七年级下册第六章实数测试题及答案
第6章 实数 人教版数学七年级下册单元测试(含答案)
第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版七年级下册数学第六章实数 测试题及答案
人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。
真命题的逆命题都是真命题B。
无限小数都是无理数C。
0.720精确到了百分位D。
16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。
3B。
7C。
3或7D。
1或73.3(-1)²的立方根是()A。
-1B。
1C。
-4D。
44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。
-1B。
-1/2C。
3/2D。
25.若a=2,则a的值为()A。
2B。
±2C。
4D。
±46.下列计算中,错误的是()A。
30.125=0.5B。
3-273=-644C。
33/31=1/82D。
-3/8²=-125/577.下列说法正确的是()A。
实数分为正实数和负实数B。
3/2是有理数C。
0.9是有理数D。
30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有() A。
2个B。
3个C。
4个D。
5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。
4 cm~5 cm之间B。
5 cm~6 cm之间C。
6 cm~7 cm之间D。
7 cm~8 cm之间10.计算-4-|-3|的结果是()A。
-1B。
-5C。
1D。
5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。
15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。
人教版七年级下册数学第六章 实数含答案完整版
人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④ 是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A.1B.2C.3D.42、下面四个实数中,是无理数的为()A.0B.C.﹣2D.3、下列命题:①两直线平行,内错角相等;②如果m是无理数,那么m是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a是实数,那么是无理数.其中正确的有()A.1个B.2个C.3个D.4个4、设,则的取值范围是()A. B. C. D.无法确定5、给出四个数0,,3,-1,其中最大的是( )A.0B.C.3D.-16、如图,数轴上与对应的点是()A.点B.点C.点D.点7、在下列式子中,正确的是()A. =﹣B.﹣=﹣0.6C. =﹣13D.=±68、下列运算正确的是( )A.a 2•a 3=a 6B.|-6|=6C. =±4D.-(a+b)=a+b9、若a=﹣0.32, b=(﹣3)﹣2, c=(﹣)﹣2, d=(﹣)0,则( )A.a<b<c<dB.a<b<d<cC.a<d<c<bD.c<a<d<b10、若x、y都是实数,且+ +y=4,则xy的算术平方根为()A.2B.±C.D.不能确定11、下列各数中,无理数为()A. B. C. D.12、估算的值在()A. 和之间B. 和0之间C.0和1之间D.1和2之间13、若a2=4,b2=9,且ab<0,则a﹣b的值为()A.±5B.±1C.5D.﹣114、4的平方根是()A.2B.-2C.±2D.1615、下列运算正确的是()A. =B. =-2C. =3D.3 -2 =1二、填空题(共10题,共计30分)16、的算术平方根是________,﹣2的相反数是________,的绝对值是________17、阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么的平方根是________.18、比较大小:9________ .19、计算:﹣22+()﹣1+= ________20、写出一个大于3的无理数:________.21、18的算术平方根是________,的平方根是________,-0.064的立方根是________.22、如图,在数轴上A点表示数,B点示数,C点表示数,是最小的正整数,且、满足.若将数轴折叠,使得A点与C点重合,则点B与数________表示的点重合.23、如果一个数的平方根等于这个数的立方根,那么这个数是________.24、利用计算器计算(精确到0.001):-≈________.25、设的小数部分为b,那么(4+b)b的值是________.三、解答题(共6题,共计25分)26、如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.27、将下列各数填入相应的括号里:,,,8,,,0.7,- ,-1.121121112…,,.正数集合… ;负数集合… ;整数集合… ;有理数集合… ;无理数集合… .28、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.29、+|﹣2|﹣(﹣)﹣1.30、将下列各数填入相应的集合内.﹣7,0.32,, 0,,,,π,0.1010010001…①有理数集合{…}②无理数集合{…}③负实数集合{…}.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、A5、C6、C7、A8、B9、B10、C11、D12、D13、A14、C15、B二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。
人教版七年级下册数学第六章-实数含答案(附答案)
人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、8的立方根等于()A. 2B.-2C.±2D.2、的算术平方根是()A. B. C.± D.3、下列实数是无理数的是A. B. C. D.4、估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间5、下列说法正确的是()A.a的平方根是±B.a的立方根是C. 的平方根是0.1 D.6、下列等式正确是A. B. C. D.7、下列实数中的无理数是()A.1B.0C.D.π8、下列各数中,无理数的个数有()0,,,,2π,3.7878878887…(两个7之间依次多一个8),A.2个B.3个C.4个D.5个9、由图可知,a、b、c的大小关系为()A.a < b < cB.a < c <bC.c < a <bD.c < b < a10、给出四个实数﹣2,0,0.5,,其中无理数是()A.﹣2B.0C.0.5D.11、实数π,,﹣3. ,,中,无理数有()个.A.1B.2C.3D.412、下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个 C.4个D.5个13、下列说法正确的是()A. =±3B. 的立方根是2C.D.的算术平方根是214、在实数范围内,下列判断正确的是()A.若|a|=|b|,则a=bB.若|a|=()2,则a=bC.若a>b,则a 2>b 2D.若= ,则a=b15、如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点AB.点BC.点CD.