八年级数学四边形证明题习题

合集下载

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版数学八年级下期第十八章平行四边形含辅助线证明题训练1.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.2.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.3.如图,在平行四边形ABCD中,AC,BD交于点O,且AO=BO,∠ADB的平分线DE交AB于点E.(1)求证:四边形ABCD是矩形.(2)若AB=8,OC=5,求AE的长.4.如图,在正方形ABCD中,E是边AB上一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E 作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC,CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG,CG,DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.6.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)求证:DP=BF;(2)若正方形ABCD的边长为4,求DP的长;(3)求证:CP=BM+2FN.7.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.8.在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.AC,将菱形ABCD绕着点B (3)如图3,若E是线段AC延长线上的一点,CE=12顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.9.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.10.如图,正方形ABCD中,F在CD上,AE平分∠BAF,E为BC的中点.求证:AF=BC+CF.11.已知:如图(1),点E、F分别为正方形ABCD的边BC、DC上的点,线段AE和AF分别交BD于点M和点N,连接MF,MF⊥AE于点M.(1)求证:∠EAF=45°;(2)如图(2),连接EF,当AD=5,DF=1时,求线段EF的长度;BD.(3)如图(3),作FR⊥BD于R.求证:RM=12BC,CE⊥AB于点E,F是AD的中点,连接12.如图,在平行四边形ABCD中,AB=12EF,CF.求证:(1)EF=CF;(2)∠EFD=3∠AEF.13.如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.14.已知:如图,G为平行四边形ABCD中BC边的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,得∠3=∠2,求证:CD=BF+DF.15.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF:(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形.并证明你的结论(请先补全图形,再解答):(3)若ED=EF,则ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.16.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。

华师版八年级数学下册同步练习题-多个平行四边结合的平行四边形的证明

华师版八年级数学下册同步练习题-多个平行四边结合的平行四边形的证明

第4课时 多个平行四边形综合的平行四边形的证明
1.如图,□ABCD 中,E ,F 和G ,H 分别是AD 和BC 的三等分点,则图中平行四边形的个数是( )
A .3个
B .4个
C .5个
D .6个
第1题图 第2题图
2.如图,E ,F 分别是□ ABCD 的两对边的中点,则图中平行四边有_______________________.
3.如图,四边形ABCD 是平行四边形,E ,F 为对角线AC 上两点,连接ED ,EB ,FD ,FB .给出以下结论:①BE ∥DF ;②BE=DF ;③AE=CF .请你从中选取一个条件,使∠1=∠2成立,并给出证明.
4.如图,在平行四边形ABCD 中,E 、F 分别是直线AB 、CD 的中点,AF 、DE 相交于点G ,CE 、BF 交于点H .求证:四边形GEHF 是平行四边形.
5.如图,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形.求证:OE 与AD 互相平分.
H G
F A
D B
C E。

初二数学四边形试题答案及解析

初二数学四边形试题答案及解析

初二数学四边形试题答案及解析1.如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.【答案】(1)证明见解析;(2)BE=5.【解析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长;试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.(2)∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠3=90°﹣∠2,∠4=90°﹣∠1,∴∠3=∠4,∴AE=BE,∴BE=AE=CE=BC=5.【考点】1、平行四边形的判定与性质;2、菱形的性质2.如图,在▱ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=60°,BE=4,CF=2.(1)从对称性质看,▱ABCD是_________对称图形;(2)求平行四边形ABCD的周长.【答案】(1)中心;(2)40【解析】(1)根据平行四边形的性质可知:对角线互相平分,所以O为旋转中心,即平行四边形ABCD是中心对称图形;(2)根据平行四边形中对角、对边分别相等,∠B=∠ADC=60°,再根据已知边长,由勾股定理可求出AB、AD的长,进而可求出平行四边形ABCD的周长.试题解析:1)∵四边形ABCD是平行四边形,∴对角线互相平分,∴O为旋转中心,即平行四边形ABCD是中心对称图形,(2)∵四边形ABCD是平行四边形,∴∠B=∠D=60°,AB=CD,AD=BC.∵AE⊥BC,∵BE=4,∴AB=8,∴CD=AB=8,∵CF=2,∴DF=6,∵AF⊥DC,∠D=60°∴在Rt△ADF中,AD=12,∴平行四边形ABCD的周长=2(12+8)=40.【考点】1.平行四边形的性质;2.中心对称图形3.下列性质中,正方形具有而矩形不一定具有的性质是A.对角线互相垂直B.对角线互相平分C.对角线相等D.四个角都是直角【答案】A.【解析】A、正方形的对角线互相垂直平分,矩形的对角线互相平分但不一定垂直,故本选项正确.B、正方形和矩形的对角线都互相平分,故本选项错误;C、正方形和矩形的对角线都相等,故本选项错误;D、正方形和矩形的四个角都是直角,故本选项错误.故选A.【考点】1.正方形的性质2.矩形的性质.4.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?用你学过的方法进行解释.【答案】3cm.【解析】根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC﹣BF=4,设CE=x,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到∴42+x2=(8﹣x)2,然后解方程即可.试题解析:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴BF=.∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3.∴EC的长为3cm.【考点】1.翻折变换(折叠问题);2.矩形的性质;3.勾股定理;4.方程思想的应用.5.ABCD中, ∠A比∠B小200,则∠A的度数为( )A.600B.800C.1000D.1200【答案】B.【解析】∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C,∴∠A+∠B=180°,∵∠B-∠A =20°,∴∠B=100°,∴∠A=80°.故选B.【考点】平行四边形的性质.6.矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是()A.6B.C.2(1+)D.1+【答案】C.【解析】本题已知条件涉及矩形的对角线和周长,可考虑用“矩形的对角线相等且相互平分”性质来解.如图所示,∠AOB=120°,AD=2∵ABCD为矩形,∴AD=BC=2,AO=B0=1(矩形的对角线相等且相互平分),∴△AOB为等腰三角形,∠BAO=30°;在Rt△ABD中,∠BAO=30°,AD=2∴AB= ,BD=1,∴矩形ABDC的周长为.【考点】矩形性质.7.如图,在梯形中,为的中点,交于点.(1)求证:;(2)当,且平分时,求的长.【答案】(1)证明详见解析.(2)EF=4.【解析】根据题意构造辅助线,利用中线性质和平行四边形性质即可得出结论.(1)过D作DM∥AB,∵AD∥BC,DM∥AB,∴四边形ABMD为平行四边形,∴BM=AD∵,∴EF∥DM,又∵E为CD的中点∴F为CM中点即MF=CF,∴BF=BM+MF=AD+CF.(2)过E作EH⊥AB,∵BE平分,∴CE=EH=DE(角平分线上一点到角两边的距离相等),在Rt△ADE和Rt△AHE中,DE=EH,AE=AE∴Rt△ADE≌Rt△AHE(SH定理)∴AH=AD=1,同理可得BH=BC=7,∴AB=AH+BH=8∵四边形ABMD为平行四边形,∴DM=AB=8,又∵E、F 分别为CD、CM中点,∴.【考点】1.平行四边形性质;2.角平分线性质;3.全等三角形.8.已知O是口ABCD对角线的交点,△ABC的面积是3,则口ABCD的面积是()A.3B.6C.9D.12【答案】B.【解析】根据平行四边形的性质可知,OD=OB,OA=OC,所以平行四边形的两条对角线把平行四边形分成四个面积相等的三角形,已知△ABC的面积为3,所以平行四边形的面积可求.∵O为▱ABCD对角线的交点,且△ABC的面积为3,∴▱ABCD的面积为2×3=6.故选B.【考点】平行四边形的性质.9.矩形、菱形与正方形都具有的性质是()A.对角线互相垂直B.对角线互相平分C.对角线平分一组对角D.对角线相等【答案】B.【解析】A、矩形对角线不互相垂直,故本选项错误;B、平行四边形的对角线互相平分,以上三个图形都是平行四边形,故本选项正确;C、三个图形中,只有菱形和正方形的对角线平分一组对角,故本选项错误;D、菱形对角线不相等,故本选项错误.故选B.【考点】1.正方形的性质2.菱形的性质3.矩形的性质.10.如图,△ABC中,O是AC上的任意一点(不与点A、C重合),过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论.【答案】(1)证明见解析;(2)当O运动到AC中点.【解析】(1)根据MN∥BC,CE平分∠ACB,CF平分∠ACD及等角对等边即可证得OE=OF;(2)根据矩形的性质可知:对角线且互相平分,即AO=CO,OE=OF,故当点O运动到AC的中点时,四边形AECF是矩形.(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF.(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF=∠BCD,∴∠ECF=90°,∴四边形AECF是矩形.【考点】矩形的判定.11.如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,且AE:EB=5:2,则阴影部分的面积为_______【答案】24cm2.【解析】因为AD=12cm,AB=7cm,且AE:BE=5:2,则AE=5,BE=2,则阴影部分的面积=12×7﹣12×5=24cm2.故答案是24cm2.【考点】矩形的性质.12.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为 ( )A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶2【答案】A.【解析】∵四边形ABCD是平行四边形∴∠CDE=∠DEA∵DE是∠ADC的平分线∴∠CDE=∠ADE∴∠DEA=∠ADE∴AE=AD=4∵F是AB的中点∴AF=AB=3∴EF=AE-AF=1,BE=AB-AE=2∴AE:EF:BE=4:1:2.故选A.考点: 平行四边形的性质.13.(1)如图1,△ABC的顶点坐标分别为A(-1,0),B(3,0),C(0,2).若将点A 向右平移4个单位,则A、B两点重合;若将点A向右平移1个单位,再向上平移2个单位,则A、C两点重合.试解答下列问题:①填空:将点C向下平移个单位,再向右平移个单位与点B重合;②将点B向右平移1个单位,再向上平移2个单位得点D,请你在图中标出点D的位置,并连接BD、CD,请你说明四边形ABDC是平行四边形;(2)如图2,△ABC的顶点坐标分别为A(-2,-1),B(2,-3),C(1,1).请问:以△ABC的两条边为边,第三边为对角线的平行四边形有几个?并直接写出第四个顶点的坐标.【答案】(1)①2,3;②见解析;(2)有3个,(5,-1),(-1,-5),(-3,3).【解析】(1)①根据平移的规律:上加下减,左加右减即可得出将点C向下平移2个单位,再向右平移3个单位与点B重合;②根据平移的规律:上加下减,左加右减得出将点D的坐标为(4,2),然后根据一组对边平行且相等的四边形是平行四边形证出四边形ABDC是平行四边形;(2)分别以AB,BC,AC为平行四边形的对角线,考虑第四个顶点D的坐标,有三种可能结果.试题解析:(1)①∵B(3,0),C(0,2),∴将点C向下平移2个单位,再向右平移3个单位与点B重合.故答案为2,3;②点D位置如图所示.证明:由图可知AB∥CD,AB=CD,∴四边形ABCD是平行四边形;以△ABC的两条边为边,第三边为对角线的平行四边形共有3个.①以AB、AC为边可作一平行四边形,第四个顶点的坐标为(5,-1);②以CA、CB为边可作一平行四边形,第四个顶点的坐标为(-1,-5);③以BA、BC为边也可作一平行四边形,则第四顶点的坐标为(-3,3).【考点】坐标与图形变化-平移;平行四边形的判定.14.如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是_________cm.【答案】2【解析】利用平行四边形的对角线互相平分这一性质,确定已知条件中两三角形周长的差也是平行四边形两邻边边长的差,进而确定平行四边形的边长.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.【考点】平行四边形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.15.在等腰梯形ABCD中,AD∥BC,∠B=45°,若AD=4cm,AB=8cm,试求出此梯形的周长和面积.【答案】(8+20)cm,(48+32)cm2【解析】过A、D点作梯形的高AE、DF,根据等腰直角三角形性质可求得BE、AE的长,从而可以求得结果.过A、D点作梯形的高AE、DF∵等腰梯形ABCD中,∠B=45°,AB=8cm∴BE=AE=4cm∵AD=4cm∴BC=4+8cm∴梯形的周长=(8+20)cm,面积=(AD+BC)×AE=(48+32)cm2.【考点】等腰梯形的性质点评:等腰梯形的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.16.在梯形ABCD中,AB∥CD,EF为中位线,则△AEF的面积与梯形ABCD的面积之比是______________【答案】1:4【解析】解:过A作AG⊥BC,交EF与H,∵EF是梯形ABCD的中位线,∴AD+BC=2EF,AG=2AH,设△AEF的面积为xcm2,即EF•AH=xcm2,∴EF•AH=2xcm2,∴S梯形ABCD=(AD+BC)•AG=×2EF×2AH=2EF•AH=2×2xcm2=4xcm2.∴△AEF的面积与梯形ABCD的面积之比为:1:4.【考点】梯形的中位线定理点评:本题考查了梯形的中位线定理,比较简单,注意掌握梯形的中位线定理即是梯形的中位线等于上下底和的一半.17.如图所示,在平行四边形ABCD中,BD=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.【答案】【解析】因为BD=CD,所以∠DBC=∠C=70°,又因为四边形ABCD是平行四边形,所以AD∥BC,所以∠ADB=∠DBC=70°,因为AE⊥BD,所以在直角△AED中,∠DAE即可求出.∵DB=CD,∠C=70°,∴∠DBC=∠C=70°,又∵在▱ABCD中,AD∥BC,∴∠ADB=∠DBC=70°,又∵AE⊥BD,∴∠DAE=90°-∠ADB=90°-70°=20°.【考点】平行四边形的性质,等腰三角形的性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.18.如图所示,矩形的边,,它的两条对角线交于点,以、为邻边作平行四边形,平行四边形的对角线交于点,同样以、为邻边作平行四边形,……,依次类推,平行四边形的面积为.【答案】【解析】先根据平行四边形的面积公式分别计算,得到规律,再根据所得的规律求解即可.由题意得平行四边形的面积为平行四边形的面积为所以平行四边形的面积为.【考点】找规律-图形的变化点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题. 19.如图在平行四边形ABCD的对角线AC的延长线上取两点E、F,使EA=CF,求证:四边形EBFD是平行四边形.【答案】连接BD,交AC于点O,由四边形ABCD为平行四边形可得AO=CO,BO=DO,又AE=CF,所以EO=FO,即可证得结论.【解析】连接BD,交AC于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO又∵AE=CF∴EO=FO∴四边形EBFD是平行四边形.【考点】平行四边形的判定和性质点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.20.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:(填一个即可)【答案】AB=CD或AD∥BC【解析】两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形. 由题意可补充AB=CD或AD∥BC.【考点】平行四边形的判定点评:本题属于基础应用题,只需学生熟练掌握平行四边形的性判定方法,即可完成.21.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形C.当AC⊥BD时,它是菱形D.当∠ABC=900时,它是矩形【答案】B【解析】根据矩形、菱形、正方形的判定方法依次分析各项即可判断.A.当AB=BC时,它是菱形,C.当AC⊥BD时,它是菱形,D. 当∠ABC=900时,它是矩形,均正确,不符合题意;B. 当AC=BD时,无法判定它是正方形,故错误,本选项符合题意.【考点】矩形、菱形、正方形的判定点评:本题属于基础应用题,只需学生熟练掌握矩形、菱形、正方形的判定方法,即可完成. 22.已知EF是梯形ABCD的中位线,且EF=9,上底AB=6,那么下底CD= .【答案】12【解析】因为梯形的中位线长等于上底加下底的和除以2,根据题意,9×2-6=12【考点】梯形的中位线点评:基础题目,学生需要掌握梯形的中位线的运算公式,代入得出答案。

