平行四边形证明练习题

合集下载

平行四边形练习题及答案

平行四边形练习题及答案

平行四边形练习题及答案1. 判断题:平行四边形的对角线是否一定相等?- 答案:错误。

只有矩形和正方形的对角线相等。

2. 选择题:下列哪个选项不是平行四边形的性质?- A. 对边相等- B. 对角相等- C. 对角线互相平分- D. 邻角互补- 答案:B。

平行四边形的对角不一定相等,这是矩形和正方形的特殊性质。

3. 计算题:如果一个平行四边形的一边长为10厘米,且相邻的两边夹角为60度,求对边的长度。

- 答案:由于平行四边形的邻角互补,所以另一个角也是60度。

这意味着平行四边形是一个菱形。

在菱形中,所有边长相等,所以对边的长度也是10厘米。

4. 证明题:证明平行四边形的对角线互相平分。

- 答案:设平行四边形为ABCD,对角线AC和BD相交于点E。

由于AB平行于CD,根据平行线的性质,∠BAC=∠DCA,同理∠ABC=∠BCD。

因此,△ABC和△CDA是相似三角形。

根据相似三角形的性质,我们可以得出AE/EC = BE/ED。

同理,我们可以证明AE/EC = BD/DC。

因此,AE = EC且BE = ED,证明了对角线互相平分。

5. 应用题:一个平行四边形的面积是64平方厘米,已知一边长为8厘米,求另一边的长度。

- 答案:平行四边形的面积公式是底乘以高。

设另一边的长度为x厘米,高为h厘米。

根据面积公式,8h = 64,解得h = 8厘米。

由于平行四边形的对边相等,另一边的长度也是8厘米。

练习题答案解析通过这些练习题,学生可以检验自己对平行四边形性质的理解,并通过计算和证明题来加深对平行四边形几何特性的认识。

这些题目覆盖了平行四边形的基本性质、面积计算以及证明题,有助于培养学生的逻辑推理能力和空间想象能力。

希望这些练习题和答案能够帮助学生更好地掌握平行四边形的相关知识。

在解决实际问题时,学生应该灵活运用所学知识,结合图形的特点进行分析和计算。

平行四边形的判定习题-含答案

平行四边形的判定习题-含答案
解:猜想线段CD与线段AE的大小关系和位置关系是:平行且相等.
证明:∵CE∥AB,
∴∠DAO=∠ECO,
∵OA=OC,
∴△ADO≌△ECO,
∴AD=CE,
∴四边形ADCE是平行四边形,
∴CD AE.
6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.
求证:四边形MFNE是平行四边形.
证明:∵▱ABCD中,对角线AC交BD于点O,
∴OB=OD,
又∵四边形AODE是平行四边形,
∴AE∥OD且AE=OD,Fra bibliotek∴AE∥OB且AE=OB,
∴四边形ABOE是平行四边形,
同理可证,四边形DCOE也是平行四边形.
13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.
证明:如答图所示,
∵点O为平行四边形ABCD对角线AC,BD的交点,
∴OA=OC,OB=OD.
∵G,H分别为OA,OC的中点,
∴OG= OA,OH= OC,
∴OG=OH.
又∵AB∥CD,
∴∠1=∠2.
在△OEB和△OFD中,
∠1=∠2,OB=OD,∠3=∠4,
∴△OEB≌△OFD,
∴OE=OF.
∴四边形EHFG为平行四边形.
平行四边形的判定
1.如图所示,□AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.
2如图,已知,□ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.
3如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.

平行四边形(含答案)

平行四边形(含答案)

平行四边形参考答案典型例题例1.证明:∵DM⊥AC, BN⊥AC,DM=BN,AM=CN ∴△ADM≌△CBN ∴AD=CB,∠DAM=∠BCN ∴AD∥CB ∴平行四边形ABCD是平行四边形例2.解:∵BC∥AD,BC=AD, ∴ED=BF∴四边形BFDE是平行四边形,所以EB与DF平行且相等①成立,因为ED=BF,四边形BFDE仍是平行四边形,所以EB与DF仍平行且相等②成立,只要ED=BF,就成立③成立。

∵∠ABC=∠ADC, ∠BAD=∠BCD, ∠ABE=∠CDF∴∠EBF=∠EDF, ∠BED=∠BFD∴四边形BFDE是平行四边形,所以EB与DF平行且相等例3.解:PF∥AB,PE∥AC,则四边形AEPF是平行四边形,其周长为2(PE+PF)点P是BC的三等分点,则13PF CPAB CB==,23PE BPAC BC==, 又AB=AC,所以2(PE+PF)=2*12()33+AB=2AB例4.解:①连结AC,BD②将AD和BC四等分,连结对应分点③连结AC,取BC和AD的中点分别为E、F,连结AE、CF例5.解:CF=BE ∵DE∥BC EF∥AC ∴四边形EDCF是平行四边形∴CF=ED ∵BD平分∠ABC, ∠CBD=∠BDE ∴∠DBE=∠BDE ∴BE=ED ∴CF=BE例6.解:连结BD,则GF∥BD,HE∥BD, GF=HE=12BD,所以四边形EFGH是平行四边形例7.(1)证明:旋转90°时,EF⊥AC,又AB⊥AC 则AB∥EF,又AF∥BE,所以四边形ABEF是平行四边形(2)∵AO=CO,∠AOF=∠COE, ∠OAF=∠OCE∴△AOF≌△COE ∴AF=CE(3)可能。

此时EF⊥BD,旋转的角度为∠AOF=90°-∠AOB, AC=2,AO=1=AB,所以∠AOB=45°,所以旋转的角度为45°双基练习1.19,112.1203.1444.185. 50°6.C7.D8.D9.解:∵∠AEB=∠DAE, ∠DAE=∠BAE∴AB=BE=BC-CE=3∴周长为2(AD+AB)=18巩固练习1.AO=CO或BO=DO2.C3.D4.C5.156.187.15,108.解:∵AO=CO,EO为公共边,∠AOE=∠COE∴△AOE≌△COE,∴AE=CE∴周长为CD+DE+CE=CD+AD=89.10.DF和AE相互平分。

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)

平行四边形的判定练习题(含答案)(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.7.如图所示,在四边形ABCD中,AB=CD,BC=AD,E,F 为对角线AC上的点,且AE=CF,求证:BE=DF.8.如图所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.9.如图所示,已知四边形ABCD是平行四边形,在AB 的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.10.如图所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.知能点2 三角形的中位□线11.如图所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.12.如图所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交AD.于点N,求证:MN∥AD且MN=1213.如图所示,DE是△ABC的中位线,BC=8,则DE=_______.14.如图所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为(). A.3cm B.6cm C.9cm D.12cm 15.如图所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?16.如图所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF的面积.规律方法应用17.如图所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?18.如图所示,在□ABCD中,AB=2AD,∠A=60°,E,F 分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?19.如图所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•(BC-AC).试说明:(1)DE∥BC.(2)DE=12开放探索创新20.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.中考真题实战21.(长沙)如下左图所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)22.(呼和浩特)如上右图所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH :S四边形ABCD的值是_________.23.(南京)已知如图19-1-55所示,在Y ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.答案:1.C 2.C 3.D4.(1)× (2)× (3)∨ (4)∨ (5)∨ (6)×5.AD=BC或AB∥CD6.解:∵∠1=∠2,∴AD∥BC.又∵∠3=∠4,∴AB∥CD.∴四边形ABCD是平行四边形.7.证明:∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AB∥CD,∴∠BAE=∠DCF.又∵AE=CE,∴△ABE≌△CDF(SAS),∴BE=EF.8.证明:∵FC∥AB,∴∠DAC=∠ACF,∠ADF=∠DFC.又∵AE=CE,∴△ADE≌△CFE(AAS),∴DE=EF.∵AE=CE,∴四边形ADCF为平行四边形.∴CD=AF.9.证明:∵四边形ABCD是平行四边形.∴AB//DC.又∵BE=AB,∴BE//DC,∴四边形BDCE是平行四边形.∵DC∥BF,∴∠CDF=∠F.同理,∠BDM=∠DMC.∵BD=BF,∴∠BDF=∠F.∴∠CDF=∠CMD,∴CD=CM.10.证明:过点B作BG∥AD,交DC的延长线于G,连接EG.∵DC∥AB,∴ABGD是平行四边形,∴BG// AD.在□ACED中,AD//CE,∴CE//BG.∴四边形BCEG为平行四边形,∴EF=FB.11.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC.∵CE=CD,∴AB//CE,∴四边形ABEC为平行四边形.∴BF=FC,∴OF//1AB,即AB=2OF.212.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC.又∵EF∥AB,∴EF∥CD.∴四边形ABEF,ECDF均为平行四边形.又∵M,N分别为Y ABEF和Y ECDF对角线的交点.∴M为AE的中点,N为DE的中点,即MN为△AED的中位线.∴MN∥AD且MN=12AD.13.4 14.B15.解:EFGH是平行四边形,连接AC,在△ABC中,∵EF是中位线,∴EF//12AC.同理,GH//12AC.∴EF//GH,∴四边形EFGH为平行四边形.16.解:∵EF,DE,DF是△ABC的中位线,∴EF=12AB,DE=12AC,DF=12BC.又∵AB=10cm,BC=8cm,AC=6cm,∴EF=5cm,DE=3cm,DF=4cm,而32+42=25=52,即DE2+DF2=EF2.∴△EDF为直角三角形.∴S△EDF =12DE·DF=12×3×4=6(cm2).17.解:∵M,N分别是AC,BC的中点.∴MN是△ABC的中位线,∴MN=12AB.∴AB=2MN=2×20=40(m).故A,B两点间的距离是40m.18.解:连接DE.∵四边形ABCD是平行四边形,∴AB//CD.∵DF=12CD,AE=12AB,∴DF//AE.∴四边形ADFE是平行四边形.∴EF=AD=1cm.∵AB=2AD,∴AB=2cm.∵AB=2AD,∴AB=2AE,∴AD=AE.∴∠1=∠4.∵∠A=60°,∠1+∠4+∠A=180°,∴∠1=∠A=∠4=60°.∴△ADE是等边三角形,∴DE=AE.∵AE=BE,∴DE=BE,∴∠2=∠3.∵∠1=∠2+∠3,∠1=60°,∴∠2=∠3=30°.∴∠ADB=∠3+∠4=90°.=cm).19.解:延长AD交BC于F.(1)∵AD⊥CD,∴∠ADC=∠FDC=90°.∵CD平分∠ACB,∴∠ACD=∠FCD.在△ACD与△FCD中,∠ADC=∠FDC,DC=DC,∠ACD=∠FCD.∴△ACD≌△FCD,∴AC=FC,AD=DF.又∵E为AB的中点,∴DE∥BF,即DE∥BC.(2)由(1)知AC=FC,DE=12BF.∴DE=12(BC-FC)=12(BC-AC).20.解:AE=CF.理由:过E作EG∥CF交BC于G,∴∠3=∠C.∵∠BAC=90°,AD⊥BC,∴∠ABC+∠C=90°,∠ABD+∠BAD=90°.∴∠C=∠BAD,∴∠3=∠BAD.又∵∠1=∠2,BE=BE,∴△ABE≌△GBE(AAS),∴AE=GE.∵EF∥BC,EG∥CF,∴四边形EGCF是平行四边形,∴GE=CF,∴AE=CF.21.答案不唯一,如AB=CD或AD∥BC.22.1223.解:(1)在□ABCD中,AD=CB,AB=CD,∠D=∠B.∵E,F分别为AB,CD的中点,∴DF=12CD,BE=12AB,∴DF=BE,∴△AFD≌△CEB.(2)在□ABCD中,AB=CD,AB∥CD.由(1)得BE=DF,∴AE=CE,∴四边形AECF是平行四边形.。

