2019_2020学年高考物理主题1动量与动量守恒定律3动量守恒定律学案(必修1)
2020届高考物理总复习:动量 第2讲动量守恒定律
(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。 (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒)。 (3)规定正方向,确定初、末状态的动量。 (4)由动量守恒定律列出方程。 (5)代入数据,求出结果,必要时讨论说明。
题型一 动量守恒定律的理解和应用问题
(3)若 m1<m2,则 v1'<0,v2'>0,碰后 m1 反向弹回,m2 沿 m1 碰前方向运动
题型三 碰撞问题
关键能力
发生非弹性碰撞时,内力是非弹性力,部分机械能转化为物体的内能,机械能有损失,动
非弹性碰撞
量守恒,总动能减少,满足:
m1v1+m2v2=m1v1'+m2v2' 12m1v1 2 +12m2v2 2 >12m1v1'2+12m2v2'2
两个物体组成的系统初动量等于末动量
可写为:p=p'、Δp=0和Δp1=-Δp2。
(4)守恒条件 ①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。 ②近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。 ③分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
C 方向行走时,船的速度为u,由动量守恒定律可知下列表达式成立的是( )。
A.(M+m)v0=Mu+mv B.(M+m)v0=Mu+m(v-u) C.(M+m)v0=Mu-m(v-u) D.(M+m)v0=Mu-m(v-v0)
答 案解
析
题型一 动量守恒定律的理解和应用问题 解析
高中物理选必一第一章动量守恒定律(1动量2动量定理)
第一章动量守恒定律第1节动量知识点一、动量(1)定义:物体质量和速度的乘积,用字母p 表示,p =m v .(2)动量的矢量性:动量既有大小,又有方向,是矢量.动量的方向与速度的方向一致,运算遵循矢量运算法则.(3)单位:国际单位是千克·米每秒,符号是kg·m/s.(4)动量具有相对性:选取不同的参考系,同一物体的速度可能不同,物体的动量也就不同,即动量具有相对性.通常在不说明参考系的情况下,物体的动量是指相对地面的动量.知识点二、动量与速度、动能的区别和联系动量与速度动量与动能区别①动量在描述物体运动方面更进一步,更能体现运动物体的作用效果②速度描述物体运动的快慢和方向①动量是矢量,从运动物体的作用效果方面描述物体的状态②动能是标量,从能量的角度描述物体的状态联系①动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,且p =mv ②动量和动能都是描述物体运动状态的物理量,且p =2mE k 或E k =p 22m知识点三、动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差,即Δp =p ′-p(2)动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 相同.(3)因为p =m v 是矢量,只要m 的大小、v 的大小和v 的方向三者中任何一个发生了变化,动量p 就发生变化.(4)动量变化量Δp 的计算①当物体做直线运动时,只需选定正方向,与正方向相同的动量取正,反之取负.若Δp 是正值,就说明Δp 的方向与所选正方向相同;若Δp 是负值,则说明Δp 的方向与所选正方向相反.②当初、末状态动量不在一条直线上时,可按平行四边形定则求Δp 的大小和方向.典例分析一、对动量和动量增量的理解例1关于动量变化,下列说法正确的是()A .做直线运动的物体速度增大时,动量的增量Δp 的方向与运动方向相同B .做直线运动的物体,速度减小时,动量增量Δp 的方向与运动方向相反C .物体的速度大小不变时,动量的增量Δp 为零D .物体做平抛运动时,动量的增量一定不为零二、动量变化量的计算例2羽毛球是速度最快的球类运动之一,林丹扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,林丹将球以342km/h的速度反向击回.设羽毛球质量为5g,试求:(1)林丹击球过程中羽毛球的动量变化量.(2)在林丹的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题一对动量及动量变化的理解例3关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零专题二对动量及动量变化的计算例4羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,运动员将球以342km/h的速度反向击回.设羽毛球的质量为5g,试求(1)运动员击球过程中羽毛球的动量变化量.(2)在运动员的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题三碰撞中的动量变化例5质量为0.1kg的小球从1.25m高处自由落下,与地面碰撞后反弹回0.8m高处.取竖直向下为正方向,且g =10m/s2.求:(1)小球与地面碰前瞬间的动量;(2)球与地面碰撞过程中动量的变化.第2节动量定理知识点一、冲量(1)概念:力与力的作用时间的乘积叫做力的冲量.(2)定义式:I=Ft.(3)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛·秒,符号为N·s.知识点二、冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.知识点三、冲量的计算(1)恒力的冲量:公式I=Ft适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算,若力为一般变力则不能直接计算冲量.(2)变力的冲量①变力的冲量通常可利用动量定理I=Δp求解.②可用图象法计算如图所示变力冲量,若某一力方向恒定不变,那么在F-t图象中,图中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.知识点四、冲量与功(1)联系:冲量和功都是力作用过程的积累,是过程量.(2)区别:冲量是矢量,是力在时间上的积累,具有绝对性;功是标量,是力在位移上的积累,有相对性.知识点四、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.这个关系叫做动量定理.2.表达式:I=Δp或Ft=m v′-m v.3.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,它说明合外力的冲量跟物体动量变化量不仅大小相等,而且方向相同.(3)动量的变化率和动量的变化量由动量定理可得出F=p′-pt,它说明动量的变化率决定于物体所受的合外力.而由动量定理I=Δp可知动量的变化量取决于合外力的冲量,它不仅与物体的受力有关,还与力的作用时间有关.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,不论作用力是恒力还是变力,不论几个力的作用时间是相同还是不同都适用.4.动量定理的应用(1)定性分析有关现象由F=Δpt可知:①Δp一定时,t越小,F越大;t越大,F越小.②Δp越大,而t越小,F越大.③Δp越小,而t越大,F越小.(2)应用动量定理解决问题的一般步骤①审题,确定研究对象:对谁、对哪一个过程.②对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量.③抓住过程的初、末状态,选定参考方向,对初、末状态的动量大小、方向进行描述.④根据动量定理,列出动量定理的数学表达式.⑤写清各物理量之间关系的补充表达式.⑥求解方程组,并分析作答.典例分析一、冲量的理解例1如图所示,质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力的冲量各是多大?二、平均冲量的计算例2如图所示,质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反弹的最大高度为h2=0.2m,从小球下落到反弹到最高点经历的时间为Δt=0.6s,g取10m/s2.求:小球撞击地面过程中,球对地面的平均压力F的大小.三、合力冲量的计算例3质量为1.0kg的小球从20m高处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触时2)()间为1.0s,在接触时间内小球受到的合力的冲量大小为(空气阻力不计,g=10m/sA.10N·s B.20N·s C.30N·s D.40N·s四、冲量的综合应用例4用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。
新教材高中物理第一章动量与动量守恒定律2动量定理学案教科版选择性必修第一册(含答案)
新教材高中物理学案教科版选择性必修第一册:2.动量定理课标要求1.知道冲量的概念,知道冲量是矢量.2.知道动量定理的确切含义,掌握其表达式.3.会用动量定理解释碰撞、缓冲等生活中的现象.思维导图必备知识·自主学习——突出基础性素养夯基一、冲量动量定理1.动量定理(1)内容:在一个过程中物体所受________与作用时间的乘积等于物体____________.(2)公式:____________.2.冲量(1)定义:力与____________的乘积,用符号I表示.(2)公式:I=________.(3)单位:________,符号是________.二、动量定理的应用在物体的动量变化一定的条件下,作用时间较短则相互作用力较________;作用时间较长则相互作用力较________.[导学](1)冲量是矢量,其方向与力的方向相同.(2)力对物体的冲量大小由力的大小和作用时间两者共同决定.(3)力的冲量的作用效果就是使物体的动量发生变化.[举例](1)同学从高处跳下落地时总是曲膝下蹲,以减小对膝关节的损伤,就是为增加作用时间,减小冲击力.(2)同学在接队友抛来的篮球时,总是收臂,以延长作用时间,减小对手的作用力.关键能力·合作探究——突出综合性素养形成探究点一对冲量的理解和计算导学探究如图中物理课本在课桌上静止了一段时间,重力对它做功一定为零,而这段时间内重力的冲量为零吗?归纳总结1.对冲量的理解(1)冲量是过程量,它描述的是力的作用对时间的累积效应,求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)冲量是矢量,冲量的方向与力的方向相同.2.冲量的计算(1)求某个恒力的冲量:由该力和力的作用时间的乘积得出.(2)求合冲量的两种方法:可分别求每一个力的冲量,再求各冲量的矢量和;如果各个力的作用时间相同,也可以先求合力,再用公式I合=F合Δt求解.(3)求变力的冲量:①若力与时间呈线性关系变化,则可用平均力求变力的冲量.②若给出了力随时间变化的图像如图所示,可用面积法求变力的冲量.③利用动量定理求解.典例示范例1 如图所示,在倾角α=37°的斜面上,一质量为5 kg的物体沿斜面滑下,物体与斜面间的动摩擦因数μ=0.2,求物体下滑2 s的时间内,分别求出物体所受重力、支持力、摩擦力和合外力的冲量.(g取10 m/s2,sin 37°=0.6,cos 37°=0.8)归纳总结计算冲量的两点技巧(1)求各力的冲量或者合力的冲量时,首先做好受力分析,判断是恒力还是变力.(2)若是恒力,可直接用力与作用时间的乘积计算,若是变力,要根据力的特点求解,或者利用动量定理求解.素养训练1 (多选)关于冲量,下列说法正确的是( )A.冲量是物体动量变化的原因B.作用在静止的物体上的力的冲量一定为零C.动量越大的物体受到的冲量越大D.冲量的方向与力的方向相同素养训练2 如图所示,一个物体在与水平方向成θ角的拉力F的作用下匀速前进了时间t,则( )A.拉力F对物体的冲量大小为Ft cos θB.拉力F对物体的冲量大小为Ft sin θC.摩擦力对物体的冲量大小为Ft sin θD.合外力对物体的冲量大小为零思维方法利用Ft图线与时间轴所夹的面积表示力F的冲量,是vt图线与时间轴所夹面积求位移的迁移应用.如图所示,力F在1 s内的冲量I1=F1t1=20×1 N·s=20 N·s,力F在6 s 内的冲量I=20×1 N·s-10×5 N·s=-30 N·s.探究点二动量定理的理解和应用导学探究在运输玻璃制品的过程中,常把玻璃制品用气泡膜包裹或装在珍珠棉制作的包装盒,防止在运输过程中由于震荡、碰撞而损坏.你能解释这样做的原因吗?归纳总结1.动量定理的理解(1)动量定理的表达式mv′-mv=F·Δt是矢量式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F是物体所受的合外力,若合外力是变力,则F应是合外力在作用时间内的平均值.2.动量定理的应用(1)定量计算有关物理量动量定理p′-p=I中,动量变化Δp与合力的冲量大小相等,方向相同,据此有:①应用I=Δp求变力的冲量.②应用Δp=FΔt求恒力作用下曲线运动中物体动量的变化.③应用动量定理可以计算某一过程中的平均作用力,通常用于计算持续作用的变力的平均大小.(2)定性分析有关现象①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.②作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.典例示范考向1 利用动量定理求平均作用力或变力的冲量例2 质量m=70 kg的撑竿跳高运动员从h=5.0 m高处落到海绵垫上,经Δt1=1 s停止,则该运动员身体受到的平均冲力约为多大?如果是落到普通沙坑中,经Δt2=0.1 s停止,则沙坑对运动员的平均冲力约为多大?(g取10 m/s2)归纳总结应用动量定理定量计算的一般步骤(1)选定研究对象,明确运动过程;(2)进行受力分析和运动的初、末状态分析;(3)选定正方向,根据动量定理列方程求解.考向2 利用动量定理解释现象例3 如图所示,小明在演示惯性现象时,将一杯水放在桌边,杯下压一张纸条.若缓慢拉动纸条,发现杯子会出现滑落;当他快速拉动纸条时,发现杯子并没有滑落.对于这个实验,下列说法正确的是( )A.缓慢拉动纸条时,杯子与纸条间的滑动摩擦力较大B.快速拉动纸条时,杯子与纸条间的滑动摩擦力较大C.缓慢拉动纸条,杯子获得的动量较大D.