测量不确定度评定示例

合集下载

测量不确定度评定例

测量不确定度评定例

相对频率偏差的测量不确定度评定1. 测量方法相对频率偏差:参考频标:铯原子频率标准5071A 被检频标:铷原子频率标准 频标比对器:PO7D 2. 测量结果测量10次,数据如下:oox f f f y -=)(τ3. 测量不确定度来源(1)铯原子频标不准引入的不确定度1u铯原子频标检定证书给出其频率准确度为5×10-13, 按B 类方法进行不确定度评定。

视其为均匀分布,包含因子3=k ,则有:13131109.23/105--⨯=⨯=u(2)铯原子频标不稳引入的不确定度2u测量相对频率偏差的取样时间为100s 。

铯原子频标检定证书给出其100s 频率稳定度为4.9×10-13,按A 类方法进行评定,k=1,则有:132109.4-⨯=u(3)频标比对器引入的不确定度3u频标比对器检定证书100s 比对不确定度为1.2×10-13,按A 类方法进行不确定度评定,k=1,则有:133102.1-⨯=u(4)测量重复性引入的不确定度4u实验标准偏差)(x s n1212109.11)()(-=⨯=--=∑n y yx s ni i in对于平均值,重复性测量引入的不确定度为:13124100.610/109.1--⨯=⨯=u3. 合成标准不确定度c u相对频率偏差测量结果的不确定度分量如下表:以上各不确定度分量互相独立各不相关,可得合成标准不确定度c u :21321321321324232221)100.6()102.1()109.4()109.2(----⨯+⨯+⨯+⨯=++++=u u u u u c 13104.8-⨯= 4. 扩展不确定度取k=2, 则扩展不确定度: 12102-⨯=U 5. 结论相对频率偏差:11100.7-⨯ 不确定度: 12102-⨯ (k=2)频率稳定度的测量不确定度评定1. 测量方法参考频标:高稳晶振8607 被检频标:铷原子频率标准 频标比对器:5120A 2. 测量结果3.不确定度来源(1) 参考频标引入的不确定度测量频率稳定度时使用的参考源为高稳晶振8607,根据其检定证书,其1 s 频率稳定度为7.2E-14,按B 类方法进行评定,k=1,则有:141102.7-⨯=u(2) 测量装置引入的不确定度测量装置使用5120,实测1 s 比对不确定度为1.19E-13,按A 类方法进行不确定度评定,k=1,则有:1321019.1-⨯=u(3) 有限次测量引入的不确定度按A 类方法进行有限次测量不确定度的评定。

力学性能测量不确定度评定中的几个实例

力学性能测量不确定度评定中的几个实例

⑵试样的标距
试样原始标距由划线操作和测量来决 定的,因此量化该项不确定度分量时 仅仅考虑量具是远远不够的。
按GB/T 228–2002标准中规定 原始标距的标记应准确到±1%
⑶断后伸长率不确定度的评定
GB/T 228-2002国家标准中, 对断后伸长的规定有误。
如果按照该标准的规定来评定不确定度, 即使方法正确,也不能得到正确的结果。
CSM 01 01 02 03 -2006 钢绞线弹性模量测量结果不确定度评定
CSM 01 01 02 04 -2006 金属薄板和薄带塑性应变比(r值)测量结果不确定 度评定
⑴ 各种参数都有明确的物理公式作为数学模型。
⑵ 拉伸试验机力值的不确定度分项都是通过标准测 力仪进行检定来评定的。
⑶ 在B类不确定度分量的量化过程中,由于测量方 法和条件的限制,测量的结果往往不是由量具的 误差决定的。也就是说合乎要求的量具仅仅是达 到技术文件规定的保证。
(绝对不可以不考虑)
在“金属材料拉伸试验测量结果不确定 度评定”中采用了25个试样。为了示 范评定A类不确定度中的合并样本标准 差,在 “金属洛氏硬度试验(HRC) 测量结果不确定度评定” 中采用了3个 样本。 绝大多数项目的A类不确定度评定都是 采用5或6个测量点为测量列,并用极 差法来计算标准偏差。
GB/T 228-2002标准B4中给出, 测定原始横截面积时,
测量每个得出的, 在评定工作中可直接引用。
试样断后横截面积的测量误差不取决于量具, 断后缩径处最小直径测量用卡尺,
由于断口配接存在一定困难, 实际的测量误差要远大于量具的误差。
GB/T 228–2002标准19.1中规定 断裂后最小横截面积的测定应准确到±2%。
3.3 硬度试验

测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例1.标准不确定度方法:U =sqrt(∑(xi-x̅)^2/(n-1))其中,xi表示测量值,x̅表示测量值的平均值,n表示测量次数。

标准不确定度包含随机误差和系统误差等。

例如,对一组长度进行测量,测得的数据为10.2、10.3、10.1、10.2、10.3,计算平均值为10.22,标准差为0.069、则标准不确定度为0.069/√5≈0.031,即U=0.0312.扩展不确定度方法:扩展不确定度是在标准不确定度的基础上,考虑到误差的正态分布,对标准不确定度进行扩展得到的结果,通常以U'表示。

