≤t≤33时,PE 与BD 交O ,PF 交BD 于K ,∵AF=t ,∴AE=t-3,BF=33-t, BE=33-t+3,OE=BE×tan300=9-333t +,∴S=233233633-t t --++. 点睛:此题主要考查了几何变换综合题,用到的知识点有直角三角形的性质,三角函数值,三角形的面积,图形的平移等,考查了分析推理能力,分类讨论思想,数形结合思想,要熟练掌握,比较困难.5.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求mn 、的值及该抛物线的解析式; (2)如图2.若点P 为线段AD 上的一动点(不与A D 、重合).分别以AP 、DP 为斜边,在直线AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时P 点的坐标.(3)如图3.连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A D Q 、、为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)265y x x =-+-;(2)当2m =,即2AP =时,MPN S ∆最大,此时3OP =,所以()3,0P ;(3)存在点Q 坐标为2-3(,)或78-33⎛⎫ ⎪⎝⎭,. 【解析】分析:(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.详解:(1)把A (m ,0),B (4,n )代入y =x ﹣1得:m =1,n =3,∴A (1,0),B (4,3).∵y =﹣x 2+bx +c 经过点A 与点B ,∴101643b c b c -++=⎧⎨-++=⎩,解得:65b c =⎧⎨=-⎩,则二次函数解析式为y =﹣x 2+6x ﹣5;(2)如图2,△APM 与△DPN 都为等腰直角三角形,∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形,令﹣x 2+6x ﹣5=0,得到x =1或x =5,∴D (5,0),即DP =5﹣1=4,设AP =m ,则有DP =4﹣m ,∴PM=2m ,PN=2(4﹣m ),∴S △MPN =12PM •PN =12m(4﹣m )=﹣14m 2﹣m =﹣14(m ﹣2)2+1,∴当m =2,即AP =2时,S △MPN 最大,此时OP =3,即P (3,0);(3)存在,易得直线CD 解析式为y =x ﹣5,设Q (x ,x ﹣5),由题意得:∠BAD =∠ADC =45°,分两种情况讨论: ①当△ABD ∽△DAQ 时,AB DA =BD AQ,即4=4AQ ,解得:AQ=3,由两点间的距离公式得:(x ﹣1)2+(x ﹣5)2=1283,解得:x =73,此时Q (73,﹣83); ②当△ABD ∽△DQA 时,BDAQ=1,即AQ,∴(x ﹣1)2+(x ﹣5)2=10,解得:x =2,此时Q (2,﹣3).综上,点Q 的坐标为(2,﹣3)或(73,﹣83). 点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.6.在平面直角坐标系中,抛物线2y ax bx c =++过点(1,0)A -,(3,0)B ,与y 轴交于点C ,连接AC ,BC ,将OBC 沿BC 所在的直线翻折,得到DBC △,连接OD . (1)用含a 的代数式表示点C 的坐标.(2)如图1,若点D 落在抛物线的对称轴上,且在x 轴上方,求抛物线的解析式. (3)设OBD 的面积为S 1,OAC 的面积为S 2,若1223S S =,求a 的值.【答案】(1)(0,3)C a -;(2) 抛物线的表达式为:252535y x x =-++; (3) 22a =-或22a =【解析】【分析】(1)根据待定系数法,得到抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即可求解;(2)根据相似三角形的判定证明CPD DQB ∽,再根据相似三角形的性质得到CP PD CD DQ BQ BD==,即可求解; (3)连接OD 交BC 于点H ,过点H 、D 分别作x 轴的垂线交于点N 、M ,由三角形的面积公式得到1223S S =,29m DM =,11299m HN DM OC ===,而22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,即可求解. 【详解】(1)抛物线的表达式为:()2(1)(3)23y a x x a x x =+-=--,即3c a =-,则点(0,3)C a -;(2)过点B 作y 轴的平行线BQ ,过点D 作x 轴的平行线交y 轴于点P 、交BQ 于点Q , ∵90CDP PDC ︒∠+∠=,90PDC QDB ︒∠+∠=,∴QDB DCP ∠=∠,设:(1,)D n ,点(0,3)C a -,90CPD BQD ︒∠=∠=,∴CPD DQB ∽, ∴CP PD CD DQ BQ BD ==,其中:3CP n a =+,312DQ =-=,1PD =,BQ n =,3CD a =-,3BD =, 将以上数值代入比例式并解得:55a =±, ∵0a <,故55a =-, 故抛物线的表达式为:252535y x x =-++; (3)如图2,当点C 在x 轴上方时,连接OD 交BC 于点H ,则DO BC ⊥,过点H 、D 分别作x 轴的垂线交于点N 、M ,设:3OC m a ==-,11322OBD S S OB DM DM ∆==⨯⨯=, 2112OACS S m ∆==⨯⨯,而1223S S =, 则29m DM =,11299m HN DM OC ===, ∴1193BN BO ==,则18333ON =-=, 则DO BC ⊥,HN OB ⊥,则BHN HON ∠=∠,则tan tan BHN HON ∠=∠,则22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭, 解得:62m =±(舍去负值),|3|62CO a =-=,解得:22a =-故:22a =-.当点C 在x 轴下方时,同理可得:22a =;故:22a =-或22a =【点睛】本题考查的是二次函数综合运用、一次函数、三角形相似、图形的面积计算,其中(3)用几何方法得出:22899m HN ON BN ⎛⎫=⨯== ⎪⎝⎭,是本题解题的关键.7.如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =②92155n <<. 【解析】【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求DA=952,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,5;当PQ 与AB 不平行时,5②当PQ ∥AB ,DB=DP 时,5DN=245,所以N (2,215),55【详解】(1)顶点为()2,9D ;故答案为()2,9;(2)对称轴2x =, 9(2,)5C ∴, 由已知可求5(,0)2A -, 点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+, (5,3)B ∴,①当275n =时,27(2,)5N ,DA ∴=,182DN =,365CD = 当PQ AB ∥时,PDQ DAB ∆∆,DAC DPN ∆∆,DP DN DA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆,DNQ DCA ∴∆∆,DP DN DB DC∴=,DP ∴=综上所述DP =②当PQ AB ∥,DB DP =时,DB =DP DN DA DC∴=, 245DN ∴=, 21(2,)5N ∴,55故答案为921 55n<<;【点睛】本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.8.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x2+32x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=12x-2,则Q(m,-12m2+32m+2)、M(m,12m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214 132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4), 将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得: 402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0), ∴Q (m ,--12m 2+32m+2)、M (m ,12m-2), 则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4, ∵F (0,12)、D (0,-2), ∴DF=52, ∵QM ∥DF ,∴当-12m 2+m+4=52时,四边形DMQF 是平行四边形, 解得:m=-1(舍)或m=3,即m=3时,四边形DMQF 是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.9.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+23分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为4915129±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.详解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+2x+c ,得168020a c a c -+=⎧⎨++=⎩, 解得:2383a c ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线解析式为:y=228233x x +-, ∵过点B 的直线y=kx+23, ∴代入(1,0),得:k=﹣23, ∴BD 解析式为y=﹣2233x +;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,5252,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC=3CFP O,即523=103t,解得:t=49,∴t的值为49、151296、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N 作NH ⊥DD′于点H ,此时,DM+MN=D′N 最小.则△EOF ∽△NHD′设点N 坐标为(a ,﹣21033a -), ∴OE NH =OF HD ',即52104()33a ---=1032a -, 解得:a=﹣2,则N 点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1, 当x=﹣32时,y=﹣54, ∴M 点坐标为(﹣32,﹣54), 此时,DM+MN 的值最小为22D H NH '+=2246+=213.点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.10.如图1,抛物线2112y ax x c =-+与x 轴交于点A 和点()1,0B ,与y 轴交于点30,4C ⎛⎫ ⎪⎝⎭,抛物线1y 的顶点为,G GM x ⊥轴于点M .将抛物线1y 平移后得到顶点为B 且对称轴为直l 的抛物线2y .(1)求抛物线2y 的解析式;(2)如图2,在直线l 上是否存在点T ,使TAC ∆是等腰三角形?若存在,请求出所有点T 的坐标:若不存在,请说明理由;(3)点P 为抛物线1y 上一动点,过点P 作y 轴的平行线交抛物线2y 于点Q ,点Q 关于直线l 的对称点为R ,若以,,P Q R 为顶点的三角形与AMC ∆全等,求直线PR 的解析式.【答案】(1)抛物线2y 的解析式为2111424y x x =-+-;(2)T点的坐标为13(1,4T +,23(1,4T -,377(1,)8T -;(3)PR 的解析式为13y x 24=-+或1124y x =--. 【解析】分析:(1)把()1,0B 和30,4C ⎛⎫ ⎪⎝⎭代入2112y ax x c =-+求出a 、c 的值,进而求出y 1,再根据平移得出y 2即可;(2)抛物线2y 的对称轴l 为1x =,设()1,T t ,已知()33,0,0,4A C ⎛⎫- ⎪⎝⎭,过点T 作TE y ⊥轴于E ,分三种情况时行讨论等腰三角形的底和腰,得到关于t 的方程,解方程即可; (3)设2113,424P m m m ⎛⎫--+ ⎪⎝⎭,则2111,424Q m m m ⎛⎫-+- ⎪⎝⎭,根据对称性得21112,424R m m m ⎛⎫--+- ⎪⎝⎭,分点P 在直线的左侧或右侧时,结合以,,P Q R 构成的三角形与AMG ∆全等求解即可.详解:(1)由题意知,34102c a c ⎧=⎪⎪⎨⎪-+=⎪⎩, 解得14a =-, 所以,抛物线y 的解析式为21113424y x x =--+; 因为抛物线1y 平移后得到抛物线2y ,且顶点为()1,0B , 所以抛物线2y 的解析式为()22114y x =--, 即: 22111424y x x =-+-; (2)抛物线2y 的对称轴l 为1x =,设()1,T t ,已知()33,0,0,4A C ⎛⎫- ⎪⎝⎭, 过点T 作TE y ⊥轴于E ,则22221TC TE CE =+=+ 2233254216t t t ⎛⎫-=-+ ⎪⎝⎭, 222TA TB AB =+= ()2221316t t ++=+, 215316AC =, 当TC AC =时,即232515321616t t -+=, 解得13137t +=或23137t -=; 当TC AC =时,得21531616t +=,无解; 当TC AC =时,得2232516216t t t -+=+,解得3778t =-; 综上可知,在抛物线2y 的对称轴l 上存在点T 使TAC ∆是等腰三角形,此时T 点的坐标为131371,T ⎛⎫+ ⎪ ⎪⎝⎭,231371,T ⎛⎫- ⎪ ⎪⎝⎭,3771,8T ⎛⎫- ⎪⎝⎭. (3)设2113,424P m m m ⎛⎫--+ ⎪⎝⎭,则2111,424Q m m m ⎛⎫-+- ⎪⎝⎭, 因为,Q R 关于1x =对称,所以21112,424R m m m ⎛⎫--+- ⎪⎝⎭, 情况一:当点P 在直线的左侧时,2113424PQ m m =--+- 21111424m m m ⎛⎫-+-=- ⎪⎝⎭, 22QR m =-,又因为以,,P Q R 构成的三角形与AMG ∆全等,当PQ GM =且QR AM =时,0m =, 可求得30,4P ⎛⎫ ⎪⎝⎭,即点P 与点C 重合 所以12,4R ⎛⎫- ⎪⎝⎭, 设PR 的解析式y kx b =+, 则有3,412.4b k b ⎧=⎪⎪⎨⎪+=-⎪⎩解得12k =-, 即PR 的解析式为1324y x =-+, 当PQ AM =且QR GM =时,无解, 情况二:当点P 在直线l 右侧时,2111424P Q m m '=-+-'- 21131424m m m ⎛⎫--+=- ⎪⎝⎭, 22Q R m ='-', 同理可得512,,0,44P R ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝'⎭' P R ''的解析式为1124y x =--, 综上所述, PR 的解析式为1324y x =-+或1124y x =--. 点睛:本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式、等腰三角形的判定与性质、全等三角形的性质等知识,解答(1)问的关键是求出a 、c 的值,解答(2)、(3)问的关键是正确地作出图形,进行分类讨论解答,此题有一定的难度.。