北师大版八年级下册数学第六章平行四边形含辅助线证明题—截长补短类 训练

北师大版八年级下册数学第六章平行四边形含辅助线证明题—截长补短类 训练

北师大版数学八年级下册第六章平行四边形含辅助线证明题——截长补短类1.在▱ABCD中,AE⊥BC于点E,F为AB边上一点,连接CF,交AE于点G,CF=CB=AE.(1)若AB=2√2,BC=√7,求CE的长;(2)求证:BE=CG-AG.2.在平行四边形ABCD中,以边AD为边在平行四边形内作等边△ADE,连接BE.(1)如图1,若点E在对角线BD上,且∠DAB=75°,AB=√6,求BE的长;(2)如图2,若点F是BE的中点,且CF⊥BE,过点E作MN∥CF,分别交AB,CD于点M,N,求证:DN=CN+EN.3.如图,在▱ABCD中,AE⊥BC,垂足为E,AE=CE.BF⊥AC,垂足为F,分别与AE,AD交于点G,H.(1)若AG=GE=BE=1,求▱ABCD的面积;(2)若CH平分∠BCD,求证:BC=AG+CH.4.已知在▱ABCD中,AE⊥CD,且AB=AE,F为AE上一点,且BF平分∠ABC,(1)若∠ABC=60°,AB=√3,求EF的长;(2)求证:AF+DE=BC.5.在平行四边形ABCD中,E为对角线AC上任意一点,连接BE(1)如图①所示,若AB=BE,AC=BC,∠BAC=75°,AB=2√2,求平行四边形ABCD的面积;(2)如图②所示,延长BE至F,使得EF=EB,连接CF,FD,求证:CE=AE+FD.6.在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.(1)如图1,若∠C=60°,∠BDC=75°,BD=6√2,求AE的长度;(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.7.在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.8.如图,在▱ABCD中,点F是对角线BD上一点,且满足AB=AF,过点F作EG交AD于E,交BC于G,作AH⊥BC于点H,交BD于M.(1)若F为MD中点,AF=2,AM=√3,求BC的长度;(2)若∠ABH=∠AFE,求证:BH+FG=HG.9.如图,平行四边形ABCD中,AB∥CD,AD∥BC,点G是线段BC的中点,点E是线段AD上的一点,点F是线段AB延长线上一点,连接DF,且∠ABE=∠CDG=∠FDG.(1)∠A=45°,∠ADF=75°,CD=3+√3,求线段BC的长;(2)求证:AB=BF+DF.10.如图,△ABC的高AD与中线BE相交于点F,过点C作BE的平行线,过点F作AB的平行线,两平行线相交于点G,连接BG,FG.(1)若AE=2.5,CD=3,BD=2,求AB的长;(2)若∠CBE=30°,求证:CG=AD+EF.11.如图,在□ABCD中,E为BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=100°,∠DAF=30°,求∠FAE的大小;(2)求证:AF=CD+CF.12.已知在平行四边形ABCD中,过点D作DE⊥BC于点E,且AD=DE.连接AC交DE于点F,作DG⊥AC于点G.(1)如图1,若EFDF =12,AF=√13,求DG的长;(2)如图2,作EM⊥AC于点M,连接DM,求证:AM-EM=2DG.13.如图,在平行四边形ABCD中,AE⊥BC于点E,AE=AD,EG⊥AB于点G,延长GE、DC交于点F,连接AF.(1)若BE=2EC,AB=√13,求AD的长;(2)请猜想线段EG、BG、FC之间的等量关系并证明.14.如图,已知平行四边形ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD,CE=3,AB=5.(1)求线段CF的长度;(2)求证:AB=DG+CE.15.如图所示,在平行四边形ABCD中,∠DAC=60°,点E是BC边上一点,连接AE,AE=AB,点F是对角线AC边上一动点,连接EF.(1)如图1,若点F与对角线交点O重合,已知BE=4,OC:EC=5:3,求AC的长度;(2)如图2,若EC=FC,点G是AC边上一点,连接BG、EG,已知∠AEG=60°,∠AGB+∠BCD=180°,求证:BG+EG=DC.16.如图所示,平行四边形ABCD和平行四边形CDEF有公共边CD,边AB和EF在同一条直线上,AC⊥CD且AC=AF,过点A作AH⊥BC交CF于点G,交BC于点H,连接EG.(1)若AE=2,CD=5,求△BCF的周长;(2)求证:BC=AG+EG.。