其计算公式如下:U'=kU其中,k表示不确定度的覆盖因子,代表了误差分布的概率密度曲线下的面积,一般取k=2例如,对上述例子中的长度进行测量,标准不确定度为0.031,取k=2,则扩展不确定度为0.031×2=0.062,即U'=0.0623.组合不确定度方法:4.直接测量法:直接测量法是通过多次测量同一物理量,统计测得值的离散程度来评估测量的不确定度。

该方法适用于一些简单的测量,如长度、质量等物理量的测量。

例如,对一些小球的直径进行测量,测得的数据为2.51 cm、2.49 cm、2.52 cm、2.50 cm,计算平均值为2.505 cm,标准差为0.013 cm。

则标准不确定度为0.013/√4≈0.007 cm,即U=0.0075.间接测量法:间接测量法是通过已知物理量之间的数学关系,求解未知物理量的方法来评估测量的不确定度。

该方法适用于一些复杂的测量,如测量速度、加速度等物理量的测量。

例如,测量物体的速度v,则有v=S/t,其中S为位移,t为时间。

若S的不确定度为U_S,t的不确定度为U_t,则根据误差传递法则,计算得到v的不确定度为U_v = sqrt(U_S^2 + (U_t * (∂v/∂t))^2 )。

总之,测量不确定度评定的方法包括标准不确定度方法、扩展不确定度方法、组合不确定度方法、直接测量法和间接测量法。

不确定度评定举例

不确定度评定举例
• 数学模型为 • R=RSZ …………………………(1) ) • 式中 • R—电阻器的电阻值,k 电阻器的电阻值, 电阻器的电阻值 • RSZ—数字多用表示值, k 数字多用表示值, 数字多用表示值
举例
• 数字多用表为 位,其最大允许差为 数字多用表为5.5位 • ±(0.005%×读数 ×最小分度 ×读数+3×最小分度) • 数字多用表最小分度为 数字多用表最小分度为0.01 k • 在相同条件下用数字多用表测量电阻器 次电阻, 在相同条件下用数字多用表测量电阻器10次电阻 次电阻, 得到平均值和平均值的标准偏差为: 得到平均值和平均值的标准偏差为: •
举例
不确定度评定
举例
• 例1.用K型热电偶数字式温度计直接测量温度示 . 型热电偶数字式温度计直接测量温度示 值400℃的工业容器的实际温度,分析其测量不 ℃的工业容器的实际温度, 确定度。 确定度。K型热电偶数字式温度计其最小分度为 0.1℃,在400℃经校准修正值为0.5℃,校准的不 确定度为0.3℃; • 测量的数学模型为: • t=d+b…………………………(1) • 式中:t——实际温度,℃ • d——温度计读取的示值,℃ • b——修正值,℃,b=0.5℃
举例
• 引用最大允许差按均匀分布得校准产生的标准不确 定度为
将以上两项合成得: 将以上两项合成得:
举例
• 取K=2,则有 ,
结果表示成: 结果表示成:
谢谢!
举例
• 第三,温度计最小分度为0.1℃,假定读取到其一 第三,温度计最小分度为 ℃ 半,接均匀分布则读数产生的标准不确定度为 :
将以上三项合成得
举例
• 取K=2,则有 • U(t)=0.37×2=0.74≈0.8℃ • 结果表达为 • (400.7±0.8) ℃

【现代测试技术】测量不确定度评定实例

【现代测试技术】测量不确定度评定实例

测量不确定度评定实例一. 体积测量不确定度计算1. 测量方法直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积h D V 42π=由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。

表: 测量数据i1 2 3 4 5 6 mm /i D 10.075 10.085 10.095 10.065 10.085 10.080 mm /i h10.10510.11510.11510.11010.11010.115计算: mm 0.1110h mm 80.010==,D 32mm 8.8064==h D V π2. 不确定度评定分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。

分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数:h DD V 2π=∂∂ 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s DVu =∂∂=②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数:42D h V π=∂∂ 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s hVu =∂∂=③测微仪示值误差引起的不确定度分量由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u DVu ∂∂=3由示值误差引起的高度测量的不确定度 q h u hV u ∂∂=3 由示值误差引起的体积测量的不确定度分量 ()()323233mm 04.1=+=h D u u u 3. 合成不确定度评定()()()3232221mm 3.1=++=u u u u c 4. 扩展不确定度评定当置信因子3=k 时,体积测量的扩展不确定度为 3mm 9.33.13=⨯==c ku U 5.体积测量结果报告() mm .93.88063±=±=U V V考虑到有效数字的概念,体积测量的结果应为 () mm 48073±=V二.伏安法电阻测量不确定度计算1. 测量方法:通过测量电阻两端电压和所通过的电流,计算被测电阻。