近五年(2017-2021)年浙江中考数学真题分类汇编之二次函数(含解析)

近五年(2017-2021)年浙江中考数学真题分类汇编之二次函数(含解析)

2017-2021年浙江中考数学真题分类汇编之二次函数一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)2.(2021•绍兴)关于二次函数y=2(x﹣4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值6 3.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.4.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)5.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<0 6.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A.B.C.D.7.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y =(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位8.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)9.(2020•宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y 轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c10.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2 11.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.12.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥13.(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3 14.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.4 15.(2020•嘉兴)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值16.(2019•舟山)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时得到如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④二.填空题(共4小题)17.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是.18.(2017•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.19.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt ﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=.20.(2021•湖州)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a ≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是.三.解答题(共3小题)21.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.22.(2021•杭州)在直角坐标系中,设函数y=ax2+bx+1(a,b是常数,a≠0).(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a,b的值,使函数y=ax2+bx+1的图象与x轴有两个不同的交点,并说明理由.(3)已知a=b=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,Q.若p+q=2,求证:P+Q>6.23.(2020•金华)如图,在平面直角坐标系中,已知二次函数y=﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.2017-2021年浙江中考数学真题分类汇编之二次函数参考答案与试题解析一.选择题(共16小题)1.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【考点】二次函数的性质.【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选:A.【点评】本题考查由抛物线的顶点坐标式写出抛物线顶点的坐标,比较容易.2.(2021•绍兴)关于二次函数y=2(x﹣4)2+6的最大值或最小值,下列说法正确的是()A.有最大值4B.有最小值4C.有最大值6D.有最小值6【考点】二次函数的性质;二次函数的最值.【专题】二次函数图象及其性质;应用意识.【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数有最小值,最小值为6,然后即可判断哪个选项是正确的.【解答】解:∵二次函数y=2(x﹣4)2+6,a=2>0,∴该函数图象开口向上,有最小值,当x=4取得最小值6,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确二次函数的性质,会求函数的最值.3.(2018•宁波)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.【考点】二次函数的性质;一次函数的图象.【专题】函数及其图象.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.4.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0)C.(﹣3,﹣5)D.(﹣3,﹣1)【考点】抛物线与x轴的交点;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【专题】二次函数图象及其性质.【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x ﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.5.(2017•杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<0【考点】二次函数图象与系数的关系.【分析】由对称轴x=﹣=1得:b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴x=﹣=1得:b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a+b=(m﹣1)a﹣2a=(m﹣3)a,(m﹣1)a+b与0无法判断.当m<1时,(m+1)a+b=(m+1)a﹣2a=(m﹣1)a>0.故选:C.【点评】本题考查了二次函数图象与系数的关系,利用对称轴得出b=﹣2a是解题关键.6.(2021•杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3).同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中a的值最大为()A.B.C.D.【考点】二次函数图象与系数的关系.【专题】函数思想;应用意识.【分析】比较任意三个点组成的二次函数,比较开口方向,开口向下,则a<0,只需把开口向上的二次函数解析式求出即可.【解答】解:由图象知,A、B、D组成的二次函数图象开口向上,a>0;A、B、C组成的二次函数开口向上,a>0;B、C、D三点组成的二次函数开口向下,a<0;A、D、C三点组成的二次函数开口向下,a<0;即只需比较A、B、D组成的二次函数和A、B、C组成的二次函数即可.设A、B、C组成的二次函数为y1=a1x2+b1x+c1,把A(0,2),B(1,0),C(3,1)代入上式得,,解得a1=;设A、B、D组成的二次函数为y=ax2+bx+c,把A(0,2),B(1,0),D(2,3)代入上式得,,解得a=,即a最大的值为,也可以根据a的绝对值越大开口越小直接代入ABD三点计算,即可求求解.故选:A.【点评】本题考查待定系数法求函数解析式,解本题的关键要熟练掌握二次函数的性质和待定系数法求函数的解析式.7.(2019•绍兴)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y =(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质.【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.【点评】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.8.(2019•衢州)二次函数y=(x﹣1)2+3图象的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【考点】二次函数的性质.【专题】二次函数图象及其性质.【分析】由抛物线顶点式可求得答案.【解答】解:∵y=(x﹣1)2+3,∴顶点坐标为(1,3),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).9.(2020•宁波)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y 轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】二次函数图象及其性质;运算能力.【分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据二次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解答】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误;∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)2+b(﹣n2﹣2)+c=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.【点评】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.10.(2020•温州)已知(﹣3,y1),(﹣2,y2),(1,y3)是抛物线y=﹣3x2﹣12x+m上的点,则()A.y3<y2<y1B.y3<y1<y2C.y2<y3<y1D.y1<y3<y2【考点】二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;运算能力.【分析】求出抛物线的对称轴为直线x=﹣2,然后根据二次函数的增减性和对称性解答即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣2,∵a=﹣3<0,∴x=﹣2时,函数值最大,又∵﹣3到﹣2的距离比1到﹣2的距离小,∴y3<y1<y2.故选:B.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性和对称性,求出对称轴是解题的关键.11.(2019•湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】一次函数及其应用;二次函数图象及其性质.【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.【解答】解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.【点评】本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点.12.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质.【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣,满足条件,可得a≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵Δ>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.【点评】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.13.(2017•绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14B.y=x2﹣8x+14C.y=x2+4x+3D.y=x2﹣4x+3【考点】二次函数图象与几何变换.【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14故选:A.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.14.(2021•湖州)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2﹣x2时,S1<S2;③当|x1﹣2|>|x2﹣2|>1时,S1>S2;④当|x1﹣2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.4【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;推理能力.【分析】不妨假设a>0,利用图象法一一判断即可.【解答】解:方法一:不妨假设a>0.①如图1中,P1,P2满足x1>x2+2,∵P1P2∥AB,∴S1=S2,故①错误.②当x1=﹣2,x2=﹣1,满足x1<2﹣x2,则S1>S2,故②错误,③∵|x1﹣2|>|x2﹣2|>1,∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,∴S1>S2,故③正确,④如图2中,P1,P2满足|x1﹣2|>|x2+2|>1,但是S1=S2,故④错误.故选:A.方法二:解:∵抛物线y=ax2+bx+c与x轴的交点为A(1,0)和B(3,0),∴该抛物线对称轴为x=2,当x1>x2+2时与当x1<2﹣x2时无法确定P1(x1,y1),P2(x2,y2)在抛物线上的对应位置,故①和②都不正确;当|x1﹣2|>|x2﹣2|>1时,P1(x1,y1)比P2(x2,y2)离对称轴更远,且同在x轴上方或者下方,∴|y1|>|y2|,∴S1>S2,故③正确;当|x1﹣2|>|x2+2|>1时,即在x轴上x1到2的距离比x2到﹣2的距离大,且都大于1,可知在x轴上x1到2的距离大于1,x2到﹣2的距离大于1,但x2到2的距离不能确定,所以无法比较P1(x1,y1)比P2(x2,y2)谁离对称轴更远,故无法比较面积,故④错误;故选:A.【点评】本题考查抛物线与x轴的交点,二次函数图象上的点的特征等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.15.(2020•嘉兴)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是()A.当n﹣m=1时,b﹣a有最小值B.当n﹣m=1时,b﹣a有最大值C.当b﹣a=1时,n﹣m无最小值D.当b﹣a=1时,n﹣m有最大值【考点】二次函数的性质;二次函数的最值.【专题】函数的综合应用;几何直观;运算能力.【分析】方法1、①当b﹣a=1时,当a,b同号时,先判断出四边形BCDE是矩形,得出BC=DE=b﹣a=1,CD=BE=m,进而得出AC=n﹣m,即tan∠ABC=n﹣m,再判断出45°≤∠ABC<90°,即可得出n﹣m的范围,当a,b异号时,m=0,当a=﹣,b=时,n最小=,即可得出n﹣m的范围;②当n﹣m=1时,当a,b同号时,同①的方法得出NH=PQ=b﹣a,HQ=PN=m,进而得出MH=n﹣m=1,而tan∠MHN=,再判断出45°≤∠MNH<90°,当a,b 异号时,m=0,则n=1,即可求出a,b,即可得出结论.方法2、根据抛物线的性质判断,即可得出结论.【解答】解:方法1、①当b﹣a=1时,当a,b同号时,如图1,过点B作BC⊥AD于C,∴∠BCD=90°,∵∠ADE=∠BED=90°,∴∠ADE=∠BCD=∠BED=90°,∴四边形BCDE是矩形,∴BC=DE=b﹣a=1,CD=BE=m,∴AC=AD﹣CD=n﹣m,在Rt△ACB中,tan∠ABC==n﹣m,∵点A,B在抛物线y=x2上,且a,b同号,∴45°≤∠ABC<90°,∴tan∠ABC≥1,∴n﹣m≥1,当a,b异号时,m=0,当a=﹣,b=时,n=,此时,n﹣m=,∴≤n﹣m<1,即n﹣m≥,即n﹣m无最大值,有最小值,最小值为,故选项C,D都错误;②当n﹣m=1时,如图2,当a,b同号时,过点N作NH⊥MQ于H,同①的方法得,NH=PQ=b﹣a,HQ=PN=m,∴MH=MQ﹣HQ=n﹣m=1,在Rt△MHN中,tan∠MNH==,∵点M,N在抛物线y=x2上,∴m≥0,当m=0时,n=1,∴点N(0,0),M(1,1),∴NH=1,此时,∠MNH=45°,∴45°≤∠MNH<90°,∴tan∠MNH≥1,∴≥1,当a,b异号时,m=0,∴n=1,∴a=﹣1,b=1,即b﹣a=2,∴b﹣a无最小值,有最大值,最大值为2,故选项A错误;故选:B.方法2、当n﹣m=1时,当a,b在y轴同侧时,a,b都越大时,a﹣b越接近于0,但不能取0,即b﹣a没有最小值,当a,b异号时,当a=﹣1,b=1时,b﹣a=2最大,当b﹣a=1时,当a,b在y轴同侧时,a,b离y轴越远,n﹣m越大,但取不到最大,当a,b在y轴两侧时,当a=﹣,b=时,n﹣m取到最小,最小值为,因此,只有选项B正确,故选:B.【点评】此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH的范围是解本题的关键.16.(2019•舟山)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时得到如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点;等腰直角三角形;一次函数图象上点的坐标特征.【专题】数形结合;二次函数图象及其性质.【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x1=m﹣,x2=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1,当m=1时,二次函数y=﹣(x﹣1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且a=﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.二.填空题(共4小题)17.(2018•湖州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是﹣2.【考点】抛物线与x轴的交点;正方形的性质;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;矩形菱形正方形.【分析】根据正方形的性质结合题意,可得出点B的坐标为(﹣,﹣),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.【解答】解:∵四边形ABOC是正方形,∴点B的坐标为(﹣,﹣).∵抛物线y=ax2过点B,∴﹣=a(﹣)2,解得:b1=0(舍去),b2=﹣2.故答案为:﹣2.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b的方程是解题的关键.18.(2017•金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=88πm2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC的变化过程中,当S取得最小值时,边BC的长为m.【考点】二次函数的应用;等边三角形的判定与性质;矩形的性质.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10﹣x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【解答】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10﹣x,∴S=•π•102+•π•x2+•π•(10﹣x)2=(x2﹣5x+250)=(x﹣)2+,当x=时,S取得最小值,∴BC=,故答案为:.【点评】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.19.(2021•台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt ﹣4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=:1.【考点】二次函数的应用;解直角三角形.【专题】二次函数的应用;推理能力.【分析】利用h=vt﹣4.9t2,求出t1,t2,再根据h1=2h2,求出v1=v2,可得结论.【解答】解:由题意,t1=,t2=,h1==,h2==,∵h1=2h2,∴v1=v2,∴t1:t2=v1:v2=:1,故答案为::1.【点评】本题考查二次函数的应用,解题的关键是求出t1,t2,证明v1=v2即可.20.(2021•湖州)已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线y=ax2+bx+2(a≠0)对称轴上的一个动点.小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定,若抛物线y=ax2+bx+2(a ≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是2或﹣8.【考点】二次函数的性质;二次函数图象上点的坐标特征;勾股定理的逆定理.【专题】二次函数图象及其性质;等腰三角形与直角三角形;推理能力.【分析】由题意△AOM是直角三角形,当对称轴x≠0或x≠3时,可知一定存在两个以A,O为直角顶点的直角三角形,当对称轴x=0或x=3时,不存在满足条件的点M,当以OA为直径的圆与抛物线的对称轴x=﹣相切时,对称轴上存在1个以点M为直角顶点的直角三角形,此时对称轴上存在3个不同的点M,使△AOM为直角三角形,利用图象法求解即可.【解答】解:∵△AOM是直角三角形,∴当对称轴x≠0或x≠3时,一定存在两个以A,O为直角顶点的直角三角形,且点M 在对称轴上的直角三角形,当对称轴x=0或x=3时,不存在满足条件的点M,∴当以OA为直径的圆与抛物线的对称轴x=﹣相切时,对称轴上存在1个以M为直角顶点的直角三角形,此时对称轴上存在3个不同的点M,使△AOM为直角三角形(如图所示).观察图象可知,﹣=﹣1或4,∴=2或﹣8,故答案为:2或﹣8.【点评】本题考查二次函数的性质,直角三角形的判定,圆周角定理等知识,解题的关键是判断出对称轴的位置,属于中考填空题中的压轴题.三.解答题(共3小题)21.(2021•宁波)如图,二次函数y=(x﹣1)(x﹣a)(a为常数)的图象的对称轴为直线x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.。