点D二、填空题(共10题,共计30分)16、实数a、b在数轴上的位置如图所示,则化简|a+2b|﹣|a﹣b|的结果为________.17、设的小数部分为b,那么(4+b)b的值是________.18、比较下列实数的大小(在横线填上>、<或=)①2 ________ 3 ;② ________ ;③﹣________﹣.19、16的平方根是________,算术平方根是________.20、如果实数a、b在数轴上的位置如图所示,那么化简=________.21、若x3=﹣,则x=________.22、若=0.7160,=1.542,则=________,=________.23、比较大小:________1(填“ ”“ ”或“ ”)24、若|x|=3,y2=4,且x>y,则x﹣y=________.25、计算:(+π)0﹣2|1﹣sin30°|+()﹣1=________ .三、解答题(共6题,共计25分)26、已知的立方根是2,的算术平方根是4,的整数部分是,求的值.27、将下列各数填入相应的集合内:,1.010010001,,0,,…(相邻的两个2之间的3一次增加1个),.有理数集合{ …}无理数集合{ …}28、在数轴上作出表示的点.29、已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+b+c的平方根.30、计算:9×(﹣)+ +|﹣3|参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、A5、B6、D7、D8、B9、C10、D11、B12、B13、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、28、29、30、。
(典型题)人教版七年级下册数学第六章 实数含答案
人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、下列说法中,正确的个数为()①无限小数都是无理数:②无限不循环小数都是无理数;③无理数都是无限小数:④无理数也有负数;⑤无理数分为正无理数、零、负无理数.A.1个B.2个C.3个D.4个2、下列各式中,无意义的是()A. B. C. D.3、下列说法中,正确的是().A.16的算术平方根是-4B.25的平方根是5C.1的立方根是±1 D.-27的立方根是-34、和数轴上的点一一对应的数是()A.自然数B.有理数C.无理数D.实数5、下列实数,﹣π,3.1415926,,﹣,12中无理数有()A.5个B.4个C.3个D.2个6、下列说法:①121的算术平方根是11;②﹣的立方根是﹣;③﹣81的平方根是±9;④实数和数轴上的点一一对应,其中错误的有()A.0个B.1个C.2个D.3个7、下列各数中比0小的数是()A.﹣3B.C.3D.8、有下列命题:①无理数是无限不循环小数;②64的平方根是8;③过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同位角相等,其中正确的个数是()A.1B.2C.3D.49、的整数部分是x,小数部分是y,则y(x+)的值是()A.1B.2C.3D.410、关于,下列说法错误的是( )A.它是无理数B.它是方程x 2+x-1=0的一个根C.0.5< <1 D.不存在实数,使x 2=11、计算:| ﹣4|﹣﹣()﹣2的结果是()A.2 ﹣8B.0C.﹣2D.﹣812、的值等于()A.4B.-4C.±4D.13、下列等式正确的是()A. B. C. D.14、下列四个式子,化简后结果为-3的是()A. B. C.|-3| D.-(-3)15、下列说法错误的是()A.1的平方根是1B.﹣1的立方根是﹣1C. 是2的平方根 D. 是的平方根二、填空题(共10题,共计30分)16、16的算术平方根是________,-8的立方根是________.17、计算:=________.18、请将2,,这三个数用“>”连接起来________19、若一个有理数的平方根与立方根是相等的,则这个有理数一定是________20、用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=________21、比较大下:________3(填大于、小于、等于)22、小于的正整数是________.23、计算:|﹣2|﹣=________.24、3的算术平方根为________。
七年级下册数学试卷 第六章 实数(附答案)
七年级数学第六章《实数》测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题(每小题3分,共30分)1、下列说法不正确的是( )A 、251的平方根是15± B 、-9是81的一个平方根C 、0.2的算术平方根是0.04D 、-27的立方根是-32、若a 的算术平方根有意义,则a 的取值范围是( )A 、一切数B 、正数C 、非负数D 、非零数3、若x 是9的算术平方根,则x 是( )A 、3B 、-3C 、9D 、814、在下列各式中正确的是( )A 、2)2(-=-2B 、=3C 、16=8D 、22=25、估计76的值在哪两个整数之间( )A 、75和77B 、6和7C 、7和8D 、8和96、下列各组数中,互为相反数的组是( )A 、-2与2)2(-B 、-2和38-C 、-21与2D 、︱-2︱和27、在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( )A 、4个B 、3个C 、2个D 、1个8、下列说法正确的是( )A 、数轴上的点与有理数一一对应B 、数轴上的点与无理数一一对应C 、数轴上的点与整数一一对应D 、数轴上的点与实数一一对应9、以下不能构成三角形边长的数组是( )A 、1,5,2B 、3,4,5C 、3,4,5D 、32,42,5210、若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则2b -︱a -b ︱等于()A 、aB 、-aC 、2b +aD 、2b -a二、填空题(每小题3分,共18分)11、81的平方根是__________,1.44的算术平方根是__________。
12、一个数的算术平方根等于它本身,则这个数应是__________。
13、38-的绝对值是__________。
14、比较大小:27____42。
15、若36.25=5.036,6.253=15.906,则253600=__________。
七年级数学下册第六章【实数】测试卷(含答案)
一、选择题1.若2x -+|y+1|=0,则x+y 的值为( ) A .-3B .3C .-1D .12.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .63.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >>4.下列说法中,正确的是 ( ) A .64的平方根是8 B .16的平方根是4和-4 C .()23-没有平方根D .4的平方根是2和-25.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 136.下列实数中,属于无理数的是( ) A .3.14B .227C 4D .π7.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;49的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行. A .4B .3C .2D .1 8.下列实数是无理数的是( ) A . 5.1- B .0C .1D .π9.在3223.14,0.4,0.001,23,, 5.12112111227π-+--……中,无理数的个数为 ( ) A .5B .2C .3D .410.估计30的值在哪两个整数之间( ) A .5和6B .6和7C .7和8D .8和911.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题12.