八下数学第十八章平行四边形证明题专项·练习

八下数学第十八章平行四边形证明题专项·练习

八年级平行四边形专项练习1.如图在Rt△ABC中∠ACB=90,过点C的直线MN∥AB;D为AB 边上一点,过点D作DE⊥BC交直线MN 于E垂足为F,连接CD、BE(1)求证:CE = AD(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由2. 如图在矩形ABCD中,过对角线AC的中点O作AC 的垂线,分别交射线AD、CB 于点E、F,连接AF、CE 求证:四边形AFCE 是菱形3.如图在边长为6的正方形ABCD中,E是边CD 的中点,将△ADE沿AE 对折至△AFE,延长EF交边BC 于点G,连接AG(1)求证:△ABG ≌△AFG(2)求∠EAG 的度数;(3)求BG 的长4.如图▭ABCD 的对角线相交于点O,EF过点O分别与AD、BC相交于点E、F(1)求证:△AOE≌△COF(2)若AB =4 BC =7 OE =3试求四边形EFCD的周长5如图BD 是△ABC 的角平分线,过点D作DE∥BC交AB于点E,DF∥AB 交BC 于点F(1)求证:四边形BEDF是菱形;(2)若∠ABC =60°∠ACB =45°CD =6√2求菱形BEDF的面积6.如图在△ABC中中线BE、CD 交于点O,F、G 分别是OB、OC 的中点求证:(1) DE ∥FG(2) DG 和EF 互相平分.7. 如图在△ABC 中AB=AC ,D为BC上一点以AB、BD 为邻边作平行四边形ABDE连接AD、EC(1)求证:△ADC ≌△ECD ;(2)若BD =CD 求证:四边形ADCE 是矩形8.如图在Rt△ABC 中∠ACB =90°,过点C 的直线MN ∥AB , D为AB 边上一点,过点D作DE⊥BC ,交直线MN于E,垂足为F,连接CD、BE(1)求证:CE = AD(2)当D在AB中点时,四边BECD是什么特殊四边形?说明你的理由9.如图四边形ABCD是正方形,点E在BC延长线上,DF ⊥AE 于点F 点G在AE 上且∠ABG =∠E求证:AG = DF10. 如图是直角三角尺△ABC 和等腰直角三角尺△ BCD放置在同一平面内,斜边BC重合在一起∠A =∠BDC =90°∠ABC =30°BD = CD DE⊥AB 交AB 于点E 作DF⊥AC 交AC 的延长线于点F (1)求证:四边形AEDF 是正方形(2)当AC =4时,求正方形AEDF 的边长11.如图点0是口ABCD 对角线的交点,过点0作直线分别交AB、CD 的延长线于点E、F求证:BE = DF12. 如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD 于点F,交BC的延长线于点E(1)求证:BE = CD(2)若BF 恰好平分∠ABE ,连接AC、DE求证:四边形ACED 是平行四边形13.如图1在正方形ABCD 中,E、F分别是边AD、DC 上的点且AF⊥BE(1)求证:AF = BE(2)如图2在正方形ABCD 中,M、N、P、Q 分别是边AB、BC、CD、DA 上的点且MP⊥NQ 判断MP 与NQ 是否相等?并说明理由14.如图在平行四边形ABCD中,0为对角线交点,DP 平分∠ADC,CP 平分∠BCD,AB =6 AD =10则OP的长是多少?15. 如图矩形ABCD中延长AB至E,延长CD至F . BE = DF连接EF与BC、AD 分别相交于P、Q两点(1)求证:CP = AQ(2)若BP =1 PQ =2 ∠AEF =45°求矩形ABCD 的面积16.如图在Rt△ABC中∠BAC =90° AD⊥BC于D BG 平分∠ABC EF∥BC交AC 于F求证:AE = CF17.如图将矩形纸片ABCD沿对角线AC 折叠,使点B 落到点B '的位置,AB '与CD 交于点E(1)试找出一个与△AED 全等的三角形,并加以证明;(2)若AB =8 DE =3 , P为线段AC上的任意一点PG⊥AE 于G PH⊥EC于H 试求PG + PH的值并说明理由18.如图在△ABC 中AB = BC ,BD 平分∠ABC 四边形ABED 是平行四边形,DE 交BC 于点 F 连接CE求证:四边形BECD 是矩形19.如图1将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F 分别在边AB、CD上,使点B 落在AD 边上的点M 处,点C落在点N处,MN与CD交于点P,连接EP (1)如图②若M 为AD 边的中点①△AEM 的周长=cm②求证:EP = AE + DP(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A、D 重合),△PDM的周长是否发生变化?若发生变化,直接写出△ PDM 的周长,若发生变化,请说明理由。

平行四边形证明题精选(初中数学)

平行四边形证明题精选(初中数学)

平行四边形证明题精选(初中数学)1. 证明平行四边形的性质已知四边形ABCD,证明ABCD是平行四边形的方法有:- 证明对角线互相平分- 证明对边平行- 证明对边长度相等且对角线互相垂直证明对角线互相平分证明方法如下:1. 连接对角线AC和BD;2. 证明线段AC与线段BD的中点E重合,即AE=CE及BE=DE;3. 通过副诱导线的证明,得出结论:ABCD是平行四边形。

证明对边平行证明方法如下:1. 假设AB∥CD;2. 通过诱导线的证明,得出结论:ABCD是平行四边形。

证明对边长度相等且对角线互相垂直证明方法如下:1. 假设AB=CD且AC⊥BD;2. 通过诱导线的证明,得出结论:ABCD是平行四边形。

2. 平行四边形的性质应用在解决平行四边形证明题时,可以根据平行四边形的性质进行推导。

以下是一些常见的平行四边形证明题:证明1已知平行四边形ABCD,证明△ACF≌△EBD。

证明方法:1. 延长AC和BD相交于点F;2. 通过对角线互相平分的证明,得出△ACF≌△EBD。

证明2已知平行四边形ABCD,证明AF=CD。

证明方法:1. 连接AF;2. 通过对边平行的证明,得出AF≥CD;3. 通过对角线互相平分的证明,得出AF≤CD;4. 综合以上两个结论,得出AF=CD。

证明3已知平行四边形ABCD,证明∠DAB=∠BCD。

证明方法:1. 延长AD和BC相交于点E;2. 通过对角线互相平分的证明,得出∠DAB=∠BCD。

以上是初中数学中的一些平行四边形证明题示例及解题方法。

希望能对你的学习有所帮助!。

北师大八年级下册 第六章 平行四边形证明题专项练习(包含答案)

北师大八年级下册 第六章 平行四边形证明题专项练习(包含答案)

1.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.求证:DE=BF2.如图,在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O.求证:OA=OE.3.如图所示,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在点D1处,折痕为EF,若∠BAE=55°,求∠D1AD 的度数4.如图(1),▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD、BC分别相交于点E、F,则OE=OF.若将EF向两方延长与平行四边形的两对边的延长线分别相交(如图(2)和图(3)),OE与OF还相等吗?若相等,请你说明理由.5.如图,点E为▱ABCD的边AB上一点,将△BCE沿CE翻折得到△FCE,点F落在对角线AC上,且AE=AF,若∠BAC=28°,求∠BCD的度数。