中考数学二次函数(大题培优 易错 难题)含答案

中考数学二次函数(大题培优 易错 难题)含答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线223432333y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由. 【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3); (3)E (-1,43F (023)或E (-1,43),F (-4103)【解析】 【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可 【详解】 (1)∵23432333y x x =--+a=233-,则抛物线的“衍生直线”的解析式为2323y=x+33-; 联立两解析式求交点2234323332323y=x+33y x x ⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A (-2,23),B (1,0); (2)如图1,过A 作AD ⊥y 轴于点D , 在223432333y x x =--+中,令y=0可求得x= -3或x=1, ∴C (-3,0),且A (-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13, ∵△AMN 为该抛物线的“衍生三角形”, ∴N 在y 轴上,且AD=2, 在Rt △AND 中,由勾股定理可得 DN=22AN -AD =13-4=3, ∵OD=23,∴ON=23-3或ON=23+3,∴N 点的坐标为(0,23-3),(0,23+3);(3)①当AC 为平行四边形的边时,如图2 ,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC=EF , ∴∠ ACK=∠ EFH , 在△ ACK 和△ EFH 中ACK=EFHAKC=EHF AC=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK ≌△ EFH ,∴FH=CK=1,HE=AK=23,∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,233),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=23-233=433,即E的纵坐标为-433,∴ E(-1,-433);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-233×(-4)+233,解得t=43-3,∴E(-1,43-3),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-433)、(0,233)或E(-1,43 -3),F(-4,1033)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题2.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】 【分析】(1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可. 【详解】(1)将C (0,﹣3)代入y =x +m ,可得: m =﹣3;(2)将y =0代入y =x ﹣3得: x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D , 则∠ODC =45°+15°=60°, ∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3=联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3=联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2). 【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.3.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元 【解析】 【分析】 (1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即()()()80802320w x y x x =-=--+, 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函数的最值问题求解;(3)求2400w =所对应的自变量的值,即解方程()2212032002400x --+=.然后检验即可. 【详解】(1)()()()80802320w x y x x =-=--+, 2248025600x x =-+-,w 与x 的函数关系式为:2248025600w x x =-+-; (2)()2224802560021203200w x x x =-+-=--+, 2080160x -<≤≤,,∴当120x =时,w 有最大值.w 最大值为3200.答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元. (3)当2400w =时,()2212032002400x --+=. 解得:12100140x x ,.== ∵想卖得快,2140x ∴=不符合题意,应舍去.答:销售单价应定为100元.4.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.5.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式;(2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,最大值的立方根为=;(3)存在满足条件的点P,t的值为1或【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.试题解析:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴,即,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.考点:二次函数综合题6.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线y=x2+bx+c的表达式;(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)42【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣2t2+42t,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.7.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.【答案】(1)2407mm,4807mm;(2)PN=60mm,40PQ mm.【解析】【分析】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC 相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值.【详解】(1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm)∵PN∥BC,∴=,△APN∽△ABC∴=∴=∴=解得 y=∴2y=∴这个矩形零件的两条边长分别为mm,mm(2)、设PQ=x (mm ),PN=y (mm ),矩形面积为S ,则AE=80-x (mm ).. 由(1)知=∴=∴ y=则S=xy===∵∴ S 有最大值∴当x=40时,S 最大=2400(mm 2) 此时,y==60 .∴面积达到这个最大值时矩形零件的两边PQ 、PN 长分别是40 mm ,60 mm . 考点:三角形相似的应用8.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210. (3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2). 【解析】 【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可. 【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0), ∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-. ∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+. (2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值. ∴当PB+PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴I 对称, ∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴2,10. ∴△PBC 的周长最小是:3210.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+) ∴()22EF m 2m 32m 6m 4m 3=--+-+=---.∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---. ②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).9.如图1,已知一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++过A 、B 两点,且与x 轴交于另一点C .(1)求b 、c 的值;(2)如图1,点D 为AC 的中点,点E 在线段BD 上,且BE=2ED ,连接CE 并延长交抛物线于点M ,求点M 的坐标;(3)将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,如图2,P 为△ACG 内以点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在他们的左侧作等边△APR ,等边△AGQ ,连接QR ①求证:PG=RQ ;②求PA+PC+PG 的最小值,并求出当PA+PC+PG 取得最小值时点P 的坐标.【答案】(1)b=﹣2,c=3;(2)M (125-,5125);(3)①证明见解析;②PA+PC+PG 的最小值为19P 的坐标(﹣919,12319). 【解析】试题分析:(1)把A (﹣3,0),B (0,3)代入抛物线2y x bx c =-++即可解决问题.(2)首先求出A 、C 、D 坐标,根据BE=2ED ,求出点E 坐标,求出直线CE ,利用方程组求交点坐标M .(3)①欲证明PG=QR ,只要证明△QAR ≌△GAP 即可.②当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K ,由sin ∠ACM=AM AC =NQQC求出AM ,CM ,利用等边三角形性质求出AP 、PM 、PC ,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线2y x bx c =-++过A 、B 两点,∴3{930c b c =--+=,解得:2{3b c =-=,∴b=﹣2,c=3. (2),对于抛物线223y x x =--+,令y=0,则2230x x --+=,解得x=﹣3或1,∴点C 坐标(1,0),∵AD=DC=2,∴点D 坐标(﹣1,0),∵BE=2ED ,∴点E 坐标(23-,1),设直线CE 为y=kx+b ,把E 、C 代入得到:21{30k b k b -+=+=,解得:35{35k b =-=,∴直线CE 为3355y x =-+,由233{5523y x y x x =-+=--+,解得10x y =⎧⎨=⎩或125{5125x y =-=,∴点M 坐标(125-,5125). (3)①∵△AGQ ,△APR 是等边三角形,∴AP=AR ,AQ=AG ,∠QAC=∠RAP=60°,∴∠QAR=∠GAP ,在△QAR 和△GAP 中,∵AQ=AG ,∠QAR=∠GAP ,AR=AP ,∴△QAR ≌△GAP ,∴QR=PG .②如图3中,∵PA+PB+PC=QR+PR+PC=QC ,∴当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K .∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q 坐标(﹣6,33),在RT △QCN 中,QN=33,CN=7,∠QNC=90°,∴QC=22QN NC +=219,∵sin ∠ACM=AM AC =NQQC,∴AM=65719,∵△APR 是等边三角形,∴∠APM=60°,∵PM=PR ,cos30°=AM AP ,∴AP=121919,PM=RM=61919,∴MC=22AC AM -=141919,∴PC=CM ﹣PM=81919,∵PK CP CK QN CQ CN ==,∴CK=2819,PK=12319,∴OK=CK ﹣CO=919,∴点P 坐标(﹣919,12319),∴PA+PC+PG 的最小值为219,此时点P 的坐标(﹣919,12319).考点:二次函数综合题;旋转的性质;最值问题;压轴题.10.复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.【答案】①真,②假,③假,④真,理由和所用的数学方法见解析.【解析】试题分析:根据方程思想,特殊与一般思想,反证思想,分类思想对各结论进行判断.试题解析:①真,②假,③假,④真.理由如下:①将(1,0)代入,得,解得.∴存在函数,其图像经过(1,0)点.∴结论①为真.②举反例如,当时,函数的图象与坐标轴只有两个不同的交点.∴结论②为假.③∵当时,二次函数(k是实数)的对称轴为,∴可举反例如,当时,二次函数为,当时,y随x的增大而减小;当时,y随x的增大而增大.∴结论③为假.④∵当时,二次函数的最值为,∴当时,有最小值,最小值为负;当时,有最大值,最大值为正.∴结论④为真.解决问题时所用的数学方法有方程思想,特殊与一般思想,反证思想,分类思想考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质;3.方程思想、特殊元素法、反证思想和分类思想的应用.。