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值; (2)如果x y ,都是同一个数的平方根,求这个数. 13.已知一个正数m 的平方根为2n +1和4﹣3n . (1)求m 的值;(2)|a ﹣3|b ++(c ﹣n )2=0,a +b +c 的立方根是多少? 14.已知2x +1的算术平方根是0,y =4,z 是﹣27的立方根,求2x +y +z 的平方根.15.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★; 2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★;()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值; (2)猜想:a b =★________; (3)若12162a +=-★,求a 的值. 16.对于有理数a ,b ,定义一种新运算“”,规定ab a b a b =++-.(1)计算()23-的值;(2)①当a ,b 在数轴上的位置如图所示时,化简a b ;②当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明.17.|2|π-=________. 18.计算:(1)7|2|--(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭19.求下列各式中x 的值. (1)2(1)2x +=;(2)329203x +=. 20.计算:(1()23-.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦.21.比较大小:_______-2.(填“>”“=”或“<”)三、解答题22.定义一种新运算;观察下列各式;131437=⨯+= ()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.23.求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9 24.求下列各式中x 的值 (1)()328x -= (2)21(3)753x -=25.(1)解方程组;25342x y x y -=⎧⎨+=⎩(2)解不等式组:352(2)22x x x x -≥-⎧⎪⎨>-⎪⎩①②,并写出它的所有整数解.(3)解方程:2(x 2)100-=(4)计算:20172(1)|7|(----一、选择题1.下列各式计算正确的是()A.31-=-1 B.38= ±2 C.4= ±2 D.±9=3 2.在实数3-,-3.14,0,π,364中,无理数有()A.1个B.2个C.3个D.4个3.下列说法中错误的有()①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A.0个B.1个C.2个D.3个4.下列实数中,是无理数的为()A.3.14 B.13C.5D.95.在实数﹣34,0,9,215中,是无理数的是()A.﹣34B.0 C.9D.21 56.在下列各数中是无理数的有()0.111-,4,5,3π,3.1415926,2.010101(相邻两个0之间有1个1),76.01020304050607,32.A.3个B.4个C.5个D.6个7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-B22n-C23n-D24n-8.30)A.5和6 B.6和7 C.7和8 D.8和99.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B .7C .11D .无法确定10.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±911.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 42=±D .()515-=-二、填空题12.进位数是一种计数方法,可以用有限的数学符号代表所有的数值,使用数字符号的数目称为基数,基数为n 个则称为n 进制,现在最常用的是十进制,通常使用10个阿拉伯数字0—9作为基数,特点是满十进1,对于任意一个(210)n n ≤≤进制表示的数通常使用n 个阿拉伯数字()01--n 作为基数,特点是逢n 进一,我们可以通过下列方式把它转化为十进制.例如:五进制数 ()252342535469=⨯+⨯+=,则()523469=,七进制数()271361737676=⨯+⨯+=(1)请将以下两个数转化为十进制:()5333= ,(746)= .(2)若一个正数可以用7进制表示为()7abc ,也可用五进制表示为()5cba ,求出这个数并用十进制表示.13.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.14.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 15.“*”是规定的一种运算法则:a*b=a 2-3b . (1)求2*5的值为 ;(2)若(-3)*x=6,求x 的值;16.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …}, 正有理数集合{ …}, 无理数集合{ …}. 17.(1)计算:|3|-.(2)求下列各式中x 的值: ③22536x =; ④3(1)64x --=.18.实数2-,227,π-中属于无理数的是________.19.已知5的整数部分为a ,5-b ,则2ab b +=_________. 20.观察下列二次根式的规律求值:1S =2S =3S =… 则20202020S =_______.21_____;16的平方根为_____;()34-的立方根是_____.三、解答题22.计算:2(3)2--23.求下列各式中x 的值.(1)4(x ﹣3)2=9; (2)(x +10)3+125=0.24.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a + 25.计算. (1)()113122⎛⎫⎛⎫---++ ⎪ ⎪⎝⎭⎝⎭;(2)()328--一、选择题1.下列说法中错误的有( ) ①实数和数轴上的点是一一对应的; ②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0; ④49的平方根是7±,用式子表示是497=±. A .0个B .1个C .2个D .3个2.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等 3.下列实数中,是无理数的为( ) A .3.14B .13C .5D .94.在一列数:1a ,2a ,3a ,…,n a 中,1=7a ,2=1a 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这列数中的第2020个数是( ) A .1B .3C .7D .95.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2B .28.72C .13.33D .133.36.85-的整数部分是( ) A .4 B .5C .6D .77.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个8.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n9.64的平方根为( ) A .8B .8-C .22D .22±10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个11.