6.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.7.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.8.如图,在▱ABCD中,O是对角线AC的中点,EF经过点O交AD,BC于E,F.四边形AFCE是平行四边形吗?请说明理由.9.如图,四边形ABCD是平行四边形,直线EF∥BD,与CD、CB的延长线分别交于点E、F,与AB、AD交于点G、H.(1)求证:四边形FBDH为平行四边形;(2)求证:FG=EH.10.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.11.如图①,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)线段PE、PF、AB之间有什么数量关系?并说明理由;(2)如图②,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其他条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由.12.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.13.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.14.如图,已知△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.15.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.将△ADE沿DE折叠,使点A落在点A1处,求∠BDA1的度数.16.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.17.如图,在△ABC中,BC=AC,E、F分别是AB、AC的中点,延长EF交∠ACD的平分线于点G.(1)AG与CG有怎样的位置关系?说明你的理由;(2)求证:四边形AECG是平行四边形.18.我们知道“连接三角形两边中点的线段叫三角形的中位线”“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似地,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图所示,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线,通过观察、测量,猜想EF和AD,BC有怎样的位置和数量关系,并证明你的结论.19.如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C',D'处,折痕为MN,求∠AMD'+∠BNC' 的度数20.如图所示,E,F分别为平行四边形ABCD中AD,BC的中点,G,H在BD上,且BG=DH,求证四边形EGFH是平行四边形.21.如图所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,动点P从点A开始沿AD边以每秒1㎝的速度向D点运动,动点Q从点C开始沿CB边以每秒3㎝的速度向B运动,P,Q分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(3)t为何值时,四边形ABQP为矩形?22.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3 (1)求证:BN=DN;(2)求△ABC的周长.23.(1)如图①,口ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将口ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.答案1.证法一:∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,∠ADC=∠CBA.∵DE平分∠ADC,BF平分∠ABC,∴∠ADE= ∠ADC,∠CBF= ∠CBA,∴∠ADE=∠CBF,∴△ADE≌△CBF(ASA).∴DE=BF.证法二:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED, ∴AE=AD.同理,CF=CB,又AD=CB,∴AE=CF,∵AB=CD,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.2.证法一:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADB=∠CBD,由折叠可知∠EBD=∠CBD,BE=BC,∴∠EBD=∠ADB,AD=BE,∴BO=DO,∴AD-DO=BE-BO,即OA=OE.证法二:∵四边形ABCD为平行四边形,∴∠A=∠C,且AB=DC.由折叠可知∠E=∠C,DE=DC,∴∠A=∠E,AB=DE.在△AOB和△EOD中,∴△AOB≌△EOD,∴OA=OE.3.∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠性质知,∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°.4.题图(2)中OE=OF.理由:在▱ABCD中,AB∥CD,OA=OC,∴∠E=∠F,又∵∠AOE=∠COF,∴△AOE≌△COF(AAS),∴OE=OF题图(3)中OE=OF.理由:在▱ABCD中,AD∥BC,OA=OC,∴∠E=∠F,又∵∠AOE=∠COF,∴△AOE≌△COF(AAS),∴OE=OF5.∵∠BAC=28°,AE=AF,∴∠AFE=∠AEF= =76°,∴∠EFC=180°-76°=104°,由折叠的性质知,∠B=∠EFC=104°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠BCD=180°,∴∠BCD=180°-104°=76°.6. (1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点F为DC的延长线上一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC的中点,∴BE=CE,则在△BAE和△CFE中,∴△BAE≌△CFE(AAS),∴AB=CF,∴CF=CD.(2)DE⊥AF.理由:∵AF平分∠BAD,∴∠BAF=∠DAF,∵∠BAF=∠F,∴∠DAF=∠F,∴DA=DF,又由(1)知△BAE≌△CFE,∴AE=EF,∴DE⊥AF.7.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠ADF=∠CBE.又∵BF=DE,∴BF+BD=DE+BD,∴DF=BE.∴△ADF≌△CBE.∴∠AFD=∠CEB.∴AF∥CE.8.四边形AFCE是平行四边形.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠BCA.又∵O是AC的中点,∴OA=OC.又∵∠AOE=∠COF,∴△AOE≌△COF.∴OE=OF.∵OE=OF,OA=OC,∴四边形AFCE是平行四边形.9. (1)∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥BD,∴四边形FBDH为平行四边形.(2)由(1)知四边形FBDH为平行四边形,∴FH=BD,∵EF∥BD,AB∥DC,∴四边形BDEG是平行四边形,∴BD=EG,∴FH=EG,∴FH-GH=EG-GH,∴FG=EH.10. (1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥BC.又∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°∴△BEF是等边三角形∴EB=EF∠ABE=60°又∵EF=DC∴BE=DC∵△ABC是等边三角形, ∴∠ACB=60°,AB=AC.∴∠ABE=∠ACD,又∵BE=DC,AB=AC,∴△ABE≌△ACD,∴AE=AD.11. (1)PE+PF=AB.理由:∵PE∥AC,PF∥AB,∴∠EPB=∠C,四边形PEAF是平行四边形,∴PF=AE,∵AC=AB,∴∠B=∠C,∴∠EPB=∠B,∴PE=BE.∵BE+AE=AB,∴PE+PF=AB.(2)(1)中结论不成立.此时结论为PE-PF=AB.理由:∵PE∥AC,PF∥AB,∴∠FPC=∠ABC,四边形PEAF是平行四边形,∴PE=AF,又AB=AC,∴∠ABC=∠ACB,∴∠FPC=∠ACB=∠FCP,∴PF=FC,∴PE-PF=AF-FC=AC=AB.12. (1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥BC.又∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°,∴△BEF是等边三角形.∴EB=EF,∠ABE=60°.又∵EF=DC,∴BE=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC.∴∠ABE=∠ACD,又∵BE=DC,AB=AC,∴△ABE≌△ACD,∴AE=AD.13. (1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵M、N分别是AD、BC的中点,∴MD=NC,又MD∥NC,∴四边形MNCD是平行四边形.(3)如图,连接DN.∵N是BC的中点,BC=2CD,∴CD=NC.∵∠C=60°,∴△DCN是等边三角形.∴ND=NC,∠DNC=∠NDC=60°.∴ND=NB=CN.∴∠DBC=∠BDN=30°.∴∠BDC=∠BDN+∠NDC=90°.∴∵四边形MNCD是平行四边形,∴MN=CD.∴BD= MN.14.∵D,E 分别为AC 、AB 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC,且DE=21BC,又∵F 、G 分别是OB 、OC 的中点, ∴FG 是△BCO 的中位线,∴FG ∥BC,且FG= 21BC,∴DE ∥FG,DE=FG,∴四边形DEFG 是平行四边形. 15.∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC,∴∠ADE=∠B=50°(两直线平行,同位角相等),又∵∠ADE=∠A1DE,∴∠A1DA=2∠B,∴∠BDA1=180°-2∠B=80°.16. (1)证明:∵AN 平分∠BAC,∴∠1=∠2,∵BN ⊥AN,∴∠ANB=∠AND=90°,又AN=AN,∴△ABN ≌△ADN,∴BN=DN.(2)由△ABN ≌△ADN 知,AD=AB=10,点N 为BD 的中点,又M 是BC 的中点,∴MN 为△BCD 的中位线,∴CD=2MN=6,∴AC=AD+CD=16,∴△ABC 的周长=AB+BC+AC=10+15+16=41.17. (1)AG ⊥CG.理由:∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,AF=CF,∴EF ∥BC,∴∠FGC=∠GCD, ∵CG 平分∠ACD,∴∠FCG=∠GCD,∴∠FCG=∠FGC,∴FG=FC,又∵AF=CF,∴AF=FG,∴∠FAG=∠AGF,∵∠FAG+∠AGC+∠ACG=180°,∴∠AGC=90°,∴AG ⊥CG.(2)证明:由(1)知,FG= 21AC,∵EF 是△ABC 的中位线,∴EF= 21BC,∴FG=EF,又∵AF=CF,∴四边形AECG 是平行四边形. 18. 结论:EF ∥AD ∥BC,EF= 21(AD+BC).证明如下:如图所示,连接AF 并延长交BC 的延长线于点G,∵AD ∥BC,∴∠DAF=∠G,在△ADF 和△GCF 中,∠DAF=∠G,∠DFA=∠CFG,DF=FC,∴△ADF ≌△GCF(AAS),∴AF=FG,AD=CG,又∵AE=EB,∴EF ∥BG,EF= 21BG,即EF ∥AD ∥BC,EF= 21(AD+BC).19.四边形纸片ABCD 中,∠A=70°,∠B=80°,∴∠D+∠C=360°-∠A-∠B=210°.∵将纸片折叠,使C,D 落在AB 边上的C',D'处,∴∠MD'B=∠D,∠NC'A=∠C,∴∠MD'B+∠NC'A=210°,∴∠AD'M+∠BC'N=150°,∴∠AMD'+∠BNC'=360°-∠A-∠B-∠AD'M-∠BC'N=60°20. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC (平行四边形对边平行且相等).∴∠EDH =∠FBG . 又∵E ,F 分别为AD ,BC 的中点,∴DE =BF .又∵BG =DH ,∴.△DEH ≌△BFG (SAS ),∴EH =FG ,∠DHE =∠BGF . ∴∠EHG =∠FGH (等角的补角相等).∴EH ∥FG .∴四边形EGFH 是平行四边形21.由已知得AP =t ,CQ =3t ,PD =24-t ,BQ =26-3t .(1)∵PD ∥CQ ,∴当PD =CQ 时,即3t =24-t 时,四边形PQCD 为平行四边形,解得t =6.故当t =6时,四边形PQCD 为平行四边形. (2)如图3—38所示,作DE ⊥BC ,PF ⊥BC ,垂足分别为E ,F ,则CE =2.当QF =CE 时,即QF+CE =2CE =4时,四边形PQCD 是等腰梯形.此时有CQ -EF =4,即3t —(24一t )=4,解得t =7.故当t =7时,四边形PQCD 为等腰梯形.(3)若四边形ABQP 为矩形,则AP =BQ ,即t =26—3t ,解得t =213.故当t =213时,四边形ABQP 为矩形.22.(1)证明:在△ABN 和△ADN 中, ∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABN ≌△ADN , ∴BN =DN .(2)解:∵△ABN ≌△ADN ,∴AD =AB =10,DN =NB , 又∵点M 是BC 中点,∴MN 是△BDC 的中位线, ∴CD =2MN =6, 故△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41.23.证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA =OC ,∴∠1=∠2,∵在△AOE 和△COF 中,1234OA OC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE ≌△COF (ASA ),∴AE =CF ; (2)∵四边形ABCD 是平行四边形,∴∠A =∠C ,∠B =∠D ,由(1)得AE =CF ,由折叠的性质可得:AE =A 1E ,∠A 1=∠A ,∠B 1=∠B ,∴A 1E =CF ,∠A 1=∠A =∠C ,∠B 1=∠B =∠D ,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,∵在△A 1IE 与△CGF 中,1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A1IE≌△CGF(AAS),∴EI=FG.。

第21次平行四边形证明题暑假作业北师大版数学八年级下期

第21次平行四边形证明题暑假作业北师大版数学八年级下期

2021年北师大版八年级下期暑假作业第21次平行四边形证明题1.如图,在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H.求证:CH=EH.2.如图,在▱ABCD中,E,F是对角线BD上的点,且BE=DF,求证:四边形AECF是平行四边形.3.在平行四边形ABCD中,如果点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD,求证:EF⊥AE.4.已知,如图,在▱ABCD中,AD⊥BD,点E,F分别在AB,BD上,且满足AD=AE=DF,连接DE,AF,EF.(1)若∠CDB=20°,求∠EAF的度数.(2)若DE⊥EF,求证:DE=2EF.5.如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)连接BD交EF于点O,当BE⊥EF时,BE=8,BF=10,求BD的长.6.如图,已知AC∥DE且AC=DE,AD,CE交于点B,AF,DG分别是△ABC,△BDE的中线,•求证:四边形AGDF是平行四边形.7.如图,E,F是▱ABCD的对角线AC上的两点,AF=CE.求证:BE//DF.8.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若AE=4,AF=6,▱ABCD的周长为40,求▱ABCD的面积.9.如图,点E是▱ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.(1)若AD的长为2.求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.10.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=28°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.11.如图,点E、F在▱ABCD的对角线AC上,且AE=CF.求证:DE=BF.12.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE.(1)求证:四边形ABCD是平行四边形;(2)若∠CEB=2∠EBA,BE=3,EF=2,求AC的长.13.已知:在平行四边形ABCD中,对角线AC与BD相交于点O,点E、F分别为OB、OD的中点,连接AE并延长至点G,使EG=AE,连接CF、CG.(1)如图1,求证:EG=FC;(2)如图2,连接BG、OG,在不添加任何辅助线的情况下,请直接写出图中的四个平行四边形,使写出每个平行四边形的面积都等于平行四边形ABCD面积的一半.14.在▱ABCD中,点E在CD边上,连接AE、BE,点F在AB边上,连接CF、DF,且∠DAE=∠BCF.(1)如图1,求证:四边形DFBE是平行四边形;(2)如图2,若E是CD边的中点,连接GH,在不添加任何字母和辅助线的情况下,请直接写出图中以GH为边或以GH为对角线的所有平行四边形.15.已知:平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB、CD于点M、N,连接DM、BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.16.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.17.如图,E,F是四边形ABCD对角线AC上的两点,AD // BC,DF // BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.18.如图所示,已知E为▱ABCD中DC延长线上的一点,且CE=DC,连接AE,分别交BC和BD于点F和G,连接AC交BD于点O,连接OF.试说明:AB=2OF.19.已知:如图,在平行四边形ABCD中,E、F为对角线BD上的点,BE=DF.(1)请用直尺和圆规作出∠BFC的角平分线FH,并标出FH与BC的交点H;(保留作图痕迹)(2)在(1)的前提下,若∠AEB=110∘,求∠CFH的度数.20.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.求证:(1)△BOE≌△DOF;(2)四边形ABCD是平行四边形.21.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=√6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.22.如图,在▱ABCD中,点E是CD边的中点,连接AE并延长交BC的延长线于点F,连接BE,BE⊥AF.(1)求证:AE平分∠DAB;(2)若∠DAB=60°,AB=4,求▱ABCD的面积.23.如图所示,在□ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF交BD于点O.(1)求证:BO=DO.(2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求AD的长.24.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F,过点B作AE的垂线,垂足为H,交AC于点G(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG25.如图1,在△CEF中,CE=CF,∠ECF=90°,点A是∠ECF的平分线上一点,AG⊥CE于G,交FE的延长线于B,AD⊥AE交CF的延长线于D,连接BC.(1)直接写出∠ABF的大小;(2)求证:四边形ABCD是平行四边形;(3)建立如图2所示的坐标系,若BG=2,BC=√29,直线AD绕点D顺时针旋转45°得到直线l,求直线l的表达式.26.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,求证:(1)EF=CF;(2)∠DFE=3∠AEF.27.在平行四边形ABCD中,连接对角线BD,AB=BD,E为线段AD上一点,AE=BE.(1)如图1,若∠ABE=30°,CD=2√3,求DE的长;(2)如图2,F为线段BE上一点,DE=BF,连接AF、DF,DF的延长线交AB于点G,若AF=2DE,求证:DF=2GF.28.已知:如图,在▱ABCD 中,G、H 分别是AD、BC 的中点,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:四边形GEHF 是平行四边形;(2)已知AB=5,AD=8.求四边形GEHF 是矩形时BD 的长.29.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.30.如图,平行四边形ABCD,AD=AC,AD⊥AC.(1)如图1,点E在AD延长线上,CE∥BD,求证:点D为AE中点;(2)如图2,点E在AB中点,F是AC延长线上一点,且ED⊥EF,求证:ED=EF;(3)在(2)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(先补全图形再解答).。