2018中考数学真题分类汇编解析版-22.3.二次函数的应用

2018中考数学真题分类汇编解析版-22.3.二次函数的应用

一、选择题1.(2018·连云港,7,3分)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139m D.大箭升空的最大高度为145m答案:D,解析:因为h=-t2+24t+1=-(t-12)2+145,故对称轴为t=12,显然t=9和t=13时h不等;而t=24时,h=1≠0;当t=10时,h=145≠139;当t=12时,h有最大值145;故选项A、B、C均不正确,故选D.二、填空题1.(2018·绵阳,16,3分)右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.4m2m答案:4,解析:如图,以拱桥顶为坐标原点建立平面直角坐标系,根据题意可知A(2,-2),则抛物线的解析式为:y=-x2,水面下降2m,即y=-4时,-12x2=-4,解得:x1=22,x2=-22,此时水面的宽度为42,所以水面宽度增加了:(424)m.xyAO三、解答题1.(2018滨州,23,12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=-5x²+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行的时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?第23题图思路分析:(1)小球飞行高度为15m,即y=-5x²+20x中y的值为15,解方程求出x的值,即为飞行时间;(2)小球飞出时和落地时的高度为0,据此可以得出0=-5x²+20x,求出x的值,再求差即可;(3)求小球飞行高度何时最大?最大高度是多少?即求x为何值时,二次函数有最大值,最大值是多少?解答过程:(1)当y =15时有-5x ²+20x =15,化简得x ²-4x +3=0因式分解得(x -1)(x -3)=0,故x =1或3,即飞行时间是1秒或者3秒(2)飞出和落地的瞬间,高度都为0,故y =0.所以有0=-5x ²+20x ,解得x =0或4,所以从飞出到落地所用时间是4-0=4秒(3)当x =2b a-=202(5)--=2时,小球的飞行高度最大,最大高度为20米.2.(2018安徽,22,12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,售后统计,盆景平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元)(1)用含x 的代数式分别表示W 1,W 2;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少? 思路分析:(1)分别用含x 的代数式表示第二期培植的盆景和花卉的数量,根据利润=每盆的利润×数量可求解;(2)先根据W =W 1+W 2用含x 的代数式表示W ,并配成顶点形式,再结合抛物线的开口方向、自变量x 的取值范围和x 是正整数可求出W 的最大值.解答过程:(1)W 1=(x +50)(160-2x )=-2x 2+60x +8000;W 2=19(50-x )=-19x +950.(2)W =W 1+W 2=(-2x 2+60x +8000)+(-19x +950)=-2x 2+41x +8950=-2(x -441)2+916081.∵-2<0,∴抛物线开口向下,又0<x <50,且x 是整数,当x =10时,W 最大=-2×(10-441)2+916081=9160(元);当x =11时,W 最大=-2×(11-441)2+916081=9159(元).综上所述当x =10时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大利润是9160元.3.(2018眉山市,24,9分)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:34(06)2080(620)x x y x x ≤≤⎧=⎨+<≤⎩ (1)李明第几天生产的粽子数量为280只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)思路分析:(1)观察,分析题意可以发现,前六天中第6天生产粽子数量最多共34×6=204只,所以只能讲280代入第二个解析式即可.(2)依据函数图象分别求出p 与x 的函数关系式,根据公式w =(4-p )y ,将p 、y 代入函数解析式,得w 与x 的二次函数关系,最后依据二次函数的性质求出最大值.解答过程:(1)∵6×34=204,∴前六天中第6天生产的粽子最多达到204只,将280代入20x +80得:20x +80=280,∴x =10 答:第10天生产的粽子数量为280只.(2)当0≤x <10时,p =2,当10≤x ≤20时,设p =kx +b ,将(10,2)和(20,3)代入得:102203k b k b +=⎧⎨+=⎩解得:1101k b ⎧=⎪⎨⎪=⎩,∴p =110x +1; 当0≤x ≤6时,w =(4-2)×34x =68x ,w 随x 的增大而增大,∴当x =6时最大值为408元;当6<x ≤10时,w =(4-2)×(20x +80)=40x +160,w 随x 的增大而增大,∴当x =10时最大值为560元;当10<x ≤20时,w =(4-110x -1) (20x +80)=-2x 2+60x +232,对称轴为:直线x =15,在10<x ≤20内,将x =15代入得w =682元.综上所述,w 与x 的函数表达式为268(06)40160(610)260232(1020)x x w x x x x x ≤≤⎧⎪=+<≤⎨⎪-++<≤⎩第15天的时候利润最大,最大利润为682元.4..(2018·达州市,21,7分) “绿水青山就是金山银山”的理念已融入人们的日常生活中,因此越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价与标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3 辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?思路分析:(1))本小题的等量关系是按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.根据等量关系列、解方程即可解决问题.(2)本小题的等量关系是每月的利润W =实际售价×销售数量.根据等量关系列、解方程可得.解答过程:解:(1)设该型号自行车的进价为x 元,则标价为(1+50%)x 元.根据题意,得8[(1+50%)x ×0.9-x ]=7[(1+50%)x -100-x ]整理,得2.8x =3.5x -700解得x =1000(元),(1+50%)x =1500(元) .答: 该型号自行车的进价为1000元,则标价为1500元.(2)设该型号自行车降价a 元时,每月获利W 最大.根据题意,得W =(155-1000-a )(51+320x ) =-320a 2+48020a +25500 =-320(a 2-160a +802-802)+25500 =-320(a -80)2+26460. 当a =80时,每月获利最大,最大利润是26460元.即该型号自行车降价80元时,每月获利最大,最大利润是26460元.5.(2018·金华市,22,10分)如图,抛物线2y ax bx =+(a ≠0)过点E (10,0), 矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C,D 在抛物线上.设A (t ,0),当t =2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线..GH 平分矩形的面积时,求抛物线平移的距离.思路分析:(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE =OA =t ,据此知AB =10﹣2t ,再由x =t 时AD =21542t t -+,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t =2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,由此可求.解答过程:解:(1)设抛物线的函数表达式为y =ax (x ﹣10),∵当t =2时,AD =4,∴点D 的坐标为(2,4).∴4=()2210a ⨯⨯- ,解得a =14-, ∴抛物线的函数表达式为21542y x x =-+; (2)由抛物线的对称性得BE =OA =t ,∴AB =10﹣2t ,当x =t 时,AD =21542t t -+. ∴矩形ABCD 的周长=2(AB +AD )=()215210242t t t ⎡⎤⎛⎫-+-+ ⎪⎢⎥⎝⎭⎣⎦=21202t t -++ =()2141122t --+ ∵-12<0, ∴当t =1时,矩形ABCD 的周长有最大值,最大值为412; (3)当t =2时,点A 、B 、C 、D 的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),当平移后的抛物线过点A 时,点H 的坐标为(4,4),此时GH 不能将矩形面积平分;当平移后的抛物线过点C 时,点G 的坐标为(6,0),此时GH 也不能将矩形面积平分.∴当G 、H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分,当点G 、H 分别落在线段AB 、DC 上时,直线GH 过点P ,必平分矩形ABCD 的面积.∵AB ∥CD ,∴线段OD 平移后得到的线段GH ,∴线段OD 的中点Q 平移后的对应点是P ,在△OBD 中,PQ 是中位线,D CE B A O yx第22题图∴PQ =12OB =4, ∴抛物线向右平移的距离是4个单位.6.