快速拉动纸条,杯子获得的动量较大素养训练3人们对手机的依赖性越来越强,有些人喜欢平躺着看手机,经常出现手机砸伤脸的情况.若手机质量为160 g,从离人脸约20 cm的高度处无初速度掉落,砸到人脸后手机未反弹,人脸受到手机的冲击时间约为0.1 s,重力加速度g取10 m/s2,不计空气阻力.下列说法正确的是( )A.手机对人脸的冲量方向竖直向上B.手机对人脸的平均冲力大小约为4.8 NC.手机对人脸的冲量大小约为0.32 N·sD.手机与人脸作用过程中动量变化量大小约为0.48 kg·m/s素养训练4 下列应用动量定理解释的现象,说法合理的是( )A.易碎物品运输时要用柔软材料包装,这样做是为了增加重量以减小作用力B.消防员进行翻越障碍物训练时,落地总要屈腿,这样可以减少人的动量变化量C.从同一高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小D.运动员在跳高时,总是落到沙坑里或海绵上,这样做是为了延长着地过程的作用时间随堂演练·自主检测——突出创新性素养达标1.质量为m的物体放在水平地面上,在与水平方向成θ角的拉力F作用下由静止开始运动,经过时间t,速度达到v.则在这段时间内,拉力F和重力的冲量分别是( ) A.Ft,0 B.Ft cos θ,0 C.mv,0 D.Ft,mgt2.下列说法正确的是( )A.冲量的方向与动量的方向一致B.冲量是物体动量变化的原因C.物体受力越大,其动量变化越大D.冲量越大,动量也越大3.高楼玻璃日渐成为鸟类飞行的杀手,一只质量约为50 g的麻雀以10 m/s的速度水平飞行,撞到竖直的透明窗户玻璃上后水平速度减为0,麻雀与玻璃的碰撞时间约为0.01 s,则窗户玻璃受到的平均冲击力的大小约为( )A.10 N B.50 N C.100 N D.500 N4.篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前.这样做可以( )A.减小篮球的动量变化量B.减小篮球对手的冲量C.减小篮球的动能变化量D.减小篮球与手之间的相互作用力5.如图所示,匀速飞行的战斗机上从相同的高度先后水平抛出两个质量分别为m1、m2的炮弹,在两炮弹落到水平地面前的运动过程中,它们动量的变化量分别为Δp1、Δp2.已知m1∶m2=1∶2,空气阻力忽略不计,则Δp1∶Δp2为( )A.1∶2 B.1∶3 C.1∶1 D.2∶12.动量定理必备知识·自主学习一、1.(1)合力动量的变化(2)Ft=p′-p2.(1)力的作用时间(2)Ft(3)牛顿秒N·s二、大小关键能力·合作探究探究点一【导学探究】提示:物理课本在课桌上静止一段时间,其位移为零,故重力做功为零,而冲量是指力与时间的乘积,所以重力的冲量不为零.【典例示范】例 1 解析:重力的冲量:I G=G·t=mg·t=5×10×2 N·s=100 N·s,方向竖直向下.支持力的冲量:I N=N·t=mg cos α·t=5×10×0.8×2 N·s=80 N·s,方向垂直斜面向上.摩擦力的冲量:I f=f·t=μmg cos α·t=0.2×5×10×0.8×2 N·s=16 N·s,方向沿斜面向上.合外力F合=mg sin α-μmg cos α=22 N,方向沿斜面向下,则合外力的冲量I合=F合t=22×2 N·s=44 N·s,方向沿斜面向下.答案:重力的冲量大小为100 N·s,方向竖直向下支持力的冲量大小80 N·s,方向垂直斜面向上摩擦力的冲量大小为16 N·s,方向沿斜面向上合外力的冲量大小为44 N·s,方向沿斜面向下素养训练1 解析:力作用一段时间便有了冲量,而力作用一段时间后,物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A正确;只要有力作用在物体上,经历一段时间,这个力便有了冲量,与物体处于什么状态无关,B 错误;物体所受冲量I=Ft与物体动量的大小p=mv无关,C错误;冲量是矢量,其方向与力的方向相同,D正确.答案:AD素养训练2 解析:求冲量时,必须明确是哪一个力在哪一段时间内的冲量.本题中,作用的时间都为t,则拉力F对物体的冲量为Ft,A、B错误;物体受到的摩擦力f=F cos θ,所以摩擦力对物体的冲量大小为ft=F cos θ·t,C错误;物体匀速运动,合外力为零,所以合外力对物体的冲量大小为零,D正确.答案:D探究点二【导学探究】提示:为了增大力的作用时间以减小玻璃制品受到的作用力.【典例示范】例2 解析:以全过程为研究对象,初、末动量的数值都是0,所以运动员的动量变化量为零,根据动量定理,合力的冲量为零,根据自由落体运动的知识得,运动员自由下落的时=1 s,间是t=√2hg以竖直向下为正方向,从开始下落至落到海绵垫上停止时,mg(t+Δt1)-FΔt1=0 代入数据,解得F=1 400 N,下落到沙坑中时,mg(t+Δt2)-F′Δt2=0代入数据,解得F′=7 700 N.答案:1 400 N 7 700 N例 3 解析:无论是缓慢拉动纸条还是快速拉动纸条,杯子与纸条间的滑动摩擦力都是相等的,A 、B 错误;快速拉动纸条时,纸条与杯子作用时间短,摩擦力对杯子的冲量较小,缓慢拉动纸条时,纸条与杯子作用时间长,摩擦力对杯子的冲量较大;由动量定理可知,缓慢拉动纸条,杯子获得的动量较大,快速拉动纸条,杯子获得的动量较小,C 正确,D 错误.答案:C素养训练3 解析:冲量方向与力的方向相同,可知手机对人脸的冲量方向竖直向下,选项A 错误;手机做自由落体运动,根据运动学公式v 2=2gh ,v =√2gh =√2×10×0.2=2 m/s ,手机没有反弹,速度减为零,以竖直向下为正方向,对手机根据动量定理mgt +I =0-mv ,代入数值得I =-0.48 N·s,负号表示方向竖直向上,根据牛顿第三定律可知,手机对人脸的冲量约为I ′=-I =0.48 N·s,根据冲量定义I =Ft ,F =It =0.480.1=4.8 N ,B 正确,C 错误;手机与人脸作用后速度变为零,取向下为正方向,手机动量变化为Δp =0-mv =-0.32 kg·m/s,D 错误.答案:B素养训练4 解析:易碎物品运输时要用柔软材料包装,这样做是为了延长作用时间以减小作用力,A 错误;消防员进行翻越障碍物训练时,落地总要屈腿,这样是为了延长作用时间以减小作用力,B 错误;从同一高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是掉在水泥地上的玻璃杯作用时间短,地面弹力变大,掉在草地上的玻璃杯作用时间长,地面的弹力变小,两种情况动量的改变量相同,C 错误;运动员在跳高时,总是落到沙坑里或海绵上,这样做是为了延长着地过程的作用时间,D 正确.答案:D随堂演练·自主检测1.解析:因两力作用时间均为t ,则有:重力的冲量为mgt ,拉力的冲量为Ft ;故D 正确,A 、B 、C 错误.答案:D 2.解析:根据动量定理可知,冲量是物体动量变化的原因,冲量和动量没有必然的联系,冲量的方向与动量的方向不一定一致,冲量越大,动量也不一定越大,A 、D 错误,B 正确;根据动量定理F Δt =m Δv 物体受力越大,其动量变化不一定越大,还和受力的时间有关,C 错误.答案:B3.解析:由动量定理可得Ft =mv ,代入数据解得F =50 N ,B 正确. 答案:B4.解析:先伸出两臂迎接,手接触到球后,两臂随球引至胸前,这样可以增加球与手接触的时间,根据动量定理得-Ft =0-mv ,解得F =mv t=Δp t,接球过程,球的动量变化量相等,当时间增大时,球动量的变化率减小,作用力就减小,而冲量、动量和动能的变化量都不变,D 正确.答案:D5.解析:两炮弹从同一高度落下,则落地的时间相同,根据动量定理mgt =Δp 可得Δp 1∶Δp 2=m 1∶m 2=1∶2,A 正确.答案:A。
高中物理动量守恒备课教案
高中物理动量守恒备课教案
课程目标:
1. 理解动量守恒定律的概念;
2. 掌握动量守恒定律的计算方法;
3. 能够应用动量守恒定律解决实际问题。
教学重点:
1. 动量守恒定律的概念;
2. 动量守恒定律的应用。
教学难点:
1. 动量守恒定律的数学表达;
2. 动量守恒定律在实际问题中的应用。
教学准备:
1. 教科书相关内容资料;
2. 实验器材(如弹簧测力计、小车等);
3. 计算器。
教学过程:
一、引入(5分钟)
通过一个简单的实验或情境引入动量守恒的概念,吸引学生的兴趣,引发学生思考。
二、概念讲解(10分钟)
1. 动量的定义和计算方法;
2. 动量守恒定律的表述;
3. 动量守恒定律的理论基础。
三、实验演示(15分钟)
进行一个简单的实验演示,让学生观察并记录实验现象,引导学生思考并归纳实验得出的结论。
四、案例分析(10分钟)
结合生活中的实际问题或者案例,引导学生运用动量守恒定律解决问题,加深学生对动量守恒的理解。
五、小组讨论(10分钟)
分成小组讨论一个与动量守恒相关的问题,让学生共同思考并讨论解决方案。
六、课堂练习(10分钟)
布置相关的练习题,让学生在课后巩固所学内容。
七、课堂总结(5分钟)
对本节课的重点内容进行总结,并展望下节课内容。
教学反思:
通过本节课的教学,学生应该能够掌握动量守恒定律的概念和应用方法,同时能够运用动量守恒定律解决实际问题。
在教学过程中,要引导学生积极思考,培养其动手实践和解决问题的能力。
高考物理动量守恒定律(一)解题方法和技巧及练习题含解析
高考物理动量守恒定律(一)解题方法和技巧及练习题含解析一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.如图,质量分别为、的两个小球A 、B 静止在地面上方,B 球距地面的高度h=0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t=0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知,重力加速度大小为,忽略空气阻力及碰撞中的动能损失.(i )B 球第一次到达地面时的速度; (ii )P 点距离地面的高度. 【答案】4/B v m s =0.75p h m = 【解析】试题分析:(i )B 球总地面上方静止释放后只有重力做功,根据动能定理有212B B B m gh m v =可得B 球第一次到达地面时的速度24/B v gh m s ==(ii )A 球下落过程,根据自由落体运动可得A 球的速度3/A v gt m s == 设B 球的速度为'B v , 则有碰撞过程动量守恒'''A A B B B B m v m v m v +=碰撞过程没有动能损失则有222111'''222A AB B B B m v m v m v += 解得'1/B v m s =,''2/B v m s =小球B 与地面碰撞后根据没有动能损失所以B 离开地面上抛时速度04/B v v m s ==所以P 点的高度220'0.752B p v v h m g-== 考点:动量守恒定律 能量守恒4.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.5.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小. 【答案】v 0v 0【解析】设A 、B 球碰撞后速度分别为v 1和v 2 由动量守恒定律得2mv 0=2mv 1+mv 2 且由题意知=解得v 1=v 0,v 2=v 0视频6.一轻质弹簧一端连着静止的物体B ,放在光滑的水平面上,静止的物体A 被水平速度为v 0的子弹射中并且嵌入其中,随后一起向右运动压缩弹簧,已知物体A 的质量是物体B 的质量的34,子弹的质量是物体B 的质量的14,求:(1)物体A 被击中后的速度大小; (2)弹簧压缩到最短时B 的速度大小。
动量守恒定律教案(5篇)
动量守恒定律教案(5篇)动量守恒定律教案(5篇)动量守恒定律教案范文第1篇通过对化学反应中反应物及生成物质量的试验测定,使同学理解质量守恒定律的含义及守恒的缘由;依据质量守恒定律能解释一些简洁的试验事实,能推想物质的组成。
力量目标提高同学试验、思维力量,初步培育同学应用试验的方法来定量讨论问题和分析问题的力量。
情感目标通过对试验现象的观看、记录、分析,学会由感性到理性、由个别到一般的讨论问题的科学方法,培育同学严谨求实、勇于探究的科学品质及合作精神;使同学熟悉永恒运动变化的物质,即不能凭空产生,也不能凭空消逝的道理。
渗透物质不灭定律的辩证唯物主义的观点。
教学建议教材分析质量守恒定律是学校化学的重要定律,教材从提出在化学反应中反应物的质量同生成物的质量之间存在什么关系入手,从观看白磷燃烧和氢氧化钠溶液与硫酸铜溶液反应前后物质的质量关系动身,通过思索去“发觉”质量守恒定律,而不是去死记硬背规律。
这样同学简单接受。
在此基础上,提出问题“为什么物质在发生化学反应前后各物质的质量总和相等呢?”引导同学从化学反应的实质上去熟悉质量守恒定律。
在化学反应中,只是原子间的重新组合,使反应物变成生成物,变化前后,原子的种类和个数并没有变化,所以,反应前后各物质的质量总和必定相等。
同时也为化学方程式的学习奠定了基础。
教法建议引导同学从关注化学反应前后"质"的变化,转移到思索反应前后"量"的问题上,教学可进行如下设计:1.创设问题情境,同学自己发觉问题同学的学习是一个主动的学习过程,老师应当实行"自我发觉的方法来进行教学"。
可首先投影前面学过的化学反应文字表达式,然后提问:对于化学反应你知道了什么?同学各抒己见,最终把问题聚焦在化学反应前后质量是否发生变化上。
这时老师不失相宜的提出讨论主题:通过试验来探究化学反应前后质量是否发生变化,同学的学习热忱和爱好被最大限度地调动起来,使同学进入主动学习状态。
高考物理知识点:动量
高考物理知识点:动量1500字动量是物理学中的重要概念,在高考物理中也是一项必学的知识点。
动量描述了物体运动的性质,是质量和速度的乘积,表示了物体运动的惯性和力的作用效果。
下面将详细介绍动量的基本概念、动量守恒定律、应用等内容,帮助大家更好地理解和掌握动量。
一、动量的基本概念:1. 动量的定义:动量(p)是物体运动的性质,是质量(m)和速度(v)的乘积,表示为p=mv。
2. 动量的量纲:国际单位制中,动量的量纲是kg·m/s。
3. 动量的方向:动量的方向与速度方向一致,是一个矢量量。
二、动量守恒定律:1. 动量守恒定律的表述:在孤立系统中,总动量不变,即系统内外力的合力为零时,系统的总动量保持不变。
2. 动量守恒定律的数学表达:ΣP = 0,即Σ(mv) = 0。
3. 动量守恒定律的应用条件:孤立系统或外力合力为零的系统。
三、动量与力的关系:1. 力的定义:力(F)是导致物体运动状态发生变化或形态发生变化的原因,是物体受到的外界作用所产生的效果。