2020年春季人教版八年级数学下册18.1专题训练 平行四边形的证明 (含答案)

2020年春季人教版八年级数学下册18.1专题训练 平行四边形的证明 (含答案)

18.1 专题训练平行四边形的证明1.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD 是平行四边形.2.如图,在▱ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.3.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC 上,且AF=CE.求证:四边形BEDF是平行四边形.4.如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.求证:(1)BF=DC;(2)四边形ABFD是平行四边形.5.如图,▱ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.6.如图,在△ABC中,D,E,F分别为边AB,BC,CA的中点.求证:四边形DECF是平行四边形.7.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.8.已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE =DF.连接EF,与对角线AC交于点O.求证:OE=OF.9.如图1,在▱ABCD中,∠ABC,∠ADC的平分线分别交AD,BC于点E,F.(1)求证:四边形EBFD是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF,CE,分别交BE,FD 于点G,H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE∥DF,要证明四边形EGFH是平行四边形,只需证GF∥EH.由(1)可证ED=BF,则AE=FC,又由AE∥CF,故四边形AFCE是平行四边形,从而可证得四边形EGFH是平行四边形.10.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.11.如图,四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA 的中点,顺次连接E,F,G,H,得到的四边形EFGH叫中点四边形.求证:四边形EFGH是平行四边形.12.如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.13.如图,在▱ABCD中,AE=CF,M,N分别是BE,DF的中点,求证:四边形MFNE是平行四边形.14.如图,在▱ABCD中,E,F分别是边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.15.如图,在▱ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试判断四边形AECF是不是平行四边形,并说明理由.16.如图,已知□ABCD的对角线AC ,BD相交于点O ,直线EF经过点O ,且分别交AB ,CD于点E , F.求证:四边形BFDE是平行四边形.17.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:四边形BCEF是平行四边形.18.如图所示,在四边形ABCD中,AD∥BC,AD=24 cm,BC=30 cm,点P从点A向点D以1 cm/s的速度运动,到点D即停止.点Q从点C向点B 以2 cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截成两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?参考答案18.1 专题训练平行四边形的证明1.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD 是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.2.如图,在▱ABCD中,点E在AB的延长线上,且EC∥BD.求证:四边形BECD是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB∥CD,即BE∥DC.又∵EC∥BD,∴四边形BECD是平行四边形.3.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC 上,且AF=CE.求证:四边形BEDF是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.4.如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.求证:(1)BF=DC;(2)四边形ABFD是平行四边形.证明:(1)∵DE是△ABC的中位线,∴CE=BE.在△DEC和△FEB中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB. 又∵EF =DE , ∴DE =12DF. ∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE .又∵OA=OC,∴四边形AECF是平行四边形.6.如图,在△ABC中,D,E,F分别为边AB,BC,CA的中点.求证:四边形DECF是平行四边形.证明:∵D,E,F分别为AB,BC,CA的中点,∴DF,DE为△ABC的中位线.∴DF∥BC,DE∥AC.∴四边形DECF是平行四边形.7.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O,与AD,BC 分别相交于点E,F,GH 过点O,与AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形,∴AD∥BC.∴∠EAO=∠FCO.∵O为AC的中点,∴OA=OC.在△OAE和△OCF中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ).∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.8.已知:如图,在▱ABCD 中,延长AB 至点E ,延长CD 至点F ,使得BE =DF.连接EF ,与对角线AC 交于点O.求证:OE =OF.证明:证法一:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF.∵AB ∥CD ,∴AE ∥CF.∴∠E =∠F.又∵∠AOE =∠COF ,∴△AOE ≌△COF(AAS ).∴OE =OF.证法二:连接AF ,CE.∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF.∵AB ∥CD ,∴AE ∥CF.∴四边形AECF是平行四边形.∴OE=OF.9.如图1,在▱ABCD中,∠ABC,∠ADC的平分线分别交AD,BC于点E,F.(1)求证:四边形EBFD是平行四边形;(2)小明在完成(1)的证明后继续进行了探索.连接AF,CE,分别交BE,FD 于点G,H,得到四边形EGFH.此时,他猜想四边形EGFH是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE∥DF,要证明四边形EGFH是平行四边形,只需证GF∥EH.由(1)可证ED=BF,则AE=FC,又由AE∥CF,故四边形AFCE是平行四边形,从而可证得四边形EGFH是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC,AD=BC.∵BE平分∠ABC,∴∠ABE=∠EBC=12∠ABC.∵DF平分∠ADC,∴∠ADF=∠CDF=12∠ADC.∴∠EBC=∠ADF.∵AD∥BC,∴∠AEB=∠EBC.∴∠AEB=∠ADF.∴EB∥DF.又∵ED∥BF,∴四边形EBFD是平行四边形.10.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.证明:∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线.∴OE∥BC,且OE=12BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF.∴四边形OCFE是平行四边形.11.如图,四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA 的中点,顺次连接E,F,G,H,得到的四边形EFGH叫中点四边形.求证:四边形EFGH是平行四边形.证明:连接BD.∵E,H分别是AB,AD的中点,∴EH是△ABD的中位线.∴EH=12BD,EH∥BD.同理FG=12BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.12.如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.13.如图,在▱ABCD中,AE=CF,M,N分别是BE,DF的中点,求证:四边形MFNE是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.又∵AE=CF,∴AD-AE=BC-CF,即DE=BF.∴四边形BEDF是平行四边形.∴BE∥DF,BE=DF.∵M,N分别是BE,DF的中点,∴EM=12BE=12DF=NF.∴四边形MFNE是平行四边形.14.如图,在▱ABCD中,E,F分别是边AD,BC的中点,对角线AC分别交BE,DF于点G,H.求证:AG=CH.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点,∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形.∴∠BED =∠BFD.∴∠AEG =∠CFH.在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.15.如图,在▱ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F ,试判断四边形AECF 是不是平行四边形,并说明理由.解:四边形AECF 是平行四边形. 理由如下:∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴∠AEF=∠CFE=90°,∴AE∥CF(内错角相等,两直线平行),在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE与△DCF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形(有一组对边平行且相等的四边形是平行四边形)16.如图,已知□ABCD的对角线AC ,BD相交于点O ,直线EF经过点O ,且分别交AB ,CD于点E , F.求证:四边形BFDE是平行四边形.证明:∵□ABCD的对角线AC ,BD相交于点O ,∴OA=OC ,OB=OD ,∠DCO=∠BAO又∵∠AOE=∠COD,∴△AOE≌△COF ,得OE=OF ,∴四边形BFDE是平行四边形.17.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:四边形BCEF是平行四边形.证明:在△AFB和△DCE中,{AB=DE∠A=∠DAF=DC∴△AFB≌△DCE(SAS),∴FB=CE,∴∠AFB=∠DCE,∴FB∥CE,∴四边形BCEF是平行四边形.18.如图所示,在四边形ABCD中,AD∥BC,AD=24 cm,BC=30 cm,点P从点A向点D以1 cm/s的速度运动,到点D即停止.点Q从点C向点B 以2 cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截成两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P,Q两点同时出发t s后,四边形ABQP或四边形PQCD是平行四边形.根据题意,得AP=t cm,PD=(24-t)cm,CQ=2t cm,BQ=(30-2t)cm(0≤t≤15).①若四边形ABQP是平行四边形,∵AD∥BC,∴还需满足AP=BQ.∴t=30-2t.解得t=10.∴10 s后四边形ABQP是平行四边形;②若四边形PQCD是平行四边形,∵AD∥BC,∴还需满足PD=CQ.∴24-t=2t.解得t=8.∴8 s后四边形PQCD是平行四边形.综上所述:当P,Q两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.。