测量不确定度评定示例.docx

测量不确定度评定示例.docx

— 1 —
定量包装秤测量结果不确定度分析
1、概述
在定量包装中,散料由仪表传感器、仪表显示器、可编程控制器控制粗细料**缸开关及放袋**缸,达到要求的重量。

所用测量设备为DCS -50A -Ⅲ定量自动称重包装秤,○
Ⅲ级秤,在常温下测量,测量过程控制在40kg±200g 。

2、建立数学模型
F=X
F -实际测量结果;
X -定量包装秤显示的结果。

3、标准不确定度
3.1 定量包装秤最大允许误差引入的不确定度u 1
定量包装秤为○
Ⅲ级秤,查相应检定规程得知其最大允许误差为±15g ,区间半宽
a =15g ,均匀分布3=k
g k a u 66.83/15/1===
3.2 仪表分辨力引入的不确定度u 2
仪表分辨力为10g ,区间半宽a =5g ,均匀分布,3=k g k a u 88.23/5/2===
3.3 尿素附粘在包装秤上,影响结果的准确性,根据经验一般估计影响量为30g ,区间半宽a =15g ,均匀分布3=k
g k a u 66.83/15/3===
4、合成标准不确定度
— 2 — 引入不确定度的各个因素彼此独立不相关,所以
g u u u u c 51.1266.888.266.8222232221=++=++=
5、扩展不确定度
c ku U = 取k=2
g U 2551.122=⨯=
6、结果报告
F =40kg U =25g k=2
7、应用分析
测量结果的不确定度为25g ,控制范围为40kg±200g ,25< 2003
1⨯,测量结果的不确定度满足控制要求。

不确定度评定举例

不确定度评定举例

4 不确定度评定举例 (一) 端度规校准1. 概述在比较仪上,对标准端度规和受校准的端度规进行比较,求出两端度规的长度差值,考虑到长度的温度修正,由标准端度规的已知长度,求出受校准端度规的长度。

2. 原理一个名义值50mm 的被校准端度规,将它与同名义长度的已知标准端度规比较,就可求出被校准端度规的长度。

两端度规直接比较的输出是长度差式中:l :受校端度规在20~C 时的长度;ls :标准度规在20~C 时的长度(由标准端度规的校准证书给出): α、αs :受校与标准规的温度热膨胀系数; θ、θs :受校与标准规的温度与20℃的温度偏差。

于是:记受校与标准端度规温差sθθδθ-=。

记受校与标准端度热膨胀系数差s ααδα-=则3.不确定度评定:注意到ls ,d ,α,θ,δα,δθ无关,且δα,δθ期望为0。

而于是:(1)标准的校准不确定度校准证书中给出,标准的展伸不确定度U=0.075um ,并说它按包含因子k=3而得,故标准不确定度校准证书指出,它的自由度18)( s l v于是:(2)测量长度差的不确定度测量两规长度差的实验标准差,通过独立重覆观测25次的变化性而得为13nm ,其自由度为25-1=24。

本例比较中,作5次重复观测并采用平均值,平均值的标准不确定度及自由度于是:(3)比较仪偶然效应比较仪检定证书说明,由偶然误差引起的不确定度为0.01um,它由6次重复测量,置水准95%而得,由t分布临界值,t0.95(5)=2.57,故于是:(4)比较仪系统效应比较仪检定证书给出,由系统误差引起的不确定度为0.02um(3水准),故它可以认为具25%可靠,于是其自由度8%)25(2/1)(2==v d v于是:(5)膨胀系统差的不确定度按均匀分布变化,故它具10%可靠,于是:因(6)规间温差的不确定度标准及被校规应有相同温度,但温差却以等概率落于估计区间-0.05℃至+0.05内任何处,由均匀分布知标准不确定度它具50%可靠,故又不确定度表如下:以上分量无关,合成标准不确定度其自由度在置信水准P=0.99时t0.99(16)=2.92。

不确定度评定示例

不确定度评定示例

汽车侧滑检验台示值误差测量结果的不确定度评定1、 测量方法用检定装置的位移控制装置缓慢推动滑板,使滑板移动,当检定装置的位移测量装置(或百分表)示值为5mm 时,读取侧滑检测仪的仪表示值,按公式(1)计算其示值误差。

2、 测量模型LX X S-=∆ (1) 式中:∆--示值误差,m/km ;X --侧滑检测仪仪表3次示值平均值,m/km ;S X --位移测量装置(或百分表)示值,mm ;L --滑板纵向有效测量长度,m 。

3、 方差和灵敏系数由式(1)得方差:)()()()(2232222212L u c X u c X u c u S c ++=∆ (2)灵敏系数:1)()(1=∂∆∂=X c L X c S 1)()(2-=∂∆∂=23)()(LX L c S =∂∆∂= 4、标准不确定度评定4.1 被检侧滑检测仪引入的标准不确定度被检侧滑检测仪示值的不确定度主要来源于侧滑检测仪的测量结果重复性及数显仪器的分辨力。

由于侧滑检测仪测量重复性引入的标准不确定度与数显仪器的分辨力引入的标准不确定度属于同一种效应导致的不确定度,因此取二者的较大者。

4.1.1测量重复性引入的不确定度测量结果重复性可以通过连续重复测量得到的测量列,采用A 类评定方法进行。

在检定装置的位移测量装置(或百分表)及被检侧滑检测仪正常工作条件下,等精度重复测量10次,数据如下:X =5.03m/km被检侧滑台单次测量实验标准差为:1)(1012--=∑=n X X s i=0.048m/km实际测量时,在重复条件下连续测量3次,以3次测量的算术平均值作为测量结果,则可得侧滑检测仪的测量结果重复性引入的标准不确定度为:()m/km 028.03)(==X s X u A4.1.2被检侧滑台数显分辨力引入的标准不确定度侧滑检测仪的分辨力为0.1m/km ,其量化误差以等概率分布落在宽度为0.05m/km 的区间内,按均匀分布考虑。