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习一、平行四边形的性质1. 定义:平行四边形是一种具有两对对边平行的四边形。

定义:平行四边形是一种具有两对对边平行的四边形。

2. 性质1:平行四边形的对边相等。

性质1:平行四边形的对边相等。

3. 性质2:平行四边形的对角线相等。

性质2:平行四边形的对角线相等。

4. 性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

5. 性质4:平行四边形的两组对边分别互相平行并且相互等长。

性质4:平行四边形的两组对边分别互相平行并且相互等长。

二、平行四边形的判定1. 判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

2. 判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

三、经典例题练1. 例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

2. 例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

3. 例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

- (a)根据对边平行和相等的判定方法,若AB = CD且AD与BC互相垂直,则四边形ABCD是平行四边形。

八下数学第十八章平行四边形证明题专项·练习

八下数学第十八章平行四边形证明题专项·练习

八年级平行四边形专项练习1.如图在Rt△ABC中∠ACB=90,过点C的直线MN∥AB;D为AB 边上一点,过点D作DE⊥BC交直线MN 于E垂足为F,连接CD、BE(1)求证:CE = AD(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由2. 如图在矩形ABCD中,过对角线AC的中点O作AC 的垂线,分别交射线AD、CB 于点E、F,连接AF、CE 求证:四边形AFCE 是菱形3.如图在边长为6的正方形ABCD中,E是边CD 的中点,将△ADE沿AE 对折至△AFE,延长EF交边BC 于点G,连接AG(1)求证:△ABG ≌△AFG(2)求∠EAG 的度数;(3)求BG 的长4.如图▭ABCD 的对角线相交于点O,EF过点O分别与AD、BC相交于点E、F(1)求证:△AOE≌△COF(2)若AB =4 BC =7 OE =3试求四边形EFCD的周长5如图BD 是△ABC 的角平分线,过点D作DE∥BC交AB于点E,DF∥AB 交BC 于点F(1)求证:四边形BEDF是菱形;(2)若∠ABC =60°∠ACB =45°CD =6√2求菱形BEDF的面积6.如图在△ABC中中线BE、CD 交于点O,F、G 分别是OB、OC 的中点求证:(1) DE ∥FG(2) DG 和EF 互相平分.7. 如图在△ABC 中AB=AC ,D为BC上一点以AB、BD 为邻边作平行四边形ABDE连接AD、EC(1)求证:△ADC ≌△ECD ;(2)若BD =CD 求证:四边形ADCE 是矩形8.如图在Rt△ABC 中∠ACB =90°,过点C 的直线MN ∥AB , D为AB 边上一点,过点D作DE⊥BC ,交直线MN于E,垂足为F,连接CD、BE(1)求证:CE = AD(2)当D在AB中点时,四边BECD是什么特殊四边形?说明你的理由9.如图四边形ABCD是正方形,点E在BC延长线上,DF ⊥AE 于点F 点G在AE 上且∠ABG =∠E求证:AG = DF10. 如图是直角三角尺△ABC 和等腰直角三角尺△ BCD放置在同一平面内,斜边BC重合在一起∠A =∠BDC =90°∠ABC =30°BD = CD DE⊥AB 交AB 于点E 作DF⊥AC 交AC 的延长线于点F (1)求证:四边形AEDF 是正方形(2)当AC =4时,求正方形AEDF 的边长11.如图点0是口ABCD 对角线的交点,过点0作直线分别交AB、CD 的延长线于点E、F求证:BE = DF12. 如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD 于点F,交BC的延长线于点E(1)求证:BE = CD(2)若BF 恰好平分∠ABE ,连接AC、DE求证:四边形ACED 是平行四边形13.如图1在正方形ABCD 中,E、F分别是边AD、DC 上的点且AF⊥BE(1)求证:AF = BE(2)如图2在正方形ABCD 中,M、N、P、Q 分别是边AB、BC、CD、DA 上的点且MP⊥NQ 判断MP 与NQ 是否相等?并说明理由14.如图在平行四边形ABCD中,0为对角线交点,DP 平分∠ADC,CP 平分∠BCD,AB =6 AD =10则OP的长是多少?15. 如图矩形ABCD中延长AB至E,延长CD至F . BE = DF连接EF与BC、AD 分别相交于P、Q两点(1)求证:CP = AQ(2)若BP =1 PQ =2 ∠AEF =45°求矩形ABCD 的面积16.如图在Rt△ABC中∠BAC =90° AD⊥BC于D BG 平分∠ABC EF∥BC交AC 于F求证:AE = CF17.如图将矩形纸片ABCD沿对角线AC 折叠,使点B 落到点B '的位置,AB '与CD 交于点E(1)试找出一个与△AED 全等的三角形,并加以证明;(2)若AB =8 DE =3 , P为线段AC上的任意一点PG⊥AE 于G PH⊥EC于H 试求PG + PH的值并说明理由18.如图在△ABC 中AB = BC ,BD 平分∠ABC 四边形ABED 是平行四边形,DE 交BC 于点 F 连接CE求证:四边形BECD 是矩形19.如图1将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F 分别在边AB、CD上,使点B 落在AD 边上的点M 处,点C落在点N处,MN与CD交于点P,连接EP (1)如图②若M 为AD 边的中点①△AEM 的周长=cm②求证:EP = AE + DP(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A、D 重合),△PDM的周长是否发生变化?若发生变化,直接写出△ PDM 的周长,若发生变化,请说明理由。

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)

中考数学模拟题汇总《平行四边形的判定与证明》专项练习(附答案解析)一、综合题1.如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、BC的中点,点F在AC的延长线上,∠FEC=∠B.(1)求证:DE=CF;(2)若AC=6cm,AB=10cm,求四边形DCFE的面积.2.已知△ABC内接于⊙O,AB是⊙O的直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)若AD与⊙O相切,求∠B.3.已知:如图,点D在ΔABC的边AB上,CF//AB,DF交AC于E,EA=EC.(1)如图1,求证:CD=AF;(2)如图2,若AD=BD,请直接写出和ΔBDC面积相等的三角形.4.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF//BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=25,∠CBG=45°,BC=4√2,则▱ABCD的面积是.5.已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.6.如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.7.如图,在ΔABC中,点D、E、F分别在AB、AC、BC上,DE // BC,EF // AB.(1)求证:ΔADE∽ΔEFC;(2)如果AB=6,AD=4,求SΔADESΔEFC的值.8.如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.BC,9.如图,等边△ABC的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使CF=12连接CD和EF .(1)求证:DE=CF;(2)求EF的长.10.如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.(1)求证:四边形DEBC是平行四边形;(2)若BD=9,求DH的长.11.已知锐角△ABC内接于⊙O,AD⊥BC于点D,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,CE⊥AB于点E,交AD于点F,过点O作OH⊥BC于点H,求证:AF=2OH;,BC=2√15,求AC的长.(3)如图3,在(2)的条件下,若AF=AO,tan∠BAO=1312.如图,抛物线y=x2+bx+c与x轴交于点A(−1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.13.如图,CD是⊙O的直径,点A是⊙O外一点,AD与⊙O相切于点D,点B是⊙O上一点(点B不与点C,D重合),连接AO,AB,BC .(1)当BC与AO满足什么位置关系时,AB是⊙O的切线?请说明理由;(2)在(1)的条件下,当∠DAO=度时,四边形AOCB是平行四边形.(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足14.如图,已知函数y= kx为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点EOD,求a、b的值;(1)若AC= 32(2)若BC∥AE,求BC的长.15.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.16.如图.在一次数学研究性学习中,小华将两个全等的直角三角形纸片Rt△ABC和Rt△DEF拼在一起,使点A与点F重合,点C与点D重合(如图),其中∠ACB=∠DFE=90°,发现四边形ABDE是平行四边形.如图,小华继续将图中的纸片Rt△DEF沿AC方向平移,连结AE,BD,当点F与点C重合时停止平移.(1)请问:四边形ABDE是平行四边形吗?说明理由.cm时,请判断四边形ABDE的形(2)如图,若BC=EF=6cm,AC=DF=8cm,当AF=92状,并说明理由.参考答案与解析1.【答案】(1)证明:在△CDE 和△ECF 中,∵∠ACB=∠ECF=90°,点D 、E 是分别是AB 、BC 的中点.∴CD=BD=AD ,∴∠B=∠DCE ,∠CED=∠ECF=90°, 又∵∠FEC=∠B ..∠FEC=∠DCE ,又∵CE=EC .∴△CDE ≌△ECF (ASA ),∴DE=CF ;(2)解:在Rt △ABC 中,∵∠ACB=90°,∴BC=√AB 2−AC 2=√102−62=8cm , ∵点D 、E 分别是AB 、BC 的中点,∴DE ∥CF ,又DE=CF , ∴四边形DCFE 是平行四边形,∴DE=12AC=12×6=3cm ,CE=12BC=12×8=4cm , ∴S 四边形DCFE =DE ×CE=3×4=12cm . 2.【答案】(1)证明:∵OA =OC =AD , ∴∠OCA =∠OAC ,∠AOD =∠ADO , ∵OD ∥AC , ∴∠OAC =∠AOD ,∴180°﹣∠OCA ﹣∠OAC =180°﹣∠AOD ﹣∠ADO , 即∠AOC =∠OAD , ∴OC ∥AD , ∵OD ∥AC ,∴四边形OCAD 是平行四边形;(2)解:∵AD 与⊙O 相切,OA 是半径, ∴∠OAD =90°, ∵OA =OC =AD , ∴∠AOD =∠ADO =45°,∵OD∥AC,∴∠OAC=∠AOD=45°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠B=45°.3.【答案】(1)证明:∵CF//AB∴∠DFC=∠ADF,∠DAC=∠ACF又∵EA=EC∴ΔADE≌ΔCFE(AAS)∴CF=AD又∵CF//AD∴四边形ADCF为平行四边形∴DC=AF(有一组对边平行且相等的四边形为平行四边形)(2)解:ΔADC,ΔADF,ΔCFD,ΔCFA∵AD=BD,∴SΔADC=SΔBDC (等底等高面积相等)∵四边形ADCF是平行四边形,∴SΔADC=SΔCDF=SΔADF=SΔACFF (等底等高面积相等) .故与ΔBDC面积相等的三角形为:ΔADC,ΔADF,ΔCFD,ΔCFA.4.【答案】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF//BE,∴∠DFA=∠BEC,∵DF=BE,∴ΔADF≅ΔCBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD//CB,四边形ABCD是平行四边形(2)245.【答案】(1)证明:∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中{DF=BE∠DFA=∠BECAF=CE,∴△AFD≌△CEB(SAS).(2)解:四边形ABCD是平行四边形,理由如下:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.6.【答案】(1)证明:如图,连接DE,BF,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=12OA=12OC=OF,∴四边形DEBF是平行四边形,∴BE=DF .(2)解:由(1)已证:四边形DEBF是平行四边形,要使平行四边形DEBF是矩形,则BD=EF,∵OE=12OA=12OC=OF,∴EF=OE+OF=12OA+12OC=OA=12AC,即AC=2EF,∴k=ACBD =2EFEF=2,故当k=2时,四边形DEBF是矩形. 7.【答案】(1)证明:∵DE//BC,EF//AB,∴∠A=∠CEF,∠AED=∠C,∴△ADE∽△EFC.(2)解:∵AB=6,AD=4,∴DB=6-4=2,∵DE//BC,EF//AB,∴四边形DBFE是平行四边形,∴EF=DB=2,∵△ADE∽△EFC,SΔADE SΔEFC =(ADEF)2=(42)2=4.8.【答案】(1)证明∵四边形ABCD是平行四边形(已知),∴BC∥AD(平行四边形的对边相互平行)。