(2018·扬州市,26,10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30 元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大, 最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每 天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.思路分析:(1)从图像中获取两点坐标,再运用待定系数法求一次函数的表达式;(2)先根据“销售利润=单件利润×销售量”这一关系式列出利润与销售单价的函数关系式,再根据条件“销售量不低于240件”可求出自变量x 的取值范围,最后运用二次函数的增减性求出最大利润;(3)根据纯利润不低于3600列出的是一个二次不等式,可以运用图像法求出自变量x 的取值范围. 解答过程:(1)设y =kx +b ,有图像可知x =40时,y =300;x =55时,y =150,即有方程组4030055150k b k b +=⎧⎨+=⎩,解得10700k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y =-10x +700; (2)设每天获取的利润为w (元),则w =(x -30)y =2(30)(10700)10(50)4000x x x --+=--+由于每天漆器笔筒的销售量不低于240件,∴y =-10x +700≥240,解得x ≤46∵当x <50时,w 随x 的增大而增大∴当x =46时,w 有最大值,最大值=210(4650)4000-⨯-+=3840即当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)由题意得210(50)4000x --+-150≥3600,解方程210(50)4000x --+-150=3600得:x 1=45,x 2=55∴不等式210(50)4000x --+-150≥3600的解集为45≤x ≤55即该漆器笔筒销售单价x 的范围为45≤x ≤55.7.(2018浙江台州,23,12)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立模型:设第t 个月该原料药的月销售量为P (单位:吨).P 与t 之间存在如图所示的函数关系,其图象是是函数4t 120+=P (0<t ≤8)的图象与线段AB 的组合;设第t 个月销售该原料药每吨的毛利润为Q (单位:万元),Q 与t 之间满足如下关系:28(08)=44(224)t t Q t t +<≤⎧⎨-+<≤⎩x y (元)(件)3001505540O 第26题图(1)当8<t ≤24时,求P 关于t 的函数解析式;(2)设第t 个月销售该原料药的月毛利润为w (单位:万元).①求W 关于t 的函数解析式;②该药厂销售部门分析认为,336≤w ≤513是最有利于该原料药可持续生产和销售的月毛利润范围.求此范围对应的月销售量P 的最小值和最大值.思路分析:考察一次函数、二次函数和分段函数的相关知识解:(1)当824t <≤时,设解析式为P kt b =+将(8,10),(24,26)带入得8102426k b k b +=⎧⎨+=⎩ 解得12k b =⎧⎨=⎩2(817)P t t ∴=+<≤(2)①当08t <≤时,120(28)2404w t t =+=+当812t <≤时,2(28)(2)21216w t t t t =++=++当1224t <≤时,2(44)(2)4288w t t t t =-++=-++∴解析式为22240212164288w t t t t ⎧⎪=++⎨⎪-++⎩ ,08,812,1224t t t <≤<≤<≤②当812t <≤时,22212162(3)1w t t t ⎡⎤=++=+-⎣⎦,令221216336w t t =++=得1210,16t t ==-(舍去) 又12t =时,448513w =<1012t ∴≤≤时,满足336513w ≤≤;当1224t <≤时,224288(21)529w t t t =-++=--+,令24288513w t t =-++=,得1217,25t t ==(舍去)又12t =时,448336w =>1217t ∴≤≤时,满足336513w ≤≤.综上,当1017t ≤≤时,336513w ≤≤ 而2(1017)P t t =+≤≤,P ∴最小值为12,最大值为19.8.(2018浙江台州,24,14)如图,是ABC Δ☉O 的内接三角形,点D 在弧BC 上,点E 在弦AB 上(E不与A 重合),且四边形BDCE 为菱形.(1)求证:AC =CE ;(2)求证:2BC -2AC =AC AB •;(3)已知☉O 的半径为3, ①若AC AB =35, 求BC 的长;②当ACAB 为何值时,AC AB •的值最大?思路分析:(1)利用菱形四边相等和同弧所对应的圆周角相等;(2)根据等腰三角形的性质、勾股定理得出代数式,用平方差公式展开化简(3)①利用第二问结论和勾股定理即得②设未知数,将所求最值表示成二次函数,通过二次函数性质求最值点.(1)证明:连接ADAC 所对应的圆周角ABC=ADC ∠∠,CD 所对应的圆周角BC=DAC D ∠∠又ABC=DBC ∠∠∴∠ADC=∠DAC ,即ADC ∆为等腰三角形AC CD ∴=又四边形BDCE 为菱形 CD=CE ∴ C=CE A ∴(2)证明:作CH AE ⊥ACE ∆为等腰三角形 H ∴为AE 中点,即AH EH =在Rt CHB ∆中,222BC CH BH -=;在Rt AHC ∆中,222AC CH AH -=. 2222()()BC AC BH AH BH AH BH AH AB AC ∴-=-=+-=∙(3)解:①连接OD ,记OD 与BC 交点为P .OD 3= 由53AB AC =,可设5,3AB a AC a ==. 又22295315BC a a a a -=∙=,∴2224BC a =,则226PC a =223PD CD PC a ∴=-= 从而33OP a =-22(33)69a a ∴-+= 解得233a =,2642BC a ∴== ②连接OC ,设AB m AC=,则AB mAC = 设,,AC a OP b ==则3PD b =- 22229(3)PC b a b ∴=-=-- 得236a b =-42236a PC a ∴=-42249a BC a ∴=- 22221(27)99x BC AC x x ∴-=-=-- 当272x =时,取得最值814,即2272a =时,2814AB AC ma == 32m ∴=即32AB AC =时,AB AC 的值最大8.(2018威海,23,10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款,小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款,已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元,该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?思路分析:(1)先用待定系数法求出直线AB 与BC 的函数表达式,然后在4≤x ≤6与6≤x ≤8时,根据“每月利润=销售单价×每月销售量-工资及其他费用”列出W 与x 之间的函数表达式;(2)先求出每月的最大利润,然后求出最快还款的时间.解答过程:(1)设直线AB 的函数表达式为y AB =kx +b ,代入A (4,4),B (6,2),得4426k b k b =+⎧⎨=+⎩,解得18k b =-⎧⎨=⎩.∴直线AB 的函数表达式为y AB =-x +8. 设直线BC 的函数表达式为y BC =k 1x +b 1,代入B (6,2),C (8,1),得11112618k b k b =+⎧⎨=+⎩,解得11125k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为y BC =-21x +5. 工资及其他费用为0.4×5+1=3(万元).当4≤x ≤6时,∴()()1483W x x =--+-,即211235W x x =-+-.当6≤x ≤8时,∴()214532W x x ⎛⎫=--+- ⎪⎝⎭,即2217232W x x =-+-. (2)当4≤x ≤6时,()221123561W x x x =-+-=--+,∴当6x =时,1W 取得最大值1. 当6≤x ≤8时,()2221137237222W x x x =-+-=--+,∴当x =7时,2W 取得最大值1.5. ∴1020261.533==,即第7个月可以还清全部贷款. 9.(2018·温州市,23题号,12分)温州某企业安排 65 名工人生产甲、乙两种产品,每人每天生产 2 件甲或 1 件乙,甲产品每件可获利 15 元.根据市场需求和生产经验,乙产品每天产量不少于 5 件,当每天生产 5 件时,每件可获利 120 元,每增加 1 件,当天平均每件利润减少 2 元.设每天安排 x 人生产乙产品.(1)根据信息填表: 产品种类 每天工人数(人) 每天产量(件) 每件产品可获利润(元)甲 15乙 x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多 550 元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产 1 件丙(每人每天只能生产一种产品),丙产品每件可获利 30 元,求每天生产三种产品可获得的总利润 W (元)的最大值及相应 x 的值.思路分析:(1) x 人生产乙产品,则生产甲产品的人数就是(65- x );每人每天生产 2 件甲,则甲产品每天的产量为2(65- x );当每天生产 5 件乙产品时,每件可获利 120 元,每增加 1 件,当天平均每件利润减少 2 元,则每件乙产品可获利润120-2(x -5)=130-2x.(2) 由(1)可列方程15×2(65-x )=x(130-2x)+550,解得x 1=10,x 2=70,但一共有65 名工人,所以x 2舍去;则每件乙产品可获得的利润为110.(3)设生产甲产品m 人,则生产丙产品65-x-m 人,可列方程W=x (130-2x)+15×2m+30(65-x-m)=-2(x-25)2+3200;因为每天甲、丙两种产品的产量相等,则2m=65-x-m ,又因为x,m 都是非负整数,所以当x=26时,W 最大值=3198。