不确定度评估实例

不确定度评估实例

不确定度评估实例1、测量问题本次评定实验以物资(商品)检验所游标卡尺09059为测试量具,用游标卡尺测量结构长度270mm的长度ι。

已知卡尺的最大误差为1mm。

用6次测量的平均值作为测量结果。

卡尺的温度效应、弹性效应及其他不确定度来源均忽略不计。

2、数学模型卡尺上得到的读数χ即为测量结果,故得被测长度ι=χ。

但除了读数χ可能引入测量不确定度外,卡尺刻度误差对测量结果也会有影响。

由于卡尺的校准证书未给出其示值误差,因此只能根据其最大允许误差来估计它对测量结果的影响。

若卡尺刻度误差对测量结果的影响διS,则数学模型可以表示为ι=χ+διS式中διS的数学期望值为零,即Ε(διS)=0,但需考虑其不确定度,即μ(διS)≠0。

数学模型是相对的,即使对于同样的被测量,当要求的测量准确度不同时,需要考虑的测量不确定度来源也会有相应的增减,因此数学模型也会不同。

3、测量不确定度分量本测量共有两个不确定度分量,由读数的重复性引入的不确定度μ(χ)和卡尺刻度误差所引起的不确定度μ(διS)。

⑴读数χ的不确定度,μ1(ι)=μ(χ)6次测量结果分别为270、3mm270、1mm270mm271、4mm269、8mm271、2mm则6次测量结果的平均值为==270、47mm平均值的实验标准差为 s()==0、074mm故μ1(ι)=μ()=s()=0、074mm⑵卡尺误差引入的不确定度, μ2(ι)=μ(διS)由于证书未给出卡尺的示值误差,故卡尺刻度误差引入的不确定度由卡尺的最大允许误差得到。

已知卡尺的最大误差为1mm,并以矩形分布估计,于是μ2(ι)=μ(διS)==0、577mm下表给出不确定度分量汇总表符号栏中u1=s1 意为用实验标准s来表示不确定度,言外之意是该不确定度分量有A类评定得到的。

反之,对于未标u=s的不确定度分量,则表示是由B 类评定得到的。

这是经常采用的标明A类评定和B类评定不确定度分量的方法之一。

测量不确定度评定例

测量不确定度评定例

一、力学测量应用实例用拉力试验机测量金属试件拉伸强度。

已知试件的标准直径mm d 10=,断裂时拉力为40kN 。

拉力试验机的量程为200kN ,分度值为0.5kN ,示值误差为F %1+,示值误差的不确定度为0.2%F 。

试件直径用千分尺测量,其示值误差为m μ3+。

求拉伸强度的测量不确定度。

2.1 数学模型 24d FA F R m π==m R — 拉伸强度 (Mpa )A — 试件截面积 (2mm )d — 试件直径 (mm )F — 拉力 (N )2.2 不确定度传播律)(4)()(222d u F u R u rel rel m rel c +=2.3 求相对标准不确定度分量)(d u rel2.3.1 千分尺示值误差导致的不确定度 )(1d u以均匀分布估计 m d u μ73.133)(1==2.3.2 由操作者引起的测量不确定度)(2d u经验估计,该测量误差在m μ10+范围内,以均匀分布估计, m d u μ77.5310)(2==以上二者合成 m d u μ02.677.573.1)(22=+=以上相对不确定度表示: %06.01010*02.6)(3==-d u rel2.4 求拉力F 的测量不确定度 )(F u rel2.4.1 拉力机的示值误差引入的测量不确定度)(1F u由于仪器说明书未说明置信概率,故取2=k%5.0%1)(1==k F u2.4.2 拉力机校准的不确定度)(2F u这是由上一级标准器对拉力机校准时产生的不确定度,即拉力机示值误差的不确定度,校准证书亦未给出置信概率,故取2=k%1.0%2.0)(2==k F u2.4.3 拉力机读数不准产生的不确定度)(3F u人工读数可以估计到刻度的五分之一,即0.1kN ,读数误差的不确定度可按均匀分布估计,3=k %144.03401.0)(3==F u以上三者合成 %53.0)144.0(%)1.0(%)5.0()(222=++=F u rel2.5 合成标准不确定度c u %543.0%)06.0(4%)53.0()(4)()(2222=+=+=d u F u R u rel rel m rel c 223.5094mm N d F R m ==π 28.2%543.0*3.509)(mmN R u R u m rel c m c === 2.6 扩展不确定度 U取包含因子 2=k26.58.2*2mm N ku U c ===2.7 测量结果报告 2)6.53.509(mm N R m +=……二、 电学测量应用实例用数学电压表测量电压9次,得到平均值V v 928571.0=,标准偏差V v s μ36)(=。

