求解线性方程组雅各比迭代的Matlab程序
用matlab求解线性方程组
用matlab 解线性方程组电子科技大学摘要:利用matlab 软件编写程序,分别利用雅克比迭代法和高斯赛德尔迭代法、列主元高斯消去法,改进平方根法求解不同方程组,其中对于雅克比迭代法和高斯赛德尔迭代法在收敛条件相同的情况下,比较两者的迭代次数,对于,列主元高斯消去法和改进平方根法,要求解出方程组的根。
关键词:雅克比迭代法;高斯赛德尔迭代法;列主元高斯消去法;改进平方根法引言:众所周知,在数学物理方程中,当涉及到解方程组的时候,按照常规的计算方法计算量很大,这样,就涉及到了计算方法的问题,算法里面,很多涉及到矩阵转换,经过处理,可以让我们简便的计算根,而matlab 是一个处理矩阵方程组很便利的软件,下面就是用几种不同的方法解方程组。
正文:一、雅克比迭代法和高斯赛德尔迭代法 1雅可比迭代法原理: 设线性方程组b Ax =的系数矩阵A 可逆且主对角元素nn a ,...,a ,a 2211均不为零,令()nn a ,...,a ,a diag D 2211=并将A 分解成()D D A A +-= 从而(1)可写成 ()b x A D Dx +-= 令 11f x B x +=其中b D f ,A D I B 1111--=-=. 以1B 为迭代矩阵的迭代法(公式)()()111f x B x k k +=+称为雅可比(Jacobi)迭代法(公式),用向量的分量来表示,则为⎩⎨⎧[],...,,k ,n ,...,i x a ba xnij j )k (j j i iii)k (i21021111==∑-=≠=+其中()()()()()Tn x ,...x ,x x 002010=为初始向量.由此看出,雅可比迭代法公式简单,每迭代一次只需计算一次矩阵和向量的乘法.在电算时需要两组存储单元,以存放()k x 及()1+k x . 2高斯赛德尔迭代法原理由雅可比迭代公式可知,在迭代的每一步计算过程中是用的全部分量来计算的所有分量,显然在计算第i 个分量时,已经算出最新的分量,但没被利用。
matlab 解线性方程组的迭代法
迭代过程本质上就是计算极限的过程,一般不能 得到精确解。
迭代法的优点是程序简单,适合于大型方程组求 解,但缺点是要判断迭代是否收敛和收敛速度问题 。 1. 雅可比(Jacobi(1804-1851))迭代法(简单迭代法) 2. 赛得尔 (Seidel (1821 - 1896))迭代法
2、简单迭代法
while(norm(x-x1)>eps) x1=x; x=(I-A)*x1+b; n = n + 1; if(n>=M) disp('Warning: 迭代次数太多,现
在退出!'); return;
end end
例:求解方程组
clear all; A =[ 1.0170 -0.0092 0.0095;
遗传算法是一种基于自然选择的用于求解有约束和无约束 最优问题的方法。遗传算法反复修改包含若干个体的种群 。遗传算法在每一步中,随机从当前种群中选择若干个个 体作为父辈,并用它们产生下一代子辈。在若干代之后, 种群就朝着最优解“进化”。我们可以利用遗传算法去解决 各种最优化问题,包括目标函数是不连续、不可微、随机 或者高度非线性的问题。
若不满足收敛条件,适当调整方程次序或作一 定的线性组合,就可能满足收敛条件。
5、MATLAB的线性方程组求解函数 2
格式
solve('eqn1','eqn2',...,'eqnN','var1,var2,...,varN')
线性方程组求解的迭代法及Matlab的应用
线性方程组求解的迭代法及Matlab的应用2 定常迭代法 32.1 雅可比迭代法 42.2 高斯-赛德尔迭代法 42.3 超松弛迭代法 52.4 迭代的收敛性分析 62.5 实例 73 不定常迭代 93.1 最速下降法 93.2 共轭梯度法 103.3 实例 114 Matlab在定常迭代与不定常迭代中的应用 124.1 雅可比迭代法的程序 124.2 高斯-赛德尔迭代的程序 134.3 超松弛迭代的程序 134.4 最速下降法的程序 144.5 共轭梯度法的程序 144.6 Matlab实现的实例 154.6.1 定常迭代的收敛速度的比较 154.6.2 超松弛迭代法松弛因子的选择 164.6.3 不定常迭代的收敛速度的比较 18参考文献 20致谢 211 引言1.1 课题的目的和意义数值分析(numerical analysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。
为计算数学的主体部分。
它的主要内容有插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。