2. 动量与力的关系:根据牛顿第二定律,力等于动量变化率的大小和方向,即F=dp/dt。
3. 弹力和冲量:弹力是单位时间内物体受到的力,也等于冲量的大小,冲量则是物体受到的力作用时间的乘积,即J=∫Fdt。
四、动量定理:1. 动量定理的表述:一个物体所受合外力的冲量等于该物体的动量变化。
2. 动量定理的数学表达:J = Δp。
3. 动量定理的应用条件:物体在力的作用下产生速度变化的过程。
五、动量守恒和碰撞:1. 完全弹性碰撞:在碰撞中,碰撞物体的总动量守恒且总动能守恒。
2. 完全非弹性碰撞:在碰撞中,碰撞物体的总动量守恒但总动能不守恒。
3. 部分弹性碰撞:在碰撞中,碰撞物体的总动量守恒但总动能损失。
六、动量在工程中的应用:1. 均匀变速机关:根据动量守恒定律,可以求解均匀变速机关的作用时间和作用力大小。
2. 动量交换机构:利用动量守恒定律,可以分析动量交换机构(如喷气发动机、火箭推进器等)的工作原理和性能。
高中物理新教材同步选择性必修第一册 第1章动量和动量守恒定律 3 动量守恒定律
3动量守恒定律[学习目标] 1.了解系统、内力和外力的概念.2.理解动量守恒定律及其表达式,理解动量守恒条件.3.能用牛顿运动定律推导出动量守恒定律的表达式,了解动量守恒定律的普适性.4.能用动量守恒定律解决实际问题.一、相互作用的两个物体的动量改变如图1所示,质量为m2的B物体追上质量为m1的A物体,并发生碰撞,设A、B两物体碰前速度分别为v1、v2(v2>v1),碰后速度分别为v1′、v2′,碰撞时间很短,设为Δt.图1根据动量定理:对A:F1Δt=m1v1′-m1v1①对B:F2Δt=m2v2′-m2v2②由牛顿第三定律F1=-F2③由①②③得两物体总动量关系为:m1v1′+m2v2′=m1v1+m2v2二、动量守恒定律1.系统、内力与外力(1)系统:两个(或多个)相互作用的物体构成的整体叫作一个力学系统,简称系统.(2)内力:系统中物体间的作用力.(3)外力:系统以外的物体施加给系统内物体的力.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′(作用前后总动量相等).(3)适用条件:系统不受外力或者所受外力的矢量和为零.(4)普适性:动量守恒定律既适用于低速物体,也适用于高速物体.既适用于宏观物体,也适用于微观物体.1.判断下列说法的正误.(1)一个系统初、末状态动量大小相等,即动量守恒.(×)(2)两个做匀速直线运动的物体发生碰撞瞬间,两个物体组成的系统动量守恒.(√)(3)系统动量守恒也就是系统总动量变化量始终为零.(√)(4)只要系统内存在摩擦力,动量就一定不守恒.(×)2.如图2所示,游乐场上,两位同学各驾驶一辆碰碰车迎面相撞,此后,两车以共同的速度运动.设甲同学和他的车的总质量为120 kg,碰撞前水平向右运动,速度的大小为5 m/s;乙同学和他的车的总质量为180 kg,碰撞前水平向左运动,速度的大小为4 m/s.则碰撞后两车共同的运动速度大小为________,方向________.图2答案0.4 m/s水平向左解析本题的研究对象为两辆碰碰车(包括驾车的同学)组成的系统,在碰撞过程中此系统的内力远远大于所受的外力,外力可以忽略不计,满足动量守恒定律的适用条件.设甲同学的车碰撞前的运动方向为正方向,他和车的总质量m1=120 kg,碰撞前的速度v1=5 m/s;乙同学和车的总质量m2=180 kg,碰撞前的速度v2=-4 m/s.设碰撞后两车的共同速度为v,则系统碰撞前的总动量为:p=m1v1+m2v2=120×5 kg·m/s+180×(-4) kg·m/s=-120 kg·m/s.碰撞后的总动量为p′=(m1+m2)v.根据动量守恒定律可知p=p′,代入数据解得v=-0.4 m/s,即碰撞后两车以0.4 m/s的共同速度运动,运动方向水平向左.一、对动量守恒定律的理解1.研究对象:相互作用的物体组成的力学系统.2.动量守恒定律的成立条件(1)系统不受外力或所受合外力为零.(2)系统受外力作用,但内力远远大于外力.此时动量近似守恒.(3)系统受到的合外力不为零,但在某一方向上合外力为零(或某一方向上内力远远大于外力),则系统在该方向上动量守恒.3.动量守恒定律的三个特性(1)矢量性:公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.(2)相对性:公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.(3)普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于低速宏观物体组成的系统,也适用于接近光速运动的微观粒子组成的系统.关于动量守恒的条件,下列说法正确的有()A.只要系统内存在摩擦力,动量不可能守恒B.只要系统所受外力做的功为零,动量一定守恒C.只要系统所受合外力的冲量为零,动量一定守恒D.若系统中物体加速度不为零,动量一定不守恒答案 C解析只要系统所受合外力为零,系统动量就守恒,与系统内是否存在摩擦力无关,故A错误;系统所受外力做的功为零,系统所受合外力不一定为零,系统动量不一定守恒,如用绳子拴着一个小球,让小球在水平面内做匀速圆周运动,小球转动的过程中,系统外力做功为零,但小球的动量不守恒,故B错误;力与力的作用时间的乘积是力的冲量,系统所受合外力的冲量为零,即合外力为零,则系统动量守恒,故C正确;比如碰撞过程,两个物体的加速度都不为零即合力都不为零,但系统的动量却守恒,故D错误.(多选)如图3所示,A、B两物体质量之比为m A∶m B=3∶2,原来静止在足够长的平板小车C上,A、B间有一根被压缩的弹簧,地面光滑.当两物体被同时释放后,则()图3A.若A、B与平板车上表面间的动摩擦因数相同,则A、B组成系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,则A、B、C组成系统的动量守恒C.若A、B所受的摩擦力大小相等,则A、B组成系统的动量守恒D.若A、B所受的摩擦力大小相等,则A、B、C组成系统的动量守恒答案BCD解析若μA=μB,m A∶m B=3∶2,故F f A∶F f B=3∶2,A、B组成的系统合外力不为零,所以A、B组成的系统动量不守恒,A项错误;当F f A=F f B,A、B组成的系统合外力为零,动量守恒,C项正确;当把A、B、C作为系统时,由于地面光滑,故不论A、B与C之间摩擦力大小情况如何,系统受到的合外力均等于0,所以A、B、C组成的系统动量守恒,故B、D项正确.系统动量是否守恒的判定方法1.选定研究对象及研究过程,分清外力与内力.2.分析系统受到的外力矢量和是否为零,若外力矢量和为零,则系统动量守恒;若外力在某一方向上合力为零,则在该方向上系统动量守恒.系统动量严格守恒的情况很少,在分析具体问题时要注意把实际过程理想化.3.多个物体情况下,选取不同的物体组成系统,会得出不同的结论.二、动量守恒定律的应用1.动量守恒定律的常用表达式(1)p=p′:相互作用前系统的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前动量的矢量和等于作用后动量的矢量和.(3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.(4)Δp=0:系统总动量增量为零.2.应用动量守恒定律解题的步骤如图4所示,A、B两个大小相同、质量不等的小球放在光滑水平地面上,A以3 m/s 的速率向右运动,B以1 m/s的速率向左运动,发生正碰后A、B两小球都以2 m/s的速率反弹,求A、B两小球的质量之比.图4答案3∶5解析取水平向右为正方向,则有v A=3 m/s,v B=-1 m/sv A′=-2 m/s,v B′=2 m/s根据动量守恒定律得m A v A +m B v B =m A v A ′+m B v B ′代入数据解得:m A ∶m B =3∶5.针对训练 一辆平板车沿光滑水平面运动,车的质量m =20 kg ,运动速度v 0=4 m/s ,求下列情况车稳定后的速度大小:(1)一个质量m ′=2 kg 的沙包从5 m 高处落入车内;(2)将一个质量m ′=2 kg 的沙包以5 m/s 的速度迎面扔入车内.答案 见解析解析 (1)竖直下落的沙包在水平方向上速度为零,动量为零,系统在水平方向上动量守恒,取v 0的方向为正方向,由动量守恒定律得m v 0=(m +m ′)v ′,解得v ′=4011m/s. (2)取v 0的方向为正方向,由动量守恒定律得m v 0-m ′v =(m +m ′)v ″解得v ″=3511m/s. 将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3 m/s ,方向向右,乙车速度大小为2 m/s ,方向向左并与甲车速度方向在同一直线上,如图5所示.图5(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最近时,乙车的速度是多大?方向如何? 答案 (1)1 m/s 方向向右(2)0.5 m/s 方向向右解析 两个小车及磁铁组成的系统在水平方向不受外力作用,两车之间的磁力是系统内力,系统动量守恒,设向右为正方向.(1)v 甲=3 m/s ,v 乙=-2 m/s.据动量守恒定律得:m v 甲+m v 乙=m v 甲′,代入数据解得v 甲′=v 甲+v 乙=(3-2) m/s =1 m/s ,方向向右.(2)两车的距离最近时,两车速度相同,设为v ′,由动量守恒定律得:m v 甲+m v 乙=m v ′+m v ′.解得v ′=m v 甲+m v 乙2m =v 甲+v 乙2=3-22m/s =0.5 m/s ,方向向右.1.(动量守恒的判断)图6所反映的物理过程中,系统动量守恒的是()图6A.只有甲和乙B.只有丙和丁C.只有甲和丙D.只有乙和丁答案 C解析甲图中,在光滑水平面上,子弹水平射入木块的过程中,子弹和木块组成的系统动量守恒.丙图中两球匀速下降,说明两球组成的系统在竖直方向上所受的合外力为零,细线断裂后,两球组成的系统动量守恒,它们在水中运动的过程中,两球整体受力情况不变,遵循动量守恒定律.乙图中系统受到墙的弹力作用,丁图中斜面是固定的,乙、丁两图所示过程系统所受合外力不为零,动量不守恒,故只有甲、丙正确,即C正确.2.(动量守恒定律的理解)(多选)(2021·梁集中学高二第一次调研)我国女子短道速滑队在世锦赛上实现女子3 000 m接力三连冠.如图7所示,观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()图7A.甲对乙的冲量一定与乙对甲的冲量相同B.相互作用的过程中甲与乙组成的系统满足机械能守恒定律C.相互作用的过程中甲与乙组成的系统满足动量守恒定律D.甲、乙的动量变化一定大小相等、方向相反答案CD解析甲对乙的作用力与乙对甲的作用力等大反向,它们的冲量也等大反向,故A错误.由于乙推甲的过程,其他形式的能转化为机械能,故机械能不守恒,B错误.甲、乙相互作用的过程,系统水平方向不受外力的作用,竖直方向所受合外力为零,故系统的动量守恒,此过程甲的动量增大,乙的动量减小,二者动量的变化大小相等、方向相反,故C、D正确.3.(动量守恒定律的应用)(2020·华中师大一附中期末)如图8所示,放在光滑水平面上的两物体,它们之间有一个被压缩的轻质弹簧,用细线把它们拴住.已知两物体静止且质量之比为m1∶m2=2∶1,把细线烧断后,两物体被弹开,速度大小分别为v1和v2,动能大小分别为E k1和E k2,则下列判断正确的是()图8A.弹开时,v1∶v2=1∶1B.弹开时,v1∶v2=2∶1C.弹开时,E k1∶E k2=2∶1D.弹开时,E k1∶E k2=1∶2答案 D解析两物体与弹簧组成的系统所受合外力为零,根据动量守恒定律知,m1v1-m2v2=0,所以v1∶v2=m2∶m1=1∶2,选项A、B错误;由E k=p22m得,E k1∶E k2=m2∶m1=1∶2,选项C错误,D正确.4.(动量守恒定律的应用)某同学质量为60 kg,在军事训练中要求他从岸上以大小为2 m/s 的速度跳到一条向他缓缓漂来的小船上,然后去执行任务,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上(船未与岸相撞),不计水的阻力,求:(1)人跳上船后,船的最终速度;(2)船的动量变化量.答案见解析解析(1)规定该同学原来的速度方向为正方向.设该同学上船后,船与该同学的共同速度为v.该同学跳上小船后与小船达到共同速度的过程,该同学和船组成的系统所受合外力为零,系统的动量守恒,则由动量守恒定律得m人v人-m船v船=(m人+m船)v,代入数据解得v=0.25 m/s,方向与该同学原来的速度方向相同;(2)船的动量变化量为Δp′=m船v-m船(-v船)=140×[0.25-(-0.5)] kg·m/s=105 kg·m/s,方向与该同学原来的速度方向相同.考点一对动量守恒条件的理解1.如图1所示,两带电的金属球在绝缘的光滑水平面上沿同一直线相向运动,A带电荷量为-q,B带电荷量为+2q,下列说法正确的是()图1A.相碰前两球运动中动量不守恒B.相碰前两球的总动量随距离的减小而增大C.两球相碰分离后的总动量不等于相碰前的总动量,因为碰前作用力为引力,碰后为斥力D.两球相碰分离后的总动量等于相碰前的总动量,因为两球组成的系统所受合外力为零答案 D解析将两球看成整体分析,整体受重力、支持力,水平方向不受外力,故整体系统动量守恒,所以两球相碰前的总动量守恒,两球相碰分离后的总动量等于碰前的总动量.故选D. 2.(多选)如图2所示,小车静止放在光滑的水平面上,将系着轻绳的小球拉开一定的角度,然后同时放开小球和小车,不计空气阻力,那么在以后的过程中()图2A.小球向左摆动时,小车也向左运动,且系统动量守恒B.小球向左摆动时,小车向右运动,且系统在水平方向上动量守恒C.小球向左摆到最高点,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反(或者都为零)答案BD解析以小球和小车组成的系统为研究对象,在水平方向上不受外力的作用,所以系统在水平方向上动量守恒.由于初始状态小车与小球均静止,所以小球与小车在水平方向上的动量要么都为零,要么大小相等、方向相反,所以A、C错,B、D对.3.(2020·防城港市防城中学期中)如图3所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短,则下列说法中正确的是()图3A.从子弹开始射入木块到弹簧压缩至最短的全过程中,子弹与木块组成的系统动量守恒B.子弹射入木块的短暂过程中,子弹与木块组成的系统动量守恒C.从子弹开始射入木块到弹簧压缩至最短的全过程中,子弹、木块和弹簧组成的系统动量守恒D.