测量不确定度评定实例

测量不确定度评定实例

丈量不确立度评定实例一.体积丈量不确立度计算1.丈量方法直接丈量圆柱体的直径 D 和高度 h,由函数关系是计算出圆柱体的体积v D 2 4由分度值为 0.01mm 的测微仪重复 6 次丈量直径 D 和高度 h,测得数据见下表。

表:丈量数据i123456D i / mm10.07510.08510.09510.06510.08510.080 h i / mm10.10510.11510.11510.11010.11010.115计算: D 10.080 mm, h 10.110 mmV D2 h 806.8 mm3 42.不确立度评定剖析丈量方法可知,体积 V 的丈量不确立度影响要素主要有直径和高度的重复丈量惹起的不确立度 u1, u2和测微仪示值偏差惹起的不确立度 u3。

剖析其特色,可知不确立度 u1,u2应采纳A类评定方法,而不确立度 u3采纳B类评定方法。

①.直径 D 的重复性丈量惹起的不确立度重量直径 D 的 6 次丈量均匀值的标准差:s D0.0048 mm直径 D 偏差传达系数:V D hD2直径 D 的重复性丈量惹起的不确立度重量:u1Vs D 0.77mm3 D② .高度 h 的重复性丈量惹起的不确立度重量高度 h 的 6 次丈量均匀值的标准差:s h0.0026 mm高度 h 的偏差传达系数:V D 2h4高度 h 的重复性丈量惹起的不确立度重量:u2Vs h 0.21mm3 h③测微仪示值偏差惹起的不确立度重量由说明书获取测微仪的示值偏差范围0.005mm ,按均匀散布,示值的标准不确立度0.005u q0.00293由示值偏差惹起的直径丈量的不确立度u3D V u qD由示值偏差惹起的高度丈量的不确立度u 3hVhu q由示值偏差惹起的体积丈量的不确立度重量221.04 mm 3u 3u3 Du3h3. 合成不确立度评定u c u 12u 22u 321.3 mm 34. 扩展不确立度评定当置信因子 k 3时,体积丈量的扩展不确立度为Uku c 3 1.3 3.9 mm 35.体积丈量结果报告V V U806.8 3.9 mm 3考虑到有效数字的观点,体积丈量的结果应为V807 4 mm 3二.伏安法电阻丈量不确立度计算1.丈量方法:经过丈量电阻两头电压和所经过的电流,计算被测电阻。

测量不确定度评定示例

测量不确定度评定示例

测量不确定度评定示例一、类型1, 有明确的数学模型的经典测量的例子例1. 酸碱滴定不确定度的估计例2. 材料静拉伸强度测定的不确定度估计用1.0级拉力试验机测量圆柱形试件,以受控速率施加轴向拉力,在拉断试件时的静拉伸强度。

在温度和其它条件不变时,拉伸强度可表示为:24πF F A dσ== (1)式中:σ——静拉伸强度,N/mm 2A ——截面积,mm 2 ,对圆柱形试件而言2A=πd /4 d ——圆柱形试件直径,mm F ——拉力,N 由公式(1)有222()()()2c c c u u F u d F d σσ⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦…………………………(2) 式(1)和(2)中各量的量值列于表1中。

表1 计算静拉伸强度的不确度的有关量值各量值不确定度的计算:(1)直径d 的测量及其标准不确定度u c (d )用直径计量仪器测定试件的直径为10.00mm 。

其不确定度来源,第一,持证上岗人员多次重复测量的标准偏差经计算为0.005mm ;第二,直径测量仪校准证书上给出在95%置信概率下校准不确定度为0.003mm ,按正态分布转化成标准不确定度为0.003/1.96=0.0015mm以上二项合成有()0.0052mmc ud ==故相对标准不确定度为:()0.00520.0005210.00c ud d==(2)用1.0级拉力试验机测量拉断试件时拉力及其标准不确定度u c (F )。

用1.0级拉力试验机测量拉断试件时拉力为40000N 。

其不确定度来源:第一,示值不确定度对于1.0级拉力试验机供应商说明为示值的±1.0%。

故相对标准不确定度按均匀分布则相对标准不确定度为20.010.5810-=⨯;第二,拉力试验机用0.3级标准测力仪校准,测力仪的相对不确定度为0.3%,按正态分布转化则校准引入的相对标准不确定度为0.003/1.96=0.15×10-2 ;第三,拉力试验机刻度盘量程上限为200kN ,最小分度为0.5kN ,持证上岗人员可估读到0.2分度,即±0.1kN ,本例在40kN 处拉断故±0.1kN/40kN=±2.5×10-3,按均匀分布转化,人员读数引入的相对标准不确定度为332.510 1.410--⨯=⨯,以上三项合成得:() 0.0062c u F F==按公式(2)有:222()0.0062(20.00052)c u σσ⎡⎤=+⨯⎢⎥⎣⎦故2() 3.2/m m c u N σ= 由(1)式有22440000509.3/m mπ10.00N σ⨯==⨯扩展不确定度,取k=2,则2()2 3.2 6.4/mmU N σ=⨯=,取1位有效数字则有2()7/m m U N σ=结果表示为2(5097)/m m N ±。