数值分析这门学科有如下特点:面向计算机;有可靠的理论分析;要有好的计算复杂性;要有数值实验;要对算法进行误差分析。
:在许多工程实际应用中,超大规模的线性方程组的数值解法是时常要遇到的问题。
由于线性方程组的维数巨大,给具体的计算带来很大的问题——算法对计算机的内存需求大,算法的收敛速度慢以及计算舍人误差的累积扩张。
这些往往使理论上较好的算法无法真正的应用到工程实际中,因此寻求一种真正能实际应用的数值算法一直是人们关注的问题。
通常求解线性方程组一般可以分为直接解法和迭代解法。
现在流行的算法一般采用迭代的算法来求解线性方程组,这主要是为了加快求解的速度。
另外由于计算机的发展,在许多领域里涌现了一些新型的算法如神经网络,遗传算法,粒子群算法,模拟退火算法以及蚁群算法等。
matlab中jacobi迭代法
一、简介Matlab中jacobi迭代法是一种用于求解线性方程组的迭代方法,适用于系数矩阵为对称、正定矩阵的情况。
该迭代方法通过将系数矩阵分解为对角矩阵、上三角矩阵和下三角矩阵的形式,然后通过迭代计算得到方程组的解。
在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。
二、 jacobi迭代法原理1. 基本思想jacobi迭代法的基本思想是将系数矩阵分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式,即A=D+L+U,其中D为系数矩阵A 的对角线元素组成的对角矩阵,L为系数矩阵A的下三角部分,U为系数矩阵A的上三角部分。
令x为方程组的解向量,b为方程组的右端向量,则方程组可表示为Ax=b。
根据方程组的性质,可将方程组表示为(D+L+U)x=b,然后利用迭代的方式逐步逼近方程组的解。
2. 迭代公式假设迭代到第k次,方程组可表示为(D+L+U)x=b,将其转化为迭代形式x(k+1)=(D+L)^(-1)(b-Ux(k)),利用迭代公式可以逐步计算出方程组的解。
3. 收敛条件对于jacobi迭代法,收敛条件为系数矩阵A为对角占优矩阵或正定矩阵。
如果满足这一条件,迭代计算会逐步收敛于方程组的解。
三、 Matlab中jacobi迭代法实现在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。
具体步骤如下:1. 对系数矩阵进行分解将系数矩阵A分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式。
2. 初始化迭代变量初始化迭代的初始值x0、迭代次数k、逐次逼近解向量x(k+1)。
3. 迭代计算利用迭代公式x(k+1)=(D+L)^(-1)(b-Ux(k))来逐步计算出方程组的解。
4. 判断收敛条件在迭代计算过程中,需要实时判断迭代计算是否满足收敛条件,如果满足则停止迭代计算,得到方程组的解。
四、实例分析假设有如下方程组:2x1 + x2 + 4x3 = 103x1 + 4x2 - x3 = 10x1 + 2x2 + 3x3 = 0可以利用jacobi迭代法来求解该方程组,在Matlab中可以通过编程实现迭代计算过程。
基于Matlab的解线性方程组的几种迭代法的实现及比较
基于Matlab的解线性方程组的几种迭代法的实现及比较线性方程组的解法有很多种,其中一类常用的方法是迭代法。
迭代法根据一个初值逐步逼近方程组的解,在每一次迭代中利用现有的信息产生新的近似值,并不断地修正。
下面介绍基于Matlab的三种迭代法:雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法,并进行比较。
1. 雅可比迭代法雅可比迭代法是迭代法中最简单的一种方法。
对于线性方程组Ax=b,雅可比迭代法的迭代公式为:x_{i+1}(j)=1/a_{jj}(b_j-\\sum_{k=1,k\eq j}^n a_{jk}x_i(k))其中,i表示迭代次数,j表示未知数的下标,x_i表示第i次迭代的近似解,a_{jk}表示系数矩阵A的第j行第k列元素,b_j 表示方程组的常数项第j项。
在Matlab中,可以使用以下代码实现雅可比迭代:function [x,flag]=jacobi(A,b,X0,tol,kmax)n=length(b);x=X0;for k=1:kmaxfor i=1:nx(i)=(b(i)-A(i,:)*x+A(i,i)*x(i))/A(i,i);endif norm(A*x-b)<tolflag=1;returnendendflag=0;return其中,参数A为系数矩阵,b为常数项列向量,X0为初值列向量,tol为迭代误差容许值(默认为1e-6),kmax为最大迭代次数(默认为1000)。
函数返回值x为近似解列向量,flag表示是否满足容许误差要求。
2. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进。
其基本思想是,每次迭代时,利用已经求出的新解中的信息来更新其他未知数的值。
迭代公式为:x_{i+1}(j)=(1/a_{jj})(b_j-\\sum_{k=1}^{j-1}a_{jk}x_{i+1}(k)-\\sum_{k=j+1}^n a_{jk}x_i(k))与雅可比迭代法相比,高斯-赛德尔迭代法的每一次迭代都利用了前面已求得的近似解,因此可以更快地收敛。
雅可比迭代法的MATLAB程序
雅可比迭代法的MATLAB程序:Function[x,k,index]=Jacobi(A,b,ep,it-max)% 求线性方程组的雅可比法;% A为方程组的系数矩阵;% b为方程组的右端项;% x为方程组的解;% ep为精度要求,缺省值为le-5;% it_max为最大迭代次数,缺省值为100;% k为迭代次数;% index 为指标变量,index=0表示计算失败,index=1表示计算成功; if nargin<4it_max=100;endif nargin<3ep=le-5;endn=length(A);k=0;x=zeros(n,1);y=zeros(n,1);index=1;while k<=it_maxfor i=1:nif abs (A(i,i))<le-10index=0;return;endy(i)=(b(i)-A(i,1:n)*x(1:n)+A(i,i)*x(i))/A(i,i);endif norm(y-x,inf)<epbreak;endk=k+1;x=y;end高斯-赛德尔迭代的MATLAB程序Function[x,k,index]=Gau-seidel(A,b,ep,it-max)% 求线性方程组的高斯-赛德尔迭代法;% A为方程组的系数矩阵;% b为方程组的右端项;% x为方程组的解;% ep为精度要求,缺省值为le-5;% it_max为最大迭代次数,缺省值为100;% k为迭代次数;% index 为指标变量,index=0表示计算失败,index=1表示计算成功; if nargin<4it_max=100;endif nargin<3ep=le-5;endn=length(A);k=0;x=zeros(n,1);y=zeros(n,1);index=1; while k<=it_maxfor i=1:nif abs (A(i,i))<le-10index=0;return;Endif i==1y(i)=(b(i)-A(i,i+1:n)*x(i+1:n)/A(i,i);elseif i==ny(i)=(b(i)-A(i,1:i-1)*y(1:i-1)/A(i,i);elsey(i)=(b(i)-A(i,1:i-1)*y(1:i-1)-A(i,i+1:n)*x(i+1:n)/A(i,i); endendif norm(y-x,inf)<epbreak;endk=k+1; x=y; endTHANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
MATLAB代码解线性方程组的迭代法
MATLAB代码解线性方程组的迭代法解线性方程组的迭代法1.rs里查森迭代法求线性方程组Ax=b的解function[x,n]=rs(A,b,x0,eps,M)if(nargin==3)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-A)*x0+b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend2.crs里查森参数迭代法求线性方程组Ax=b的解function[x,n]=crs(A,b,x0,w,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%迭代过程while(tol>eps)x=(I-w*A)*x0+w*b;n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend3.grs里查森迭代法求线性方程组Ax=b的解function[x,n]=grs(A,b,x0,W,eps,M)if(nargin==4)eps=1.0e-6;%eps表示迭代精度M=10000;%M表示迭代步数的限制值elseif(nargin==5)M=10000;endI=eye(size(A));n=0;x=x0;tol=1;%前后两次迭代结果误差%迭代过程while(tol>eps)x=(I-W*A)*x0+W*b;%迭代公式n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend4.jacobi雅可比迭代法求线性方程组Ax=b的解function[x,n]=jacobi(A,b,x0,eps,varargin)if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend5.gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,n]=gauseidel(A,b,x0,eps,M)if