八年级数学下册四边形分类证明题

八年级数学下册四边形分类证明题

八年级数学下册四边形分类证明题Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GTOM ABCD平行四边形如图,ABCD 的对角线AC ,BD 相交于点O ,EF 过点O ,与BC ,AD 分别相交于点E ,F ,• 求证:OE=OF .如图,在平行四边形ABCD 中,DB =DC ,∠C =70°,AE ⊥BD 于E ,求∠DAE 的度数.已知:如图所示,平行四边形ABCD 的对角线AC ,BD 相交于点O ,EF 经过点O 并且分别和AB ,CD 相交于点E ,F ,点G ,H 分别为OA ,OC 的中点.求证:四边形EHFG 是平行四边形.如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC 矩形如图所示,在△ABC 中,∠ABC=90°,BD 是△ABC 的中线,延长BD 到E ,使DE=BD ,连结AE ,CE ,求证:四边形ABCE 是矩形.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,求BE 的长如图,折叠长方形的一边,使点落在边上的点处,,EA B CDECDBAB ′,求:(1)的长;(2)的长.正方形如图所示不,在正方形ABCD 中,M 是BC 上一点,连结AM ,作AM 的垂直平分线GH 交AB 于G ,交CD 于H ,若AM =10cm ,求GH 的长。

菱形如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求:(1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面如图,在Rt △ABC 中, 90=∠ACB ,E 为AB 的中点,四边形BCDE 是平行四边形.求证:AC 与DE 互相垂直平分 例6、如图,在是△ABC 中,∠ACB=90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,点F 在直线DE 上,AF=CE .(1)说明,四边形ACEF 是平行四边形;(2)当∠B 的大小满足什么条件时,四边形ACEF 是菱形说明理由. (3)四边形ACEF 可能是正方形吗说明理由.CDEA BF。

四边形证明(习题及答案)

四边形证明(习题及答案)

四边形证明(习题)➢例题示范例1:如图,在□ABCD 中,E 是BC 边的中点,连接AE 并延长,交DC 的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC,BF,若∠AEC=2∠D,求证:四边形ABFC 为矩形.【思路分析】①读题标注:②梳理思路:(1)在□ABCD 中,AB∥CD,因为E 是BC 边的中点,平行夹中点结构,所以△ABE≌△FCE.(2)由(1)可得,AB=FC,因为AB∥FC,所以四边形ABFC 是平行四边形.要证四边形ABFC 为矩形,根据题目中已有的条件选择判定定理:有一个角是直角的平行四边形是矩形.由三角形外角定理和等角对等边得到AE=BE=CE,由定理“如果三角形的一边中线等于这边的一半,那么这个三角形是直角三角形”,得∠BAC=90°,故四边形ABFC 为矩形.【过程书写】证明:如图,(1)∵四边形ABCD 是平行四边形∴AB∥CD∴∠1=∠2∵E 是BC 边的中点∴BE=CE∵∠3=∠4∴△ABE≌△FCE(ASA)(2)∵△ABE≌△FCE∴AB=FC∵AB∥FC∴四边形ABFC 为平行四边形∴∠D=∠1∵∠AEC=2∠D∴∠AEC=2∠1∵∠AEC 是△ABE 的一个外角∴∠AEC=∠1+∠5∴∠1=∠5∴AE =BE=CE∴∠BAC=90°∴四边形ABFC 为矩形➢巩固练习1.如图,在四边形ABCD 中,AD∥BC,点E,F 在边BC 上,且AB∥DE,AF∥DC,四边形AEFD 是平行四边形.(1)AD 与BC 有何等量关系?请说明理由.(2)当AB=DC 时,求证:平行四边形AEFD 是矩形.2.如图,在矩形ABCD 中,O 是对角线AC,BD 的交点,过点O的直线分别交AB,CD 的延长线于点E,F.(1)求证:△BOE≌△DOF;(2)当EF 与AC 满足什么关系时,以A,E,C,F 为顶点的四边形是菱形?证明你的结论.3.如图,在△ABC 中,D 是AB 的中点.E 是CD 的中点,过点C 作CF∥AB,交AE 的延长线于点F,连接BF.(1)求证:DB=CF;(2)若AC=BC,试判断四边形CDBF 的形状,并证明你的结论.4.如图,在矩形ABCD 中,M,N 分别是AD,BC 的中点,P,Q 分别是BM,DN 的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ 是什么样的特殊四边形?请说明理由.5.如图,在△ABC 中,O 是AC 边上的一动点,过点O 作直线MN∥BC,直线MN 与∠ACB 的平分线相交于点E,与∠DCA (△ABC 的外角)的平分线相交于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC 的长;(3)当点O 运动到何处时,四边形AECF 是矩形?请证明你的结论.【参考答案】➢巩固练习1.(1)BC=3AD,理由略(2)证明略2.(1)证明略(2)当EF⊥AC 时,以A,E,C,F 为顶点的四边形是菱形证明略3.(1)证明略提示:证明△ADE≌△FCE,则DB=DA=CF(2)四边形CDBF 是矩形,证明略提示:先证四边形CDBF 是平行四边形,因为AC=BC,D 是AB 的中点,所以∠BDC=90°,进而得证4.(1)证明略(2)四边形MPNQ 是菱形,理由略提示:由△MBA≌△NDC 得,BM=DN连接MN,则四边形AMNB,四边形DMNC 均为矩形,可利用直角三角形中斜边中线等于斜边一半进行证明5.(1)证明略提示:由角平分线+平行线,可以得到OE=OC,OF=OC13(2)OC2(3)当点O 运动到AC 中点时,四边形AECF 是矩形,证明略。

人教版初二数学8年级下册 第18章(平行四边形)证明题专题训练(含答案)

人教版初二数学8年级下册 第18章(平行四边形)证明题专题训练(含答案)