人教全国中考数学二次函数的综合中考真题汇总含答案解析

人教全国中考数学二次函数的综合中考真题汇总含答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 0),抛物线的对称轴为x 2)点P 的坐标为04);(3)2. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 33k +-2323k k --,∴11AM AN +323231k k --3232k -3(32(31)k k - =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。

中考数学考点16二次函数实际应用总复习(解析版)

中考数学考点16二次函数实际应用总复习(解析版)

二次函数实际应用【命题趋势】在中考中.二次函数的实际应用是中考必考考点.常以解答题形式考查.往往会结合方程(组)与一次函数考查。

【中考考查重点】一、二次函数的实际应用-运动类型二、二次函数的实际应用-经济类型三、二次函数的实际应用-面积类型四、二次函数的实际应用-拱桥类型考点一:运动类型考向1 落地模型1.(2021秋•松江区期末)一位运动员投掷铅球.如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+.那么铅球运动过程中最高点离地面的距离为米.【答案】3【解答】解:由题意可得:y=﹣=﹣(x2﹣8x)+=﹣(x﹣4)2+3.故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.考向2 最值模型2.(2021秋•信阳期中)烟花厂为建党成立100周年特别设计制作了一种新型礼炮.这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+8t.若这种礼炮在升空到最高点时引爆.则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【答案】D【解答】解:∵礼炮在点火升空到最高点引爆.∴t=﹣=﹣=6.∴从点火升空到引爆需要的时间为6s.故选:D.3.(2021秋•越秀区期末)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣1.5t2.则飞机停下前最后10秒滑行的距离是米.【答案】15【解答】解:∵s=60t﹣1.5t2=﹣(t﹣20)2+600.﹣<0.抛物线开口向下.∴当t=20时.s有最大值.此时s=600.∴飞机从落地到停下来共需20秒.飞机前10秒滑行的距离为:s1=60×10﹣1.5×102=585(米).∴飞机停下前最后10秒滑行的距离为:600﹣585=15(米).故答案为:15.考点二:经济类型4.(2021秋•克东县期末)某水果商场经销一种高档水果.原价每千克50元.连续两次降价后每千克32元.若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元.每天可售出500千克.经市场调查发现.在进货价不变的情况下商场决定采取适当的涨价措施.若每千克涨价1元.日销售量将减少20千克.现该商场要保证每天盈利6000元.且要尽快减少库存.那么每千克应涨价多少元?(3)若使商场每天的盈利达到最大值.则应涨价多少元?此时每天的最大盈利是多少?【答案】(1)20% (2)涨价5元(3)涨价7.5元.6125元【解答】解:(1)设每次下降的百分率为a.根据题意.得:50(1﹣a)2=32.解得:a=1.8(舍)或a=0.2.答:每次下降的百分率为20%;(2)设每千克应涨价x元.由题意.得:(10+x)(500﹣20x)=6000.整理.得x2﹣15x+50=0.解得:x1=5.x2=10.因为要尽快减少库存.所以x=5符合题意.答:该商场要保证每天盈利6000元.那么每千克应涨价5元;(3)设商场每天的盈利为y元.由(2)可知:y=(10+x)(500﹣20x)=﹣20x2+300x+5000.∵﹣20<0.∴当x=﹣=7.5时.y取最大值.∴当x=7.5时.y最大值=(10+7.5)×(500﹣20×7.5)=6125(元).答:应涨价7.5元.每天的盈利达到最大值.为6125元.5.(2021秋•郧西县期末)根据对某市相关的市场物价调研.预计进入夏季后的某一段时间.某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示.乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1.y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨.设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大.最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元.则乙种蔬菜进货量应在什么范围内合适?【答案】(1)y1=0.6x .y2=﹣0.2x2+2.2x(2)2≤t≤6【解答】解:(1)由题意得:5k=3.解得k=0.6.∴y1=0.6x;由.解得:.∴y2=﹣0.2x2+2.2x;(2)①W=0.6(10﹣t)+(﹣0.2t2+2.2t)=﹣0.2t2+1.6t+6=﹣0.2(t﹣4)2+9.2.当t=4时.W有最大值9.2.答:甲种蔬菜进货量为6吨.乙种蔬菜进货量为4吨时.获得的销售利润之和最大.最大利润是9200元;②当W=8.4=﹣0.2(t﹣4)2+9.2.∴t1=2.t2=6.∵a=﹣2<0.∴当2≤t≤6时.W≥8.4.答:为了获得两种蔬菜的利润之和不少于8400元.则乙种蔬菜进货量应在2≤t≤6范围内合适.考点三:面积类型6.(2021秋•西湖区校级期中)在校园嘉年华中.九年级同学将对一块长20m.宽10m的场地进行布置.设计方案如图所示.阴影区域为绿化区(四块全等的矩形).空白区域为活动区.且4个出口宽度相同.其宽度不小于4m.不大于8m.设出口长均为x(m).活动区面积为y(m2).(1)求y关于x的函数表达式;(2)当x取多少时.活动区面积最大?最大面积是多少?(3)若活动区布置成本为10元/m2.绿化区布置成本为8元/m2.布置场地的预算不超过1850元.当x为整数时.请求出符合预算且使活动区面积最大的x值及此时的布置成本.【答案】(1)y=﹣x2+30x(4≤x≤8)(2)x取8m时.最大面积是176m2(3)x=5时.活动区面积最大.此时的布置成本为1850元【解答】解:(1)根据题意得:y=20×10﹣4××=200﹣(20﹣x)(10﹣x)=200﹣200+30x﹣x2=﹣x2+30x.∴y与x的函数关系式为y=﹣x2+30x(4≤x≤8);(2)由(1)知:y=﹣x2+30x=﹣(x﹣15)2+225.∵﹣1<0.∵当x<15时.y随x的增大而增大.∵4≤x≤8.∴当x=8时.y有最大值.最大值为176.∴当x取8m时.活动区面积最大.最大面积是176m2;(3)设布置场地所用费用为w元.则w=10(﹣x2+30x)+8[200﹣(﹣x2+30x)]=﹣10x2+300x+1600+8x2﹣240x=﹣2x2+60x+1600.令w=1850.﹣2x2+60x+1600=1850.解得:x=25或x=5.∵4≤x≤8.∴4≤x≤5.∵活动区域面积为y=﹣x2+30x.﹣1<0.对称轴为直线x=15.∴当x=5时.活动区面积最大.此时的布置成本为1850元.考点三:拱桥类型7.(2021秋•建华区期末)如图(1)是一个横断面为抛物线形状的拱桥.水面在l时.拱顶(拱桥洞的最高点)离水面3米.水面宽4米.如果按图(2)建立平面直角坐标系.那么抛物线的解析式是.【答案】【解答】解:设出抛物线方程y=ax2(a≠0).由图象可知该图象经过(﹣2.﹣3)点.故﹣3=4a.a=﹣.故y=﹣x2.故答案为.8.(2021秋•绿园区期末)一座石拱桥的桥拱是近似的抛物线形.建立如图所示的平面直角坐标系.其函数关系为.当水面的宽度AB为16米时.水面离桥拱顶的高度OC为m.【答案】4【解答】解:∵水面的宽度AB为16米∴B的横坐标为8.把x=8代入y=﹣x2.得y=﹣4.∴B(8.﹣4).∴OC=4m.水面离桥拱顶的高度OC为4m.故答案为:4.9.(2021秋•营口期末)如图①.桥拱截面OBA可视为抛物线的一部分.在某一时刻.桥拱内的水面宽OA=8m.桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系.求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来.当船驶到桥拱下方且距O点0.4m时.桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾.他的头顶是否会触碰到桥拱.请说明理由(假设船底与水面齐平).【答案】(1)y=﹣x2+2x(0≤x≤8)(2)不会碰到头【解答】解:(1)如图②.由题意得:水面宽OA是8m.桥拱顶点B到水面的距离是4m.结合函数图象可知.顶点B(4.4).点O(0.0).设二次函数的表达式为y=a(x﹣4)2+4.将点O(0.0)代入函数表达式.解得:a=﹣.∴二次函数的表达式为y=﹣(x﹣4)2+4.即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头.理由如下:∵小船距O点0.4m.小船宽1.2m.工人直立在小船中间.由题意得:工人距O点距离为0.4+×1.2=1.∴将=1代入y=﹣x2+2x.解得:y==1.75∵1.75m>1.68m.∴此时工人不会碰到头.1.(2021秋•房山区期末)从地面竖直向上抛出一小球.小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).小球运动的时间是s时.小球最高;小球运动中的最大高度是m.【答案】3.45.【解答】解:h=30t﹣5t2=﹣5(t﹣3)2+45.∵﹣5<0.0≤t≤6.∴当t=3时.h有最大值.最大值为45.故答案为:3.45.2.(2021秋•龙凤区期末)飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=20t﹣0.5t2.飞机着陆后滑行m才能停下来.【答案】200【解答】解:s=20t﹣0.5t2=﹣0.5(t﹣20)2+200当t=20时.s有最大值为200.即飞机着陆后滑行200m才能停下来.故答案为200.3.(2021秋•黔西南州期末)中国贵州省省内的射电望远镜(F AST)是目前世界上口径最大.精度最高的望远镜.根据有关资料显示.该望远镜的轴截面呈抛物线状.口径AB 为500米.最低点P到口径面AB的距离是100米.若按如图(2)所示建立平面直角坐标系.则抛物线的解析式是.【答案】y=x2﹣100【解答】解:由题意可得:A(﹣250.0).P(0.﹣100).设抛物线解析式为:y=ax2﹣100.则0=62500a﹣100.解得:a=.故抛物线解析式为:y=x2﹣100.故答案为:y=x2﹣100.4.(2021秋•和平区期末)如图.小明父亲想用长为100m的栅栏.再借助房屋的外墙围成一个矩形的羊圈ABCD.已知房屋外墙长40m.设矩形ABCD的边AB=xm.面积为Sm2.(1)请直接写出S与x之间的函数表达式为.并直接写出x的取值范围是;(2)求当x为多少m时.面积S为1050m2;(3)当AB.BC分别为多少米时.羊圈的面积最大?最大面积是多少?【答案】(1)S=﹣2x2+100x.30≤x<50 (2)x为35m时.面积S为1050m2(3)AB=30m.BC=40m时.面积S有最大值为1200m2【解答】解:(1)∵AB=CD=xm.则BC=(100﹣2x)m.∴S=x(100﹣2x)=﹣2x2+100x.∵0<100﹣2x≤40.∴30≤x<50.∴S与x之间的函数表达式为S=﹣2x2+100x.自变量x的取值范围是30≤x<50.故答案安为:S=﹣2x2+100x.30≤x<50;(2)令S=1050.则﹣2x2+100x=1050.解得:x1=15.x2=35.∵30≤x<50.∴x=35.∴当x为35m时.面积S为1050m2;(3)∵S=﹣2(x2﹣50x+625﹣625)=﹣2(x﹣25)2+1250.∵﹣2<0.∴当x>25时.S随着x的增大而减小.∵30≤x<50.∴当x=30时.S有最大值为1200.∴当AB=30m.BC=40m时.面积S有最大值为1200m2.5.(2021秋•龙江县校级期末)某超市销售一种商品.每件成本为50元.销售人员经调查发现.销售单价为100元时.每月的销售量为50件.而销售单价每降低2元.则每月可多售出10件.且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元.并使顾客获得更多的实惠.销售单价应定为多少元?(3)为了每月所获利润最大.该商品销售单价应定为多少元?【答案】(1) y=﹣5x+550 (2)70元(3)80元【解答】解:(1)依题意得:y=50+(100﹣x)××10=﹣5x+550.∴y与x的函数关系式为y=﹣5x+550;(2)依题意得:y(x﹣50)=4000.即(﹣5x+550)(x﹣50)=4000.解得:x1=70.x2=90.∵70<90.∴当该商品每月销售利润为4000.为使顾客获得更多实惠.销售单价应定为70元;(3)设每月总利润为w元.依题意得w=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500.∵﹣5<0.此图象开口向下.∴当x=80时.w有最大值为4500元.∴为了每月所获利润最大.该商品销售单价应定为80元.6.(2021秋•宽城区期末)某商场以每件20元的价格购进一种商品.经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系.其图象如图所示.设该商场销售这种商品每天获利w(元).(1)求y与x之间的函数关系式.(2)求w与x之间的函数关系式.(3)该商场规定这种商品每件售价不低于进价.又不高于36元.当每件商品的售价定为多少元时.每天销售利润最大?最大利润是多少?【答案】(1)y=﹣2x+120 (2)w=﹣2x2+160x﹣2400(3)售价定为36元时.每天销售利润最大.最大利润是768元.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0).由所给函数图象可知:.解得.故y与x的函数关系式为y=﹣2x+120;(2)∵y=﹣2x+120.∴w=(x﹣20)y=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400.即w与x之间的函数关系式为w=﹣2x2+160x﹣2400;(3)w=﹣2x2+160x﹣2400=﹣2(x﹣40)2+800.