平行四边形性质练习题

平行四边形性质练习题

平行四边形性质练习题平行四边形性质练习题平行四边形是初中数学中一个重要的几何概念,它具有一些独特的性质和特点。

在本文中,我们将通过一些练习题来加深对平行四边形性质的理解和应用。

练习题1:已知ABCD是一个平行四边形,AC的延长线与BD的延长线交于点E,证明AE与BC平行。

解析:我们可以通过证明三角形ABE与三角形CDE相似来证明AE与BC平行。

首先,由于ABCD是一个平行四边形,所以AB与CD平行,即∠ABE与∠CDE是对应角,且∠AEB与∠CED是共顶角,因此∠ABE≌∠CDE。

又因为∠AEB与∠CED互为对应角,所以∠AEB≌∠CED。

根据相似三角形的性质,我们可以得出三角形ABE与三角形CDE相似。

因此,我们可以得出AE与BC平行的结论。

练习题2:已知ABCD是一个平行四边形,E是AD的中点,F是BC的中点,连接EF并延长交于点G,证明AG与BC平行。

解析:我们可以通过证明三角形AGE与三角形BFC相似来证明AG与BC平行。

首先,由于ABCD是一个平行四边形,所以AB与CD平行,即∠AGE与∠BFC是对应角,且∠AEG与∠BFC是共顶角,因此∠AGE≌∠BFC。

又因为∠AEG与∠BFC互为对应角,所以∠AEG≌∠BFC。

根据相似三角形的性质,我们可以得出三角形AGE与三角形BFC相似。

因此,我们可以得出AG与BC平行的结论。

练习题3:已知ABCD是一个平行四边形,E是AD的中点,F是BC的中点,连接EF并延长交于点G,证明AG=2GF。

解析:根据题意,我们可以得出AE=ED,BF=FC。

由于E是AD的中点,所以AE=ED=1/2AD;同理,由于F是BC的中点,所以BF=FC=1/2BC。

根据平行四边形的性质,我们可以得出AD=BC。

因此,AE=1/2AD=1/2BC=BF。

根据三角形的等边性质,我们可以得出三角形AGE与三角形BFC是等边三角形。

因此,AG=AE+EG=BF+FC=2BF=2GF。

平行四边形专题证明题33道-含答案

平行四边形专题证明题33道-含答案

图1 平行四边形专题练习1.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .2.(08贵阳市)如图1,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.3.若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形.4.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =5.以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 .6.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为 .7.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .二、选择题(每题3分,共30分)8.如图2在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( )A .110°B .30°C .50°D .70°图2 图3 图49.菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四角相等10.如图3所示,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm11.已知:如图4,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .3E AF D C B H G12.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形( )A.①③⑤B.②③⑤C.①②③D.①③④⑤13.如图5所示,是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是( )A.88 mm B.96 mm C.80 mm D.84 mm图5 图614、(08甘肃省白银市)如图6所示,把矩形ABCD沿EF对折后使两部分重合,若150∠=,∠=()则AEFA.110° B.115°C.120° D.130°15、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?()AB∥CD BC∥AD AB=CD BC=ADA.2组B.3组C.4组D.6组16、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形.B.每组邻边都相等的四边形是菱形.C. 对角线互相垂直的平行四边形是正方形.D.四个角都相等的四边形是矩形.三、解答题17、如图7,四边形ABCD是菱形,对角线AC=8 cm ,BD=6 cm, DH⊥AB于H,求:DH的长。

北师大八年级下册 第六章 平行四边形证明题专项练习(包含答案)

北师大八年级下册 第六章 平行四边形证明题专项练习(包含答案)

1.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.求证:DE=BF2.如图,在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O.求证:OA=OE.3.如图所示,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在点D1处,折痕为EF,若∠BAE=55°,求∠D1AD 的度数4.如图(1),▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD、BC分别相交于点E、F,则OE=OF.若将EF向两方延长与平行四边形的两对边的延长线分别相交(如图(2)和图(3)),OE与OF还相等吗?若相等,请你说明理由.5.如图,点E为▱ABCD的边AB上一点,将△BCE沿CE翻折得到△FCE,点F落在对角线AC上,且AE=AF,若∠BAC=28°,求∠BCD的度数。

6.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AF平分∠BAD,连接DE,试判断DE与AF的位置关系,并说明理由.7.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.8.如图,在▱ABCD中,O是对角线AC的中点,EF经过点O交AD,BC于E,F.四边形AFCE是平行四边形吗?请说明理由.9.如图,四边形ABCD是平行四边形,直线EF∥BD,与CD、CB的延长线分别交于点E、F,与AB、AD交于点G、H.(1)求证:四边形FBDH为平行四边形;(2)求证:FG=EH.10.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.11.如图①,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)线段PE、PF、AB之间有什么数量关系?并说明理由;(2)如图②,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其他条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由.12.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,EF=DC.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.13.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.14.如图,已知△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.15.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.将△ADE沿DE折叠,使点A落在点A1处,求∠BDA1的度数.16.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.17.如图,在△ABC中,BC=AC,E、F分别是AB、AC的中点,延长EF交∠ACD的平分线于点G.(1)AG与CG有怎样的位置关系?说明你的理由;(2)求证:四边形AECG是平行四边形.18.我们知道“连接三角形两边中点的线段叫三角形的中位线”“三角形的中位线平行于三角形的第三边,且等于第三边的一半”.类似地,我们把连接梯形两腰中点的线段叫做梯形的中位线.如图所示,在梯形ABCD中,AD∥BC,点E,F分别是AB,CD的中点,那么EF就是梯形ABCD的中位线,通过观察、测量,猜想EF和AD,BC有怎样的位置和数量关系,并证明你的结论.19.如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C',D'处,折痕为MN,求∠AMD'+∠BNC' 的度数20.如图所示,E,F分别为平行四边形ABCD中AD,BC的中点,G,H在BD上,且BG=DH,求证四边形EGFH是平行四边形.21.如图所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,动点P从点A开始沿AD边以每秒1㎝的速度向D点运动,动点Q从点C开始沿CB边以每秒3㎝的速度向B运动,P,Q分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(3)t为何值时,四边形ABQP为矩形?22.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3 (1)求证:BN=DN;(2)求△ABC的周长.23.(1)如图①,口ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将口ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.答案1.证法一:∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,∠ADC=∠CBA.∵DE平分∠ADC,BF平分∠ABC,∴∠ADE= ∠ADC,∠CBF= ∠CBA,∴∠ADE=∠CBF,∴△ADE≌△CBF(ASA).∴DE=BF.证法二:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED, ∴AE=AD.同理,CF=CB,又AD=CB,∴AE=CF,∵AB=CD,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.2.证法一:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADB=∠CBD,由折叠可知∠EBD=∠CBD,BE=BC,∴∠EBD=∠ADB,AD=BE,∴BO=DO,∴AD-DO=BE-BO,即OA=OE.证法二:∵四边形ABCD为平行四边形,∴∠A=∠C,且AB=DC.由折叠可知∠E=∠C,DE=DC,∴∠A=∠E,AB=DE.在△AOB和△EOD中,∴△AOB≌△EOD,∴OA=OE.3.∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠性质知,∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°.4.题图(2)中OE=OF.理由:在▱ABCD中,AB∥CD,OA=OC,∴∠E=∠F,又∵∠AOE=∠COF,∴△AOE≌△COF(AAS),∴OE=OF题图(3)中OE=OF.理由:在▱ABCD中,AD∥BC,OA=OC,∴∠E=∠F,又∵∠AOE=∠COF,∴△AOE≌△COF(AAS),∴OE=OF5.∵∠BAC=28°,AE=AF,∴∠AFE=∠AEF= =76°,∴∠EFC=180°-76°=104°,由折叠的性质知,∠B=∠EFC=104°,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠BCD=180°,∴∠BCD=180°-104°=76°.6. (1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点F为DC的延长线上一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC的中点,∴BE=CE,则在△BAE和△CFE中,∴△BAE≌△CFE(AAS),∴AB=CF,∴CF=CD.(2)DE⊥AF.理由:∵AF平分∠BAD,∴∠BAF=∠DAF,∵∠BAF=∠F,∴∠DAF=∠F,∴DA=DF,又由(1)知△BAE≌△CFE,∴AE=EF,∴DE⊥AF.7.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠ADF=∠CBE.又∵BF=DE,∴BF+BD=DE+BD,∴DF=BE.∴△ADF≌△CBE.∴∠AFD=∠CEB.∴AF∥CE.8.四边形AFCE是平行四边形.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠BCA.又∵O是AC的中点,∴OA=OC.又∵∠AOE=∠COF,∴△AOE≌△COF.∴OE=OF.∵OE=OF,OA=OC,∴四边形AFCE是平行四边形.9. (1)∵四边形ABCD是平行四边形,∴AD∥BC,又∵EF∥BD,∴四边形FBDH为平行四边形.(2)由(1)知四边形FBDH为平行四边形,∴FH=BD,∵EF∥BD,AB∥DC,∴四边形BDEG是平行四边形,∴BD=EG,∴FH=EG,∴FH-GH=EG-GH,∴FG=EH.10. (1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥BC.又∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°∴△BEF是等边三角形∴EB=EF∠ABE=60°又∵EF=DC∴BE=DC∵△ABC是等边三角形, ∴∠ACB=60°,AB=AC.∴∠ABE=∠ACD,又∵BE=DC,AB=AC,∴△ABE≌△ACD,∴AE=AD.11. (1)PE+PF=AB.理由:∵PE∥AC,PF∥AB,∴∠EPB=∠C,四边形PEAF是平行四边形,∴PF=AE,∵AC=AB,∴∠B=∠C,∴∠EPB=∠B,∴PE=BE.∵BE+AE=AB,∴PE+PF=AB.(2)(1)中结论不成立.此时结论为PE-PF=AB.理由:∵PE∥AC,PF∥AB,∴∠FPC=∠ABC,四边形PEAF是平行四边形,∴PE=AF,又AB=AC,∴∠ABC=∠ACB,∴∠FPC=∠ACB=∠FCP,∴PF=FC,∴PE-PF=AF-FC=AC=AB.12. (1)∵△ABC是等边三角形,∴∠ABC=60°.∵∠EFB=60°,∴∠ABC=∠EFB.∴EF∥BC.又∵EF=DC,∴四边形EFCD是平行四边形.(2)连接BE.∵BF=EF,∠EFB=60°,∴△BEF是等边三角形.∴EB=EF,∠ABE=60°.又∵EF=DC,∴BE=DC.∵△ABC是等边三角形,∴∠ACB=60°,AB=AC.∴∠ABE=∠ACD,又∵BE=DC,AB=AC,∴△ABE≌△ACD,∴AE=AD.13. (1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵M、N分别是AD、BC的中点,∴MD=NC,又MD∥NC,∴四边形MNCD是平行四边形.(3)如图,连接DN.∵N是BC的中点,BC=2CD,∴CD=NC.∵∠C=60°,∴△DCN是等边三角形.∴ND=NC,∠DNC=∠NDC=60°.∴ND=NB=CN.∴∠DBC=∠BDN=30°.∴∠BDC=∠BDN+∠NDC=90°.∴∵四边形MNCD是平行四边形,∴MN=CD.∴BD= MN.14.∵D,E 分别为AC 、AB 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC,且DE=21BC,又∵F 、G 分别是OB 、OC 的中点, ∴FG 是△BCO 的中位线,∴FG ∥BC,且FG= 21BC,∴DE ∥FG,DE=FG,∴四边形DEFG 是平行四边形. 15.∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC,∴∠ADE=∠B=50°(两直线平行,同位角相等),又∵∠ADE=∠A1DE,∴∠A1DA=2∠B,∴∠BDA1=180°-2∠B=80°.16. (1)证明:∵AN 平分∠BAC,∴∠1=∠2,∵BN ⊥AN,∴∠ANB=∠AND=90°,又AN=AN,∴△ABN ≌△ADN,∴BN=DN.(2)由△ABN ≌△ADN 知,AD=AB=10,点N 为BD 的中点,又M 是BC 的中点,∴MN 为△BCD 的中位线,∴CD=2MN=6,∴AC=AD+CD=16,∴△ABC 的周长=AB+BC+AC=10+15+16=41.17. (1)AG ⊥CG.理由:∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,AF=CF,∴EF ∥BC,∴∠FGC=∠GCD, ∵CG 平分∠ACD,∴∠FCG=∠GCD,∴∠FCG=∠FGC,∴FG=FC,又∵AF=CF,∴AF=FG,∴∠FAG=∠AGF,∵∠FAG+∠AGC+∠ACG=180°,∴∠AGC=90°,∴AG ⊥CG.(2)证明:由(1)知,FG= 21AC,∵EF 是△ABC 的中位线,∴EF= 21BC,∴FG=EF,又∵AF=CF,∴四边形AECG 是平行四边形. 18. 结论:EF ∥AD ∥BC,EF= 21(AD+BC).证明如下:如图所示,连接AF 并延长交BC 的延长线于点G,∵AD ∥BC,∴∠DAF=∠G,在△ADF 和△GCF 中,∠DAF=∠G,∠DFA=∠CFG,DF=FC,∴△ADF ≌△GCF(AAS),∴AF=FG,AD=CG,又∵AE=EB,∴EF ∥BG,EF= 21BG,即EF ∥AD ∥BC,EF= 21(AD+BC).19.四边形纸片ABCD 中,∠A=70°,∠B=80°,∴∠D+∠C=360°-∠A-∠B=210°.∵将纸片折叠,使C,D 落在AB 边上的C',D'处,∴∠MD'B=∠D,∠NC'A=∠C,∴∠MD'B+∠NC'A=210°,∴∠AD'M+∠BC'N=150°,∴∠AMD'+∠BNC'=360°-∠A-∠B-∠AD'M-∠BC'N=60°20. 证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC (平行四边形对边平行且相等).∴∠EDH =∠FBG . 又∵E ,F 分别为AD ,BC 的中点,∴DE =BF .又∵BG =DH ,∴.△DEH ≌△BFG (SAS ),∴EH =FG ,∠DHE =∠BGF . ∴∠EHG =∠FGH (等角的补角相等).∴EH ∥FG .∴四边形EGFH 是平行四边形21.由已知得AP =t ,CQ =3t ,PD =24-t ,BQ =26-3t .(1)∵PD ∥CQ ,∴当PD =CQ 时,即3t =24-t 时,四边形PQCD 为平行四边形,解得t =6.故当t =6时,四边形PQCD 为平行四边形. (2)如图3—38所示,作DE ⊥BC ,PF ⊥BC ,垂足分别为E ,F ,则CE =2.当QF =CE 时,即QF+CE =2CE =4时,四边形PQCD 是等腰梯形.此时有CQ -EF =4,即3t —(24一t )=4,解得t =7.故当t =7时,四边形PQCD 为等腰梯形.(3)若四边形ABQP 为矩形,则AP =BQ ,即t =26—3t ,解得t =213.故当t =213时,四边形ABQP 为矩形.22.(1)证明:在△ABN 和△ADN 中, ∵12AN ANANB AND ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABN ≌△ADN , ∴BN =DN .(2)解:∵△ABN ≌△ADN ,∴AD =AB =10,DN =NB , 又∵点M 是BC 中点,∴MN 是△BDC 的中位线, ∴CD =2MN =6, 故△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41.23.证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA =OC ,∴∠1=∠2,∵在△AOE 和△COF 中,1234OA OC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE ≌△COF (ASA ),∴AE =CF ; (2)∵四边形ABCD 是平行四边形,∴∠A =∠C ,∠B =∠D ,由(1)得AE =CF ,由折叠的性质可得:AE =A 1E ,∠A 1=∠A ,∠B 1=∠B ,∴A 1E =CF ,∠A 1=∠A =∠C ,∠B 1=∠B =∠D ,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,∵在△A 1IE 与△CGF 中,1156A C A E CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△A1IE≌△CGF(AAS),∴EI=FG.。