若水平桌面粗糙,子弹射入木块的短暂过程中,子弹与木块组成的系统动量不守恒答案 B解析从子弹开始射入木块到弹簧压缩至最短的全过程中,由于弹簧对子弹和木块组成的系统有力的作用,所以子弹与木块组成的系统动量不守恒,子弹、木块和弹簧组成的系统由于受到墙壁的弹力作用,动量不守恒,故A、C错误;子弹射入木块瞬间,弹簧仍保持原长,子弹和木块组成的系统所受合外力为零,所以系统动量守恒,故B正确;若水平桌面粗糙,子弹射入木块的短暂过程中,由于内力远远大于外力,所以子弹与木块组成的系统动量守恒,故D错误.考点二动量守恒定律的应用4.如图4所示,一平板车停在光滑的水平面上,某同学站在小车上,若他设计下列操作方案,最终能使平板车持续地向右驶去的是()图4A.该同学在图示位置用大锤连续敲打车的左端B.只要从平板车的一端走到另一端即可C.在车上装个电风扇,不停地向左吹风D.他站在车的右端将大锤丢到车的左端答案 C解析把人和车看成整体,用大锤连续敲打车的左端,根据动量守恒定律可以知道,系统的总动量为零,车不会持续地向右驶去,故A错误;人从平板车的一端走到另一端的过程中,系统水平方向不受外力,动量守恒,系统总动量为零,车不会持续地向右驶去,故B错误;电风扇向左吹风,电风扇会受到一个向右的反作用力,从而使平板车持续地向右驶去,故C 正确;站在车的右端将大锤丢到车的左端的过程中,系统水平方向不受外力,动量守恒,系统总动量为零,车不会持续地向右驶去,故D错误.5.(2020·福州十一中高二下期中)如图5所示,光滑水平面上有一辆质量为4m的小车,车上左、右两端分别站着甲、乙两人,他们的质量都是m ,开始时两个人和车一起以速度v 0向右匀速运动.某一时刻,站在车右端的乙先以相对地面向右的速度v 跳离小车,然后站在车左端的甲以相对于地面向左的速度v 跳离小车.两人都离开小车后,小车的速度将是( )图5A .1.5v 0B .v 0C .大于v 0,小于1.5v 0D .大于1.5v 0答案 A解析 两人和车组成的系统开始时动量为6m v 0,方向向右.当甲、乙两人先后以相对地面大小相等的速度向两个方向跳离时,甲、乙两人动量的矢量和为零,则有6m v 0=4m v 车,解得v 车=1.5v 0,A 正确.6.如图6所示,光滑的水平面上有大小相同、质量不等的小球A 、B ,小球A 以速度v 0向右运动时与静止的小球B 发生碰撞,碰后A 球速度反向,大小为v 04,B 球的速率为v 02,A 、B 两球的质量之比为( )图6A .3∶8B .8∶3C .2∶5D .5∶2答案 C解析 以A 、B 两球组成的系统为研究对象,两球碰撞过程动量守恒,以v 0的方向为正方向,由动量守恒定律得:m A v 0=m A (-v 04)+m B ·v 02,解得两球的质量之比m A m B =25,故C 正确. 7.(多选)如图7所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的水平底板上放着一个质量为m 的小木块.现使木箱获得一个向右的初速度v 0,则( )图7A .小木块最终将相对木箱静止,二者一起向右运动B .小木块和木箱最终速度为M M +m v 0C .小木块与木箱内壁将始终来回往复碰撞,而木箱一直向右运动D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动答案 AB解析 木箱与小木块组成的系统水平方向不受外力,故系统水平方向动量守恒,最终两个物体以相同的速度一起向右运动,取v 0的方向为正方向,由动量守恒定律:M v 0=(M +m )v ,解得:v =M v 0M +m,A 、B 正确,C 、D 错误. 8.质量为M 的木块在光滑水平面上以速度v 1水平向右运动,质量为m 的子弹以速度v 2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( ) A.(M +m )v 1m v 2B.M v 1(M +m )v 2C.M v 1m v 2D.m v 1M v 2答案 C解析 设发射子弹的数目为n ,n 颗子弹和木块组成的系统在水平方向上所受的合外力为零,满足动量守恒的条件.选子弹运动的方向为正方向,由动量守恒定律有:nm v 2-M v 1=0,得n =M v 1m v 2,故C 正确.9.如图8所示,在光滑水平地面上有A 、B 两个木块,A 、B 之间用一轻弹簧连接.A 靠在墙壁上,用力F 向左推B 使两木块之间的弹簧压缩并处于静止状态.若突然撤去力F ,则下列说法中正确的是( )图8A .木块A 离开墙壁前,A 、B 和弹簧组成的系统动量守恒,机械能也守恒B .木块A 离开墙壁前,A 、B 和弹簧组成的系统动量不守恒,机械能也不守恒C .木块A 离开墙壁后,A 、B 和弹簧组成的系统动量守恒,机械能也守恒D .木块A 离开墙壁后,A 、B 和弹簧组成的系统动量守恒,但机械能不守恒答案 C解析 若突然撤去力F ,木块A 离开墙壁前,墙壁对木块A 有作用力,所以A 、B 和弹簧组成的系统动量不守恒,但由于A 没有离开墙壁,墙壁对木块A 不做功,所以A 、B 和弹簧组成的系统机械能守恒,选项A 、B 错误;木块A 离开墙壁后,A 、B 和弹簧组成的系统所受合外力为零,所以系统动量守恒且机械能守恒,选项C 正确,D 错误.10.A 、B 两球之间压缩一根轻弹簧(不拴接),静置于光滑水平桌面上,已知A 、B 两球的质量分别为2m 和m .当用板挡住A 球而只释放B 球时,B 球被弹出落于距桌边水平距离为x 的地面上,B 球离开桌面时已与弹簧分离,如图9所示.若以同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,则B 球的落地点距离桌边的水平距离为( )图9A.x 3B.3x C .x D.63x 答案 D解析 当用板挡住A 球而只释放B 球时,根据能量守恒定律有弹簧的弹性势能E p =12m v 02,根据平抛运动规律有x =v 0t .当以同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,设A 、B 的水平速度大小分别为v A 和v B ,规定向左为正方向,则根据动量守恒定律和能量守恒定律有2m v A -m v B =0,E p =12×2m v A 2+12m v B 2,解得v B =63v 0,B 球的落地点距离桌边的水平距离为x ′=v B t =63x ,D 选项正确. 11.一辆质量m 1=3.0×103 kg 的小货车因故障停在车道上,后面一辆质量m 2=1.5×103 kg 的轿车来不及刹车,直接撞入货车尾部失去动力.相撞后两车一起沿轿车运动方向滑行了s =6.75 m 停下.已知两车车轮与路面间的动摩擦因数均为μ=0.6,求碰撞前轿车的速度大小.(重力加速度取g =10 m/s 2)答案 27 m/s解析 以轿车运动方向为正方向,由动量守恒定律得m 2v 0=(m 1+m 2)v碰撞后共同滑行过程中,由动能定理得-μ(m 1+m 2)gs =0-12(m 1+m 2)v 2, 解得v =9 m/s ,则v 0=m 1+m 2m 2v =27 m/s. 12.(2020·四川省泸县第一中学月考)如图10所示,在光滑水平面上,有一质量M =3 kg 的薄板,板上有质量m =1 kg 的物块,两者以v 0=4 m/s 的初速度朝相反方向运动,薄板与物块之间存在摩擦且薄板足够长,取水平向右为正方向,求:图10(1)物块最后的速度;(2)当物块的速度大小为3 m/s 时,薄板的速度.答案 (1)2 m/s ,方向水平向右 (2)113m/s ,方向水平向右 解析 (1)由于水平面光滑,物块与薄板组成的系统动量守恒,设共同运动速度大小为v ,由动量守恒定律得M v 0-m v 0=(m +M )v代入数据解得v =2 m/s ,方向水平向右.(2)由(1)知,物块速度大小为3 m/s 时,方向向左,由动量守恒定律得M v 0-m v 0=-m v 1+M v ′代入数据解得v ′=113m/s ,方向水平向右.13.如图11所示,在光滑水平面上,使滑块A 以2 m/s 的速度向右运动,滑块B 以4 m/s 的速度向左运动并与滑块A 发生相互作用,已知滑块A 、B 的质量分别为1 kg 、2 kg ,滑块B 的左侧连有水平轻弹簧,求:图11(1)当滑块A 的速度减为0时,滑块B 的速度大小;(2)两滑块相距最近时,滑块B 的速度大小;(3)弹簧弹性势能的最大值.答案 (1)3 m/s (2)2 m/s (3)12 J解析 (1)A 、B 与轻弹簧组成的系统所受合外力为零,系统动量守恒.当滑块A 的速度减为0时,滑块B 的速度为v B ′,以向右为正方向,由动量守恒定律得:m A v A +m B v B =m B v B ′解得v B ′=-3 m/s ,故滑块B 的速度大小为3 m/s ,方向向左;(2)两滑块相距最近时速度相等,设此速度为v .根据动量守恒得:m A v A +m B v B =(m A +m B )v ,解得:v =-2 m/s ,故滑块B 的速度大小为2 m/s ,方向向左;(3)两个滑块的速度相等时,弹簧压缩至最短,弹性势能最大,根据系统的机械能守恒知,弹簧的最大弹性势能为:E pm =12m A v A 2+12m B v B 2-12(m A +m B )v 2 解得:E pm =12 J.。
2019_2020学年高中物理第十六章动量守恒定律2动量和动量定理练习含解析新人教版选修3_5
2 动量和动量定理基础巩固1.(多选)下面关于物体动量和冲量的说法,正确的是( ) A.物体所受合外力冲量越大,它的动量也越大 B.物体所受合外力冲量不为零,它的动量一定要改变 C.物体动量增量的方向,就是它所受合外力的冲量方向 D.物体所受合外力冲量越大,它的动量变化就越大,物体所受合外力的冲量,其大小等于动量的变化量的大小,方向与动量增量的方向相同,故A 项错误,B 、C 、D 项正确。
2.下列关于动量和动能的说法中,正确的是( ) A.一个物体的动量不变,其动能一定不变 B.一个物体的动能不变,其动量一定不变 C.两个物体的动量相等,其动能一定相等 D.两个物体的动能相等,其动量一定相等,则速度的大小一定不变,其动能一定不变,选项A 正确;一个物体的动能不变,则速度的大小不变,但是方向不一定不变,其动量不一定不变,例如匀速圆周运动的物体,选项B 错误;根据E k =p 22p 可知,两个物体的动量相等,其动能不一定相等,选项C 错误;两个物体的动能相等,根据E k =p 22p ,则其动量不一定相等,选项D 错误;故选A 。
3.(多选)A 、B 两球质量相等,A 球竖直上抛,B 球平抛,两球在运动中空气阻力不计,则下列说法中正确的是( )A.相同时间内,动量的变化大小相等、方向相同B.相同时间内,动量的变化大小相等、方向不同C.动量的变化率大小相等、方向相同D.动量的变化率大小相等、方向不同、B 球在空中只受重力作用,因此相同时间内重力的冲量相同,因此两球动量的变化大小相等、方向相同,A 选项正确;动量的变化率为ΔpΔp =m ΔpΔp=mg ,大小相等、方向相同,C 选项正确。
4.(多选)在光滑水平面上,原来静止的物体在水平力F 的作用下,经过时间t 、通过位移l 后,动量变为p 、动能变为E k 。
以下说法正确的是( ) A.在2F 作用下,这个物体经过时间t ,其动量将等于2p B.在F 作用下,这个物体经过位移2l ,其动量将等于2pC.在2F 作用下,这个物体经过时间t ,其动能将等于2E kD.在F 作用下,这个物体经过位移2l ,其动能将等于2E k,经过时间t 、通过位移l 后,动量为p 、动能为E k ,由动量定理可知:p=Ft ,由动能定理得:E k =Fl ,设物体质量为m ,当位移为2l 时,物体的动能E k '=F ·2l=2E k ;物体的动量:p'=√2pp k '=√2p ,故B 错误,D 正确;在2F 作用下,这个物体经过时间t ,动量p'=2Ft=2p ,物体的动能:E k '=2F ×12×2at 2=2F ×2l=4E k ,故A 正确,C 错误。
《第一章 3 动量守恒定律》教学设计
《动量守恒定律》教学设计方案(第一课时)一、教学目标1. 理解动量守恒定律的观点及其适用范围。
2. 能够运用动量守恒定律诠释生活中的现象并解决相关问题。
3. 培养观察、分析和解决问题的能力。
二、教学重难点1. 教学重点:动量守恒定律的应用和验证。
2. 教学难点:理解动量守恒定律的适用范围及其在实际情况下的应用。
三、教学准备1. 准备教学用具:黑板、白板、笔、实验器械等。
2. 准备相关视频、图片和案例。
3. 安置预习任务,让学生提前了解动量守恒定律的基本观点。
四、教学过程:本节课是《动量守恒定律》教学的第一课时,教学目标主要包括:理解动量守恒的观点,掌握动量守恒的条件,能够运用动量守恒定律解决简单的物理问题。
教学过程可以分为以下几个环节:1. 导入新课:起首通过一些简单的实验,让学生观察物体碰撞后的运动状态,引发学生对动量守恒的思考。
通过引导,让学生明确本节课的主题——动量守恒定律。
2. 讲解动量守恒观点:通过生动的实例,让学生理解动量的含义,并逐步引导学生理解动量守恒的含义。
同时,通过一些简单的例题,让学生掌握如何运用动量守恒定律解决问题。
3. 讲解动量守恒的条件:通过讲解,让学生了解动量守恒的条件,即系统不受外力或受外力的合力为零。
同时,通过一些简单的实验和例题,让学生掌握如何根据条件判断动量是否守恒。
4. 教室互动:在讲解过程中,穿插一些互动环节,让学生积极参与讨论,发表自己的看法。
同时,通过一些简单的练习题,让学生稳固所学知识。
5. 总结回顾:在课程结束前,对本节课的重点内容进行总结回顾,帮助学生加深对动量守恒定律的理解和运用。
6. 安置作业:根据本节课的内容,安置一些相关的练习题和思考题,帮助学生进一步稳固所学知识。
在教学过程中,要注重引导学生思考,鼓励学生发表自己的看法,激发学生的学习热情和兴趣。
同时,要注重教学反馈,及时调整教学策略,确保教学效果最佳。
教学设计方案(第二课时)一、教学目标1. 理解动量守恒定律的观点及其在平时生活和科学中的应用。
高考物理一轮复习第六章动量守恒定律及其应用第1讲动量、冲量、动量定理学案(2021年整理)
2019年高考物理一轮复习第六章动量守恒定律及其应用第1讲动量、冲量、动量定理学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考物理一轮复习第六章动量守恒定律及其应用第1讲动量、冲量、动量定理学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考物理一轮复习第六章动量守恒定律及其应用第1讲动量、冲量、动量定理学案的全部内容。