nargin==3eps=1.0e-6;M=200;elseif nargin==4M=200;elseif nargin<3errorreturn;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵G=(D-L)\U;f=(D-L)\b;x=G*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=G*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend6.SOR超松弛迭代法求线性方程组Ax=b的解function[x,n]=SOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B=inv(D-L*w)*((1-w)*D+w*U);f=w*inv((D-L*w))*b;x=B*x0+f;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend7.SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解function[x,n]=SSOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=200;elseif nargin<4errorreturnelseif nargin==5M=200;endif(w<=0||w>=2)error;return;endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=inv(D-L*w)*((1-w)*D+w*U);B2=inv(D-U*w)*((1-w)*D+w*L);f1=w*inv((D-L*w))*b;f2=w*inv((D-U*w))*b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend8.JOR雅可比超松弛迭代法求线性方程组Ax=b的解function[x,n]=JOR(A,b,x0,w,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin==5M=10000;endif(w<=0||w>=2)%收敛条件要求error;return;endD=diag(diag(A));%求A的对角矩阵B=w*inv(D);%迭代过程x=x0;n=0;%迭代次数tol=1;%迭代过程while tol>=epsx=x0-B*(A*x0-b);n=n+1;tol=norm(x-x0);x0=x;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend9.twostep两步迭代法求线性方程组Ax=b的解function[x,n]=twostep(A,b,x0,eps,varargin) if nargin==3eps=1.0e-6;M=200;elseif nargin<3errorreturnelseif nargin==5M=varargin{1};endD=diag(diag(A));%求A的对角矩阵L=-tril(A,-1);%求A的下三角阵U=-triu(A,1);%求A的上三角阵B1=(D-L)\U;B2=(D-U)\L;f1=(D-L)\b;f2=(D-U)\b;x12=B1*x0+f1;x=B2*x12+f2;n=1;%迭代次数while norm(x-x0)>=epsx0=x;x12=B1*x0+f1;x=B2*x12+f2;n=n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend10.fastdown最速下降法求线性方程组Ax=b的解function[x,n]=fastdown(A,b,x0,eps)if(nargin==3)eps=1.0e-6;endx=x0;n=0;tol=1;while(tol>eps)%以下过程可参考算法流程r=b-A*x0;d=dot(r,r)/dot(A*r,r);x=x0+d*r;tol=norm(x-x0);x0=x;n=n+1;end11.conjgrad共轭梯度法求线性方程组Ax=b的解function[x,n]=conjgrad(A,b,x0)r1=b-A*x0;p=r1;n=0;for