平行四边形判定练习题

平行四边形判定练习题

平行四边形的判定练习题1、两组对角____的四边形是平行四边形;2、两组对边____或____的四边形是平行四边形;3、对角线___的四边形是平行四边形.4、一组对边____的四边形是平行四边形.5、下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2:3:2:3D.2:3:3:26、下面给出的条件中,能判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补7、在下面给出的条件中,能判定四边形ABCD是平行四边形的是()A.AB=BC,AD=CDB.AB∥CD,AD=BCC.AB∥CD,∠B=∠DD.∠A=∠B,∠C=∠D8、用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有()A.1个B.2个C.3个D.4个9、在下列条件中,能判定四边形ABCD为平行四边形的是()A.AB=AD,CB=CDB.AB∥CD,AD=BCC.AB=CD,AD=BCD.∠A=∠B,∠C=∠D10、判断:一组对边平行,一组对边相等的四边形是平行四边形。

()11、判断:一组对边平行且相等的四边形是平行四边形.()12、判断:两组邻角相等的四边形是平行四边形.()13、判断:两组邻角互补的四边形是平行四边形.()14、判断:对角线互相垂直的四边形是平行四边形()15、判断:一组邻边相等且一条对角线平分另一条对角线的四边形是平行四边形。

()16、判断:平行四边形一组对边中点的连线与另一组对边平行且相等.()17、判断:对角线互相垂直且相等的四边形是平行四边形.()解答题:18、已知:如图,在平行四边形ABCD中,E,F分别是AB,DC上的两点,且AE=CF.求证:BD,EF互相平分19、已知:如图,在平行四边形ABCD中,点M,N在对角线AC上,且AM=CN. 求证:四边形BMDN是平行四边形.20、已知:如图,在平行四边形ABCD中,E,F分别是AB,CD上的两点,且AE=CF,AF,DE相交于点M,BF,CE相交于点N.求证:四边形EMFN是平行四边形.(要求不用三角形全等来证)21、已知:如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在AC上,且AE=CF.求证:四边形EGFH是平四边形.22、已知:如图,在平行四边形ABCD中,AB=2BC,E,F在直线BC上,且BE=BC =CF.求证:AF⊥DE.BGE B C 友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

平行四边形的判定典型题

平行四边形的判定典型题

平行四边形的判定例题1:BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要添加的一个条件是_________练习:1、如图,已知:E、F是平行四边形ABCD对角线AC 上的两点,并且AE=CF。

求证:四边形BFDE是平行四边形。

2.如图所示,在平行四边形ABCD中,P1、P2是对角线BD的三等分点,求证:•四边形AP1CP2是平行四边形.3、如图所示,在四边形ABCD中,M是BC中点,AM、BD互相平分于点O,那么请说明AM=DC 且AM∥DC例题2:(2013•镇江)如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;OMAB CD(2)试证明:以A 、F 、D 、E 为顶点的四边形是平行四边形. 练习:1、11、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形2.(2012•惠城区模拟)如图,D 是AB 上的一点,DF 与AC 相交于E ,DE=EF ,CF∥BA.求证:四边形ADCF 是平行四边形.3、已知:如图所示,平行四边形ABCD 的对角线AC 、BD•相交于点O ,EF 经过点O 并且分别和AB 、CD 相交于点E 、F ,又知G 、H 分别为OA 、OC 的中点.求证:四边形EHFG 是平行四边形.例题3:、如图4.4-17,等边三角形ABC 的边长为a ,P 为△ABC 内一点,且PD ∥AB ,PE ∥BC ,PF ∥AC ,那么,PD+PE+PF 的值为一个定值.这个定值是多少?请你说出这个定值的来历.H GFE O A BCDHGFEO A BC DHGFE O ABCD HG FE O ABCD练习1:如图,平行四边形ABCD中,AF=CH,DE=BG。

求证:EG和HF互相平分。

平行四边形判定专项练习30题

平行四边形判定专项练习30题

平行四边形的判定专项练习题1.如图,四边形ABCD中,AD∥BC,ED∥BF,AF=CE,求证:ABCD是平行四边形.证明:∵AD∥BC,∴∠DAE=∠BCF,∵ED∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,又∵AF=CE,∴AE=CF,在△ADE和△CBF中:∵∠DAE=∠BCF,∠AED=∠CFB,AE=CF,∴△ADE≌△CBF(AAS),∴AD=CB,即:AD∥CB,AD=CB,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)3.已知四边形ABCD的对角线AC与BD交于点O,OA=OC,AD∥BC.求证:四边形ABCD为平行四边形.证明:∵AD∥BC,∴∠DAO=∠BCO.∴在△AOD与△COB中,,∴△AOD≌△COB(ASA),∴AD=BC,∴在四边形ABCD中,AD BC,∴四边形ABCD为平行四边形.4.如图,已知:点B、E、F、D在一条直线上,DF=BE,AE=CF,AB=DC,求证:四边形ABCD为平行四边形.证明:∵DF=BE,AE=CF,AB=CD,∴△ABE≌△CDF(sss),∴∠ABE=∠CDF,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形.10.如图,已知AB∥DC,E是BC的中点,AE,DC 的延长线交于点F;求证:四边形ABFC是平行四边形证明:∵AB∥DC,∴∠1=∠2,∠FCE=∠EBA,∵E为BC中点,∴CE=BE,∵在△ABE和△FCE中,∴△ABE≌△FCE;∴EF=AE,∵CE=BE,∴四边形ABFC是平行四边形(两条对角线互相平分的四边形是平行四边形)12.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.若∠BAC=30°,EF⊥AB,垂足为F,连结DF.求证:(1)△ABC≌△EAF;(2)四边形ADFE是平行四边形.12.(1)∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);(2)∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形16.△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点,求证:四边形MNEF是平行四边形.16.∵BE,CF是△ABC的中线,∴EF∥BC且EF=BC,∵M是BO的中点,N是CO的中点,∴MN∥BC且MN=BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.20.如图,在△ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF.求证:四边形AFBD是平行四边形.20.∵E为AD中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,在△AEF和△CED中∵,∴△AEF≌△CED(AAS),∴AF=DC,∵AD是△ABC的中线,∴BD=DC,∴AF=BD,即AF∥BD,AF=BD,故四边形AFBD是平行四边形22.已知:四边形ABCD,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形,证明:∵∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,∴2∠A+2∠B=360°,∴∠A+∠B=180°,∴AD∥BC,同理AB∥CD,∴四边形ABCD是平行四边形.23.已知:如图,A、B、C、D在同一条直线上,且AB=CD,AE∥DF,AE=DF.求证:四边形EBFC是平行四边形.23.∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中∴△ABE≌△DCF(SAS),∴EB=FC,∠ABE=∠DCF,∵∠ABE+∠EBC=180°,∠DCF+∠FCB=180°,∴∠EBC=∠FCB,∴BE∥FC,∵BE=FC,∴四边形EBFC是平行四边形25.已知点E、F、G、H分别为四边形ABCD四边的中点,试问四边形EFGH的形状并说明理由.25.四边形EFGH是平行四边形证明:连接AC、BD∵E、F、G、H分别为四边形ABCD四边的中点∴EH=BD,FG=BD,HG=AC,EF=AC∴EH=FG,EF=HG∴四边形EFGH是平行四边形.27.如图,AD∥BC,ED∥BF,且AE=CF,求证:四边形ABCD是平行四边形.27.∵AD∥BC,∴∠EAD=∠FCB,又ED∥BF,∴∠FED=∠EFB,∠AED=180°﹣∠FED,∠CFB=180°﹣∠EFB,∴∠AED=∠CFB,又已知AE=CF,∴△AED≌△CFB,∴AD=BC,∴四边形ABCD是平行四边形.30.已知:在四边形ABCD中,AD∥BC,且AB=DC=5,AC=4,BC=3.求证:四边形ABCD为平行四边形.30.∵AB=5,AC=4,BC=3∴AB2=AC2+BC2∴∠BCA=90°∵AD∥BC∴∠DAC=∠BCA=90°∵DC=5,AC=4,∴AD2=DC2﹣AC2=9∴AD=BC=3∴四边形ABCD为平行四边形.8.如图,矩形ABCD的两条对角线AC和BD相交于点O,E、F是BD上的两点,且∠AEB=∠CFD.求证:四边形AECF是平行四边形.8.∵四边形ABCD是矩形∴AB∥CD,AB=CD,∴∠ABE=∠CDF,又∵∠AEB=∠CFD,∴△ABE≌△CDF,∴BE=DF,又∵四边形ABCD是矩形,∴OA=OC,OB=OD,∴OB﹣BE=OD﹣DF,∴OE=OF,∴四边形AECF是平行四边形。