人教版八年级下册数学第十八章平行四边形证明题专题训练1.如图,在平行四边形ABCD中,E、F是对角线AC所在直线上的两点,且AE=CF.求证:四边形EBFD 是平行四边形.2.如图,在△ABC中,点D,E分别是BC,AC的中点,延长BA至点F,使得AF= 1AB,连接DE,AD,EF,DF.2(1)求证:四边形ADEF是平行四边形;(2)若AB=6,AC=8,BC=10,求EF的长.的对角线AC的垂直平分线与边AD,BC分别相交于点E,3.如图所示,ABCDF.求证:四边形AFCE是菱形.AC BD交于点,O过点O任作直线分别交4.如图,在平行四边形ABCD中,对角线,AB CD于点E F,、.求证:OE OF =.5.已知:如图,在ABCD 中,,E F 是对角线BD 上两个点,且BE DF =.求证:.AE CF =6.已知:如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别相交于点E 、F .(1)求证:△BOE ≌△DOF ;(2)当EF 与AC 满足什么关系时,以A 、E 、C 、F 为顶点的四边形是菱形?并给出证明.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)求证:四边形AEBO 的为矩形;(2)若OE =10,AC =16,求菱形ABCD 的面积.8.已知:如图,在ABC 中,中线,BE CD 交于点,,O F G 分别是,OB OC 的中点.求证:(1)//DE FG ;(2)DG 和EF 互相平分.9.如图,在平行四边形ABCD 中,AC 是对角线,且AB =AC ,CF 是∠ACB 的角平分线交AB 于点F ,在AD 上取一点E ,使AB =AE ,连接BE 交CF 于点P .(1)求证:BP =CP ;(2)若BC =4,∠ABC =45°,求平行四边形ABCD 的面积.10.如图,AB,CD相交于点O,AC∥DB,OA=OB,E、F分别是OC,OD中点.(1)求证:OD=OC.(2) 求证:四边形AFBE平行四边形.11.如图所示,在菱形ABCD中,E、F分别为AB、AD上两点,AE=AF.(1)求证:CE=CF;(2)若∠ECF=60°,∠B=80°,试问BC=CE吗?请说明理由.12.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)当AB:AD的值为多少时,四边形MENF是正方形?请说明理由.13.如图,在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD 和CB于点E,F连接AF,CE.(1)求证:OE=OF;(2)求证:四边形AFCE是菱形.14.如图,BD是△ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC 于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.15.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.16.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D在AB边上一点.过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当点D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.17.如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD、EC.(1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.19.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC,(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.参考答案:1.解:证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形EBFD是平行四边形.2.(1)证明:∵点D,E分别是BC,AC的中点,∴DE是△ABC的中位线,∴DE∥AB,DE=12 AB,∵AF=12 AB,∴DE=AF,DE∥AF,∴四边形ADEF是平行四边形;(2)解:由(1)得:四边形ADEF是平行四边形,∴EF=AD,∵AB=6,AC=8,BC=10,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∵点D是BC的中点,∴AD=12BC=5,∴EF=AD=5.3.证明:∵四边形ABCD 是平行四边形∴//AE FC ,AO CO =,∴EAC FCA ∠=∠,∵EF 是AC 的垂直平分线,∴EF AC ⊥,在AOE △与COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌△△,∴EO FO =,∴四边形AFCE 为平行四边形,又∵EF AC ⊥,∴四边形AFCE 为菱形.4.解:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA =OC ,∴∠EAO =∠FCO ,在△AEO 和△CFO 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO ≌△CFO (ASA ),∴OE =OF .5.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠ABE =∠CDF .在△ABE 和△CDF 中AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS )∴AE =CF .6.(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形. 证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.7.解:(1)证明:∵//BE AC ,//AE BD ,∴四边形AEBO 为平行四边形,又∵四边形ABCD 为菱形,∴BD AC ⊥,∴90AOB ∠=︒,∴平行四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形,∴AB =OE =10,又∵四边形ABCD 为菱形,∴AO =12AC =8,∴90AOB ∠=︒,∴6BO ==,∴BD =2BO =12,∴菱形ABCD 的面积=12121696⨯⨯=.8.(1)在△ABC 中,∵BE 、CD 为中线∴AD =BD ,AE =CE ,∴DE ∥BC 且DE =12BC .在△OBC 中,∵OF =FB ,OG =GC ,∴FG ∥BC 且FG =12BC .∴DE ∥FG(2)由(1)知:DE ∥FG ,DE =FG .∴四边形DFGE 为平行四边形.∴DG 和EF 互相平分9.解:(1)设AP 与BC 交于H ,∵在平行四边形ABCD 中,AD ∥BC ,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=12BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.10.证明:(1)∵AC∥DB,∴∠CAO=∠DBO,∵∠AOC=∠BOD,OA=OB,∴△AOC≌△BOD,∴OC=OD;(2)∵E是OC中点,F是OD中点,∴OE=12OC,OF=12OD,∵OC=OD,∴OE=OF,又∵OA=OB,∴四边形AFBE是平行四边形.11.(1)证明:∵ABCD是菱形,∴AB =AD ,BC =CD ,∠B =∠D ,∵AE =AF ,∴AB ﹣AE =AD ﹣AF ,∴BE =DF ,在△BCE 与△DCF 中,∵BE DF B D BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF ,∴CE =CF ;(2)结论是:BC =CE .理由如下:∵ABCD 是菱形,∠B =80°,∴∠A =100°,∵AE =AF ,∴180100402AEF AFE ︒-︒∠=∠==︒由(1)知CE =CF ,∠ECF =60°,∴△CEF 是等边三角形,∴∠CEF =60°,∴∠CEB =180°﹣60°﹣40°=80°,∴∠B =∠CEB ,∴BC =CE .12.(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D =90°,∵M 为AD 中点,∴AM =DM ,在△ABM 和△DCM ,AM DM A D AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DCM (SAS );(2)解:当AB :AD =1:2时,四边形MENF 是正方形,理由:当四边形MENF 是正方形时,则∠EMF =90°,∵△ABM ≌△DCM ,∴∠AMB =∠DMC =45°,∴△ABM 、△DCM 为等腰直角三角形,∴AM =DM =AB ,∴AD =2AB ,即当AB :AD =1:2时,四边形MENF 是正方形.13.解:(1)∵四边形ABCD 是矩形,∴//AD BC ,∴∠EAO =∠FCO ,∵AC 的中点是O ,∴OA =OC ,在EOA △和FOC 中,AOE COF AO COEAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EOA FOC ASA ∴ ≌,∴OE =OF ;(2)∵OE =OF ,AO =CO ,∴四边形AFCE 是平行四边形,∵EF ⊥AC ,∴四边形AFCE 是菱形.14.证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形DEBF 是平行四边形,∵DE ∥BC ,∴∠EDB =∠DBF ,∵BD平分∠ABC,∠ABC,∴∠ABD=∠DBF=12∴∠ABD=∠EDB,∴DE=BE,又∵四边形BEDF为平行四边形,∴四边形BEDF是菱形;(2)如图,过点D作DH⊥BC于H,∵DF∥AB,∴∠ABC=∠DFC=60°,∵DH⊥BC,∴∠FDH=30°,DF,DH,∴FH=12∵∠C=45°,DH⊥BC,∴∠C=∠HDC=45°,∴DC DH=6,∴DF=,∴菱形BEDF的边长为15.(1)证明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt △ABG 和Rt △AFG 中,AG=AG AB=AF ⎧⎨⎩,∴△ABG ≌△AFG (HL );(2)∵△ABG ≌△AFG ,∴∠BAG =∠FAG ,∴∠FAG =12∠BAF ,由折叠的性质可得:∠EAF =∠DAE ,∴∠EAF =12∠DAF ,∴∠EAG =∠EAF +∠FAG =12(∠DAF +∠BAF )=12∠DAB =12×90°=45°;(3)∵E 是CD 的中点,∴DE =CE =12CD =12×6=3,设BG =x ,则CG =6﹣x ,GE =EF +FG =x +3,∵GE 2=CG 2+CE 2∴(x +3)2=(6﹣x )2+32,解得:x =2,∴BG =2.16.(1)证明:∵DE ⊥BC ,∴∠DFB =90°,∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE ,∵MN ∥AB ,即CE ∥AD ,∴四边形ADEC 是平行四边形,∴CE =AD ;(2)解:四边形BECD 是菱形,理由是:∵D 为AB 中点,∴AD =BD ,∵CE =AD ,∴BD =CE ,∵BD ∥CE ,∴四边形BECD 是平行四边形,∵∠ACB =90°,D 为AB 中点,∴CD =BD ,∴四边形BECD 是菱形.17.(证明:(1)∵四边形ABDE 是平行四边形(已知),∴AB ∥DE ,AB =DE (平行四边形的对边平行且相等);∴∠B =∠EDC (两直线平行,同位角相等);又∵AB =AC (已知),∴AC =DE (等量代换),∠B =∠ACB (等边对等角),∴∠EDC =∠ACD (等量代换);∵在△ADC 和△ECD 中,AC ED ACD EDC DC CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ECD (SAS );(2)∵四边形ABDE 是平行四边形(已知),∴BD ∥AE ,BD =AE (平行四边形的对边平行且相等),∴AE ∥CD ;又∵BD =CD ,∴AE =CD (等量代换),∴四边形ADCE 是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC (等腰三角形的“三合一”性质),∴∠ADC =90°,∴▱ADCE 是矩形.18.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CD BE DF =⎧⎨=⎩,∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.19.证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,∴∠CBE=∠AEB ,∵EB 平分∠AEC ,∴∠CBE=∠BEC ,∴CB=CE ,∴△CBE 是等腰三角形;(2)如图2中,∵四边形ABCD 是平行四边形,∠A=90°,∴四边形ABCD 是矩形,∴∠A=∠D=90°,BC=AD=5,在Rt △ECD 中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,3AB CD ∴====,在Rt AEB 中,∵∠A=90°,AB=3.AE=1,BE ∴===20.(1)证明:在△ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC ,在△ABF 和△ADF 中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADF(SAS),∴∠AFB=∠AFD ,∵∠CFE=∠AFB ,∴∠AFD=∠CFE ,∴∠BAC=∠DAC ,∠AFD=∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC=∠ACD ,∵∠BAC=∠DAC ,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.。

人教版数学八年级下册 第十八章 平行四边形 几何证明压轴题训练

人教版数学八年级下册 第十八章 平行四边形 几何证明压轴题训练

初二数学平行四边形压轴:几何证明题1.在四边形ABCD 中,E、F、G、H 分别是AB、BC、CD、DA 的中点,顺次连接EF、FG、GH、HE.(1)请判断四边形EFGH 的形状,并给予证明;(2)试探究当满足什么条件时,使四边形EFGH 是菱形,并说明理由。

2.如图,在直角三角形ABC 中,∠ACB=90°,AC=BC=10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1.(1)线段A 1C 1的长度是,∠CBA 1的度数是.(2)连接CC 1,求证:四边形CBA 1C 1是平行四边形.3.如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q.(1)求证:OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.4.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC.⑴求证:BE =DG;⑵若∠B =60︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.5.如图,在四边形ABCD 中,AD∥BC,E 为CD 的中点,连结AE、BE,BE⊥AE,延长AE 交BC 的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.A BE FCGD HBA 1C 1CA C ADGCBFE A Q CDPBOA DEFB6.如图,在△ABC 中,AB=AC,D 是BC 的中点,连结AD,在AD 的延长线上取一点E,连结BE,CE.(1)求证:△ABE≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.7.如图,在平行四边形ABCD 中,点E 是边AD 的中点,BE 的延长线与CD 的延长线交于点F.(1)求证:△ABE≌△DFE(2)连结BD、AF,判断四边形ABDF 的形状,并说明理由.8.如图,已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .(1)求证:AE =DF ;(2)若AD 平分∠BAC ,试判断四边形AEDF 的形状,并说明理由.9.如图,在平行四边形中,点E F ,是对角线BD 上两点,且BF DE =.(1)写出图中每一对你认为全等的三角形;(2)选择(1)中的任意一对全等三角形进行证明.10.在梯形ABCD 中,AD∥BC,AB=DC,过点D 作DE⊥BC,垂足为点E,并延长DE 至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC 是平行四边形;(2)若CE BE DE ⋅=2,求证:四边形ABFC 是矩形.ABED CABCDEFEAFCDBA BCDE F AB FCDE11.如图,△ABC 中,AB=AC,AD、AE 分别是∠BAC 和∠BAC 的外角平分线,BE⊥AE.(1)求证:DA⊥AE(2)试判断AB 与DE 是否相等?并说明理由。

初二数学经典四边形习题50道(附答案)

初二数学经典四边形习题50道(附答案)

1.已知:在矩形ABCD 中,AE ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC , AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线 交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60︒,梯形的周长是 20cm, 求:AB 的长。

6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

_ D_ C_B _ C_ A _ B_ A _ B_ E _A_ B7、已知:梯形ABCD的对角线的交点为E 若在平行边的一边BC的延长线上取一点F,使SABC∆=SEBF∆,求证:DF∥AC。

8、在正方形ABCD中,直线EF平行于对角线AC,与边AB、BC的交点为E、F,在DA的延长线上取一点G,使AG=AD,若EG与DF的交点为H,求证:AH与正方形的边长相等。

9、若以直角三角形ABC的边AB为边,在三角形ABC的外部作正方形ABDE,AF是BC边的高,延长FA使AG=BC,求证:BG=CD。

10、正方形ABCD,E、F分别是AB、AD延长线上的一点,且AE=AF=AC,EF交BC于G,交AC于K,交CD于H,求证:EG=GC=CH=HF。

11、在正方形ABCD的对角线BD上,取BE=AB,若过E作BD的垂线EF交CD于F,求证:CF=ED。

_B_C_B_F_B_C_F_C_D _B_F_B_A_E12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。