(不确定度评定实例)八个不确定度评定实例(供参考)

(不确定度评定实例)八个不确定度评定实例(供参考)
2012-4-14 21
表1 不确定度分量评定预估
序 号 不确定度来源 1 2 测量重复性 标 准 不 确 定 度 分布 正态 包含 因子 1 符号 uAr uBr 数值 1.9% 2.9%
烟气分析仪最大允许误差 均匀
3
3
合成标准不确定度
uc
3.5%
22
2012-4-14
四、 标准不确定度评定
4.1 测量重复性引入的标准不确定度分量uA评定 事先对某锅炉烟气 某锅炉烟气二氧化硫浓度测量进行20次重 复独立测量,测量结果见表2。 用贝塞尔公式计算实验标准差s(c)
1
a1 0.5mg uB1 = = = 0.29mg k1 3
2012-4-14
8
四、 m称量不确定度评定(续)
3.3 天平分辨力引入的标准不确定度分量uB2
数字式测量仪器对示值量化(分辨率)导致的不 确定度服从均匀 服从均匀分布。天平分辨力为0.1mg,区间半宽 度为a2= 0.05mg, k2 = 3 。其标准不确定度uB2为: a2 0.05mg uB2 = = = 0.03mg k2 3
2012-4-14 17
五、定容 、定容体积V的合成标准不确定度uC
分析考察不确定度分量uA , uB1 和 uB2可知, 三者相互独立 互独立,互不相关。因此,V的合成标准不 确定度uC可以采用方和根方法合成。故采用A级 1000mL容量瓶定容的合成标准不确定度为:
2 2 2 uc = uA + uB1 + uB2
s(c ) 3.7 3 uA = = = 2.1mg/m m 3
其相对标准不确定度为
uA 2.1mg/m 3 uAr = = = 1.5% 3 c 142mg/m

测量结果的不确定度评定实例分析

测量结果的不确定度评定实例分析

2021 June第测量结果的不确定度评定实例分析刘海利中国石化销售股份有限公司油品技术研究所以GB/T 261—2008《闪点的测定 宾斯基-马丁闭口杯法》测量车用柴油闭口闪点为例,按照JJF 1059.1—2012《测量不确定度与表示》要求进行检测实验室测量不确定度评定,通过对实验室测量结果的不确定度评定,实现测量结果不确定度规范与正确表达,进而提升实验室测量结果质量。

作者简介:刘海利,硕士,高级工程师,现主要从事油品质量管理与应用研究工作。

E-mail:liuhaili119@163.com测量不确定度是表征检测和校准实验室测量结果的质量参数,对于一定的测量结果而言,它的不确定度值越小,其质量就越高,使用价值也越高;反之则低。

在CNAS-CL01:2018《检测和校准实验室能力认可准则》中,要求实验室应制定与检测工作相适应的测量不确定度评定程序,对每一项有数值要求的结果进行测量不确定度评定。

因此,测量不确定度评定在检测和校准实验室认可中是一项不可缺少的重要工作[1]。

JJF 1059.1—2012《测量不确定度评定与表示》是评定不确定度最常用、最基本的方法[2]。

闭口闪点是轻质油品运输、储存和使用安全的重要指标,本文以GB/T 261—2008《闪点的测定 宾斯基-马丁闭口杯法》测量车用柴油闭口闪点不确定度为例,阐述测量闭口闪点不确定度步骤,为实验室开展所有测量项目结果的不确定度评定提供参考,提高实验室检测能力。

Teat and Appraisal测试与评定8282三期83一2021 June第各不确定度分量的评定重复性测量引入的标准不确定度分量u 1(T c )车用柴油闭口闪点测量时,试样量、加热速率、搅拌速率、试验过程中温度计深入位置、温度计读数、压力表读数等随机因素带来的不确定度,一并列入重复性测量不确定度分量中进行评定。

试验用温度计修正值∆T =0.0 ℃,压力表修正值∆p =0.1 kPa,在重复性试验条件下,对同一试样独立重复测量10次,结果见表1。

测量不确定度评定报告

测量不确定度评定报告

测量不确定度评定报告一、引言二、测量方法和装置本次测量使用的方法是直线测量法,采用直尺和游标卡尺进行测量。

直线测量法是一种简单有效的测量方法,在工程和科学领域得到广泛应用。

1.人为误差测量1:30.2cm测量2:30.1cm测量3:30.3cm根据三次测量结果的平均值,得到被测量值为30.2cm。

通过测量结果的离散程度,可评估人为误差的大小。

2.仪器误差仪器误差是由于测量仪器本身的不准确性而引起的。

在使用直尺和游标卡尺进行测量时,需要考虑到仪器的刻度精度和读数精度。

本次测量中,直尺和游标卡尺的刻度间距分别为0.1cm和0.01cm。

根据仪器的刻度间距,可以评估测量结果在刻度内的不确定度。

例如,如果测量结果位于两个刻度之间,不确定度可以评估为刻度间距的一半。

3.环境影响环境因素如温度、湿度等的变化会对测量结果产生一定的影响。

在本次测量中,环境温度保持相对稳定,湿度变化较小,因此可以忽略环境影响对测量结果的不确定度。

四、测量不确定度评定五、灵敏度分析和建议灵敏度分析用于评估测量结果对误差的敏感程度,从而提供改进测量方法和装置的建议。

1.人为误差的影响2.仪器误差的影响根据前述的仪器误差评估,本次测量结果对仪器误差的敏感程度较高。

为了减小仪器误差对测量结果的影响,可以考虑使用更精密的测量仪器,如数字卡尺等,降低仪器误差。

六、结论本次测量的不确定度评定结果为0.1cm。

测量结果对人为误差的敏感程度较低,对仪器误差的敏感程度较高。

改进测量方法和装置可降低仪器误差对测量结果的影响。

不确定度的案例3个(供参考)