平行四边形判定练习题

平行四边形判定练习题

平行四边形判定练习题在几何学中,平行四边形是指具有两对相互平行的对边的四边形。

要判定一个四边形是否为平行四边形,我们需要检查四边形的特性和属性。

下面是一些平行四边形判定的练习题,通过解答这些题目,你可以巩固对平行四边形的理解并提升你的几何技巧。

练习题一:已知四边形ABCD,其中AB ∥ CD,AC ⊥ CD,AD ⊥ AB。

判断四边形ABCD是否为平行四边形。

解答:根据题干已知条件,我们可以得到以下推理:1. AB ∥ CD:对于平行四边形,对边是相互平行的,所以该条件满足。

2. AC ⊥ CD:平行四边形的两条对边不仅平行,还相互垂直,所以该条件不满足。

因此,根据已知条件,四边形ABCD不是平行四边形。

练习题二:在四边形EFGH中,EF ∥ GH,FG ⊥ GH,EG ⊥ EF。

已知EF = 5 cm,FG = 8 cm,EG = 4 cm。

求EH的长度。

解答:根据题干已知条件,我们可以得到以下推理:1. EF ∥ GH:对于平行四边形,对边是相互平行的,所以该条件满足。

2. FG ⊥ GH:平行四边形的两条对边不仅平行,还相互垂直,所以该条件不满足。

3. EG ⊥ EF:平行四边形的两条对边不仅平行,还相互垂直,所以该条件满足。

根据已知条件,我们可以将四边形EFGH划分成两个直角三角形EFG和EGH。

根据直角三角形的性质,我们可以使用勾股定理求解:EG² + GH² = EH²代入已知值,得到:4² + 8² = EH²16 + 64 = EH²80 = EH²通过开方运算,得到:EH = √80 ≈ 8.94 cm所以,四边形EFGH中EH的长度约为8.94 cm。

练习题三:在平行四边形IJKL中,已知IJ = 6 cm,JK = 8 cm,KL = 6 cm,IL = 8 cm。

判断平行四边形IJKL的类型。

平行四边形练习题40道

平行四边形练习题40道

平行四边形40题一.选择题”1.下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠A=∠C B.AB=CD,∠B=∠DC.AD=BC,AD∥BC D.AB=CD,AD=BC2、下列条件中,能判定四边形ABCD为平行四边形的个数是()①AB∥CD,AD=BC;②AB=CD,AD=BC;③∠A=∠B,∠C=∠D;④AB=AD,CB=CDA.1个B.2个C.3个D.4个3、下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB∥CD,∠A=∠C B.AB=CD,∠B=∠DC.AD=BC,AD∥BC D.AB=CD,AD=BC4.下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2;3:2:3D.2:3:3:25.如图,在四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,添加下列条件不能使四边形ABCD 成为平行四边形的是()A.AB=CD B.OB=ODC.∠BCD+∠ADC=180°D.AD=BC6.如图,E,F是四边形ABCD的对角线BD上的两点,AE∥CF,AB∥CD,BE=DF,则下列结论①AE=CF,②AD=BC,③AD∥BC,④∠BCF=∠DAE其中正确的个数为()A.1个B.2个C.3个D.4个7.如图,两条平行线l1,l2被另外一组平行线l3,l4,l5所截,交点分别为A,B,C,D,E,F.则下列结论错误的是()A.AB=DE B.AD=CF C.AB=BC D.AC=DF8.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③9.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE;④其中,正确的是()A.只有①②B.只有①②③C.只有③④D.①②③④10.如图,E、F分别是平行四边形ABCD的边AD、BC上的点,且BE∥DF,AC分别交BE、DF于点G、H.下列结论:①四边形BFDE是平行四边形;②△AGE≌△CHF;③BG=DH;④S△AGE:S△CDH=GE:DH,其中正确的个数是()A.1B.2个C.3个D.4个11.▱ABCD中,E、F分别在边AB和CD上,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.AE=CF B.AF=EC C.∠DAF=∠BCE D.∠AFD=∠CEB12.如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD13.如图,两条宽度分别为1和2的方形纸条交叉放置,重叠部分为四边形ABCD,若AB+BC=6,则四边形ABCD的面枳是()A.4B.2C.8D.614.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM =∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或515.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是()A.S△DEF=S△ABCB.△DEF≌△F AD≌△EDB≌△CFEC.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长二.填空题(共10小题)16.如图,在▱ABCD中,对角线AC、BD相交于点E,AC⊥BC.若AC=4,AB=5,则BD的长为.17.如图,两条宽度分别为2和4的纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=100,则四边形ABCD的面积是.18.如图所示,在▱ABCD中E,F分别在BC,AD上,若想使四边形AFCE为平行四边形,须添加一个条件,这个条件可以是,①AF=CF;②AE=CF;③∠BAE=∠FCD;④∠BEA=∠FCE.19.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,则图中面积相等的平行四边形共有对.20.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=s时,以A、C、E、F为顶点四边形是平行四边形.21.如图,四边形ABCD中,AD∥BC,AD=3,BC=8,E是BC的中点,点P以每秒1个单位长度的速度从A点出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B 运动,点P停止运动时,点Q也随之停止运动.当运动时间t=秒时,以点P,Q,E,D为顶点的四边形是平行四边形.22.已知点A(1,0),B(4,0),C(0,2),在平面内找一点M使得以M、A、B、C为顶点的四边形为平行四边形,则点M的坐标为.23.已知点A(2,2),B(﹣2,0),C(3,﹣1),且以A,B,C,D为顶点的四边形是平行四边形,则点D的坐标为:.24.在平面直角坐标系xOy中,已知点A(1,1),B(﹣1,1),如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C的坐标为.25.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD =4AG;④△DBF≌△EF A.其中正确结论的序号是.三.解答题(共15小题)26.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.27、如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.28.如图,四边形ABCD中,AB∥CD,AC与BD相交于点O,AO=CO.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,AB=10,求BC的长.29、如图,在▱ABCD中,AF平分∠BAD交BC于点F,CE平分∠BCD交AD于点E.(1)若AD=12,AB=8,求CF的长;(2)连接BE和AF相交于点G,DF和CE相交于点H,求证:EF和GH互相平分.30.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=30°,时,求D,F两点间的距离.31.如图,在平行四边形ABCD中,∠BAD和∠DCB的平分线AE,CF分别交BC,AD于点E,F,点M,N分别是AE,CF的中点,连接FM,EN(1)求证:BE=DF;(2)求证:四边形FMEN是平行四边形.32.如图,四边形ABCD的对角线AC、BD相交于点O,AO=CO,EF过点O且与AD、BC分别相交于点E、F,OE=OF(1)求证:四边形ABCD是平行四边形;(2)连接AF,若EF⊥AC,△ABF周长是15,求四边形ABCD的周长.33.如图,在▱ABCD中,O为AC的中点,EF过点O,分别交AD,CB的延长线于点E,F.(1)求证:四边形AFCE是平行四边形.(2)若AC平分∠BAE,AB=6,AE=8,求BF的长.34.如图,在平行四边形ABCD中,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.(1)求证:四边形AEBD是平行四边形;(2)若BD=BC=5,CD=6,求平行四边形AEBD的面积.35.如图,E、F是▱ABCD的对角线AC上的两点,且BE⊥AC,DF⊥AC,连接BE、ED、DF、FB.(1)求证:四边形BEDF为平行四边形;(2)若BE=4,EF=2,求BD的长.36、如图,在平行四边形ABCD中,点E、F别在BC,AD上,且BE=DF.(1)如图①,求证:四边形AECF是平行四边形;(2)如图②,若∠BAC=90°,且AB=3.AC=4,求平行四边形ABCD的周长.37.如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若△ABE是等边三角形,四边形BCDE的面积等于2,求CE的长.38.如图,在△ABC中,∠BAC=70°,∠ABC和∠ACB的角平分线交于D点,E、F、G、H分别是线段AB、AC、BD、CD的中点.(1)求∠BDC的度数;(2)证明:四边形EGHF为平行四边形.39.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是ts(0<t≤15).过点D作DF⊥BC 于点F,连接DE,EF.(1)求证:四边形AEFD是平行四边形;(2)当t为何值时,△DEF为直角三角形?请说明理由.40、【阅读材料】在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,)【运用】(1)已知O为▱ABCD的对角线AC与BD交点,点B的坐标为(4,3),则点D的坐标为(﹣1,1),则O的坐标为(,2);(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C构成平行四边形的顶点,求点D的坐标.(提示:运用阅读材料完成)。

平行四边形证明练习题#精选.

平行四边形证明练习题#精选.