第1讲动量、冲量、动量定理板块一主干梳理·夯实基础【知识点1】动量Ⅱ1.定义:运动物体的质量m和它的速度v的乘积mv叫做物体的动量.动量通常用符号p来表示,即p=mv。
2.单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m/s。
说明:动量既有大小,又有方向,是矢量。
我们讲物体的动量,是指物体在某一时刻的动量,动量的方向与物体瞬时速度的方向相同.有关动量的运算,一般情况下用平行四边形定则进行运算.如果物体在一条直线上运动,则选定一个正方向后,动量的运算就可以转化为代数运算。
3.动量的三个性质(1)动量具有瞬时性.物体的质量是物体的固有属性,是不发生变化的,而物体的速度是与时刻相对应的,由动量的定义式p=mv可知,动量是一个状态量,具有瞬时性。
(2)动量具有相对性。
选用不同的参考系时,同一运动物体的动量可能不同,通常在不说明参考系的情况下,指的是物体相对于地面的动量。
在分析有关问题时要先明确相应的参考系。
(3)矢量性.动量是矢量,方向与速度的方向相同,遵循矢量运算法则。
【知识点2】动量的变化Ⅱ1.因为p=mv是矢量,只要m的大小、v的大小和v的方向三者中任何一个发生变化,动量p就发生了变化.2.动量的变化量Δp是矢量,其方向与速度的改变量Δv的方向相同。
高考物理专题复习05:动量、动量守恒定律
动量守恒定律一:复习要点1.定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变。
2.一般数学表达式:''11221122m v m v m v m v +=+3.动量守恒定律的适用条件 :①系统不受外力或受到的外力之和为零(∑F 合=0);②系统所受的外力远小于内力(F外F 内),则系统动量近似守恒;③系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒)4.动量恒定律的五个特性①系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等②矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算③同时性:12,v v 应是作用前同一时刻的速度,''12,v v 应是作用后同—时刻的速度 ④相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系⑤普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷二:典题分析1.放在光滑水平面上的A 、B 两小车中间夹了一压缩轻质弹簧,用两手控制小车处于静止状态,下列说法正确的是 ( )A.两手同时放开,两车的总动量等于零B .先放开右手,后放开左手,两车的总动量向右C .先放开右手,后放开左手,两车的总动量向左D .先放开右手,后放开左手,两车的总动量为零 解析:该题考查动量守恒的条件,答案为 AB2.A、B两滑块在一水平长直气垫导轨上相碰.用频闪照相机在t0=0,t1=Δt,t2=2Δt,t3=3Δt各时刻闪光四次,摄得如图所示照片,其中B像有重叠,mB=(3/2)mA,由此可判断 ( )A.碰前B静止,碰撞发生在60cm处,t=2.5Δt时刻 B.碰后B静止,碰撞发生在60cm处,t=0.5Δt时刻 C.碰前B静止,碰撞发生在60cm处,t=0.5Δt时刻 D.碰后B静止,碰撞发生在60cm处,t=2.5Δt时刻解析:该题重点考查根据照片建立碰撞的物理图景,答案为 B3.质量为50㎏的人站在质量为150㎏(不包括人的质量)的船头上,船和人以0.20m/s 的速度向左在水面上匀速运动,若人用t =10s 的时间匀加速从船头走到船尾,船长L =5m ,则船在这段时间内的位移是多少?(船所受水的阻力不计)分析:(该题利用动量守恒重点考查了人、船模型中速度关系、位移关系) 解析:设人走到船尾时,人的速度为x v ,船的速度为y v对系统分析:动量守恒()y x Mv mv v M m +=+0 对船分析:(匀加速运动) S =t v v y⋅+2对人分析:(匀加速运动) t v v L S x⋅+=-20 得:S = 3.25 m.4.如图所示,一块足够长的木板,放在光滑水平面上,在木板上自左向右并非放有序号是1,2,3,…,n 的物体,所有物块的质量均为m ,与木板间的动摩擦因数都相同,开始时,木板静止不动,第1,2,3,…n 号物块的初速度分别是v 0,2 v 0,3 v 0,…nv 0,方向都向右,木板的质量与所有物块的总质量相等 ,最终所有物块与木板以共同速度匀速运动。
1.3动量守恒定律+教学设计2023-2024学年高二上学期物理人教版(2019)选择性必修第一册
1.3 动量守恒定律教学设计(第1 课时)一、教学内容分析《动量守恒定律》是《普通高中物理课程标准(2017 年版2020 年修订)》选择性必修1 课程中“动量与动量守恒定律”主题下的内容。
课程标准要求为:通过理论推导和实验,理解动量守恒定律,能用其解释生产生活中的有关现象。
知道动量守恒定律的普适性。
查阅资料,了解中子的发现过程,讨论动量守恒定律在其中的作用。
《普通高中物理课程标准(2017 年版)解读》对课程标准的分析为:动量守恒定律对于发展学生的运动与相互作用观念和科学思维至关重要。
本条目强调理论推导和实验的统一,要求学生不但能用所学的牛顿运动定律和动量定理推导得出动量守恒定律,还要通过实验进行探究或验证,对物体相互作用过程中系统的动量守恒加深理解。
在此过程中,学生通过学习物理学研究问题的基本思路和方法,发展科学推理能力和科学论证能力,促进对物理知识的进一步关联整合,同时深化对“系统”的认识。
让学生在不同情境中应用动量守恒定律解释现象,分析和解决问题。
动量守恒定律虽然可以通过牛顿运动定律和运动学公式推导得出,但是物理学的研究表明,动量守恒定律比牛顿运动定律的适用性更广,对研究宏观物体和微观粒子都适用。
二、学情分析学生已从实验中知道碰撞前后物体动量之和不变,具备一定的逻辑思维能力,能在熟悉的问题情境中应用常见的物理模型,但在新情境中仍有困难;学生已掌握科学探究的一般方法,但基于证据证明物理结论的能力有待提高。
学生善于观察生活,对生活中的物理兴趣浓厚,有利于学生进行科学探究。
三、学习目标1.物理观念(1)相互作用观,理解动量守恒定律是物体与物体在相互作用过程中遵循的规律;(2)守恒观,即在“变化”中寻找“不变”,内力实现系统内物体间的动量相互转移,但总量保持不变。
2.科学思维(1)以动量定理为基础,理论推导系统总动量的变化原因;(2)“抓主要因素,忽略次要因素”来解读守恒条件;3.科学探究在理论探究中,养成小组团队合作的意识,熟悉问题、证据、解释、交流的科学探究方法;通过实验剪断细绳小车在弹簧作用下相向运动,验证动量守恒定律。
【物理】《动量守恒定律》大单元整体教学设计 (人教版2019选择性必修第一册)
(2024镜像物理)高中大单元整体教学设计案例单元教学课题高中物理选择性必修一第一章《动量守恒定律》学科物理年级高二单元动量守恒定律授课人Xxx单元内容本单元教学内容:本章共6节,大致可以划分为三个部分第一部分包括第1、2节,即“动量”“动量定理”,这部分内容侧重引导学生理解动量、冲量和动量定理,并能用其解释生产生活中的有关现象。
第二部分包括第3、4节,即“动量守恒定律”“实验:验证动量守恒定律”,这部分内容侧重介绍动量守恒定律的建立过程,并要求学生能用其解释生产生活中的有关现象。
第三部分包括第5、6节,即“弹性碰撞和非弹性碰撞”“反冲现象火箭”,这部分内容介绍动量守恒定律的应用。
本单元内容的逻辑结构:本单元内容可开发的教学活动与资源:学校实验室活动,学生自主探究、小组活动、网络共享资源。
本单元教学重点:动量冲量概念,动量定理理解运用。
动量守恒定律的理解运用。
本单元教学难点:动量定理处理流体问题。
综合运用动量守恒处理碰撞、反冲、火箭发射等综合性问题。
2020新课标要求1. 1.1理解冲量和动量。
通过理论推导和实验,理解动量定理和动量守恒定律,能用其解释生产生活中的有关现象。
知道动量守恒定律的普适性。
1.1.2通过实验,了解弹性碰撞和非弹性碰撞的特点。
定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。
1.1.3体会用守恒定律分析物理问题的方法,体会自然界的和谐与统一。
单元学情高中物理必修课程中力学、电学的内容为学生初步形成物质观、运动与相互作用观和能量观奠定了重要的基础.“动量守恒定律”这一章为学生进一步形成运动与相互作用观提供帮助.动量和动量守恒定律在高中物理教学中占据着非常重要的地位.本章结构设计与以往教材相比有所调整,在强调知识传授的同时,还要体现科学探究精神,强调物理学中的“守恒思想”.单元目标内容目标:1.会用动量定理解释碰撞、缓冲等生活中的现象。
2.了解验证动量守恒定律的基本思路和实验方法 3.会用动量、能量的观点综合分析、解决碰撞问题 4.掌握应用动量守恒定律解决反冲运动问题的方法 5.理解动量守恒定律的内容及表达式,理解其守恒的条件,了解动量守恒定律的普遍意义,会用动量守恒定律解决实际问题。
2020高考物理一复习:动量守恒定律及应用
普适性 不仅适用ቤተ መጻሕፍቲ ባይዱ低速宏观系统,也适用于高速微观系统
2.动量守恒定律常用的三种表达形式 (1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于 作用后的动量和。
(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。 (3)Δp=0,系统总动量的增量为零
考点三 动量守恒定律的3个应用
实例① 碰撞
实例
1.碰撞后运动状态可能性判断的三个依据
(1)动量守恒:p1+p2=p1′+p2′。 (2)动能不增加:Ek1+Ek2≥Ek1′+Ek2′或2pm211+2pm222≥p21m′12+p22m′22。 (3)速度要符合情景。
①若碰前两物体同向运动,则应有 v 后>v 前,碰后原来在前的物体速度一定增大, 若碰后两物体同向运动,则应有 v′前≥v′后。
1.动量守恒定律的“五种”性质
系统性 研究对象是相互作用的两个或多个物体组成的系统
相对性 同时性
公式中 v1、v2、v1′、v2′必须相对于同一个惯性系 公式中 v1、v2 是在相互作用前同一时刻的速度,v1′、v2′是相互作用后
同一时刻的速度
矢量性 应先选取正方向,凡是与选取的正方向一致的动量为正值,相反为负值
考点一 动量守恒条件的理解和 应用
解析:当小球在槽内由 A 运动到 B 的过程中,左侧物体对槽有作用力,小球与槽组 成的系统水平方向上的动量不守恒,故 B 错误;当小球由 B 运动到 C 的过程中, 因小球对槽有斜向右下方的压力,槽做加速运动,动能增加,小球机械能减少,槽 对小球的支持力对小球做了负功,故 A 错误;小球从 B 到 C 的过程中,系统水平 方向合外力为零,满足系统水平方向动量守恒,故 C 正确;小球离开 C 点以后, 既有竖直向上的分速度,又有水平分速度,小球做斜上抛运动,故 D 错误。
高中物理专题复习 动量及动量守恒定律
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
动量和动量定理(导)学案 (10)
2019-2020学年人教版选修3-5 动量和动量定理 单元测试(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题4分,共计40分.其中1~6题为单项选择题,7~10题为多项选择题)1.下列说法错误的是( )A.根据F =ΔpΔt 可把牛顿第二定律表述为:物体动量的变化率等于它所受的合外力B.动量定理的物理实质与牛顿第二定律是相同的,但有时用起来更方便C.力与力的作用时间的乘积叫做力的冲量,它是一个标量D.易碎品运输时要用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间以减小作用力 答案 C解析 A 选项是牛顿第二定律的另一种表达方式,所以A 正确;F =ΔpΔt 是牛顿第二定律的最初表达方式,实质是一样的,B 正确;冲量是矢量,C 错误;易碎品运输时用柔软材料包装,船舷常常悬挂旧轮胎,都是为了延长作用时间,减小作用力,D 正确.2.(2018·晋江季延中学高二期末)一个礼花弹竖直上升到最高点时炸裂成三块碎片,其中一块碎片首先沿竖直方向落至地面,另两块碎片稍后一些同时落至地面.则在礼花弹炸裂后的瞬间这三块碎片的运动方向可能是( )答案 D解析 由于一块碎片首先沿竖直方向落至地面,这个碎片的速度方向应竖直向下,根据动量守恒,另两块碎片的动量合成后应竖直向上,故D 正确.3.(2018·林州一中高二月考)如图1所示,在光滑的水平面上放置有两木块A 和B ,A 的质量较大,现同时施加大小相等的恒力F 使它们相向运动,然后又同时撤去外力F ,A 和B 迎面相碰后合在一起,则A 和B 合在一起后的运动情况是( )图1A.停止运动B.因A 的质量较大而向右运动C.因B 的速度较大而向左运动D.运动方向不确定 答案 A解析 由动量定理知,A 和B 在碰撞之前的动量等大反向,合动量为零,碰撞过程中动量守恒,因此碰撞合在一起之后的总动量仍为零,即停止运动,故选A.4.如图2所示,半径为R 的光滑半圆槽质量为M ,静止在光滑水平面上,其内表面有一质量为m 的小球被竖直细线吊着位于槽的边缘处,现将线烧断,小球滑行到最低点向右运动时,槽的速度为(重力加速度为g )( )图2A.0B.m M 2MgRM +m,方向向左 C.m M2MgRM +m,方向向右 D.不能确定 答案 B解析 以水平向右为正方向,设在最低点时m 和M 的速度大小分别为v 和v ′,根据动量守恒定律得:0=mv -Mv ′,根据机械能守恒定律得:mgR =12mv 2+12Mv ′2,联立以上两式解得v ′=mM 2MgRM +m,方向向左,故选项B 正确. 5.(2018·济南市高二下期末)一只爆竹竖直升空后,在高为h 处达到最高点并发生爆炸,分为质量不同的两块,两块质量之比为3∶1,其中质量小的一块获得大小为v 的水平速度,重力加速度为g ,不计空气阻力,则两块爆竹落地后相距( ) A.v42h g B.2v 32hgC.4v2h g D.4v 32h g答案 D解析 设其中一块质量为m ,另一块质量为3m .爆炸过程系统水平方向动量守恒,以速度v的方向为正方向,由动量守恒定律得:mv -3mv ′=0,解得v ′=v3;设两块爆竹落地用的时间为t ,则有:h =12gt 2,得t =2hg,落地点两者间的距离为:s =(v +v ′)t ,联立各式解得:s =4v32hg,故选D.6.