不确定度的案例3个(供参考)

气相色谱法测定绝缘油溶解气体含量测量不确定度的评定(供参考)一、概述1.1 目的评定绝缘油溶解气体含量测量结果的不确定度。

1.2 依据的技术标准GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》。

1.3 使用的仪器设备(1) 气相色谱分析仪HP5890,经检定合格。

(2) 多功能全自动振荡仪ZHQ701,经检定合格,允差±1℃,分辨力0.1℃。

(3) 经检验合格注射器,在20℃时,体积100mL±0.5mL;体积5mL±0.05mL;体积1mL±0.02mL。

1.4 测量原理气相色谱分析原理是利用样品中各组分,在色谱柱中的气相和固定相之间的分配及吸附系数不同,由载气把绝缘油中溶解气体一氧化碳、二氧化碳、甲烷、乙烷、乙烯、乙炔、氢气带入色谱柱中进行分离,并经过电导和氢火焰检测器进行检测,采用外标法进行定性、定量分析。

1.5 测量程序(1) 校准。

采用国家计量部门授权单位配制的甲烷标准气体。

进样器为1mL玻璃注射器,采用外标气体的绝对校正因子定性分析。

(2) 油样处理。

用100mL玻璃注射器A,取40mL油样并用胶帽密封,并用5mL玻璃注射器向A中注入5mL氮气。

将注入氮气的注射器A放入振荡器中振荡脱气,在50℃下,连续振荡20分钟,静止10分钟。

(3) 油样测试。

然后用5mL玻璃注射器将振荡脱出的气体样品取出,在相同的色谱条件下,进样量与标准甲烷气体相同,对样品进行测定,仪器显示谱图及测量结果。

气体含量测定过程如下。

1.6 不确定度评定结果的应用符合上述条件或十分接近上述条件的同类测量结果,一般可以直接使用本不确定度评定测量结果。

二、 数学模型和不确定度传播律2.1 根据GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》试验方法,绝缘油中溶解气体含量C 的表示式为S s=⨯hC C h μL/L (1) 式中,C ——被测绝缘油中溶解气体甲烷含量,μL/L ;C S ——标准气体中甲烷含量,μL/L ; h ——被测气体中甲烷的峰高A ; h s ——标准气体中甲烷的峰高A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量不确定度评定示例
一、类型1, 有明确的数学模型的经典测量的例子
例1. 酸碱滴定不确定度的估计
例2. 材料静拉伸强度测定的不确定度估计
用1.0级拉力试验机测量圆柱形试件,以受控速率施加轴向拉力,在拉断试件时的静拉伸强度。

在温度和其它条件不变时,拉伸强度可表示为:
2
4πF F A d
σ=
= (1)
式中:
σ——静拉伸强度,N/mm 2
A ——截面积,mm 2 ,对圆柱形试件而言2A=πd /4 d ——圆柱形试件直径,mm F ——拉力,N 由公式(1)有
2
2
2
()()()2c c c u u F u d F d σσ⎡⎤⎡⎤⎡⎤
=+⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦
…………………………(2) 式(1)和(2)中各量的量值列于表1中。

表1 计算静拉伸强度的不确度的有关量值
各量值不确定度的计算:
(1)直径d 的测量及其标准不确定度u c (d )
用直径计量仪器测定试件的直径为10.00mm 。

其不确定度来源,第一,持证上岗人员多次重复测量的标准偏差经计算为0.005mm ;第二,直径测量仪校准证书上给出在95%置信概
率下校准不确定度为0.003mm ,按正态分布转化成标准不确定度为0.003/1.96=0.0015mm
以上二项合成有
()0.0052mm
c u
d =
=
故相对标准不确定度为:
()0.00520.0005210.00
c u
d d
==
(2)用1.0级拉力试验机测量拉断试件时拉力及其标准不确定度u c (F )。

用1.0级拉力试验机测量拉断试件时拉力为40000N 。

其不确定度来源:
第一,示值不确定度对于1.0级拉力试验机供应商说明为示值的±1.0%。

故相对标准不
确定度按均匀分布则相对标准不确定度为20.010.5810-=⨯;
第二,拉力试验机用0.3级标准测力仪校准,测力仪的相对不确定度为0.3%,按正态分布转化则校准引入的相对标准不确定度为0.003/1.96=0.15×10-2 ;
第三,拉力试验机刻度盘量程上限为200kN ,最小分度为0.5kN ,持证上岗人员可估读到0.2分度,即±0.1kN ,本例在40kN 处拉断故±0.1kN/40kN=±2.5×10-3,按均匀分布转化,
人员读数引入的相对标准不确定度为332.510 1.410--⨯=⨯,以上三项合成得:
() 0.0062
c u F F
=
=按公式(2)有:
2
22
()0.0062(20.00052)c u σσ⎡⎤=+⨯⎢⎥