平行四边形证明练习题一.解答题1.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.2.在▱ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.3.如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2求证:△ABE≌△CDF.4.如图,已知:平行四边形ABCD中,E是CD边的中点,连接BE并延长与AD的延长线相交于F点.求证:BC=DF.5.如图,在▱ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论.6.已知:如图,▱ABCD中,E、F是对角线AC上的点,且AE=CF.求证:△ABE≌△CDF.7.如图,已知在▱ABCD中,过AC中点的直线交CD,AB于点E,F.求证:DE=BF.8.如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AE.四边形AECD是平行四边形吗?为什么?9.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF.10.如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形.11.如图,在△ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF.求证:四边形AFBD是平行四边形.12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,DE∥AB,AD+DC=BC.求证:(1)DE=DC;(2)△DEC是等边三角形.13.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)连接DE、BF,试判断四边形DEBF的形状,并说明理由.14.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.求证:四边形EFGH是平行四边形.15.如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系:_________(2)请证明你的猜想.16.如图,E、F是平行四边形ABCD对角线AC上的两点,且BE∥DF.求证:∠1=∠2.17.如图,已知E,F分别是▱ABCD的边AB,CD的中点.求证:ED=BF.18.如图,BD是▱ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DEBF为平行四边形.19.如图,在▱ABCD中,对角线AC与BD交于点O,已知点E、F分别为AO、OC的中点,证明:四边形BFDE 是平行四边形.20.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?说明理由.21.如图,△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:EF=DG且EF∥DG.22.已知如图所示,▱ABCD的对角线AC、BD交于O,GH过点O,分别交AD、BC于G、H,E、F在AC上且AE=CF,求证:四边形EHFG是平行四边形.平行四边形证明练习题参考答案与试题解析一.解答题(共22小题)1.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.考点:平行四边形的性质;平行线的性质;全等三角形的判定与性质.分析:根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.解答:证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF,∴∠DAE=∠BCF.点评:本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF全等的三个条件,主要考查学生的推理能力.2.在▱ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.分析:根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF即可推出答案.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.点评:本题主要考查对平行四边形的性质,全等三角形的性质和判定等知识点的理解和掌握,能根据性质证出△ABE≌△CDF是证此题的关键.3.如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2求证:△ABE≌△CDF.考点:平行四边形的性质;全等三角形的判定.分析:利用平行四边形的性质和题目提供的相等的角可以为证明三角形全等提供足够的条件.解答:证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∴在:△ABE与△CDF中,∴△ABE≌△CDF(ASA)点评:本题考查了平行四边形的性质及全等三角形的判定,根据平行四边形找到证明全等三角形足够的条件是解决本题的关键.4.如图,已知:平行四边形ABCD中,E是CD边的中点,连接BE并延长与AD的延长线相交于F点.求证:BC=DF.考点:平行四边形的性质;全等三角形的判定与性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,根据平行线的性质即可求得∠EBC=∠F,∠C=∠EDF,又由E是CD边的中点,根据AAS即可求得△EBC≌△EFD,则问题得证.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EBC=∠F,∠C=∠EDF,又∵EC=ED,∴△EBC≌△EFD(AAS),∴BC=DF.点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.5.(2013•莒南县二模)如图,在▱ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论.考点:平行四边形的性质;全等三角形的判定与性质.分析:根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF.解答:解:由题意得:BE=DF,BE∥DF.理由如下:连接DE、BF.∵ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.点评:本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.6.已知:如图,▱ABCD中,E、F是对角线AC上的点,且AE=CF.求证:△ABE≌△CDF.考点:平行四边形的性质;平行线的性质;全等三角形的判定.分析:根据平行四边形的性质得出AB∥DC,AB=CD,根据平行线的性质推出∠BAC=∠DCF,根据SAS证出即可.解答:证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∴∠BAC=∠DCF,∵AE=CF,∴△ABE≌△CDF.点评:本题主要考查对平行四边形的性质,全等三角形的判定,平行线的性质等知识点的理解和掌握,能推出证△ABE≌△CDF的三个条件是解此题的关键.7.如图,已知在▱ABCD中,过AC中点的直线交CD,AB于点E,F.求证:DE=BF.考点:平行四边形的性质;平行线的性质;全等三角形的判定与性质.分析:根据平行四边形的性质得到DC=AB,DC∥AB,根据平行线的性质得到∠ECA=∠BAC,∠CEO=∠AFO,能推出△AOF≌△COE,得到CE=AF,即可证出答案.解答:证明:∵四边形ABCD 是平行四边形,∴DC=AB,DC∥AB,∴∠ECA=∠BAC,∠CEO=∠AFO,∵OA=OC,∴△AOF≌△COE,∴CE=AF,∵DC=AB,∴DE=BF.点评:本题主要考查对平行四边形的性质,平行线的性质,全等三角形的性质和判定等知识点的理解和掌握,解此题的关键是根据平行四边形的性质证出△AOF和△COE全等.8.如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AE.四边形AECD是平行四边形吗?为什么?考点:等腰梯形的性质;平行线的判定与性质;等腰三角形的性质;平行四边形的判定.分析:根据等腰三角形性质求出∠B=∠C,根据等腰三角形性质推出∠AEC=∠B=∠C,推出AE∥CD,根据平行四边形的判定推出即可.解答:解:是平行四边形,理由:∵四边形ABCD是等腰梯形,AD∥BC,∴AB=DC,∠B=∠C,∵AB=AE,∴∠AEB=∠B,∴∠AEB=∠C,∴AE∥DC,又∵AD∥BC,∴四边形AECD是平行四边形.点评:本题考查了等腰三角形的性质,等腰梯形的性质,平行线的性质和判定,平行四边形的判定等知识点的应用,关键是根据题意推出AE∥CD,培养了学生分析问题和解决问题的能力,题目较好,综合性比较强.9.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF.考点:平行四边形的性质;全等三角形的判定与性质;平行四边形的判定.分析:连接BE,DF,BD,BD交AC于O,根据平行四边形性质求出OA=OC,OD=OB,推出OE=OF,根据平行四边形的判定推出四边形BEDF是平行四边形即可.解答:证明:连接BE,DF,BD,BD交AC于O,∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∴DE=BF.点评:本题考查了平行四边形的性质和判定等应用,关键是能熟练地运用平行四边形的性质和判定进行推理,此题的证明方法二是证△AED≌△CFB,推出DE=BF.10.如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形.考点:平行四边形的判定;平行线的性质;全等三角形的判定与性质.分析:求出∠AED=∠CFB=90°,根据HL证Rt△AED≌Rt△CFB,推出∠ADE=∠CBD,得到AD∥BC,根据平行四边形的判定判断即可.解答:证明:∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL),∴∠ADE=∠CBD,∴AD∥BC,∵AD=BC,∴四边形ABCD是平行四边形.点评:本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出AD∥BC,主要考查学生运用性质进行推理的能力.11.如图,在△ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF.求证:四边形AFBD是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:求出AE=DE,∠AFE=∠DCE,证△AEF≌△CED,推出AF=DC,得出AF∥BD,AF=BD,根据平行四边形的判定推出即可.解答:证明:∵E为AD中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,在△AEF和△CED中∵,∴△AEF≌△CED(AAS),∴AF=DC,∵AD是△ABC的中线,∴BD=DC,∴AF=BD,即AF∥BD,AF=BD,故四边形AFBD是平行四边形.点评:本题考查了平行四边形的性质和判定,全等三角形的性质和判定,关键是推出AF=DC=BD.12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,DE∥AB,AD+DC=BC.求证:(1)DE=DC;(2)△DEC是等边三角形.考点:等腰梯形的性质;等边三角形的判定;平行四边形的判定与性质.分析:(1)证出平行四边形ABED,推出DE=AB,即可推出答案;(2)根据BE=AD,AD+DC=BC,BE+EC=BC,推出DC=EC即可证出答案.解答:证明:(1)∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB,∵AB=DC,∴DE=DC.(2)证明:∵BE=AD,AD+DC=BC,BE+EC=BC,∴DC=EC,由(1)知:DE=DC,∴DE=DC=EC,∴△DEC是等边三角形.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,等边三角形的判定等知识点的理解和掌握,证出平行四边形ABED和DC=EC是解此题的关键.13.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)连接DE、BF,试判断四边形DEBF的形状,并说明理由.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:(1)根据平行四边形的性质对边平行且相等得到AD与BC平行且相等,由AD与BC平行得到内错角∠DAF 与∠BCA相等,再由已知的AE=CF,根据“SAS”得到△ADF与△CBE全等;(2)由(1)证出的全等,根据全等三角形的性质得到DF与EB相等且∠DFA与∠BEC相等,由内错角相等两直线平行得到DF与BE平行,根据一组对边平行且相等的四边形为平行四边形即可得到四边形DEBF 的形状.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC(1分)∴∠DAF=∠BCA(2分),∵AE=CF,∴AE+EF=CF+EF,即AF=CE(3分)∴△ADF≌△CBE(4分)(2)四边形DEBF是平行四边形(5分)∵△ADF≌△CBE,∴∠DFA=∠BEC,DF=BE,∴DF∥BE,∴四边形DEBF是平行四边形(6分)点评:本题综合考查了全等三角形的判断与性质,以及平行四边形的判断与性质.其中第2问是一道先试验猜想,再探索证明的新型题,其目的是考查学生提出问题,解决问题的能力,这类几何试题将成为今后中考的热点试题.14.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.求证:四边形EFGH是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:易证得△AEH≌△CGF,从而证得对应边BE=DG、DH=BF.故有△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.解答:证明:在平行四边形ABCD中,∠A=∠C(平行四边形的对边相等);又∵AE=CG,AH=CF(已知),∴△AEH≌△CGF(SAS),∴EH=GF(全等三角形的对应边相等);在平行四边形ABCD中,AB=CD,AD=BC(平行四边形的对边相等),∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH;∴GH=EF(全等三角形的对应边相等);∴四边形EFGH是平行四边形(两组对边分别相等的四边形是平行四边形).点评:本题考查了平行四边形的判定和性质、全等三角形的判定和性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.15.如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系:平行且相等(2)请证明你的猜想.考点:平行四边形的判定与性质.分析:(1)BE平行且等于DF;(2)连接BD交AC于O,根据平行四边形的性质得出OA=OC,OD=OB,推出OE=OF,得出平行四边形BEDF即可.解答:(1)解:BE和DF的关系是:BE=DF,BE∥DF,故答案为:平行且相等.(2)证明:连接BD交AC于O,∵ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.点评:本题考查了平行四边形的性质和判定的应用,主要检查学生能否熟练地运用平行四边形的性质和判定进行推理,题型较好,通过此题培养了学生分析问题和解决问题的能力,同时培养了学生的观察能力和猜想能力.16.如图,E、F是平行四边形ABCD对角线AC上的两点,且BE∥DF.求证:∠1=∠2.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:由三角形全等(△ABE≌△CDF)得到BE=DF,所以四边形BFDE是平行四边形,根据对角相等即可得证.解答:证明:∵四边形ABCD是平行四边形(已知),∴AB=CD,AB∥CD(平行四边形的对边平行且相等),∴∠BAE=∠DCF(两直线平行,内错角相等);∵BE∥DF(已知),∴∠BEF=∠DFE(两直线平行,内错角相等),∴∠AEB=∠CFD(等量代换),∴△ABE≌△CDF(AAS);∴BE=DF(全等三角形的对应边相等),∵BE∥DF,∴四边形BEDF是平行四边形(对边平行且相等的四边形是平行四边形),∴∠1=∠2(平行四边形的对角相等).点评:本题主要考查平行四边形的性质和三角形全等的判定,需要熟练掌握并灵活运用.平行四边形的判定定理:对边平行且相等的四边形是平行四边形.17.如图,已知E,F分别是▱ABCD的边AB,CD的中点.求证:ED=BF.考点:平行四边形的判定与性质.分析:根据平行四边形的性质得到AB∥CD,AB=CD,根据线段的中点的定义得到EB=AB,DF=CD,即BE=DF,BE∥DF,得到平行四边形EBFD,根据平行四边形的性质即可得到答案.解答:证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵E,F分别是▱ABCD的边AB,CD的中点,∴EB=AB,DF=CD,∴BE=DF,∵BE∥DF,∴四边形EBFD是平行四边形,∴ED=BF.点评:本题主要考查对平行四边形的性质和判定的理解和掌握,能灵活运用平行四边形的性质和判定进行证明是解此题的关键.18.如图,BD是▱ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DEBF为平行四边形.考点:平行四边形的判定与性质;角平分线的定义.分析:根据平行四边形性质和角平分线定义求出∠FDB=∠EBD,推出DF∥BE,根据平行四边形的判定判断即可.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CDB=∠ABD,∵DF平分∠CDB,BE平分∠ABD,∴∠FDB=∠CDB,∠EBD=∠ABD,∴∠FDB=∠EBD,∴DF∥BE,∵AD∥BC,即ED∥BF,∴四边形DEBF是平行四边形.点评:本题考查了角平分线定义,平行四边形的性质和判定等的应用,关键是推出DF∥BE,主要检查学生能否运用定理进行推理,题型较好,难度适中.19.如图,在▱ABCD中,对角线AC与BD交于点O,已知点E、F分别为AO、OC的中点,证明:四边形BFDE 是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:利用“平行四边形的对角线互相平分”的性质推知OA=OC,OB=OD;然后由已知条件“点E、F分别为AO、OC的中点”可以证得OE=OF;最后根据平行四边形的判定定理“对角线相互平分的四边形为平行四边形”即可证得结论.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD(平行四边形的对角线互相平分).又∵点E、F分别为AO、OC的中点,∴OE=OF.∴四边形BFDE是平行四边形(对角线相互平分的四边形为平行四边形).点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.20.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?说明理由.考点:全等三角形的判定与性质;垂线;直角三角形全等的判定;平行四边形的判定与性质.分析:求出∠AFB=∠CED=90°,DE∥BF,推出AF=CE,连接BE、DF,根据HL证Rt△ABF≌Rt△CDE,推出DE=BF,得出平行四边形DEBF,根据平行四边形的性质推出即可.解答:解:BD平分EF,理由是:证法一、连接BE、DF.∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,DE∥BF,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE,∴DE=BF,∵DE∥BF,∴四边形DEBF是平行四边形,∴BD平分EF;证法二、∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,DE∥BF,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE,∴DE=BF,∵在△BFG和△DEG中,∴△BFG≌△DEG(AAS),∴EG=FG,即BD平分EF.点评:本题考查了平行四边形的性质和判定,垂线,全等三角形的性质和判定等知识点的运用,关键是得出平行四边形DEBF,题目比较好,难度适中.21.如图,△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:EF=DG且EF∥DG.考点:三角形中位线定理;三角形的角平分线、中线和高;平行四边形的判定与性质.分析:根据三角形的中位线推出DE∥BC,DE=BC,GF∥BC,GF=BC,推出GF=DE,GF∥DE,得出平行四边形DEFG,根据平行四边形的性推出即可.解答:证明:∵BD、CE是△ABC的中线,∴DE∥BC,DE=BC,同理:GF∥BC,GF=BC,∴GF=DE,GF∥DE,∴四边形DEFG是平行四边形,∴EF=DG,EF∥DG.点评:本题考查了平行四边形的性质和判定,三角形的中位线,三角形的中线等知识点,主要检查学生能否熟练的运用性质进行推理,题目比较典型,难度适中,通过做此题培养了学生分析问题和解决问题的能力.22.已知如图所示,▱ABCD的对角线AC、BD交于O,GH过点O,分别交AD、BC于G、H,E、F在AC上且AE=CF,求证:四边形EHFG是平行四边形.考点:平行四边形的判定与性质.分析:根据平行四边形性质得出OA=OC,AD∥BC,推出OE=OF,∠GAO=∠HCO,∠AGO=∠CHO,根据AAS 证△AGO≌△CHO,推出OG=OH,根据平行四边形的判定推出即可.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∵AE=CF,∴OE=OF,∵AD∥BC,∴∠GAO=∠HCO,∠AGO=∠CHO,在△AGO和△CHO中,∴△AGO≌△CHO(AAS),∴OG=OH,∵OE=OF,∴四边形EHFG是平行四边形.点评:本题考查了全等三角形的性质和判定,平行线的性质,平行四边形的性质和判定等知识点,注意:平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.最新文件仅供参考已改成word文本。