i=1:rank(A)%以下过程可参考算法流程if(dot(p,A*p)< 1.0e-50)%循环结束条件break;endalpha=dot(r1,r1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;if(r2< 1.0e-50)%循环结束条件break;endbelta=dot(r2,r2)/dot(r1,r1);p=r2+belta*p;n=n+1;end12.preconjgrad预处理共轭梯度法求线性方程组Ax=b的解function[x,n]=preconjgrad(A,b,x0,M,eps)if nargin==4eps=1.0e-6;endr1=b-A*x0;iM=inv(M);z1=iM*r1;p=z1;n=0;tol=1;while tol>=epsalpha=dot(r1,z1)/dot(p,A*p);x=x0+alpha*p;r2=r1-alpha*A*p;z2=iM*r2;belta=dot(r2,z2)/dot(r1,z1);p=z2+belta*p;n=n+1;tol=norm(x-x0);x0=x;%更新迭代值r1=r2;z1=z2;end13.BJ块雅克比迭代法求线性方程组Ax=b的解function[x,N]=BJ(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;%参数的默认值endNS=size(A);n=NS(1,1);if(sum(d)~=n)disp('分块错误!');return;endbnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);%求A的对角分块矩阵endfor i=1:bnumendb=bs(i,1)+d(i,1)-1;invDB(bs(i,1):endb,bs(i,1):endb)=inv(DB(bs(i,1):endb,bs(i,1):e ndb));%求A的对角分块矩阵的逆矩阵endN=0;tol=1;while tol>=epsx=invDB*(DB-A)*x0+invDB*b;%由于LB+DB=DB-AN=N+1;%迭代步数tol=norm(x-x0);%前后两步迭代结果的误差x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;endend14.BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,N]=BGS(A,b,x0,d,eps,M)if nargin==4eps=1.0e-6;M=10000;elseif nargin<4errorreturnelseif nargin==5M=10000;endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb); %求A的对角分块矩阵endLB=-tril(A-DB);%求A的下三角分块阵UB=-triu(A-DB);%求A的上三角分块阵N=0;tol=1;while tol>=epsinvDL=inv(DB-LB);x=invDL*UB*x0+invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!');return;end15.BSOR块逐次超松弛迭代法求线性方程组Ax=b的解function[x,N]=BSOR(A,b,x0,d,w,eps,M)if nargin==5eps=1.0e-6;M=10000;elseif nargin<5errorreturnelseif nargin==6M=10000;%参数默认值endNS=size(A);n=NS(1,1);bnum=length(d);bs=ones(bnum,1);for i=1:(bnum-1)bs(i+1,1)=sum(d(1:i))+1;%获得对角线上每个分块矩阵元素索引的起始值endDB=zeros(n,n);for i=1:bnumendb=bs(i,1)+d(i,1)-1;DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb); %求A的对角矩阵endLB=-tril(A-DB);%求A的下三角阵UB=-triu(A-DB);%求A的上三角阵N=0;iw=1-w;while tol>=epsinvDL=inv(DB-w*LB);x=invDL*(iw*DB+w*UB)*x0+w*invDL*b;%块迭代公式N=N+1;tol=norm(x-x0);x0=x;if(N>=M)disp('Warning:迭代次数太多,可能不收敛!'); return;endend。