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n二、填空题12.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9. 问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, . (2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.13.把下列各数填在相应的横线上 1.4,2020,2-,32-,0.31,038-π-,1.3030030003…(每相邻两个3之间0的个数依次加1) (1)整数:______ (2)分数:______ (3)无理数:______14.2(3.14)|2|ππ--=________. 15.若|2|0x x y -++=,则12xy -=_____.16.计算:38642-+--. 17.我们知道2 1.414≈,于是我们说:“2的整数部分为1,小数部分则可记为21-”.则:(1)21+的整数部分是__________,小数部分可以表示为__________;(2)已知32+的小数部分是a ,73-的小数部分为b ,那么a b +=__________; (3)已知11的在整数部分为x ,11的小数部分为y ,求1(11)x y --的平方根. 18.比较大小:312-___________12 19.如果3x -+(y +2)2=0,那么xy 的值为___________.20.25的平方根是______;34-的相反数是_____,1-12π的绝对值是 __. 21.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-,38,0,13-,4-23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.24.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.25.1=,31a b +-的平方根是±2,C 的整数部分,求-+b a c 的平方根.。
七年级数学(下)第六章《实数——实数》练习题含答案
七年级数学(下)第六章《实数——实数》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是有理数的是A.0.9B.–3C.πD.1 3【答案】D【解析】A、0.9=910=31010,是无理数,故此选项错误;B、–3是无理数,故此选项错误;C、π是无理数,故此选项错误;D、13是有理数,故此选项正确.故选D.2.下列说法中错误的是A.数轴上的点与实数一一对应B.实数中没有最小的数C.a、b为实数,若a<b,则a<bD.a、b为实数,若a<b,则3a<3b【答案】C3.实数a、b在数轴上的位置如图所示,则下列各式表示正确的是A.b–a<0 B.1–a>0C.b–1>0 D.–1–b<0【答案】A【解析】由题意,可得b<–1<1<a,则b–a<0,1–a<0,b–1<0,–1–b>0.故选A.4.如图,数轴上点P表示的数可能是A2B5C10D15【答案】B24591015 251015B.5.在实数0,–2,15A.0 B.–2C.1 D5【答案】B【解析】∵0,–2,15–5–2;故选B.6.若m14n,且m、n为连续正整数,则n2–m2的值为A.5 B.7C.9 D.11【答案】B【解析】∵m14n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选B.+的值为7.|63||26A.5 B.526-C.1 D.61【答案】C【解析】原式=3–6+6–2=1.故选C.8.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72[72]=8[8]=2[2]=1,这样对72只需进行3次操作后变为1,类似地,对81只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是A.82 B.182C.255 D.282【答案】C二、填空题:请将答案填在题中横线上.95__________16__________.【答案】5 25516,4的平方根是±2162.故答案为:5;±2.10.已知:n24n n的最小值为__________.【答案】624n6n,则6n是完全平方数,∴正整数n的最小值是6,故答案为:6.11.比较大小–2__________–3>”、“<”或“=”填空).【答案】<【解析】–2=50–348,5048,∴–2<–3,故答案为:<.12.用“※”定义新运算:对于任意实数a 、b ,都有a ※b =2a 2+B .例如3※4=2×32+4=22※2=__________. 【答案】8※2=2×3+2=6+2=8.故答案为:8.13.计算:|+.【解析】|+14.计算:|2.【答案】3【解析】|2–2+5. 故答案为:3.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.计算:(1)–14–2|(2)4(x +1)2=25【解析】(1)原式=–1–2–3+2=–4 (2)方程整理得:(x +1)2=254, 开方得:x +1=±52, 解得:x =1.5或x =–3.5.16.把下列各数填在相应的大括号内:20%,0,3π,3.14,–23,–0.55,8,–2,–0.5252252225…(每两个5之间依次增加1个2). (1)正数集合:{__________…}; (2)非负整数集合:{__________…}; (3)无理数集合:{__________…}; (4)负分数集合:{__________…}. 【解析】(1)正数集合:{20%,3π,3.14,8…};(2)非负整数集合:{8,0…};(3)无理数集合:{3π,–0.525225……}; (4)负分数集合:{–23,–0.55…}.故答案为:(1)20%,3π,3.14,8;(2)8,0;(3)3π,–0.525225…;(4)–23,–0.55.17.如图:观察实数a 、b 在数轴上的位置,(1)a __________0,b __________0,a –b __________0(请选择<,>,=填写). (2)化简:2a –2b –2()a b -.18.(1)计算并化简(结果保留根号)①|1–2|=__________; ②23|=__________; ③34|=__________; ④45(2)计算(结果保留根号):233445……20172018|.【解析】(1)①|12|=2–1;②2332;③3443④4554; 21324354.(2)原式324354+……2018201720182.。
人教版七年级下册数学第六章 实数含答案