故2() 3.2/m m c u N σ= 由(1)式有
2
2
440000509.3/m m
π10.00
N σ⨯=
=⨯
扩展不确定度,取k=2,则
2
()2 3.2 6.4/mm
U N σ=⨯=,取1位有效数字则有2()7/m m U N σ=
结果表示为2(5097)/m m N ±。

二、类型2,需要做一条校准直线的仪器测量的例子。

例3. 用原子吸收光谱法测定陶制品释放镉的不确定度分析
三、类型3,单点校准的仪器测量例子
例4. 用GC-14C 气相色谱仪测定氮中甲烷气体的含量例子。

假若被测氮中甲烷气体的含量为C 被,其摩尔分数大约为50×10-6;
选择编号为GBW08102的一级氮中甲烷气体标准物质,其含量为C 标=50.1×10-6,其相对扩展不确定度为1%,用该标准气体校准气相色谱仪,则有:
C C A A =被标被

故 A C C A =被被标

(1)
式中:C 被——被测氮中甲烷气体含量
C 标——一级标准氮中甲烷气体含量
A 被——被测气体在色谱仪中测得的色谱峰面积
A 标——一级标准氮中甲烷气体在色谱中测得的色谱峰面积
下表给出氮中甲烷一级气体标准物质(瓶号为009638)和被测氮中甲烷气体(瓶号为
B0203011)的色谱测定数据:
色谱测定数据表
按照公式(1),由不确定度传播公式有:
2
2
2
2
()()()()c c c c u C u A u C u A C C A A ⎡⎤⎡⎤⎡⎤⎡⎤=++⎢⎥⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦⎣⎦
被被标标被标被标 (2)
C 标的相对扩展不确定度为1%,按95%置信概率转化成标准不确定度则有
2
10
5.096
.1%1)(-⨯==标
标C C u c
C 标在色谱仪上测定峰面积,由表中可以看出相对标准不确定度为0.4×10-2 C 被在色谱仪上测定峰面积,由表中可以看出相对标准不确定度为0.7×10-2
由于是比较测定,色谱仪测定时B 类不确定度可以几乎相互抵消,因此按(2)式有
2
2
2
2
2
2
2
()[](0.510)(0.410)(0.710)
0.00009
c u C C ---=⨯+⨯+⨯=被被

()0.0095c u C C =被被
由(1)式有
6
6
114750.110
1156
49.710
C --=
⨯⨯=⨯被

6
6
()0.009549.710 0.4810
c u C --=⨯⨯=⨯被
取2=K
则666()20.48100.9610 1.010U C ---=⨯⨯=⨯≈⨯被 结果表示成:(49.7±1.0)×10-6
例5.用K 型热电偶数字式温度计直接测量温度示值400℃的工业容器的实际温度,分析其测量不确定度。

K 型热电偶数字式温度计其最小分度为0.1℃,在400℃经校准修正值为0.5℃,校准的不确定度为0.3℃;
测量的数学模型为:
t =d +b (1)
式中:t ——实际温度,℃
d ——温度计读取的示值,℃ b ——修正值,℃,b =0.5℃
测量人员用K 型热电偶数字式温度计进行10次独立测量,得到平均值及平均值的标准偏差为:
d =400.22℃ s =0.33℃ 由(1)得
t =400.22+0.5=400.72℃ 不确定度分析:
第一,测量的A 类不确定度为0.33℃ 第二,修正值的校准不确定度为0.3℃ 接正态分布转化应为
15
.096
.13.0=℃
第三,温度计最小分度为0.1℃,假定读取到其一半,接均匀分布则读数产生的标准不确定度为
0.029
=℃
将以上三项合成得
() 0.37C
c u t =
=︒
取K=2,则有
U (t )=0.37×2=0.74≈0.8℃
结果表达为
(400.7±0.8) ℃
例6.用数字多用表测量电阻器的电阻 数学模型为
SZ
R R = (1)
式中
R
—电阻器的电阻值,ΩK SZ
R —数字多用表示值,ΩK
数字多用表为5.5位,其最大允许差为
±(0.005%×读数+3×最小分度)
数字多用表最小分度为0.01ΩK
在相同条件下用数字多用表测量电阻器10次电阻,得到平均值和平均值的标准偏差为:
Ω=K R SZ 408.999 Ω
=K S 082.0
引用最大允许差按均匀分布得校准产生的标准不确定度为
Ω=⨯+⨯K 046.03
01
.03408.999%005.0
将以上两项合成得:
Ω
=+=
K R u c 094.0046
.0082
.0)(2
2
取K=2,则有
Ω=⨯=K R U 19.02094.0)( 999.408999.41R =≈
结果表示成:
Ω
±K )19.041.999(。

相关文档
最新文档