基于matlab的线性方程组迭代法(实验报告)
基于matlab 的线性方程组迭代法实验题目:实验要求:(1)分别试用 Jacobi 和Gauss-Seidel 迭代法计算,要求达到的精度为:(1)()510k k x x +-∞->(2)观测得到的迭代序列是否收敛?若收敛,记录迭代次数并分析计算结果。
实验流程一、迭代法简介 1、 Jacobi 迭代法对于方程组Ax b =有A 非奇异情况下且0ij a ≠时,A 分裂为A D L U =--,可得到:0x B x f =+,其中1110(),B I D A D L U f D b ---=-=+=,得到雅克比迭代法:(0)(1)()0()k k x xB x f +⎧⎪⎨=+⎪⎩初始向量 2、 Gauss-Seidel 迭代法(0)(1)()()k k x x Gx f +⎧⎪⎨=+⎪⎩初始向量 其中11(),()G D L U f D L b --=-=-。
其迭代法优点为只需一组存储单元。
3、 超松弛迭代法(SOR)Gauss-Seidel 迭代法的一种加速方法,ω松弛因子。
(0)(1)()(1)(1))()(1)k k k k k x x Gx f x x x ωω+++⎧⎪⎪=+⎨⎪=+-⎪⎩(初始向量 其中11(),()G D L U f D L b --=-=-。
二、迭代法的matlab 程序1、 Jacobi 迭代法Jacobi.mfunction [y,n]= Jacobi( A,b,x0,e )%JACOBI ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));B=I-D\A;f=D\b;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=B*y+f;n=n+1;endnend2、Gauss-Seidel迭代法GaussSeidel.mfunction [y,n]= GaussSeidel( A,b,x0,e ) %GS ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=G*y+f;n=n+1;endnend3、超松弛迭代法(SOR) SOR.mfunction [y,n]= SOR( A,b,w,x0,e )%SORÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<5)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ex0=y;x1=G*x0+f;y=(1-w)*x0+w*x1;n=n+1;endnend4、变量初始化creatMatrix.mclear;clc;a=diag(3*ones(1,20));b=diag(-0.5*ones(1,19),1);c=diag(-0.25*ones(1,18),2);A=a+b+b'+c+c';%ϵÊý¾ØÕób=ones(20,1)*7/4;b(1)=9/4;b(20)=9/4;x0=zeros(20,1);A,b,x0,w=1.5建立A数组以及初始化b,松弛因子w,迭代初值x05、程序运行和结果记录solve.mclc;tic,s1=Jacobi(A,b,x0),toctic,s2=GaussSeidel(A,b,x0),toctic,s3=SOR(A,b,w,x0),toc三、计算结果运行程序得到几种方法的计算结果。
雅可比方法求特征值matlab
雅可比方法求特征值matlab雅可比方法是一种用于求解矩阵的特征值和特征向量的有效算法。
在这个方法中,我们首先将矩阵表示为一个对称矩阵,并通过迭代的方式逐步逼近特征值和特征向量的精确解。
我们需要将矩阵进行对称化处理。
这可以通过将矩阵与其转置相乘来实现。
得到的对称矩阵将具有相同的特征值和特征向量。
接下来,我们需要选择一个初始的特征向量估计值。
这个初始估计可以是任意的非零向量。
然后,我们通过将矩阵与初始估计向量相乘,得到一个新的向量。
这个新向量将与初始估计向量正交,并且具有相同的特征值。
然后,我们需要对新向量进行归一化处理,以确保它具有单位长度。
这可以通过将新向量除以其范数来实现。
接下来,我们需要计算新向量与矩阵的乘积。
这将得到一个新的特征向量估计值。
然后,我们需要对新的特征向量进行归一化处理,并计算其与前一次迭代的特征向量之间的夹角。
如果夹角的差异小于某个预定的阈值,我们就可以认为特征向量已经收敛,并得到了矩阵的特征值和特征向量。