人教版七年级下册数学第六章实数含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.9的算术平方根是3B.0.16的平方根是0.4C.0没有立方根 D.1的立方根是±12、下列四个实数:,其中无理数的个数是()A.1个B.2个C.3个D.4个3、四个数0,π,-1,,中,无理数的个数有()A.1个B.2个C.3个D.4个4、9的算术平方根是( )A.3B.-3C.9D.815、判断2 ﹣1之值介于下列哪两个整数之间?()A.3,4B.4,5C.5,6D.6,76、下列各式表示正确的是()A. =±2B.C.± =2D.7、下列说法错误的是()A.1的平方根是±1B.2是8的立方根C. 是2的一个平方根 D.﹣3是的平方根8、如图所示,点B,D在数轴上,OB=3,OD=BC=1,,以D为圆心,DC长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是()A. B. C. D.9、如果一个实数的平方根与它的立方根相等,则这个数是()A.0B.正实数C.0和1D.110、在实数0,,,中,最小的数是()A.0B.C.D.11、下列计算正确的是A. B. C. D.若x 2=x,则x=112、已知一个数的平方是,则这个数的立方是()A.8B.64C.8或D.64或13、计算的结果是A.﹣3B.3C.﹣9D.914、8的立方根是()A.4B.2C.±2D.﹣215、下列各数是无理数的为()A. B. C. D.二、填空题(共10题,共计30分)16、请计算:(1+π)0+(﹣)﹣2+2sin60°﹣| +1|=________.17、对于实数a、,b,定义运算⊗如下:a⊗b= ,例如:2⊗4=2﹣4= ,计算[2⊗2]×[3⊗2]=________.18、比较大小:________2.(填“>”、“=”、“<”)19、2021的倒数为________;的立方根为________.20、若x2=(- )2,则x=________.21、在,,,1四个实数中,最大的实数是________.22、下列说法:① ;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ________23、计算:(π﹣3.14)0+2cos60°=________.24、若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是________.25、计算:()﹣2+| ﹣2|=________.三、解答题(共6题,共计25分)26、已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.27、己知:x+4的平方根是±3,3x+y﹣l的立方根是3.求y2﹣x2的值.28、已知a,b互为相反数,c,d互为倒数,x是2的平方根,求的值.29、如图,由两个立方体拼成了一个长方体,已知这个长方体的体积为1024cm3,求这个长方体的表面积。
七年级数学下册第六章实数练习题及答案解析
( 1)2 2 3 4 七年级数学下册第六章实数练习题及答案解析1.下列四个数中的负数是() A . ﹣22 B . C . (﹣2)2 D . |﹣2|答案:A 知识点:实数.解析:根据小于的数是负数,可得到答案.本题考查了实数,先化简,再比较数的大小.2.下列实数中,是有理数的为( ) A . B . C . π D . 0答案:D 知识点:实数.解析:根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.3.给 出 四 个 数 0,﹣11 ,﹣ , 7 11 ,其中为无理数的是( ) A . 0 B . ﹣ 7 C . ﹣ 答案:C 知识点:无理数.解析:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.4.下面说法:①无理数是无限小数,无限小数就是无理数;②无理数包括正无理数、0、负无理数;③带根号的数都是无理数;④无理数是开不尽方的数.其中正确的个数是 ( A )A. 0B. 2C. 3D. 45.在,3.33, ,﹣2 ,0,0.454455444555…,﹣,127, 中,无理数的个数有( B ) A .2 个 B .3 个C .4 个D .5 个6.下列说法正确的是( D ) 3 A .实数分为正实数和负实数 B .是有理数 C 3是有理数D 3 0.01 是无理数 7.在下列各数中;0;3π;3 27 ;22 ;1.1010010001…,无理数的个数是( ) A . 5 B . 4 C . 3 D .2 7 答案:C 知识点:无理数.解析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判 定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及 像 0.1010010001…,等有这样规律的数.22 8.在下列实数中:0,,﹣3.1415, , ,0.343343334…无理数有( ) 7 A. 1 个B . 2 个C . 3 个D . 4 个答案:B 知识点:无理数.解析:根据无理数是无限不循环小数,可得答案.本题考查了无理数,无理数是无 限不循环小数,有理数是有限小数或无限循环小数.9.在实数 0, 3 1 ,﹣3 ,1.020020002, ,﹣π中,无理数有( )个. 2 7B. 1 个B . 2 个C . 3 个D . 4 个答案:C 知识点:无理数.解析:根据无理数是无限不循环小数,可得答案.本题考查了无理数,无理数是无限 不循环小数,有理数是有限小数或无限循环小数.10.下列说法:①0 是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0, 都是单项式;⑤﹣3x 2y+4x ﹣1 是关于 x ,y 的三次三项式,常数项是﹣1.其中正确的个数有( A )2 4 2 D . 4 0.9 8 2.5 43 42 3 3 3 31 A .2 个 B .3 个 C .4 个 D .5 个11.如图,在数轴上表示实数 15的点可能是( C )A .点 PB .点 QC .点 MD .点 N31 题图34 题图 12.下列说法正确的是( D )3A .实数分为正实数和负实数B . 是有理数C . 3 是有理数D . 是无理数 113.在实数 , 2 2 π , 中,分数的个数是( B ) A .0 B .1 C .2 D .3 214.如图,数轴上 A 、B 两点表示的数分别为 和 5.1,则 A 、B 两点之间表示整数的点共有( C ) A .6 个 B .5 个 C .4 个D .3 个 15.关于“ 10”,下面说法不正确的是( A )A .它是数轴上离原点 10个单位长度的点表示的数B .它是一个无理数C .若 a < 10<a +1,则整数 a 为 3D .它表示面积为 10 的正方形的边长3 16. 下列实数-7.5, 15,4, -27,-π, 81 中,有 a 个整数,b 个无理数,求 a -b 的平方根和立方根. 3解: 由题意得 a=3,b =2.∴ a -b =1. ∴ a -b 的平方根为±1, a -b 的立方根为 1.17.把下列各数分别填在相应的集合中:- 1 , 3 16 , π , ,3.14159265, - | - | ,-4.2 1 ,1.103030030003…. 6 3(1)有理数集合:{…};(2)无理数集合:{ …}; (3)正实数集合:{…}:(4)负实数集合:{…}. 解:(1)有理数集合:{ - , 6 ,3.14159265, - | - | ,-4.2 1 ,…} (2) 无理数集合:{ 3 16 , π,1.103030030003…,…} 3 (3) 正实数集合:{ 3 16 , π , 3 (4) 负实数集合:{ - 1 , - | - 6,3.14159265,1.103030030003…,…} | ,-4.2 1 ,…} 18.已知 a 、b 都是有理数,且(-1)a + 2b = + 3 ,求 a +b 的平方根.解:∵ ( -1)a + 2b = + 3 ,∴ 3a - a + 2b = 3 + 3 . ∵ a 、b 都是有理数, ∴ 3a = ,-a +2b =3. 解得 a =1,b =2.∴ a +b =3. ∴ a +b 的平方根是± 0.9 30.01 2 64 25 64 25 64 25 3 3。
七年级数学下册《第六章 实数》单元检测卷(附带答案)
七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。
七年级数学(下)第六章《实数》单元测试题含答案
12.比较大小: (填“>”“<”“=”).