如图3所示,在光滑的水平地面上停放着质量为m 的装有弧形槽的小车.现有一质量也为m 的小球以v 0的水平速度沿与切线水平的槽口向小车滑去,不计一切摩擦,则( )图3A.在相互作用的过程中,小车和小球组成的系统总动量守恒B.小球离开车后,对地将向右做平抛运动C.小球离开车后,对地将做自由落体运动D.小球离开车后,小车的速度有可能大于v 0 答案 C解析 整个过程中系统水平方向动量守恒,竖直方向动量不守恒,故A 错误;设小球离开小车时,小球的速度为v 1,小车的速度为v 2,整个过程中水平方向动量守恒:mv 0=mv 1+mv 2①,由机械能守恒得:12mv 02=12mv 12+12mv 22②,联立①②,解得v 1=0,v 2=v 0,即小球与小车分离时二者交换速度,所以小球与小车分离后做自由落体运动,故B 、D 错误,C 正确. 7.(2018·会宁四中高二下期中)如图4所示,小车放在光滑水平面上,A 、B 两人站在小车的两端,这两人同时开始相向行走,发现小车向左运动,分析小车运动的原因可能是( )图4A.A 、B 质量相等,但A 比B 速率大B.A 、B 质量相等,但A 比B 速率小C.A 、B 速率相等,但A 比B 的质量大D.A 、B 速率相等,但A 比B 的质量小 答案 AC解析 以向右为正方向,A 、B 两人及小车组成的系统动量守恒,则m A v A -m B v B -m C v C =0,得m A v A -m B v B >0.所以A 、C 正确.8.A 、B 两球沿一直线运动并发生正碰.如图5所示为两球碰撞前后的位移—时间图象.a 、b 分别为A 、B 两球碰撞前的位移—时间图线,c 为碰撞后两球共同运动的位移—时间图线,若A 球质量是m =2kg ,则由图可知( )图5A.A 、B 碰撞前的总动量为3kg·m/sB.碰撞时A 对B 所施冲量为-4N·sC.碰撞前后A 的动量变化为6kg·m/sD.碰撞中A 、B 两球组成的系统损失的动能为10J 答案 BD解析 由x -t 图象可知,碰撞前有:A 球的速度v A =Δx A Δt A =4-102m/s =-3m/s ,B 球的速度v B =Δx B Δt B =42m/s =2m/s ;碰撞后A 、B 两球的速度相等,为v A ′=v B ′=v =Δx C Δt C =2-42m/s =-1m/s ,则碰撞前后A 的动量变化Δp A =mv -mv A =4kg·m/s;对A 、B 组成的系统,由动量守恒定律mv A +m B v B =(m +m B )v 得:m B =43kg.A 与B 碰撞前的总动量为:p 总=mv A +m B v B =2×(-3) kg·m/s+43×2kg·m/s=-103kg·m/s;由动量定理可知,碰撞时A 对B 所施冲量为:I B=Δp B =-4kg·m/s=-4N·s.碰撞中A 、B 两球组成的系统损失的动能:ΔE k =12mv A 2+12m B v B2-12(m +m B )v 2,代入数据解得:ΔE k =10J ,故A 、C 错误,B 、D 正确. 9.小车静置于光滑的水平面上,小车的A 端固定一个水平轻质小弹簧,B 端粘有橡皮泥,小车的质量为M ,长为L ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩(细绳未画出),开始时小车与C 都处于静止状态,如图6所示,当突然烧断细绳,弹簧被释放,使木块C 离开弹簧向B 端冲去,并跟B 端橡皮泥粘在一起,以下说法中正确的是( )图6A.如果小车内表面光滑,整个系统任何时刻机械能都守恒B.当木块相对地面运动的速度大小为v 时,小车相对地面运动的速度大小为m Mv C.小车向左运动的最大位移为mL M +mD.小车向左运动的最大位移为m ML 答案 BC解析 小车、弹簧与C 这一系统所受合外力为零,系统在整个过程动量守恒,但粘接过程有机械能损失.Mv ′-mv =0,则v ′=m Mv ,同时该系统属于“人船模型”,Md =m (L -d ),所以车向左运动的最大位移应等于d =mLM +m,综上,选项B 、C 正确. 10.(2018·郑州一中高二期中)如图7所示,质量为m 的小球A 静止于光滑的水平面上,在球A 和墙之间用轻弹簧连接,现用完全相同的小球B 以水平速度v 0与A 相碰撞,碰撞后两球粘在一起压缩弹簧.不计空气阻力,若弹簧被压缩过程中的最大弹性势能为E ,从球A 被碰撞到回到原静止位置的过程中弹簧对A 、B 整体的冲量大小为I ,则下列表达式中正确的是( )图7A.E =14mv 02B.E =12mv 02C.I =mv 0D.I =2mv 0答案 AD解析 选取A 、B 作为一个系统,两球碰撞后的速度为v ,在A 、B 两球碰撞过程中,以v 0的方向为正方向,利用动量守恒定律可得:mv 0=(m +m )v ,解得v =v 02,再将A 、B 及轻弹簧作为一个系统,在压缩弹簧过程中利用机械能守恒定律可得:弹簧最大弹性势能E =12×2m ⎝ ⎛⎭⎪⎫v 022=14mv 02,A 正确,B 错误;弹簧压缩到最短后,A 、B 开始向右运动,弹簧恢复原长时,由机械能守恒定律可知,A 、B 的速度大小均为v 02,以水平向右为正方向,从球A 被碰撞到回到原静止位置的过程中,弹簧对A 、B 整体的冲量大小I =2m ×v 02-2m ×⎝ ⎛⎭⎪⎫-v 02=2mv 0,C错误,D 正确.二、实验题(本题共2小题,共13分)11.(5分)用半径相同的两小球A 、B 碰撞“验证动量守恒定律”,实验装置示意图如图8所示,斜槽与水平槽平滑连接.实验时先不放B 球,使A 球从斜槽上某一固定点C 由静止滚下,落到位于水平地面的记录纸上留下痕迹.再把B 球静置于水平槽前端边缘处,让A 球仍从C 处由静止滚下,A 球和B 球碰撞后分别落在记录纸上留下各自的痕迹.记录纸上的O 点是重垂线所指的位置,若测得各落点痕迹到O 点的距离:OM =2.68cm ,OP =8.62cm ,ON =11.50cm ,并知A 、B 两球的质量比为2∶1,则未放B 球时A 球落地点是记录纸上的________点,系统碰撞前总动量p 与碰撞后总动量p ′的百分误差|p -p ′|p×100%=________%(结果保留一位有效数字).图8答案 P (2分) 2(3分)解析 根据实验现象,未放B 球时A 球落地点是记录纸上的P 点;碰撞前总动量p 与碰撞后总动量p ′的百分误差|p -p ′|p =|2×8.62-(2×2.68+1×11.50)|2×8.62≈2%.12.(8分)图9为一弹簧弹射装置,在内壁光滑、水平固定的金属管中放有轻弹簧,弹簧压缩并锁定,在金属管两端各放置一个金属小球1和2(两球直径略小于管径且与弹簧不固连).现解除弹簧锁定,两个小球同时沿同一直线向相反方向弹射.然后按下述步骤进行实验:图9①用天平测出两球质量m 1、m 2; ②用刻度尺测出两管口离地面的高度h ; ③记录两球在水平地面上的落点P 、Q . 回答下列问题:(1)要测定弹射装置在弹射时所具有的弹性势能,还需测量的物理量有________.(已知重力加速度g )A.弹簧的压缩量ΔxB.两球落点P 、Q 到对应管口M 、N 的水平距离x 1、x 2C.小球直径D.两球从管口弹出到落地的时间t 1、t 2(2)根据测量结果,可得弹性势能的表达式为E p =________.(3)由上述测得的物理量来表示,如果满足关系式________,就说明弹射过程中两小球组成的系统动量守恒.答案 (1)B(2分) (2)m 1gx 124h +m 2gx 224h(3分) (3)m 1x 1=m 2x 2(3分)解析 (1)根据机械能守恒定律可知,弹簧的弹性势能等于两球得到的动能之和,而要求解动能必须还要知道两球弹射的初速度v 0,由平抛运动规律可知v 0=x2hg,故还需要测出两球落点P 、Q 到对应管口M 、N 的水平距离x 1、x 2;(2)小球被弹开时获得的动能E k =12mv 02=mgx 24h ,故弹性势能的表达式为E p =12m 1v 12+12m 2v 22=m 1gx 124h +m 2gx 224h; (3)如果满足关系式m 1v 1=m 2v 2,即m 1x 1=m 2x 2,那么就说明弹射过程中两小球组成的系统动量守恒.三、计算题(本题共4小题,共47分)13.(10分)(2018·三明市高二下期末)如图10所示,水平固定的长滑杆上套有2个质量均为m 的薄滑扣(即可以滑动的圆环)A 和B ,两滑扣之间由不可伸长的柔软轻质细线连接,细线长度为l ,滑扣在滑杆上滑行的阻力大小恒为滑扣对滑杆正压力大小的k 倍,开始时两滑扣可以近似地看成挨在一起(但未相互挤压).今给滑扣A 一个向左的初速度v 0=6kgl ,使其在滑杆上开始向左滑行,细线拉紧后两滑扣以共同的速度向前滑行,假设细线拉紧过程的时间极短,重力加速度为g ,求:图10(1)细线拉紧后两滑扣的共同速度大小;(2)整个过程中仅仅由于细线拉紧引起的机械能损失. 答案 (1)kgl (2)kmgl解析 (1)由动能定理:-kmgl =12mv 12-12mv 02①(2分)由动量守恒定律:mv 1=2mv 共②(2分) 由①②解得v 1=2kgl ,v 共=kgl (2分) (2)ΔE =12mv 12-12×2mv 共2(3分)联立解得ΔE =kmgl (1分)14.(12分)(2018·福建永春一中高二期末)如图11所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1m ,半圆形轨道的底端放置一个质量为m =0.1kg 的小球B ,水平面上有一个质量为M =0.3kg 的小球A 以初速度v 0=4.0m/s 开始向着小球B 滑动,经过时间t =0.80s 与B 发生弹性碰撞.设两小球均可以看做质点,它们的碰撞时间极短,且已知小球A 与水平面间的动摩擦因数μ=0.25,求:图11(1)两小球碰撞前A 的速度大小;(2)小球B 运动到最高点C 时对轨道的压力; (3)小球A 所停的位置距圆轨道最低点的距离. 答案 (1)2m/s (2)4N ,方向竖直向上 (3)0.2m解析 (1)以v 0的方向为正方向,碰撞前对A 由动量定理有:-μMgt =Mv A -Mv 0(1分) 解得:v A =2m/s(1分)(2)对A 、B ,碰撞前后动量守恒:Mv A =Mv A ′+mv B (1分)因A 、B 发生弹性碰撞,故碰撞前后动能保持不变: 12Mv A 2=12Mv A ′2+12mv B 2(1分) 联立以上各式解得:v A ′=1m/s ,v B =3m/s(1分) 又因为B 球在轨道上机械能守恒: 12mv C 2+2mgR =12mv B 2(1分) 解得:v C =5m/s(1分)设在最高点C ,轨道对小球B 的压力大小为F N ,则有:mg +F N =m v C 2R(1分)解得F N =4N(1分)由牛顿第三定律知,小球对轨道的压力的大小为4N ,方向竖直向上.(1分) (3)对A 沿圆轨道运动时:12Mv A ′2<MgR因此A 沿圆轨道运动到其能到达的最高点后又原路返回轨道底端,此时A 的速度大小为1m/s.由动能定理得:-μMgs =0-12Mv A ′2(1分)解得:s =0.2m.(1分)15.(12分)两块质量都是m 的木块A 和B 在光滑水平面上均以大小为v 02的速度向左匀速运动,中间用一根劲度系数为k 的水平轻弹簧连接,如图12所示.现从水平方向迎面射来一颗子弹,质量为m4,速度大小为v 0,子弹射入木块A (时间极短)并留在其中.求:图12(1)在子弹击中木块后的瞬间木块A 、B 的速度v A 和v B 的大小. (2)在子弹击中木块后的运动过程中弹簧的最大弹性势能.答案 (1)v 05 v 02 (2)140mv 02解析 (1)在子弹打入木块A 的瞬间,由于相互作用时间极短,弹簧来不及发生形变,A 、B 都不受弹簧弹力的作用,故v B =v 02;(1分)由于此时A 不受弹簧的弹力,木块A 和子弹构成的系统在这极短过程中所受合外力为零,系统动量守恒,选向左为正方向,由动量守恒定律得:mv 02-mv 04=(m4+m )v A (2分)解得v A =v 05(2分)(2)由于子弹击中木块A 后,木块A 、木块B 运动方向相同且v A <v B ,故弹簧开始被压缩,分别给木块A 、B 施以弹力,使得木块A 加速、B 减速,弹簧不断被压缩,弹性势能增大,直到二者速度相等时弹簧的弹性势能最大,在弹簧压缩过程中木块A (包括子弹)、B 与弹簧构成的系统动量守恒,机械能守恒.设弹簧压缩量最大时共同速度的大小为v ,弹簧的最大弹性势能为E pm ,选向左为正方向,由动量守恒定律得:54mv A +mv B =(54m +m )v (2分)由机械能守恒定律得:12×54mv A 2+12mv B 2=12×(54m +m )v 2+E pm (3分)联立解得v =13v 0,E pm =140mv 02.(2分)16.(13分)(2018·沂南高二下期中)如图13所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v 0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,已知重力加速度为g ,求:图13(1)A 、B 最后的速度大小和方向;(2)在平板车与小木块相对滑动的过程中,B 的加速度大小及A 对B 的冲量大小; (3)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小. 答案 (1)大小都为M -m M +m v 0 方向都向右 (2)μmg M 2Mmv 0M +m (3)2M -m 2μMgv 02解析 (1)以水平向右为正方向,对A 、B 系统由动量守恒得:Mv 0-mv 0=(M +m )v (2分) 所以v =M -mM +mv 0,方向向右(2分) (2)对B ,由牛顿第二定律得μmg =Ma (1分) 可得a =μmgM(1分) 对B ,由动量定理可得I =Mv -Mv 0(1分) 得:I =-2Mmv 0M +m (1分)故A 对B 的冲量大小为2Mmv 0M +m(3)A 向左运动速度减为零时,到达最远处,设此时平板车运动的位移为x ,速度大小为v ′,则由动量守恒定律得:Mv 0-mv 0=Mv ′(2分)对平板车应用动能定理得:-μmgx =12Mv ′2-12Mv 02(2分)联立解得:x =2M -m 2μMg v 02.(1分)。
高中物理人教版(2019)选修一1 3动量守恒定律预习学案(word版无答案)