2021八年级下册数学《平行四边形》证明题精选

2021八年级下册数学《平行四边形》证明题精选

2021八年级下册数学《平行四边形》证明题精选1.如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E是AC中点,点F是BD中点.(1)求证:EF⊥BD;(2)过点D作DH⊥AC于H点,如果BD平分∠HDE,求证:BA=BC.2.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.3.(1)如图1的正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD 到点G,使DG=BE,连接EF,AG.求证:EF=FG;(2)如图2,等腰Rt△ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,求MN的长.4.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.5.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.6.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.7.如图所示,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若AC=6,求AB的长.8.已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,求证:EG、HF互相平分.9.如图,已知四边形ABCD的对角线AC与BD相交于点O,且AC=BD,M、N分别是AB、CD的中点,MN分别交BD、AC于点E、F.你能说出OE与OF的大小关系并加以证明吗?10.如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG.11.如图1,已知在四边形ABCD中,AD∥BC,AB∥CD,BE平分∠ABC,交AD于点E,过点E作EF∥AB,交BC于点F,O是BE的中点,连接OF,OC,OD.(1)求证:四边形ABFE是菱形;(2)若∠ABC=90°,如图2所示:①求证:∠ADO=∠BCO;②若∠EOD=15°,AE=1,求OC的长.12.如图,菱形ABCD,∠BAD=60°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,BE.(1)求证:△CEF是等边三角形.(2)若∠BAF=45°,AE=5,求BF的长.13.如图,在长方形ABCD中,AB=10,AD=4,E为边CD上一点,CE=7,点P从点B 出发,以每秒1个单位长度的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为ts.(1)当t=1时,判断△P AE是否为直角三角形,说明理由;(2)是否存在这样的t,使EA平分∠PED?若存在,求出t的值;若不存在,请说明理由.14.如图,在△ABC中,D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.求证:(1)四边形BDEF是平行四边形;(2)BF=(AB﹣AC).15.如图,点E在矩形ABCD的边CD上,连接AE,BE,过点A作AF⊥BE于点F,且CE=BF.(1)证明:BC=AF;(2)若∠AEB=2∠CEB,求∠EAF的度数.16.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,BG=;AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,请直接写出此时DE的长.17.如图,正方形ABCD的顶点A在直线l上,分别过点B,D作直线l的垂线,点E,F 为垂足,连接BF.(1)求证:AE=DF;(2)若AE=6,BF=,求△ABF的面积.18.正方形ABCD中,M为射线CD上一点(不与D重合),以CM为边,在正方形ABCD 的异侧作正方形CFGM,连接BM,DF,直线BM与DF交于点E.(1)如图1,若M在CD的延长线上,求证:DF=BM,DF⊥BM;(2)如图2,若M移到边CD上.①在(1)中结论是否仍成立?(直接回答不需证明)②连接BD,若BD=BF,且正方形CFGM的边长为1,试求正方形ABCD的周长.19.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,EF⊥AD于点F,DG⊥AE于点G,DG与EF交于点O.(1)求证:四边形ABEF是正方形;(2)若AD=AE,求证:AB=AG;(3)在(2)的条件下,已知AB=1,求OD的长.20.如图所示,在平行四边形ABCD中,∠DAC=60°,点E是BC边上一点,连接AE,AE=AB,点F是对角线AC边上一动点,连接EF.(1)如图1,若点F与对角线交点O重合,已知BE=4,OC:EC=5:3,求AC的长度;(2)如图2,若EC=FC,点G是AC边上一点,连接BG、EG,已知∠AEG=60°,∠AGB+∠BCD=180°,求证:BG+EG=DC.21.如图,在矩形ABCD中,对角线AC、BD相交于点O,AM⊥BD,CN⊥BD,垂足分别为M、N.延长AM至G,使AM=MG,连接CG.(1)求证:△AOM≌△CON.(2)当AM:OA=2:时,判断四边形MGCN的形状,并说明理由.22.如图,在四边形ABCD中,AB=CD,点E在DC的延长线上,连接BE交AD于点F,BE平分∠ABC,BC=EC,作FG⊥BA延长线于点G.(1)求证:四边形ABCD为平行四边形;(2)若F为AD中点,EF=6,BC=2,求GF的长.23.如图,在矩形ABCD中,AB=4cm,BC=11cm,点P从点D出发向终点A运动;同时点Q从点B出发向终点C运动.当P、Q两点其中有一点到达终点时,另一点随之停止,点P、Q的速度分别为1cm/s,2cm/s,连接PQ、AQ、CP.设点P、Q运动的时间为t(s).(1)如图(1),当t为何值时,四边形ABQP是矩形?(2)如图(2),若点E为边AD上一点,当AE=3cm时,四边形EQCP可能为菱形吗?若能,请求出t的值;若不能,请说明理由.24.如图所示,已知AB∥CD,AB=CD,∠A=∠D.(1)求证:四边形ABCD为矩形;(2)若点E是AB边上的中点,点F为AD边上一点,∠1=2∠2,CF=5,求AF+BC 的值.25.已知,如图平行四边形ABCD中,E是CD的中点,F是AE的中点,FC与BE交于点G,求证:GF=GC.26.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.(1)求证:BE=BC;(2)若AB=1,∠ABE=60°,求DE的长;(3)若BE=DC+DE,求∠BEC的度数.27.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作OE⊥BC交BC于点E.过点O作FG⊥AB交AB、CD于点F、G.(1)如图1,若BC=5,OE=3,求平行四边形ABCD的面积;(2)如图2,若∠ACB=45°,求证:AF+FO=EG.28.如图,点E为▱ABCD的边AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形;(3)连接EH,交BC于点O,若OC=OH,求证:EF⊥EG.29.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,求线段DH长度的最小值.30.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DF A的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.31.在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点,PF⊥BD于点F,P A=PF.(1)试判断四边形AGFP的形状,并说明理由.(2)若AB=1,BC=2,求四边形AGFP的周长.32.如图,在Rt△ABC中,∠C=90°,∠BAM和∠ABN是△ABC的两个外角,AD平分∠BAM,交∠ABN的平分线于点D,过点D分别作DE⊥CM于点E,作DF⊥CN于点F.(1)试猜想四边形CEDF的形状,并证明你的结论;(2)若AE=BF,试证明:AC=AE.33.如图①,正方形ABCD中,点E是对角线AC上任意一点,连接DE、BE.(1)求证:DE=BE;(2)当AE=AB=2时,求四边形ABED的面积;(3)如图②,过点E作EF⊥DE交AB于点F,当BE=BF时,若AB=+1,求AF 的长.34.已知:正方形ABCD的两条对角线相交于点O,E是线段OC上的一动点,过点A作AG⊥BE交G,交BD于F.(1)若动点E在线段OC上(不含端点),如图(1),求证:OF=OE;(2)若动点E在线段OC的延长线上,如图(2),试判断△OEF的形状,并说明理由.35.如图,在矩形ABCD中,作DE⊥AC于点E,BF⊥AC于点F,连接BE、DF.(1)判断四边形DEBF的形状,并说明理由.(2)若矩形ABCD的宽与长之比1:,求证:E、F是对角线AC的三等分点.(3)若四边形DEBF与矩形ABCD的面积之比为1:2,请直接写出矩形ABCD的宽与长之比.36.如图,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,F为AB边上一点,满足CF⊥CP,过点B作BM⊥CF,分别交AC、CF于点M、N.(1)若AC=AP,AC=3,求△ACP的面积;(2)若BC=MC,证明:CP=BM+2FN.37.如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交于点E,作BF⊥AD,垂足为F,连接EF.(1)若∠A=70°,求∠CEB的度数;(2)求证:EF=BE.38.如图,以Rt△ABC的斜边BC为边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,求AC.39.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH.在EF上取一点G,使∠ECG=∠DAH.(1)若点F在边CD上,如图1,①求证:CH⊥CG.②求证:△GFC是等腰三角形.(2)取DF中点M,连接MG.若MG=3,正方形边长为4,则BE=.40.如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.。

八年级四边形证明题专项练习

八年级四边形证明题专项练习

【课堂练习】:1、平行四边形ABCD 中,AD=2AB ,AE=AB=BF 求证:CE ⊥DF 。

2、在正方形ABCD 中,P 是BD 上一点,过P 引PE ⊥BC 交BC 于E ,过P 引PF ⊥CD 于F ,求证:AP ⊥EF 。

3、以∆ABC 的三边AB 、BC 、CA 分别为边,在BC 的同侧作等边三角形ABD 、 BCE 、CAF ,求证:ADEF 是平行四边形。

_ E _ F_ A _ B _ C_ D _F_ F_ B_ C4、M、N为∆ABC的边AB、AC的中点,E、F为边AC的三等分点,延长ME、NF交于D点,连结AD、DC,求证:⑴BFDE是平行四边形,⑵ABCD是平行四边形。

5、在直角三角形ABC中,CD是斜边AB 的高,∠A的平分线AE交CD于F,交BC 于E,EG⊥AB于G,求证:CFGE是菱形。

6、若分别以三角形ABC的边AB、AC为边,在三角形外作正方形ABDE、ACFG,求证:BG=EC,BG⊥EC。

7、正方形ABCD中,M为AB的任意点,MN⊥DM,BN平分∠CBF,求证:MD=NM_B_C_N_A_B_D_G_B_C__B_M8、正方形ABCD的边AD上有一点E,满足BE=ED+DC,如果M是AD的中点,求证:∠EBC=2∠ABM,9、从正方形ABCD的一个顶点C作CE平行于BD,使BE=BD,若BE、CD的交点为F,求证:DE=DF。

10、平行四边形ABCD中,直线FH与AB、CD相交,过A、D、C、B,向FH作垂线,垂足为G、F、E、H,求证:AG-DF=CE-BH。

11、正方形ABCD中,∠EAF=45求证:BE+DF=EF。

_C_B_C _B_B_E12、已知:如图,E、F是平行四边形ABCD•的对角线AC•上的两点,AE=CF.求证:四边形DEBF是平行四边形13、如图,四边形ABCD是平行四边形M、N是BD上两点BN=DM.求证:四边形ANCM是平行四边形A DMNB C14、在□ABCD中,E、F分别是AB、CD中点连接DE、BF、BD⑴求证:△AED≌△CBF⑵若AD⊥BD,猜想四边形BFDE是什么特殊四边形?并证明D F BA E C15、已知:如图,四边形ABCD 是平行四边形,F ,G ,是AB 边上的两个点,且FC 平分∠ BCD ,GD 平分∠ADC ,FC 与GD 相交与点E 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

家教作业
1.已知:如图等边△CDE在正方形ABCD外,连EB,求∠BED的度数.
2.已知:如图矩形ABCD中,AB=2,BC=4,E、F在BC、AD上,且四边形AECF是菱形.
求:菱形AECF的面积.
3.已知:等腰梯形ABCD中,AD∥BC,MN为中位线,交AC于P,AC平分∠BCD,
MP=12,PN=8求:它的周长.
4.已知:如图四边形ABCD是平行四边形,延长AB于F,使
四. (本题共32分,每小题8分)
1.已知:在平行四边形ABCD中,E、F在BD上,且BE=DF
求证:四边形AECF是平行四边形
2.已知:如图正方形ABCD中,E是CD上任意一点,作MN⊥BE交AD、BC于M,N两点
求证:MN=BE
3.已知:在等腰梯形ABCD中,M、N分别为上、下两底AD,BC的中点,E,F分别
为MB,CM的中点求证:四边形MENF是菱形
4.已知:如图,在平行四边形ABCD中,AB=2BC,E、B、C、F在一条直线上,
且EB=BC=CF求证:AF⊥DE。

相关文档
最新文档