13.已知 + ,那么 .
14.在 中,________是无理数.
15. 的立方根的平方是________.
16.若 的平方根为 ,则 .
17._____和_______统称为实数.
18.若 、 互为相反数, 、 互为负倒数,则 =_______.
因为 ,所以 的算术平方根为
因为 所以 平方根为
因为 ,所以 的算术平方根为
23.解:因为 ,所以 的立方根是 .
因为 所以 的立方根是 .
因为 ,所以 的立方根是 .
因为 ,所以 的立方根是 .
24.解:因为 ,所以源自,即 ,所以 .故 ,
从而 ,所以 ,
所以 .
25.解:可知 ,由于 ,
所以 .
C.如果一个数有立方根,则它必有平方根
D.不为0的任何数的立方根,都与这个数本身的符号同号
8.下列各式成立的是( )
A. B. C. D.
9.在实数 , , , , 中,无理数有( )
A.1个 B.2个 C.3个 D.4个
10.在-3,- ,-1,0这四个实数中,最大的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
4.当 时, 的值为( )
A. B. C. D.
5.下列关于数的说法正确的是()
A.有理数都是有限小数
B.无限小数都是无理数
C.无理数都是无限小数
D.有限小数是无理数
6.与数轴上的点具有一一对应关系的数是()
A.实数B.有理数C.无理数D.整数
7.下列说法正确的是( )
A.负数没有立方根
七年级下册数学(有答案)第六章实数测试卷及答案
第六章 实数单元测卷子一、选择题〔第小题3分,共30分〕1.25的平方根是〔 〕A.5 B .-5 C. ±5 D. ±52.以下说法错误的选项是〔 〕A.1的平方根是1 B .-1的立方根是-1 C.2是2的平方根 D .-3是()23-的平方根3.以下各组数中互为相反数的是〔 〕A .-2与()22-B .-2与38- C.2与()22- D. 2-与2 4.数8.032032032是〔 〕A.有限小数B.有理数C.无理数D.不能确定5.在以下各数:0.51525354…,10049,0.2,π1,7,11131,327,中,无理数的个数是〔 〕 A.2个 B.3个 C.4个 D.5个6.立方根等于3的数是〔 〕A.9B. ±9C. 27D.±277.在数轴上表示5和-3的两点间的距离是〔 〕 A. 5+3 B. 5-3 C .-〔5+3〕 D. 3-58.满足-3<x <5的整数是〔 〕A .-2,-1,0,1,2,3B .-1,0,1,2,3C .-2,-1,0,1,2,D .-1,0,1,29.当14+a 的值为最小时,a 的取值为〔 〕A .-1 B. 0 C. 41-D. 1 10. ()29-的平方根是x ,64的立方根是y ,则x +y 的值为〔 〕A.3B.7C.3或7D.1或7二、填空题〔每题3分,共30分〕11.算术平方根等于本身的实数是 .12.化简:()23π-= .13. 94的平方根是 ;125的立方根是 . 14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍.15.估量60的大小约等于 或 .〔误差小于1〕16.假设()03212=-+-+-z y x ,则x +y +z = . 17.我们了解53422=+,黄老师又用计算器求得:55334422=+,55533344422=+,55553333444422=+,则计算:22333444 +〔202X 个3,202X 个4〕= .18.比拟以下实数的大小〔填上>、<或=〕.①-;②215- 21;③53. 19.假设实数a 、b 中意足0=+b b a a ,则ab ab = . 20.实a 、b 在数轴上的位置如下图,则化简()2a b b a -++= .三、解答题〔共40分〕21.〔4分〕求以下各数的平方根和算术平方根:〔1〕1; 〔2〕410-;22.〔4分〕求以下各数的立方根:〔1〕21627 ; 〔2〕610--; 23.〔8分〕化简:〔1〕5312-⨯; 〔2〕8145032-- 24.〔8分〕 解方程:〔1〕42x =25 〔2〕()027.07.03=-x .25.〔8分〕已知,a 、b 互为倒数,c 、d 互为相反数,求13+++-d c ab 的值.26.〔8分〕已知:字母a 、b 满足021=-+-b a .求()()()()()()2001201112211111++++++++++b a b a b a ab 的值.参考答案1. C ;2.A ;3.A ;4.B ;5.B ;6.C ;7.A ;8.D ;9.C ;10.D11.0.1;12. π-3;13. ±32,5;14. 2m ,3n ;15.7或8;16.6;17.202X 个5;18. <,>,<;19.-1;20. a 2-;21.〔1〕 ±1,1;〔2〕±210-,210-;22. 〔1〕21,〔2〕210--;23.〔1〕1,〔2〕22-; 24.〔1〕±25,〔2〕1; 25.0;26.解:a =1,b =2原式=20132012143132121⨯++⨯+⨯+=1-21+21-31+31-41+…+2013120121-=1-20131=20132012。
人教版数学七年级下册第六章《实数》测试题(含答案)
∴3a-4b=16,
∴3a-4b的平方根是± .