3动量守恒定律班级:小组:姓名:教师评价:学习目标1.知道系统、内力、外力的概念2.理解动量守恒定律的内容及表达式,理解其守恒的条件.(重点)3.了解动量守恒定律的普遍意义,会用动量守恒定律解决实际问题.(重点、难点)预习导学一、系统、内力、外力1.系统相互作用的两个或多个物体组成的()2.内力系统()物体间的相互作用力.3.外力系统()的物体对系统()的物体的作用力.二、动量守恒定律1.内容如果一个系统不受()或者所受()的矢量和为零,这个系统的总动量保持不变.2.表达式对两个物体组成的系统,常写成:p1+p2=()或m1v1+m2v2=().3.适用条件系统不受()或者所受()的矢量和为零.判一判1.(1)对于由几个物体组成的系统,物体所受的重力为内力.( )(2)某个力是内力还是外力是相对的,与系统的选取有关.( )(3)一个系统初、末状态动量大小相等,即动量守恒.( )(4)只要合外力对系统做功为零,系统动量就守恒.( )(5)系统动量守恒也就是系统的动量变化量为零.( )做一做2.把一支枪水平地固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,下列关于枪、子弹和车的说法正确的是()A.枪和子弹组成的系统水平方向动量守恒B.枪和车组成的系统水平方向动量守恒C.若忽略子弹和枪管之间的摩擦,枪、车和子弹组成的系统水平方向动量才近似守恒D.枪、子弹和车组成的系统水平方向动量守恒3.如图所示,A、B两个小球在光滑水平面上沿同一直线相向运动,它们的动量大小分别为p1和p2,碰撞后A球继续向右运动,动量大小为p1′,此时B球的动量大小为p2′,则下列等式成立的是()A.p1+p2=p1′+p2′B.p1-p2=p1′-p2′C.p1′-p1=p2′+p2D.-p1′+p1=p2′+p2师生互动11.对动量守恒定律的理解(1)研究对象:().(2)对系统“总动量保持不变”的理解①系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、末两个状态的总动量相等.②系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化.③系统的总动量指系统内各物体动量的矢量和,总动量不变指的是系统的总动量的大小和方向都不变.2.动量守恒定律成立的条件(1)().(2)().3.动量守恒定律的“五性”五性具体内容系统性相对性瞬时性矢量性普适性【例1】(多选)如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是()A.两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零变式1.如图所示,小车与木箱静止放在光滑的水平冰面上,现有一男孩站在小车上向右用力迅速推出木箱,关于上述过程,下列说法正确的是()A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同师生互动2 动量守恒定律的应用1.动量守恒定律的三种表达式(1)p=p′或m1v1+m2v2=m1v1′+m2v2′(系统相互作用前的总动量p等于相互作用后的总动量p′,大小相等,方向相同).(2)Δp1=-Δp2或m1Δv1=-m2Δv2(系统内一个物体的动量变化量与另一物体的动量变化量等大反向).(3)Δp=p′-p=0(系统总动量的变化量为零).2.应用动量守恒定律的解题步骤明确研究对象,确定系统的组成↓受力分析,确定动量是否守恒↓规定正方向,确定初、末状态动量↓根据动量守恒定律,建立守恒方程↓代入数据,求出结果并讨论说明【例2】如图所示,质量为m B的平板车B上表面水平,开始时静止在光滑水平面上,在平板车左端静止着一质量为m A的物体A,一颗质量为m0的子弹以v0的水平初速度射入物体A,射穿A后速度变为v,子弹穿过物体A的时间极短.已知A、B之间的动摩擦因数不为零,且A与B最终达到相对静止.求:(1)子弹射穿物体A的瞬间物体A的速度v A;(2)平板车B和物体A的最终速度v共.(设车身足够长)变式例2中,若子弹未从物体A中射出,则平板车B和物体A的最终速度v共是多少?2.一辆质量m1=3.0×103kg的小货车因故障停在车道上,后面一辆质量m2=1.5×103 kg的轿车来不及刹车,直接撞入货车尾部失去动力.相撞后两车一起沿轿车运动方向滑行了s=6.75 m停下.已知车轮与路面间的动摩擦因数μ=0.6,求碰撞前轿车的速度大小.(重力加速度取g=10 m/s2)练习1.(多选)关于动量守恒的条件,下面说法正确的是()A.只要系统内有摩擦力,动量就不可能守恒B.只要系统所受合外力为零,系统动量就守恒C.系统加速度为零,系统动量一定守恒D.只要系统所受合外力不为零,则系统在任何方向上动量都不可能守恒2.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,木块A、B用一根弹性良好的轻质弹簧连在一起,如图所示.则在子弹射入木块A及弹簧被压缩的过程中,对子弹、两木块和弹簧组成的系统,下列说法正确的是()A.动量守恒,机械能守恒B.动量不守恒,机械能守恒C.动量守恒,机械能不守恒D.无法判定动量、机械能是否守恒3.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块.木箱和小木块都具有一定的质量.现使木箱获得一个向右的初速度v0,则()A.小木块和木箱最终都将静止B.小木块最终将相对木箱静止,二者一起向右运动C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动4.甲、乙两人站在光滑的水平冰面上,他们的质量都是M,甲手持一个质量为m 的球,现甲把球以对地为v的速度传给乙,乙接球后又以对地为2v的速度把球传回甲,甲接到球后,甲、乙两人的速度大小之比为(忽略空气阻力)()A.2MM-m B.M+mMC.2(M+m)3M D.MM+m体系构建:画出本课题的思维导图学习评价(3颗星合格,4颗星以上优秀)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 动量守恒定律[学科素养与目标要求]物理观念:1.知道系统、内力和外力的概念.2.掌握动量守恒定律的含义、表达式和守恒条件.3.了解动量守恒定律的普适性.科学思维:1.会用牛顿运动定律推导动量守恒定律的表达式.2.会用动量守恒定律解释生活中的实际问题.一、系统、内力与外力1.系统:相互作用的两个或多个物体组成的一个力学系统.2.内力:系统中物体间的相互作用力.3.外力:系统外部的物体对系统内物体的作用力.二、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变.2.表达式:m1v1+m2v2=m1v1′+m2v2′(作用前后总动量相等).3.适用条件:系统不受外力或者所受外力的矢量和为零.4.普适性:动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域.1.判断下列说法的正误.(1)一个系统初、末状态动量大小相等,即动量守恒.( ×)(2)两个做匀速直线运动的物体发生碰撞瞬间,两个物体组成的系统动量守恒.( √)(3)系统动量守恒也就是系统总动量变化量始终为零.( √)(4)只要系统内存在摩擦力,动量就一定不守恒.( ×)2.如图1所示,游乐场上,两位同学各驾着一辆碰碰车迎面相撞,此后,两车以共同的速度运动.设甲同学和他的车的总质量为150kg,碰撞前向右运动,速度的大小为4.5 m/s;乙同学和他的车的总质量为200 kg,碰撞前向左运动,速度的大小为3.7 m/s.则碰撞后两车共同的运动速度大小为________,方向________.图1答案0.186m/s 向左解析本题的研究对象为两辆碰碰车(包括驾车的同学)组成的系统,在碰撞过程中此系统的内力远远大于所受的外力,外力可以忽略不计,满足动量守恒定律的适用条件.设甲同学的车碰撞前的运动方向为正方向,他和车的总质量m1=150kg,碰撞前的速度v1=4.5 m/s;乙同学和车的总质量m2=200 kg,碰撞前的速度v2=-3.7 m/s.设碰撞后两车的共同速度为v,则系统碰撞前的总动量为:p=m1v1+m2v2=150×4.5kg·m/s+200×(-3.7) kg·m/s=-65kg·m/s.碰撞后的总动量为p′=(m1+m2)v.根据动量守恒定律可知p=p′,代入数据解得v≈-0.186m/s,即碰撞后两车以0.186m/s的共同速度运动,运动方向向左.一、动量守恒定律1.动量守恒定律的推导如图2所示,光滑水平桌面上质量分别为m1、m2的球A、B,沿着同一直线分别以v1和v2的速度同向运动,v2>v1.当B球追上A球时发生碰撞,碰撞后A、B两球的速度分别为v1′和v2′.图2设碰撞过程中两球受到的作用力分别为F1、F2,相互作用时间为t.根据动量定理:F1t=m1(v1′-v1),F2t=m2(v2′-v2).因为F1与F2是两球间的相互作用力,根据牛顿第三定律知,F1=-F2,则有:m1v1′-m1v1=-(m2v2′-m2v2)即m1v1+m2v2=m1v1′+m2v2′2.动量守恒定律的理解(1)动量守恒定律的成立条件①系统不受外力或所受合外力为零.②系统受外力作用,但内力远远大于合外力.此时动量近似守恒.③系统所受到的合外力不为零,但在某一方向上合外力为零(或某一方向上内力远远大于外力),则系统在该方向上动量守恒.(2)动量守恒定律的性质①矢量性:公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.②相对性:速度具有相对性,公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.③普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.例1(多选)如图3所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在足够长的平板小车C上,A、B间有一根被压缩的弹簧,水平地面光滑,当弹簧突然释放后,则下列说法正确的是( )图3A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒答案BCD解析如果A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对于小车向左、向右滑动,它们所受的滑动摩擦力F f A向右,F f B向左.由于m A∶m B=3∶2,所以F f A∶F f B =3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,A选项错误;对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向上的重力和支持力,它们的合力为零,故该系统的动量守恒,B、D选项正确;若A、B所受摩擦力大小相等,则A、B组成的系统所受的外力之和为零,故其动量守恒,C选项正确.1.动量守恒定律的研究对象是相互作用的物体组成的系统.判断系统的动量是否守恒,与选择哪几个物体作为系统和分析哪一段运动过程有直接关系.2.判断系统的动量是否守恒,要注意守恒的条件是不受外力或所受合外力为零,因此要分清哪些力是内力,哪些力是外力.3.系统的动量守恒,并不是系统内各物体的动量都不变.一般来说,系统的动量守恒时,系统内各物体的动量是变化的,但系统内各物体的动量的矢量和是不变的.针对训练1 (多选)(2018·鹤壁市质检)在光滑水平面上A、B两小车中间有一弹簧,如图4所示,用手抓住小车并将弹簧压缩后使小车处于静止状态,将小车及弹簧看成一个系统,下列说法中正确的是( )图4A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零答案ACD解析若两手同时放开A、B两车,系统所受合外力为零,系统动量守恒,由于系统初动量为零,则系统总动量为零,故A正确;先放开左手,系统所受合外力向左,系统所受合外力的冲量向左,再放开右手,系统总动量向左,故C正确;无论何时放手,两手放开后,系统所受合外力为零,系统动量守恒,在弹簧恢复原长的过程中,系统总动量都保持不变,如果同时放手,系统总动量为零,如果不同时放手,系统总动量可能不为零,故B错误,D正确.二、动量守恒定律的应用1.动量守恒定律不同表现形式的表达式的含义:(1)p=p′:系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前动量的矢量和等于作用后动量的矢量和.(3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.(4)Δp=0:系统总动量增量为零.2.应用动量守恒定律的解题步骤:例2(2018·河北梁集中学调研)如图5所示,A、B两个大小相同、质量不等的小球放在光滑水平地面上,A以3 m/s的速率向右运动,B以1 m/s的速率向左运动,发生正碰后A、B 两小球都以2m/s的速率反弹,求A、B两小球的质量之比.图5答案3∶5解析取向右为正方向,则有v A=3 m/s,v B=-1 m/s,v A′=-2 m/s,v B′=2 m/s根据动量守恒定律得m A v A+m B v B=m A v A′+m B v B′代入数据解得:m A∶m B=3∶5[学科素养] 例2利用动量守恒定律分析了两碰撞小球相互作用的过程,通过列动量守恒定律方程求出了两球的质量之比,这正是物理规律在实际中的应用,是学科素养“物理观念”和“科学思维”的体现.针对训练2 如图6所示,进行太空行走的宇航员A和B的质量分别为80kg和100kg,他们携手远离空间站,相对空间站的速度为0.1m/s.A将B向空间站方向轻推后,A的速度变为0.2 m/s,求此时B的速度大小和方向.图6答案0.02m/s 远离空间站方向解析轻推过程中,A、B系统的动量守恒,以空间站为参考系,规定远离空间站的方向为正方向,则v0=0.1 m/s,v A=0.2 m/s根据动量守恒定律得:(m A+m B)v0=m A v A+m B v B代入数据可解得v B=0.02m/s,方向为远离空间站方向.例3将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3m/s,方向向右,乙车速度大小为2 m/s,方向向左并与甲车速度方向在同一直线上,如图7所示.图7(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?答案(1)1 m/s 方向向右(2)0.5 m/s 方向向右解析两个小车及磁铁组成的系统在水平方向不受外力作用,两车之间的磁力是系统内力,系统动量守恒,设向右为正方向.