∵﹣2<0.20≤x≤36<40.∴当x=36时.w取得最大值.w最大=﹣2×(36﹣40)2+800=768.答:当每件商品的售价定为36元时.每天销售利润最大.最大利润是768元.1.(2020•长沙)“闻起来臭.吃起来香”的臭豆腐是长沙特色小吃.臭豆腐虽小.但制作流程却比较复杂.其中在进行加工煎炸臭豆腐时.我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下.“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0.a.b.c是常数).如图记录了三次实验的数据.根据上述函数关系和实验数据.可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟【答案】C【解答】解:将图象中的三个点(3.0.8)、(4.0.9)、(5.0.6)代入函数关系P=at2+bt+c 中..解得.所以函数关系式为:P=﹣0.2t2+1.5t﹣1.9.由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t=﹣=﹣=3.75.则当t=3.75分钟时.可以得到最佳时间.故选:C.2.(2021•黔西南州)小华酷爱足球运动.一次训练时.他将足球从地面向上踢出.足球距地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系为h=﹣5t2+12t.则足球距地面的最大高度是m.【答案】7.2【解答】解:∵h=﹣5t2+12t.a=﹣5.b=12.c=0.∴足球距地面的最大高度是:=7.2m.故答案为:7.2.3.(2020•日照)如图.某小区有一块靠墙(墙的长度不限)的矩形空地ABCD.为美化环境.用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆.篱笆的厚度不计).(1)若四块矩形花圃的面积相等.求证:AE=3BE;(2)在(1)的条件下.设BC的长度为xm.矩形区域ABCD的面积为ym2.求y与x之间的函数关系式.并写出自变量x的取值范围.【答案】(1)AE=3BE(2)(0<x<)【解答】解:(1)证明:∵矩形MEFN与矩形EBCF面积相等.∴ME=BE.AM=GH.∵四块矩形花圃的面积相等.即S矩形AMND=2S矩形MEFN.∴AM=2ME.∴AE=3BE;(2)∵篱笆总长为100m.∴2AB+GH+3BC=100.即.∴.设BC的长度为xm.矩形区域ABCD的面积为ym2.则.∵.∴BE=10﹣x>0.解得x<.∴(0<x<).4.(2020•呼伦贝尔)某商店销售一种销售成本为每件40元的玩具.若按每件50元销售.一个月可售出500件.销售价每涨1元.月销量就减少10件.设销售价为每件x元(x ≥50).月销量为y件.月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下.使月销售利润达到8000元.销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.【答案】(1)y= ﹣10x2+1400x﹣40000 (2)8元(3)70元时会获得最大利润9000【解答】解:(1)由题意得:y=500﹣10(x﹣50)=1000﹣10x.w=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000;(2)由题意得:﹣10x2+1400x﹣40000=8000.解得:x1=60.x2=80.当x=60时.成本=40×[500﹣10(60﹣50)]=16000>10000不符合要求.舍去.当x=80时.成本=40×[500﹣10(80﹣50)]=8000<10000符合要求.∴销售价应定为每件80元;(3)∵w=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000.又∵﹣10<0.当x=70时.w取最大值9000.故销售价定为每件70元时会获得最大利润9000元.5.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①.甲秀楼的桥拱截面OBA可视为抛物线的一部分.在某一时刻.桥拱内的水面宽OA=8m.桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系.求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来.当船驶到桥拱下方且距O点0.4m时.桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾.他的头顶是否会触碰到桥拱.请说明理由(假设船底与水面齐平).(3)如图③.桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0).该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度.平移后的函数图象在8≤x≤9时.y的值随x值的增大而减小.结合函数图象.求m的取值范围.【答案】(1)y=﹣x2+2x(0≤x≤8)(2)工人不会碰到头(3)5≤m≤8【解答】解:(1)如图②.由题意得:水面宽OA是8m.桥拱顶点B到水面的距离是4m.结合函数图象可知.顶点B(4.4).点O(0.0).设二次函数的表达式为y=a(x﹣4)2+4.将点O(0.0)代入函数表达式.解得:a=﹣.∴二次函数的表达式为y=﹣(x﹣4)2+4.即y=﹣x2+2x(0≤x≤8);(2)工人不会碰到头.理由如下:∵打捞船距O点0.4m.打捞船宽1.2m.工人直立在打捞船中间.由题意得:工人距O点距离为0.4+×1.2=1.∴将x=1代入y=﹣x2+2x.解得:y==1.75.∵1.75m>1.68m.∴此时工人不会碰到头;(3)抛物线y=﹣x2+2x在x轴上方的部分与桥拱在平静水面中的倒影关于x轴成轴对称.如图所示.新函数图象的对称轴也是直线x=4.此时.当0≤x≤4或x≥8时.y的值随x值的增大而减小.将新函数图象向右平移m个单位长度.可得平移后的函数图象.如图所示.∵平移不改变图形形状和大小.∴平移后函数图象的对称轴是直线x=4+m.∴当m≤x≤4+m或x≥8+m时.y的值随x值的增大而减小.∴当8≤x≤9时.y的值随x值的增大而减小.结合函数图象.得m的取值范围是:①m≤8且4+m≥9.得5≤m≤8.②8+m≤8.得m≤0.由题意知m>0.∴m≤0不符合题意.舍去.综上所述.m的取值范围是5≤m≤8.1.(2021•晋中模拟)在中考体育训练期间.小宇对自己某次实心球训练的录像进行分析.发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=﹣x2+x+.由此可知小宇此次实心球训练的成绩为()A.米B.8米C.10米D.2米【答案】B【解答】解:当y=0时.即y=﹣x2+x+=0.解得:x1=﹣2(舍去).x2=8.所以小宇此次实心球训练的成绩为8米.故选:B.2.(2021•温州模拟)烟花厂为成都春节特别设计制作了一种新型礼炮.这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是.若这种礼炮在升空到最高点时引爆.则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【答案】D【解答】解:∵礼炮在点火升空到最高点引爆.∴t=﹣==6(s).故选:D.3.(2021秋•岳池县期末)赵州桥的桥拱横截面是近似的抛物线形.其示意图如图所示.其解析式为y=﹣x2.当水面离桥拱顶的高度DO为4m时.水面宽度AB为m.【答案】20【解答】解:由题意得.﹣4=﹣x2.解得x=±10.即点A的坐标为(﹣10.﹣4).点B的坐标为(10.﹣4).这时水面宽度AB为20m.故答案为:20.4.(2021秋•朝阳区期末)一名运动员在平地上推铅球.铅球出手时离地面的高度为米.出手后铅球离地面的高度y(米)与水平距离x(米)之间的函数关系式为.当铅球离地面的高度最大时.与出手点水平距离为5米.则该运动员推铅球的成绩为米.【答案】12【解答】解:设铅球出手点为点A.根据题意建立平面直角坐标系.如图:∵当铅球离地面的高度最大时.与出手点水平距离为5米.∴抛物线的对称轴为直线x=5.∴﹣=﹣==5.则b=.又∵抛物线经过(0.).∴c=.∴y=﹣x2+x+.当y=0时.﹣x2+x+=0.整理得:x2﹣10x﹣24=0.解得:x1=﹣2(舍去).x2=12.故答案安为:12.5.(2021•连云港模拟)汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t.汽车从刹车到停下来所用时间是秒.【答案】【解答】解:∵s=﹣3t2+8t.=﹣3(t﹣)2+.∴当t=秒时.s取得最大值.即汽车停下来.故答案为:.6.(2021•金堂县模拟)如图.有长为24m的篱笆.一面利用墙(墙的最大可用长度为11m)围成中间隔有一道篱笆的矩形花圃.并且预留两个各1m的门.设花圃的宽AB为xm.面积为Sm2.(1)请用含x的代数式表示BC并求S与x的函数关系式;(2)若4<x<7.则S的最大值是多少?请说明理由.【答案】(1)S=﹣3x2+26x(5≤x<)(2)55m2【解答】解:(1)由题可知.花圃的宽AB为x米.则BC为(24﹣3x+2)米=(26﹣3x)米.则S=x(26﹣3x)=﹣3x2+26x.∵BC=26﹣3x≤11.3x<24+2.∴5≤x.∴S=﹣3x2+26x(5≤x<);(2))解不等式组.解得:5≤x<7.∵S=﹣3x2+26x=﹣3(x﹣)2+.∵﹣3<0.∴x>时.S随x的增大而减小.∴x=5时.S的最大值=﹣3×52+26×5=55m2.7.(2021•盐城二模)疫情期间.某销售商在网上销售A、B两种型号的电脑“手写板”.其进价、售价和每日销量如表所示:进价(元/个)售价(元/个)销量(个/日)A型400600200B型8001200400根据市场行情.该销售商对A型手写板降价销售.同时对B型手写板提高售价.此时发现A型手写板每降低5元就可多卖1个.B型手写板每提高5元就少卖1个.销售时保持每天销售总量不变.设其中A型手写板每天多销售x个.每天获得的总利润为y元.(1)求y与x之间的函数关系式.并直接写出x的取值范围;(2)要使每天的利润不低于212000元.求出x的取值范围;(3)该销售商决定每销售一个B型手写板.就捐助a元(0<a≤100)给受“新冠疫情”影响的困难学生.若当30≤x≤40时.每天的最大利润为203400元.求a的值.【答案】(1)y=﹣10x2+800x+200000.(0≤x≤40且x为整数)(2)20≤x≤40 (3)a=35【解答】解:(1)由题意得.y=(600﹣400﹣5x)(200+x)+(1200﹣800+5x)(400﹣x)=﹣10x2+800x+200000.(0≤x≤40且x为整数).即y与x之间的函数关系式是y=﹣10x2+800x+200000.(0≤x≤40且x为整数);(2)∵y=﹣10x2+800x+200000=﹣10(x﹣40)2+216000.∴当y=212000时.﹣10(x﹣40)2+216000=212000.解得:x1=20.x2=60.要使y≥212000.则20≤x≤60.∵0≤x≤40.∴20≤x≤40.即x的取值范围是:20≤x≤40;(3)设捐款后每天的利润为w元.则w=﹣10x2+800x+200000﹣(400﹣x)a=﹣10x2+(800+a)x+200000﹣400a.对称轴为.∵0<a≤100.∴.∵抛物线开口向下.当30≤x≤40时.w随x的增大而增大.∴当x=40时.w最大.∴﹣10×402+40(800+a)+200000﹣400a=203400.解得.a=35.8.(2021•即墨区一模)即墨古城某城门横断面分为两部分.上半部分为抛物线形状.下半部分为正方形(OMNE为正方形).已知城门宽度为4米.最高处离地面6米.如图1所示.现以O点为原点.OM所在的直线为x轴.OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式.并写出其自变量的取值范围;(2)有一辆宽3米.高4.5米的消防车需要通过该城门进入古城.请问该消防车能否正常进入?(3)为营造节日气氛.需要临时搭建一个矩形“装饰门”ABCD.该“装饰门”关于抛物线对称轴对称.如图2所示.其中AB.AD.CD为三根承重钢支架.A、D在抛物线上.B.C 在地面上.已知钢支架每米50元.问搭建这样一个矩形“装饰门”.仅钢支架一项.最多需要花费多少元?【答案】(1)(0≤x≤4)(2)消防车能正常进入(3)650元【解答】解:(1)由题意知.抛物线的顶点为(2.6).∴设抛物线的表达式为y=a(x﹣2)2+6.又∵抛物线经过点E(0.4).∴4=4a+6.∴a=.∴抛物线的表达式为.即(0≤x≤4);(2)由题意知.当消防车走最中间时.进入的可能性最大.即当x=时.=4.875>4.5.∴消防车能正常进入;(3)设B点的横坐标为m.AB+AD+CD的长度为L.由题意知BC=4﹣2m.即AD=4﹣2m.CD=AB=.∴L=2×()+(4﹣2m)=﹣m2+2m+12.∵0≤x≤4.当m==1时.L最大.L最大=﹣12+2×1+12=13.∴费用为13×50=650(元).答:仅钢支架一项.最多需要花费650元.9.(2021•路南区一模)某园林专业户计划投资种植树木及花卉.根据市场调查与预测.图1是种植树木的利润y与投资量x成正比例关系.图2是种植花卉的利润y与投资量x成二次函数关系.(注:利润与投资量的单位:万元)(1)分别根据投资种植树木及花卉的图象l1、l2.求利润y关于投资量x的函数关系式;(2)如果这位专业户共投入10万元资金种树木和花卉.其中投入x(x>0)万元种植花卉.那么他至少获得多少利润?(3)在(2)的基础上要保证获利在20万元以上.该园林专业户应怎样投资?【答案】(1)y=x2(x≥0)(2)18万元(3)该园林专业户应投资花卉种植超过4万元【解答】解:(1)设l1:y=kx.∵函数y=kx的图象过(1.2).∴2=k⋅1.k=2.故l1中y与x的函数关系式是y=2x(x≥0).∵该抛物线的顶点是原点.∴设l2:y=ax2.由图2.函数y=ax2的图象过(2.2).∴2=a⋅22.解得:a=.故l2中y与x的函数关系式是:y=x2(x≥0);(2)因为投入x万元(0<x≤10)种植花卉.则投入(10﹣x)万元种植树木..∵a=>0.0<x≤10.∴当x=2时.w的最小值是18.他至少获得18万元的利润.(3)根据题意.当w=20时..解得:x=0(不合题意舍).x=4.∴至少获得20万元利润.则x=4.∵在2≤x≤10的范图内w随x的增大而增大.∴w>20.只需要x>4.所以保证获利在20万元以上.该园林专业户应投资花卉种植超过4万元.。