20.解:(1)
=
= ;
(2)
∴ ,
∴ , ;
(3)
=
=0;
(4) ,
∴ ,
∴ ,
∴ ;
21.解:∵实数a、b互为相反数,c、d互为倒数,x的绝对值为 ,
∴a+b=0,cd=1,
①当 时,
;
②当 时,
;
所以,代数式 的值是 .
22.解:(1)正方形工料的边长为 分米;
A.- B. C.- D.
4. 等于()
A. B. C. D.不存在
5.下面计算正确的是( )
A. B. C. D.
6.已知(﹣ )2的平方根是a,﹣125的立方根是b,则a﹣b的值是( )
A.0或10B.0或﹣10C.±10D.0
7.下列各数中: 、 、0.3010、 、 、 、0.1010010001…(每个1后依次多1个0),其中是无理数的个数有()
(2)设长方形的长为4a分米,则宽为3a分米.
则 ,
解得: ,
长为 ,宽为
∴满足要求.
23.解:(1)x=0.1,y=10,故答案为:0.1,10;
(2)①∵ ≈3.16,
∴ =31.6,
② =1.8,
∴a=32400,
故答案为:31.6,32400;
(4)∵ ,
∴b=0.012,故答案为:0.012.
17.对于任意不相等的两个数a,b,定义一种运算※如下:a※b= ,如3※2= .那么12※4=_____.
三、解答题
18.将下列各数填入相应的集合内-7,0.32, ,0, , , , ,0.1010010001…
人教版七年级下册数学第六章实数-测试题含答案
人教版数学七年级下册第六章《实数》测试卷一、单选题1.下列说法错误的是()A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是02)A .9B .±9C .±3D .33.14的算术平方根是()A .12±B .12-C .12D .1164的值约为()A .3.049B .3.050C .3.051D .3.0525.若a 是(﹣3)2()A .﹣3BC 或﹣D .3或﹣36.在22π72-,六个数中,无理数的个数为()A .4B .3C .2D .17.正方形ABCD 在数轴上的位置如图所示,点D、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B8.已知﹣2,估计m 的值所在的范围是()A .0<m<1B .1<m<2C .2<m<3D .3<m<49.的相反数是()A .2-B .22C .D .10.判断下列说法错误的是()A .2是8的立方根B .±4是64的立方根C .-13是-127的立方根D .(-4)3的立方根是-4二、填空题11.若a 2=(-3)2,则a=________。
12________.13=-7,则a =______.14______15.在实数220,-π13,0.1010010001…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =_____.16.若两个连续整数a、b 满足a b <<,则a b +的值为________三、解答题17.若|a|=4,b =34,求a -b +c 的值18.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值.19.(1)(3x+2)2=16(2)12(2x﹣1)3=﹣4.20.求下列各式的值:;21.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)OA=,BD=;(2)|1﹣(﹣4)|表示哪两点的距离?(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=,当BP=4时,x=;当|x﹣3|+|x+2|的值最小时,x的取值范围是.22.将一个体积为0.216m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.参考答案1.C【解析】一个正数的平方根有两个,是成对出现的.【详解】(-4)22.D【解析】根据算术平方根的定义求解.【详解】,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.3.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.3.C【解析】分析:根据算术平方根的概念即可求出答案.本题解析:∵211()24=,∴14的算术平方根为12+,故选C.4.B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B .5.C【解析】分析:由于a 是(﹣3)2的平方根,则根据平方根的定义即可求得a 的值,进而求得代数式的值.详解:∵a 是(﹣3)2的平方根,∴a =±3,.故选C .点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.6.B【解析】【分析】根据无理数的概念解答即可.【详解】π2,是无理数.故选B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B【解析】【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B .【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B【解析】分析:根据被开方数越大算术平方根越大,不等式的性质,可得答案.,得:3<4,3﹣2﹣2<4﹣2,即1<m <2.故选B .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题的关键.9.D【解析】【分析】根据相反数的定义,即可解答.【详解】,故选D.【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.B【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确;根据43=64,可知64的立方根为4,故不正确;根据(﹣13)3=﹣127,可知﹣13是﹣127的立方根,故正确;根据立方根的意义,可知(﹣4)3的立方根是﹣4,故正确.故选:B.点睛:此题主要考查了立方根,解题关键是明确一个数的立方等于a,那么这个数就是a的立方根,由此判断即可.11.±3【解析】【分析】利用a2=(-3)2求得a2的值,再求a的平方根即可.【详解】a2=(-3)2=9,a=±3,故答案为:±3【点睛】本题考查了平方根的概念.关键是两边平方,根据平方根的意义求解.12【解析】【分析】,再求出3的算术平方根即可.【详解】,3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.13.-343【解析】解:∵3(7)343-=-,∴a =-343.故答案为-343.14.0【解析】【分析】原式各项利用立方根定义计算后,利用有理数减法法则计算即可得到结果.【详解】原式=0.3﹣0.2﹣0.1=0.故答案为0.