(1)v甲=3 m/s,v乙=-2 m/s.据动量守恒定律得:mv甲+mv乙=mv甲′,代入数据解得v甲′=v甲+v乙=(3-2) m/s=1 m/s,方向向右.(2)两车的距离最小时,两车速度相同,设为v′,由动量守恒定律得:mv甲+mv乙=mv′+mv′.解得v ′=mv 甲+mv 乙2m =v 甲+v 乙2=3-22m/s =0.5 m/s ,方向向右.1.(对动量守恒条件的理解)(多选)如图8所示,在光滑水平地面上有A 、B 两个木块,A 、B 之间用一轻弹簧连接.A 靠在墙壁上,用力F 向左推B 使两木块之间的弹簧压缩并处于静止状态.若突然撤去力F ,则下列说法中正确的是( )图8A.木块A 离开墙壁前,A 、B 和弹簧组成的系统动量守恒,机械能也守恒B.木块A 离开墙壁前,A 、B 和弹簧组成的系统动量不守恒,但机械能守恒C.木块A 离开墙壁后,A 、B 和弹簧组成的系统动量守恒,机械能也守恒D.木块A 离开墙壁后,A 、B 和弹簧组成的系统动量不守恒,但机械能守恒答案 BC解析 若突然撤去力F ,木块A 离开墙壁前,墙壁对木块A 有作用力,所以A 、B 和弹簧组成的系统动量不守恒,但由于A 没有离开墙壁,墙壁对木块A 不做功,所以A 、B 和弹簧组成的系统机械能守恒,选项A 错误,B 正确;木块A 离开墙壁后,A 、B 和弹簧组成的系统所受合外力为零,所以系统动量守恒且机械能守恒,选项C 正确,D 错误.2.(对动量守恒定律的理解)(多选)(2018·河北梁集中学高二第一次调研)我国女子短道速滑队在世锦赛上实现女子3000m 接力三连冠.如图9所示,观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )图9A.甲对乙的冲量一定与乙对甲的冲量相同B.相互作用的过程中甲与乙组成的系统满足机械能守恒定律C.相互作用的过程中甲与乙组成的系统满足动量守恒定律D.甲、乙的动量变化一定大小相等、方向相反答案 CD解析 甲对乙的作用力与乙对甲的作用力等大反向,它们的冲量也等大反向,故A 错误.由于乙推甲的过程,其他形式的能转化为机械能,故机械能不守恒,B 错误.甲、乙相互作用的过程,系统水平方向不受外力的作用,故系统的动量守恒,此过程甲的动量增大,乙的动量减小,二者动量的变化大小相等、方向相反,故C 、D 正确.3.(动量守恒定律的简单应用)解放军鱼雷快艇在南海海域附近执行任务,假设鱼雷快艇的总质量为M ,以速度v 前进,现沿快艇前进方向发射一颗质量为m 的鱼雷后,快艇速度减为原来的35,不计水的阻力,则鱼雷的发射速度为( ) A.2M +3m 5m v B.2M 5m v C.4M -m 5m v D.4M 5mv 答案 A解析 以快艇的速度方向为正方向,根据动量守恒定律有:Mv =(M -m )35v +mv ′,解得v ′=2M +3m 5mv . 4.(动量守恒定律的简单应用)一辆质量m 1=3.0×103kg 的小货车因故障停在车道上,后面一辆质量m 2=1.5×103kg 的轿车来不及刹车,直接撞入货车尾部失去动力.相撞后两车一起沿轿车运动方向滑行了s =6.75m 停下.已知车轮与路面间的动摩擦因数μ=0.6,求碰撞前轿车的速度大小.(重力加速度取g =10m/s 2)答案 27m/s解析 由牛顿第二定律得μ(m 1+m 2)g =(m 1+m 2)a解得a =6m/s 2,则两车相撞后速度为v =2as =9m/s以轿车运动方向为正方向,由动量守恒定律得m 2v 0=(m 1+m 2)v ,解得v 0=m 1+m 2m 2v =27m/s.一、选择题考点一 对动量守恒条件的理解1.如图1所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是( )图1A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量的变化量与男孩、小车的总动量的变化量相同答案 C解析由动量守恒定律成立的条件可知,男孩、小车与木箱三者组成的系统动量守恒,选项A、B错误,C正确;木箱的动量的变化量与男孩、小车的总动量的变化量大小相等,方向相反,选项D错误.2.(多选)如图2所示,小车放在光滑的水平面上,将系着绳的小球拉开一定的角度,然后同时放开小球和小车,那么在以后的过程中( )图2A.小球向左摆动时,小车也向左运动,且系统动量守恒B.小球向左摆动时,小车向右运动,且系统在水平方向上动量守恒C.小球向左摆到最高点,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反(或者都为零)答案BD解析以小球和小车组成的系统为研究对象,在水平方向上不受外力的作用,所以系统在水平方向上动量守恒.由于初始状态小车与小球均静止,所以小球与小车在水平方向上的动量要么都为零,要么大小相等、方向相反,所以A、C错,B、D对.3.(多选)(2018·三明市高二下学期期末)如图3所示,在光滑水平面上有一辆小车,小车A 端与滑块C间夹了一压缩轻质弹簧(未拴接在一起),用两手分别控制小车A端和滑块C处于静止状态,释放后C会离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,对A、B、C组成的系统,下面说法中正确的是( )图3A.先放开右手,再放开左手后,系统动量不守恒B.先放开左手,再放开右手,A、B、C的总动量向左C.两手同时放开后,C与油泥粘在一起时,车立即停止运动D.无论先放哪只手,C与油泥粘在一起时,车都立即停止运动答案BC解析先放开右手,再放开左手后,系统在水平方向不受外力作用,系统的动量守恒,故A 错误.先放开左手,后放开右手,放开右手时,小车已经有向左的速度,系统的动量不为零,所以A、B、C的总动量向左,故B正确.两手同时放开后,系统的总动量为零,C与油泥粘在一起时,根据动量守恒可知车立即停止运动,故C 正确.先放开左手,后放开右手,此后A 、B 、C 的总动量向左,C 与油泥粘在一起时,车向左运动;先放开右手,后放开左手,此后A 、B 、C 的总动量向右,C 与油泥粘在一起时,车向右运动,故D 错误.考点二 动量守恒定律的应用4.如图4所示,质量为M 的小船在静止的水面上以速率v 0向右匀速行驶,一质量为m 的救生员站在船尾,相对小船静止.若救生员以相对水面速率v 水平向左跃入水中,则救生员跃出后瞬间小船的速率为( )图4A.v 0+m M vB.v 0-m M vC.v 0+m M (v 0+v )D.v 0+m M (v 0-v ) 答案 C解析 以水平向右为正方向,小船和救生员组成的系统满足动量守恒条件:(M +m )v 0=m ·(-v )+Mv ′解得v ′=v 0+m M(v 0+v ),故C 项正确,A 、B 、D 项错误.5.(2018·福州十一中高二下期中)如图5所示,光滑水平面上有一辆质量为4m 的小车,车上左、右两端分别站着甲、乙两人,他们的质量都是m ,开始时两个人和车一起以速度v 0向右匀速运动.某一时刻,站在车右端的乙先以相对地面向右的速度v 跳离小车,然后站在车左端的甲以相对于地面向左的速度v 跳离小车.两人都离开小车后,小车的速度将是( )图5A.1.5v 0B.v 0C.大于v 0,小于1.5v 0D.大于1.5v 0答案 A解析 两人和车组成的系统开始时动量为6mv 0,方向向右.当甲、乙两人先后以相对地面大小相等的速度向两个方向跳离时,甲、乙两人动量矢量和为零,则有6mv 0=4mv 车,解得v 车=1.5v 0,A 正确.6.(多选)如图6所示,水平面上有两个木块,两木块的质量分别为m 1、m 2,且m 2=2m 1.开始时两木块之间有一根用轻绳缚住的已压缩轻弹簧,烧断绳后,两木块分别向左、右运动.若两木块m 1和m 2与水平面间的动摩擦因数分别为μ1、μ2,且μ1=2μ2,则在弹簧伸长的过程中,两木块( )图6A.动量大小之比为1∶1B.速度大小之比为2∶1C.动量大小之比为2∶1D.速度大小之比为1∶1 答案 AB解析 以两木块及弹簧组成的系统为研究对象,绳断开后,弹簧对两木块的推力可以看成是内力.水平面对两木块有方向相反的滑动摩擦力,且F f1=μ1m 1g ,F f2=μ2m 2g ,因此系统所受合外力F 合=μ1m 1g -μ2m 2g =0,满足动量守恒定律的条件.设在弹簧伸长过程中的某一时刻,两木块的速度大小分别为v 1、v 2.由动量守恒定律有(以向右为正方向):-m 1v 1+m 2v 2=0,即m 1v 1=m 2v 2,即两木块的动量大小之比为1∶1,故A 项正确,C 项错误.两木块的速度大小之比为v 1v 2=m 2m 1=21,故B 项正确,D 项错误. 7.(2018·甘肃会宁四中高二下学期期中)满载沙子的总质量为M 的小车,在光滑水平面上做匀速运动,速度为v 0.在行驶途中有质量为m 的沙子从车上漏掉,则沙子漏掉后小车的速度应为( )A.v 0B.Mv 0M -mC.mv 0M -mD.(M -m )v 0M答案 A解析 设漏掉质量为m 的沙子后,在沙子从车上漏掉的瞬间,由于惯性沙子速度仍然为v 0,小车速度为v ′,根据水平方向动量守恒可得:Mv 0=mv 0+(M -m )v ′解得:v ′=v 0,故B 、C 、D 错误,A 正确.8.(多选)(2018·宁波高二检测)如图7所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m 的小木块.现使木箱获得一个向右的初速度v 0,则( )图7A.小木块最终将相对木箱静止,二者一起向右运动B.小木块和木箱最终速度为M M +m v 0C.小木块与木箱内壁将始终来回往复碰撞,而木箱一直向右运动D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动答案 AB解析 木箱与小木块组成的系统水平方向不受外力,故水平方向系统动量守恒,最终两个物体以相同的速度一起向右运动,取v 0方向为正方向,由动量守恒定律:Mv 0=(m +M )v 得:v =Mv 0m +M,A 、B 项正确. 9.(多选)两个小木块A 和B (均可视为质点)中间夹着一轻质弹簧,用细线(未画出)拴在一起,放在光滑的水平桌面上,烧断细线后,木块A 、B 分别向左、右方向运动,离开桌面后均做平抛运动(离开桌面前两木块已和弹簧分离),落地点与桌面边缘的水平距离分别为l A =1m ,l B =2m ,如图8所示,则下列说法正确的是( )图8A.木块A 、B 离开弹簧时的速度大小之比v A ∶v B =1∶2B.木块A 、B 的质量之比m A ∶m B =2∶1C.木块A 、B 离开弹簧时的动能之比E k A ∶E k B =1∶2D.弹簧对木块A 、B 的作用力大小之比F A ∶F B =1∶2答案 ABC解析 A 、B 两木块脱离弹簧后做平抛运动,由平抛运动规律知,木块A 、B 离开弹簧时的速度大小之比为v A v B =l A l B =12,A 正确;以向左为正方向,根据动量守恒定律得:m A v A -m B v B =0,因此m A m B =v B v A =21,B 正确;木块A 、B 离开弹簧时的动能之比为:E k A E k B =m A v A 2m B v B 2=12,C 正确;弹簧对木块A 、B 的作用力大小之比:F A F B =11,D 错误. 10.质量为M 的木块在光滑水平面上以速度v 1水平向右运动,质量为m 的子弹以速度v 2水平向左射入木块,要使木块停下来,必须使发射子弹的数目为(子弹留在木块中不穿出)( )A.(M +m )v 1mv 2B.Mv 1(M +m )v 2C.Mv 1mv 2D.mv 1Mv 2答案 C解析 设发射子弹的数目为n ,n 颗子弹和木块M 组成的系统在水平方向上所受的合外力为零,满足动量守恒的条件.选子弹运动的方向为正方向,由动量守恒定律有:nmv 2-Mv 1=0,得n =Mv 1mv 2.11.A 、B 两球之间压缩一根轻弹簧(不拴接),静置于光滑水平桌面上,已知A 、B 两球的质量分别为2m 和m .当用板挡住A 球而只释放B 球时,B 球被弹出落于距桌边水平距离为x 的地面上,B 球离开桌面时已与弹簧分离,如图9所示.若以同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,则B 球的落地点距离桌边的水平距离为( )图9A.x 3B.3xC.xD.63x 答案 D解析 当用板挡住A 球而只释放B 球时,根据能量守恒有弹簧的弹性势能E p =12mv 02,根据平抛运动规律有x =v 0t .当以同样的程度压缩弹簧,取走A 左边的挡板,将A 、B 同时释放,设A 、B 的水平速度大小分别为v A 和v B ,规定向左为正方向,则根据动量守恒和能量守恒有2mv A-mv B =0,E p =12×2mv A 2+12mv B 2,解得v B =63v 0,B 球的落地点距离桌边的水平距离为x ′=v B t =63x ,D 选项正确. 二、非选择题12.(2018·甘肃会宁四中高二下期中)如图10所示,某同学质量为60kg ,在军事训练中要求他从岸上以2m/s 的速度水平向右跳到一条向他缓缓飘来的小船上,然后去执行任务,小船的质量是140kg ,原来的速度是0.5m/s.该同学上船后又跑了几步,最终停在船上.不计阻力.求此时小船的速度.图10答案 0.25m/s ,方向向右解析 规定向右为正方向,设人上船后人船共同速度为v ,由动量守恒:m 人v 人-m 船v 船=(m 人+m 船)v解得:v =0.25m/s ,方向向右.13.(2018·孝感市八校联盟高二下期末)如图11所示,在光滑水平面上,使滑块A以2m/s 的速度向右运动,滑块B以4 m/s的速度向左运动并与滑块A发生相互作用,已知滑块A、B 的质量分别为1kg、2kg,滑块B的左侧连有轻弹簧,求:图11(1)当滑块A的速度减为0时,滑块B的速度大小;(2)两滑块相距最近时,滑块B的速度大小;(3)弹簧弹性势能的最大值.答案(1)3 m/s (2)2 m/s (3)12 J解析(1)以向右为正方向,A、B与轻弹簧组成的系统所受合外力为零,系统动量守恒.当滑块A的速度减为0时,滑块B的速度为v B′,由动量守恒定律得:m A v A+m B v B=m B v B′解得v B′=-3m/s,故滑块B的速度大小为3m/s,方向向左;(2)两滑块相距最近时速度相等,设相等的速度为v.根据动量守恒得:m A v A+m B v B=(m A+m B)v,解得:v=-2m/s,故滑块B的速度大小为2m/s,方向向左;(3)两个滑块的速度相等时,弹簧压缩至最短,弹性势能最大,根据系统的机械能守恒知,弹簧的最大弹性势能为:E p=12m A v A2+12m B v B2-12(m A+m B)v2解得:E p=12J。