2018中考数学试题分类汇编考点16 二次函数(含解析)

2018中考数学试题分类汇编考点16 二次函数(含解析)

2018中考数学试题分类汇编:考点16 二次函数一.选择题(共33小题)1.(2018•青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.2.(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.故选:B.3.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.4.(2018•上海)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而减小,选的D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而减小,选的D不正确.故选:C.5.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.1【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.6.(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5) B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.7.(2018•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A .B .C .D .【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴在直线x =1的右侧得到b <0,b <﹣2a ,即b +2a <0,利用抛物线与y 轴交点在x 轴下方得到c <0,也可判断abc >0,利用抛物线与x 轴有2个交点可判断b 2﹣4ac >0,利用x =1可判断a +b +c <0,利用上述结论可对各选项进行判断. 【解答】解:∵抛物线开口向上, ∴a >0,∵抛物线的对称轴在直线x =1的右侧,∴x =﹣>1,∴b <0,b <﹣2a ,即b +2a <0, ∵抛物线与y 轴交点在x 轴下方, ∴c <0, ∴abc >0,∵抛物线与x 轴有2个交点, ∴△=b 2﹣4ac >0, ∵x =1时,y <0, ∴a +b +c <0. 故选:C .8.(2018•滨州)如图,若二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a +b +c ;②a ﹣b +c <0;③b 2﹣4ac <0; ④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4【分析】直接利用二次函数的开口方向以及图象与x 轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.9.(2018•白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m (am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.10.(2018•达州)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个B.2个 C.3个D.4个【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①由开口可知:a<0,∴对称轴x=>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(﹣1,0),对称轴为x=2,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<2,且(,y2)关于直线x=2的对称点的坐标为(,y2),∵,∴y1<y2,故③正确,④∵=2,∴b=﹣4a,∵x=﹣1,y=0,∴a﹣b+c=0,∴c=﹣5a,∵2<c<3,∴2<﹣5a<3,∴﹣<a<﹣,故④正确故选:D.11.(2018•恩施州)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.12.(2018•衡阳)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=﹣2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=﹣3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n﹣1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a<0,所以①正确;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:D.13.(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线的顶点坐标(﹣2a,﹣9a),∴﹣=﹣2a,=﹣9a,∴b=4a,c=5a,∴抛物线的解析式为y=ax2+4ax﹣5a,∴4a+2b+c=4a+8a﹣5a=7a>0,故①正确,5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②错误,∵抛物线y=ax2+4ax﹣5a交x轴于(﹣5,0),(1,0),∴若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1,正确,故③正确,若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,故④错误,故选:B.14.(2018•枣庄)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.15.(2018•湖州)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣1,满足条件,可得a≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.16.(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.17.(2018•河北)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】两函数组成一个方程组,得出一个方程,求出方程中的△=﹣4+4c=0,求出即可.【解答】解:把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确;故选:A.18.(2018•台湾)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.24【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.19.(2018•长沙)若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.20.(2018•广西)将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3【分析】直接利用配方法将原式变形,进而利用平移规律得出答案.【解答】解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.21.(2018•哈尔滨)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1;C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.22.(2018•广安)抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【解答】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选:D.23.(2018•潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或6【分析】分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.【解答】解:当h<2时,有﹣(2﹣h)2=﹣1,解得:h1=1,h2=3(舍去);当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;当h>5时,有﹣(5﹣h)2=﹣1,解得:h3=4(舍去),h4=6.综上所述:h的值为1或6.故选:B.24.(2018•黄冈)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1 B.2 C.0或2 D.﹣1或2【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.25.(2018•山西)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.26.(2018•杭州)四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.27.(2018•贵阳)已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x 轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣2【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m 与新图象有4个交点时,m的取值范围.【解答】解:如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线•y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2.故选:D.28.(2018•大庆)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和. 其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a•5•1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.【解答】解:抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故选:B.29.(2018•天津)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3【分析】①由抛物线过点(﹣1,0),对称轴在y轴右侧,即可得出当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,由该直线与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③由当x=1时y>0,可得出a+b>﹣c,由抛物线与y轴交于点(0,3)可得出c=3,进而即可得出a+b>﹣3,由抛物线过点(﹣1,0)可得出a+b=2a+c,结合a<0、c=3可得出a+b<3,综上可得出﹣3<a+b<3,结论③正确.此题得解.【解答】解:①∵抛物线过点(﹣1,0),对称轴在y轴右侧,∴当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③∵当x=1时y=a+b+c>0,∴a+b>﹣c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),∴c=3,∴a+b>﹣3.∵当a=﹣1时,y=0,即a﹣b+c=0,∴b=a+c,∴a+b=2a+c.∵抛物线开口向下,∴a<0,∴a+b<c=3,∴﹣3<a+b<3,结论③正确.故选:C.30.(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把x=1代入解析式,根据y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.【解答】解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣,,所以这条抛物线的顶点一定在第三象限,故选:C.31.(2018•玉林)如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8B.6≤t≤8C.10<t≤12D.10≤t≤12【分析】首先证明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解决问题;【解答】解:翻折后的抛物线的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,∵设x1,x2,x3均为正数,∴点P1(x1,y1),P2(x2,y2)在第四象限,根据对称性可知:x1+x2=8,∵2≤x3≤4,∴10≤x1+x2+x3≤12即10≤t≤12,故选:D.32.(2018•绍兴)若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A.(﹣3,﹣6)B.(﹣3,0) C.(﹣3,﹣5)D.(﹣3,﹣1)【分析】根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.【解答】解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x﹣1+2)2﹣1﹣3=(x+1)2﹣4.当x=﹣3时,y=(x+1)2﹣4=0,∴得到的新抛物线过点(﹣3,0).故选:B.33.(2018•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.二.填空题(共2小题)34.(2018•乌鲁木齐)把拋物线y=2x2﹣4x+3向左平移1个单位长度,得到的抛物线的解析式为y=2x2+1.【分析】将原抛物线配方成顶点式,再根据“左加右减、上加下减”的规律求解可得.【解答】解:∵y=2x2﹣4x+3=2(x﹣1)2+1,∴向左平移1个单位长度得到的抛物线的解析式为y=2(x+1﹣1)2+1=2x2+1,故答案为:y=2x2+1.35.(2018•淮安)将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是y=x2+2.【分析】先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.【解答】解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.三.解答题(共15小题)36.(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l与该抛物线总有两个交点;(2)当k=﹣2时,∴y=﹣2x+1过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,∴联立,解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2),∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1与x轴的交点C为(,0),∴OC=∴S△AOB=S△AOC+S△BOC=OC•AF+OC•BE=OC(AF+BE)=××(2﹣1+1+2)=37.(2018•湖州)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.38.(2018•宁波)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【分析】(1)把已知点的坐标代入抛物线解析式求出b与c的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.39.(2018•徐州)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,得:x1=﹣3,x2=1,即抛物线与x轴交点为:(﹣3,0),(1,0)(3)设抛物线与x轴交点为M、N(M在N左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.40.(2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x 轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x =2,以及A 点坐标确定出b 与c 的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC 的长,确定出B 与C 的横坐标,代入抛物线解析式求出纵坐标,确定出B 与C 坐标,利用待定系数法求出直线AB 解析式,作出直线CP ,与AB 交于点Q ,过Q 作QH ⊥y 轴,与y 轴交于点H ,BC 与y 轴交于点M ,由已知面积之比求出QH 的长,确定出Q 横坐标,代入直线AB 解析式求出纵坐标,确定出Q 坐标,再利用待定系数法求出直线CQ 解析式,即可确定出P 的坐标.【解答】解:(1)由题意得:x =﹣=﹣=﹣2,c =2,解得:b =4,c =2,则此抛物线的解析式为y =x 2+4x +2;(2)∵抛物线对称轴为直线x =﹣2,BC =6,∴B 横坐标为﹣5,C 横坐标为1,把x =1代入抛物线解析式得:y =7,∴B (﹣5,7),C (1,7),设直线AB 解析式为y =kx +2,把B 坐标代入得:k =﹣1,即y =﹣x +2,作出直线CP ,与AB 交于点Q ,过Q 作QH ⊥y 轴,与y 轴交于点H ,BC 与y 轴交于点M ,可得△AQH ∽△ABM ,∴=, ∵点P 在x 轴上,直线CP 将△ABC 面积分成2:3两部分,∴AQ :QB =2:3或AQ :QB =3:2,即AQ :AB =2:5或AQ :QB =3:5,∵BM =5,∴QH =2或QH =3,当QH =2时,把x =﹣2代入直线AB 解析式得:y =4,此时Q (﹣2,4),直线CQ 解析式为y =x +6,令y =0,得到x =﹣6,即P (﹣6,0);当QH =3时,把x =﹣3代入直线AB 解析式得:y =5,此时Q (﹣3,5),直线CQ 解析式为y =x +,令y =0,得到x =﹣13,此时P (﹣13,0), 综上,P 的坐标为(﹣6,0)或(﹣13,0).41.(2018•淮安)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件. (1)当每件的销售价为52元时,该纪念品每天的销售数量为 180 件;(2)当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【解答】解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y =(x ﹣40)[200﹣10(x ﹣50)]=﹣10x 2+1100x ﹣28000=﹣10(x ﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.42.(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF 、折线ABCD 分别表示该有机产品每千克的销售价y 1(元)、生产成本y 2(元)与产量x (kg )之间的函数关系.(1)求该产品销售价y 1(元)与产量x (kg )之间的函数关系式;(2)直接写出生产成本y 2(元)与产量x (kg )之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学试题分类汇编:考点16 二次函数
一.选择题(共33小题)
1.(2018•青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()
A.B.C.D.
【分析】根据一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.
【解答】解:观察函数图象可知:<0、c>0,
∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.
故选:A.
2.(2018•德州)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()
A.B. C.
D.
【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判
断正误即可.
【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;
B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;
C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;
D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.
故选:B.
3.(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()
A.(1,1) B.(﹣1,1)C.(﹣1,﹣1) D.(1,﹣1)
【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).
【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,
∴顶点坐标是(1,1).故选A.
4.(2018•上海)下列对二次函数y=x2﹣x的图象的描述,正确的是()
A.开口向下 B.对称轴是y轴
C.经过原点 D.在对称轴右侧部分是下降的
【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;
B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;
C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;
D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而减小,选的D不正确.
综上即可得出结论.
【解答】解:A、∵a=1>0,
∴抛物线开口向上,选项A不正确;
B、∵﹣=,
∴抛物线的对称轴为直线x=,选项B不正确;
C、当x=0时,y=x2﹣x=0,
∴抛物线经过原点,选项C正确;
D、∵a>0,抛物线的对称轴为直线x=,
∴当x>时,y随x值的增大而减小,选的D不正确.
故选:C.
5.(2018•泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x 的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()
A.1或﹣2 B.或C.D.1
【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
∴对称轴是直线x=﹣=﹣1,
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵﹣2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a﹣6=0,
∴a=1,或a=﹣2(不合题意舍去).
故选:D.
6.(2018•岳阳)抛物线y=3(x﹣2)2+5的顶点坐标是()
A.(﹣2,5)B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.
【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),
故选:C.
7.(2018•遂宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()
A.B.
C.D.
【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在直线x=1的右侧得到b<0,b<﹣2a,即b+2a<0,利用抛物线与y轴交点在x轴下方得到c<0,也可判断abc>0,利用抛物线与x轴有2个交点可判断b2﹣4ac>0,利用x=1可判断a+b+c<0,利用上述结论可对各选项进行判断.
【解答】解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴在直线x=1的右侧,
∴x=﹣>1,
∴b<0,b<﹣2a,即b+2a<0,
∵抛物线与y轴交点在x轴下方,
∴c<0,
∴abc>0,
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,
∵x=1时,y<0,
∴a+b+c<0.
故选:C.
8.(2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是()
A.1 B.2 C.3 D.4
【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
②当x=﹣1时,a﹣b+c=0,故②错误;
③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
∴A(3,0),
故当y>0时,﹣1<x<3,故④正确.
故选:B.
9.(2018•白银)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;
③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()。

相关文档
最新文档