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.15.-1【解析】【分析】根据无理数、有理数的定义即可得出A 、B 的值,进而得出结论.2,﹣π,0.1010010001…(相邻两个1之间多一个0)是无理数,故A =3.013,是有理数,故B =4,∴A -B =3-4=-1.故答案为:-1.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.16.5【解析】【分析】,求出a 、b 的值,即可求出答案.【详解】∵23,∴a =2,b =3,∴a +b =5.故答案为5.【点睛】本题考查了估算无理数的大小的应用,.17.17或9.【解析】【分析】根据绝对值的性质,可得a ,根据实数的运算,可得答案.【详解】a 4=,得a 4=或a 4=-,4c 16==,,当a 4=时a b c 431617-+=-+=,当a 4=-时a b c 43169-+=--+=.故a b c -+的值为17或9.本题考查了实数的性质,利用绝对值的性质得出a 的值是解题关键.18.48【解析】【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【点睛】本题考查平方根.19.(1)x 1=23,x 2=﹣2;(2)x=﹣12.【解析】【分析】运用开平方、开立方的方法解方程即可.【详解】(1)(3x +2)2=16;开平方得:3x +2=±4,移项得:3x =﹣2±4,解得:x 123=,x 2=﹣2.(2)312142x -=-().两边乘2得:(2x ﹣1)3=﹣8,开立方得:2x ﹣1=﹣2,移项得:2x =﹣1,解得:x 12=-.【点睛】本题考查了立方根和平方根,解题的关键是根据开方的方法求解.20.(1)-10;(2)4;(3)-1.【解析】【分析】利用立方根定义计算即可得到结果.【详解】(1)原式=﹣10;(2)原式=﹣(﹣4)=4;(3)原式=﹣9+8=-1.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.21.(1)4,5;(2)点A与点C间的距离;(3)|x+2|;2或﹣6;﹣2≤x≤3.【解析】【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离的几何意义解答;(3)根据两点间的距离公式填空.【详解】(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为5,|x+3|,﹣2或4.4,1.【点睛】本题考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.22.每个小立方体铝块的表面积为0.54m2.【解析】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.点睛:本题考查了立方根的应用,关键是能根据题意得出方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册第六章实数测试题及答案
选择题(每小题3分,共30分) 下列各式中无意义的是( ) 61- B. 21-)( C.12+a D.222-+-x x 2.在下列讲法中:10的平方根是±10;-2是4的一个平方根; 94的平方根是32 ; ④0.01的算术平方根是0.1;⑤ 24a a ±=,其中正确的有( )
A.1个
B.2个
C.3个
D.4个
下列讲法中正确的是( )
立方根是它本身的数只有1和0 B.算数平方根是它本身的数只有1和0
C.平方根是它本身的数只有1和0
D.绝对值是它本身的数只有1和0
641的立方根是( ) 21± B.4
1± C.41 D.21 现有四个无理数5,6,7,8,其中在实数2+1 与 3+1 之间的有( )
A.1个
B.2个
C.3个
D.4个 实数7- ,-2,-3的大小关系是( )
237---ππ B. 273---ππ C. 372---ππ D.723---ππ 7.已知351.1 =1.147,31.15 =2.472,3151.0 =0.532 5,则31510的值是( )
A.24.72
B.53.25
C.11.47
D.114.7
8.若33)2(,2,3--=--=-=c b a ,则 c b a ,,的大小关系是( )
c b a φφ B.b a c φφ C.c a b φφ D.a b c φφ
已知x 是169的平方根,且232x y x =+,则y 的值是( )
A.11
B.±11
C. ±15
D.65或
3
143 大于52-且小于23的整数有( )
A.9个
B.8个 C .7个 D.5个
填空题(每小题3分,共30分)
3-绝对值是 ,3- 的相反数是 .
81的平方根是 ,364 的平方根是 ,-343的立方根是 ,256的平方根是 .
比较大小:
10 π;(2) 33 2;(3)
10
1 101;(4)
2 2.
. 14.当 时,3345223+-+++-x x x 有意义。
15.已知212+++b a =0,则
a b = . 16.最大的负整数是 ,最小的正整数是 ,绝对值最小的实数是 ,不超过380-的最大整数是 .
17.已知 ,3,312==b a 且0φab ,则 b a +的值为 。
18.已知一个正数x 的两个平方根是1+a 和3-a ,则a = ,x = .
19.设a 是大于1的实数,若 312,32,
++a a a 在数轴上对应的点分不记作A 、B 、C ,则A 、B 、C 三点在数轴上从左至右的顺序是 . 20.若无理数m 满足14ππm ,请写出两个符合条件的无理数
.
解答题(共40分)
(8分)运算:
(1) )(25.08-⨯-; (2)4002254-+ ;
(3)32333111)
()(-+-+- ; (4)333327343125
12581---+-- ; 22.(12分)求下列各式中的x 的值:
()9-242=x ; (2)()25122
=-x ; ()375433-=-x ; (4)()08123
=+-x ; (6分)已知实数a 、b 、c 在数轴上的对应点如图所示,化简:
(7分)若a 、b 、c 是有理数,且满足等式332232+-=++c b a ,试运算 ()20112010b c a +- 的值。
(7分)观看:52252458522=⨯==
-,即52252-2=
1033103910271033=⨯==-,即10331033=-
猜想 26
55-
等于什么,并通过运算验证你的猜想.
参考答案
1.D ;
2.C ;
3.B ;
4.C ;
5.B ;
6.B ;
7.C ;
8.D ;
9.D ;10.A ; 11. 3,3;12. ±3,±2,-7,±4;13. >,>,>,<;14.-2≤x ≤23;
15.4;16.-1,1,0,-5;17. ±310;18.1,4;19.B <C <A ;20. 3,2; 21.1,-3,-1,-3;22. 21或27,3或者2,-1,-21;23.- a ;24.0;262552655=-。