判断平行四边形练习题

判断平行四边形练习题

判断平行四边形练习题平行四边形是一种特殊的四边形,它的特点是四条边两两平行。

在几何学中,判断平行四边形的练习题是常见的考察学生对平行四边形性质的理解和运用能力的方式之一。

本文将通过几个练习题来帮助读者掌握判断平行四边形的方法。

练习题一:已知四边形ABCD,AB∥CD,AC⊥BD,AD=BC。

判断四边形ABCD是否为平行四边形。

解析:根据题目给出的条件,我们知道AB∥CD,所以ABCD的对边是平行的。

又因为AC⊥BD,所以ABCD的一对对边是垂直的。

综合这两个条件,我们可以得出结论:四边形ABCD是一个平行四边形。

练习题二:在平行四边形ABCD中,已知AB=CD,AC⊥BD,BD=8cm,求AC的长度。

解析:根据已知条件可知AB=CD,而ABCD是一个平行四边形,所以AD∥BC。

根据三角形的性质,我们知道AC垂直于BD,所以三角形ACD和三角形ABC是相似的。

那么根据相似三角形的性质,我们可以得到一个比例关系:AC/AB=CD/BC。

由于AB=CD,化简上式可得:AC/AB=1。

所以AC=AB。

又因为AB=CD,所以AC的长度就等于CD的长度。

故AC的长度为8cm。

练习题三:已知平行四边形ABCD中,AB=5cm,BC=8cm,CD=10cm,求AD的长度。

解析:根据平行四边形的性质,我们知道AB∥CD,所以AD∥BC。

根据相似三角形的性质,我们可以得到一个比例关系:AD/AB=CD/BC。

将已知值代入上式,可得:AD/5=10/8。

通过交叉相乘得到AD=6.25cm。

练习题四:已知平行四边形ABCD中,AB=5cm,AD=7cm,∠BAD=60°,求BD的长度。

解析:根据平行四边形的性质,我们知道AB∥CD,所以AD∥BC。

根据三角形的内角和为180°的性质,我们可以得到∠ADC=180°-60°=120°。

在三角形ADC中,已知AD=7cm,AC⊥BD,所以角ADC为直角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形证明练习题平行四边形证明练习题一.解答题1.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.2.在▱ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.3.如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2求证:△ABE≌△CDF.4.如图,已知:平行四边形ABCD中,E是CD边的中点,连接BE并延长与AD的延长线相交于F点.求证:BC=DF.5.如图,在▱ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论.6.已知:如图,▱ABCD中,E、F是对角线AC上的点,且AE=CF.求证:△ABE≌△CDF.7.如图,已知在▱ABCD中,过AC中点的直线交CD,AB 于点E,F.求证:DE=BF.8.如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AE.四边形AECD是平行四边形吗?为什么?13.已知:如图,E、F是平行四边形ABCD的对角线AC 上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)连接DE、BF,试判断四边形DEBF的形状,并说明理由.14.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.求证:四边形EFGH是平行四边形.15.如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系:_________(2)请证明你的猜想.16.如图,E、F是平行四边形ABCD对角线AC上的两点,且BE∥DF.求证:∠1=∠2.17.如图,已知E,F分别是▱ABCD的边AB,CD的中点.求证:ED=BF.18.如图,BD是▱ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DEBF为平行四边形.19.如图,在▱ABCD中,对角线AC与BD交于点O,已知点E、F分别为AO、OC的中点,证明:四边形BFDE是平行四边形.20.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?说明理由.21.如图,△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:EF=DG且EF∥DG.22.已知如图所示,▱ABCD的对角线AC、BD交于O,GH 过点O,分别交AD、BC于G、H,E、F在AC上且AE=CF,求证:四边形EHFG是平行四边形.平行四边形证明练习题参考答案与试题解析一.解答题(共22小题)1.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.考点:平行四边形的性质;平行线的性质;全等三角形的判定与性质.分析:根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.解答:证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF,∴∠DAE=∠BCF.点评:本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF 全等的三个条件,主要考查学生的推理能力.2.在▱ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.分析:根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF即可推出答案.解答:证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.点评:本题主要考查对平行四边形的性质,全等三角形的性质和判定等知识点的理解和掌握,能根据性质证出△ABE≌△CDF是证此题的关键.3.如图,四边形ABCD是平行四边形,E、F分别是BC.AD上的点,∠1=∠2求证:△ABE≌△CDF.考点:平行四边形的性质;全等三角形的判定.分析:利用平行四边形的性质和题目提供的相等的角可以为证明三角形全等提供足够的条件.解答:证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∴在:△ABE与△CDF中,∴△ABE≌△CDF(ASA)点评:本题考查了平行四边形的性质及全等三角形的判定,根据平行四边形找到证明全等三角形足够的条件是解决本题的关键.4.如图,已知:平行四边形ABCD中,E是CD边的中点,连接BE并延长与AD的延长线相交于F点.求证:BC=DF.考点:平行四边形的性质;全等三角形的判定与性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,根据平行线的性质即可求得∠EBC=∠F,∠C=∠EDF,又由E 是CD边的中点,根据AAS即可求得△EBC≌△EFD,则问题得证.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EBC=∠F,∠C=∠EDF,又∵EC=ED,∴△EBC≌△EFD(AAS),∴BC=DF.点评:此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.5.(2013•莒南县二模)如图,在▱ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论.考点:平行四边形的性质;全等三角形的判定与性质.分析:根据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF,BE∥DF.解答:解:由题意得:BE=DF,BE∥DF.理由如下:连接DE、BF.∵ABCD是平行四边形,∴OA=OC,OB=OD,∵E,F分别是OA,OC的中点,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.点评:本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.6.已知:如图,▱ABCD中,E、F是对角线AC上的点,且AE=CF.求证:△ABE≌△CDF.考点:平行四边形的性质;平行线的性质;全等三角形的判定.分析:根据平行四边形的性质得出AB∥DC,AB=CD,根据平行线的性质推出∠BAC=∠DCF,根据SAS证出即可.解答:证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∴∠BAC=∠DCF,∵AE=CF,∴△ABE≌△CDF.点评:本题主要考查对平行四边形的性质,全等三角形的判定,平行线的性质等知识点的理解和掌握,能推出证7.如图,已知在▱ABCD中,过AC中点的直线交CD,AB 于点E,F.求证:DE=BF.考点:平行四边形的性质;平行线的性质;全等三角形的判定与性质.分析:根据平行四边形的性质得到DC=AB,DC∥AB,根据平行线的性质得到∠ECA=∠BAC,∠CEO=∠AFO,能推出△AOF≌△COE,得到CE=AF,即可证出答案.解答:证明:∵四边形ABCD 是平行四边形,∴DC=AB,DC∥AB,∴∠ECA=∠BAC,∠CEO=∠AFO,∵OA=OC,∴△AOF≌△COE,∴CE=AF,∵DC=AB,∴DE=BF.点评:本题主要考查对平行四边形的性质,平行线的性质,全等三角形的性质和判定等知识点的理解和掌握,解此题的关键是根据平行四边形的性质证出△AOF和△COE 全等.8.如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AE.四边形AECD是平行四边形吗?为什么?考点:等腰梯形的性质;平行线的判定与性质;等腰三角形的性质;平行四边形的判定.分析:根据等腰三角形性质求出∠B=∠C,根据等腰三角形性质推出∠AEC=∠B=∠C,推出AE∥CD,根据平行四边形的判定推出即可.解答:解:是平行四边形,理由:∵四边形ABCD是等腰梯形,AD∥BC,∴AB=DC,∠B=∠C,∵AB=AE,∴∠AEB=∠B,∴∠AEB=∠C,∴AE∥DC,又∵AD∥BC,∴四边形AECD是平行四边形.点评:本题考查了等腰三角形的性质,等腰梯形的性质,平行线的性质和判定,平行四边形的判定等知识点的应用,关键是根据题意推出AE∥CD,培养了学生分析问题和解决问题的能力,题目较好,综合性比较强.9.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF.考点:平行四边形的性质;全等三角形的判定与性质;平行四边形的判定.分析:连接BE,DF,BD,BD交AC于O,根据平行四边形性质求出OA=OC,OD=OB,推出OE=OF,根据平行四边形的判定推出四边形BEDF是平行四边形即可.解答:证明:连接BE,DF,BD,BD交AC于O,∵四边形ABCD是平行四边形,∴OA=OC,OD=OB,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形,∴DE=BF.点评:本题考查了平行四边形的性质和判定等应用,关键是能熟练地运用平行四边形的性质和判定进行推理,此题的10.如图,四边形ABCD中,AD=BC,AE⊥BD,CF⊥BD,垂足为E、F,AE=CF,求证:四边形ABCD是平行四边形.考点:平行四边形的判定;平行线的性质;全等三角形的判定与性质.分析:求出∠AED=∠CFB=90°,根据HL证Rt△AED≌Rt△CFB,推出∠ADE=∠CBD,得到AD∥BC,根据平行四边形的判定判断即可.解答:证明:∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL),∴∠ADE=∠CBD,∴AD∥BC,∵AD=BC,∴四边形ABCD是平行四边形.点评:本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出AD∥BC,主要考查学生运用性质进行推理的能力.11.如图,在△ABC中,AD是中线,点E是AD的中点,过A点作BC的平行线交CE的延长线于点F,连接BF.求证:四边形AFBD是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:求出AE=DE,∠AFE=∠DCE,证△AEF≌△CED,推出AF=DC,得出AF∥BD,AF=BD,根据平行四边形的判定推出即可.解答:证明:∵E为AD中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,在△AEF和△CED中∵,∴△AEF≌△CED(AAS),∴AF=DC,∵AD是△ABC的中线,∴AF=BD,即AF∥BD,AF=BD,故四边形AFBD是平行四边形.点评:本题考查了平行四边形的性质和判定,全等三角形的性质和判定,关键是推出AF=DC=BD.12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,DE∥AB,AD+DC=BC.求证:(1)DE=DC;(2)△DEC是等边三角形.考点:等腰梯形的性质;等边三角形的判定;平行四边形的判定与性质.分析:(1)证出平行四边形ABED,推出DE=AB,即可推出答案;(2)根据BE=AD,AD+DC=BC,BE+EC=BC,推出DC=EC即可证出答案.解答:证明:(1)∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB,∵AB=DC,∴DE=DC.(2)证明:∵BE=AD,AD+DC=BC,BE+EC=BC,∴DC=EC,由(1)知:DE=DC,∴DE=DC=EC,∴△DEC是等边三角形.点评:本题主要考查对等腰梯形的性质,平行四边形的性质和判定,等边三角形的判定等知识点的理解和掌握,证出平行四边形ABED和DC=EC是解此题的关键.13.已知:如图,E、F是平行四边形ABCD的对角线AC 上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)连接DE、BF,试判断四边形DEBF的形状,并说明理由.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:(1)根据平行四边形的性质对边平行且相等得到AD与BC平行且相等,由AD与BC平行得到内错角∠DAF 与∠BCA相等,再由已知的AE=CF,根据“SAS”得到△ADF与△CBE全等;DF与EB相等且∠DFA与∠BEC相等,由内错角相等两直线平行得到DF与BE平行,根据一组对边平行且相等的四边形为平行四边形即可得到四边形DEBF的形状.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC(1分)∴∠DAF=∠BCA(2分),∵AE=CF,∴AE+EF=CF+EF,即AF=CE(3分)∴△ADF≌△CBE(4分)(2)四边形DEBF是平行四边形(5分)∵△ADF≌△CBE,∴∠DFA=∠BEC,DF=BE,∴DF∥BE,∴四边形DEBF是平行四边形(6分)点评:本题综合考查了全等三角形的判断与性质,以及平行四边形的判断与性质.其中第2问是一道先试验猜想,再探索证明的新型题,其目的是考查学生提出问题,解决问题的能力,这类几何试题将成为今后中考的热点试题.14.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.求证:四边形EFGH是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:易证得△AEH≌△CGF,从而证得对应边BE=DG、DH=BF.故有△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.解答:证明:在平行四边形ABCD中,∠A=∠C(平行四边形的对边相等);又∵AE=CG,AH=CF(已知),∴△AEH≌△CGF(SAS),∴EH=GF(全等三角形的对应边相等);在平行四边形ABCD中,AB=CD,AD=BC(平行四边形的对边相等),∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH;∴GH=EF(全等三角形的对应边相等);∴四边形EFGH是平行四边形(两组对边分别相等的四边形是平行四边形).点评:本题考查了平行四边形的判定和性质、全等三角形的判定和性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.15.如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系:平行且相等(2)请证明你的猜想.考点:平行四边形的判定与性质.分析:(1)BE平行且等于DF;(2)连接BD交AC于O,根据平行四边形的性质得出OA=OC,OD=OB,推出OE=OF,得出平行四边形BEDF 即可.解答:(1)解:BE和DF的关系是:BE=DF,BE∥DF,故答案为:平行且相等.(2)证明:连接BD交AC于O,∵ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.点评:本题考查了平行四边形的性质和判定的应用,主要检查学生能否熟练地运用平行四边形的性质和判定进行推理,题型较好,通过此题培养了学生分析问题和解决问题的能力,同时培养了学生的观察能力和猜想能力.16.如图,E、F是平行四边形ABCD对角线AC上的两点,且BE∥DF.求证:∠1=∠2.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:由三角形全等(△ABE≌△CDF)得到BE=DF,所以四边形BFDE是平行四边形,根据对角相等即可得证.解答:证明:∵四边形ABCD是平行四边形(已知),∴AB=CD,AB∥CD(平行四边形的对边平行且相等),∴∠BAE=∠DCF(两直线平行,内错角相等);∵BE∥DF(已知),∴∠BEF=∠DFE(两直线平行,内错角相等),∴∠AEB=∠CFD(等量代换),∴△ABE≌△CDF(AAS);∴BE=DF(全等三角形的对应边相等),∵BE∥DF,∴四边形BEDF是平行四边形(对边平行且相等的四边形是平行四边形),∴∠1=∠2(平行四边形的对角相等).点评:本题主要考查平行四边形的性质和三角形全等的判定,需要熟练掌握并灵活运用.平行四边形的判定定理:对边平行且相等的四边形是平行四边形.17.如图,已知E,F分别是▱ABCD的边AB,CD的中点.求证:ED=BF.考点:平行四边形的判定与性质.分析:根据平行四边形的性质得到AB∥CD,AB=CD,根据线段的中点的定义得到EB=AB,DF=CD,即BE=DF,BE∥DF,得到平行四边形EBFD,根据平行四边形的性质即可得到答案.解证明:∵四边形ABCD是平行四边形,答:∴AB∥CD,AB=CD,∵E,F分别是▱ABCD的边AB,CD的中点,∴EB=AB,DF=CD,∴BE=DF,∵BE∥DF,∴四边形EBFD是平行四边形,∴ED=BF.点评:本题主要考查对平行四边形的性质和判定的理解和掌握,能灵活运用平行四边形的性质和判定进行证明是解此题的关键.18.如图,BD是▱ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DEBF为平行四边形.考点:平行四边形的判定与性质;角平分线的定义.分析:根据平行四边形性质和角平分线定义求出∠FDB=∠EBD,推出DF∥BE,根据平行四边形的判定判断即可.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠CDB=∠ABD,∵DF平分∠CDB,BE平分∠ABD,∴∠FDB=∠CDB,∠EBD=∠ABD,∴∠FDB=∠EBD,∴DF∥BE,∵AD∥BC,即ED∥BF,∴四边形DEBF是平行四边形.点评:本题考查了角平分线定义,平行四边形的性质和判定等的应用,关键是推出DF∥BE,主要检查学生能否运用定理进行推理,题型较好,难度适中.19.如图,在▱ABCD中,对角线AC与BD交于点O,已知点E、F分别为AO、OC的中点,证明:四边形BFDE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:利用“平行四边形的对角线互相平分”的性质推知OA=OC,OB=OD;然后由已知条件“点E、F分别为AO、OC的中点”可以证得OE=OF;最后根据平行四边形的判定定理“对角线相互平分的四边形为平行四边形”即可证得结论.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD(平行四边形的对角线互相平分).又∵点E、F分别为AO、OC的中点,∴OE=OF.∴四边形BFDE是平行四边形(对角线相互平分的四边形为平行四边形).点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.20.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?说明理由.考点:全等三角形的判定与性质;垂线;直角三角形全等的判定;平行四边形的判定与性质.分析:求出∠AFB=∠CED=90°,DE∥BF,推出AF=CE,连接BE、DF,根据HL证Rt△ABF≌Rt△CDE,推出DE=BF,得出平行四边形DEBF,根据平行四边形的性质推出即可.解解:BD平分EF,理由是:答:证法一、连接BE、DF.∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,DE∥BF,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE,∴DE=BF,∵DE∥BF,∴四边形DEBF是平行四边形,∴BD平分EF;证法二、∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,DE∥BF,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE,∴DE=BF,∵在△BFG和△DEG中,∴△BFG≌△DEG(AAS),∴EG=FG,即BD平分EF.点评:本题考查了平行四边形的性质和判定,垂线,全等三角形的性质和判定等知识点的运用,关键是得出平行四边形DEBF,题目比较好,难度适中.21.如图,△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:EF=DG且EF∥DG.考点:三角形中位线定理;三角形的角平分线、中线和高;平行四边形的判定与性质.分析:根据三角形的中位线推出DE∥BC,DE=BC,GF∥BC,GF=BC,推出GF=DE,GF∥DE,得出平行四边形DEFG,根据平行四边形的性推出即可.解答:证明:∵BD、CE是△ABC的中线,∴DE∥BC,DE=BC,同理:GF∥BC,GF=BC,∴GF=DE,GF∥DE,∴四边形DEFG是平行四边形,∴EF=DG,EF∥DG.点评:本题考查了平行四边形的性质和判定,三角形的中位线,三角形的中线等知识点,主要检查学生能否熟练的运用性质进行推理,题目比较典型,难度适中,通过做此题培养了学生分析问题和解决问题的能力.22.已知如图所示,▱ABCD的对角线AC、BD交于O,GH 过点O,分别交AD、BC于G、H,E、F在AC上且AE=CF,求证:四边形EHFG是平行四边形.考点:平行四边形的判定与性质.分析:根据平行四边形性质得出OA=OC,AD∥BC,推出OE=OF,∠GAO=∠HCO,∠AGO=∠CHO,根据AAS 证△AGO≌△CHO,推出OG=OH,根据平行四边形的判定推出即可.解答:证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∵AE=CF,∴OE=OF,∵AD∥BC,∴∠GAO=∠HCO,∠AGO=∠CHO,在△AGO和△CHO中,∴△AGO≌△CHO(AAS),∴OG=OH,∵OE=OF,∴四边形EHFG是平行四边形.点评:本题考查了全等三角形的性质和判定,平行线的性质,平行四边形的性质和判定等知识点,注意:平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.。

相关文档
最新文档