我们可以通过对特征值进行排序,以及相应地对特征向量进行排列,来得到特征值的精确解。
雅可比方法是一种非常强大的求解特征值和特征向量的方法。
它在各种领域中都有广泛的应用,包括物理学、工程学和计算机科学等。
在MATLAB中,我们可以使用eig函数来实现雅可比方法,并得到矩阵的特征值和特征向量。
雅可比方法是一种求解特征值和特征向量的有效算法。
它通过迭代的方式逐步逼近精确解,并在MATLAB中有着广泛的应用。
无论是在学术研究还是实际应用中,雅可比方法都是一个非常有用的工具。
matlab迭代计算方程组
matlab迭代计算方程组
在MATLAB中,迭代计算方程组通常涉及使用循环结构来逐步逼近方程组的解。
这种方法通常用于无法直接求解的复杂方程组或者大规模方程组的情况。
下面我将从几个方面介绍在MATLAB中进行迭代计算方程组的方法。
首先,最常见的迭代方法之一是雅可比迭代法。
在MATLAB中,可以通过编写一个循环来实现雅可比迭代。
具体步骤包括初始化一个解向量、编写迭代循环以更新解向量,并设置一个收敛准则来判断迭代是否结束。
其次,另一个常用的迭代方法是高斯-赛德尔迭代法。
这种方法在雅可比迭代的基础上进行了改进,每次更新解向量时都使用最新的已知解。
在MATLAB中,可以使用类似的循环结构来实现高斯-赛德尔迭代。
此外,MATLAB还提供了一些内置函数来进行迭代计算方程组,比如`fsolve`函数可以用于求解非线性方程组,`linsolve`函数可以用于求解线性方程组。
这些函数通常会在迭代过程中自动选择合适的算法,并提供了一些参数用于控制迭代的精度和收敛性。
总的来说,在MATLAB中进行迭代计算方程组可以通过编写循环结构来逐步逼近解,也可以利用内置函数来简化计算过程。
需要根据具体的方程组和求解精度来选择合适的方法,并注意迭代过程中的收敛性和稳定性。
希望这些信息能够帮助你更好地理解在MATLAB 中进行迭代计算方程组的方法。
matlab从方程组雅可比矩阵
matlab从方程组雅可比矩阵摘要:1.MATLAB 简介2.方程组与雅可比矩阵3.MATLAB 中求解雅可比矩阵的方法4.应用实例正文:一、MATLAB 简介MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于科学计算、数据分析、可视化等领域。
MATLAB 以矩阵计算为基础,提供了丰富的函数库和工具箱,为用户提供了便捷的编程环境和高效的计算能力。
二、方程组与雅可比矩阵方程组是数学中常见的问题,通常表示为:x = Ax + b其中,A 是系数矩阵,x 是未知向量,b 是常数向量。
求解方程组的过程就是找到x 的值。
而雅可比矩阵是描述线性方程组解的情况的矩阵,它可以判断方程组的解是否存在以及存在的个数。
三、MATLAB 中求解雅可比矩阵的方法在MATLAB 中,可以使用`clf`函数求解线性方程组的雅可比矩阵。
`clf`函数的语法如下:`[A, b] = clf(方程组)`其中,方程组需要用大括号{}括起来,例如:`[A, b] = clf({x = Ax + b})`函数会返回系数矩阵A 和常数向量b。
此外,`clf`函数还可以通过添加选项`J`来计算雅可比矩阵J。
四、应用实例假设有一个线性方程组:2x + 3y + z = 74x - y + 2z = 1x - y + z = 3我们可以使用`clf`函数求解该方程组的雅可比矩阵:```matlab% 定义方程组eq_group = [2*ones(1, 3) 3*ones(1, 3) ones(1, 3);4*ones(1, 3) -ones(1, 3) 2*ones(1, 3);ones(1, 3) -ones(1, 3) ones(1, 3)];% 计算系数矩阵和常数向量[A, b] = clf(eq_group)% 计算雅可比矩阵[A, b, J] = clf(eq_group, "J")```运行上述代码,可以得到系数矩阵A、常数向量b 和雅可比矩阵J。
MATLAB课程设计可视化(GUI)的线性方程组的Jacobi迭代解法。
华东交通大学课程设计(论文)任务书软件学院学院09 软件工程+电气专业 3 班一、课程设计(论文)题目可视化(GUI)的线性方程组的Jacobi迭代解法二、课程设计(论文)工作自 2011年6月27日起至2011 年 7月1 日止。
三、课程设计(论文) 地点: 电气学院机房四、课程设计(论文)内容要求:1.本课程设计的目的(1)熟练掌握MATLAB语言的基本知识和技能;(2)熟悉MA TLAB下的GUI程序设计;(3)熟悉多项式曲线拟合,MA TLAB的绘图功能;(4)培养分析、解决问题的能力;提高学生的科技论文写作能力。
2.课程设计的任务及要求1)基本要求:(1)利用matlab中的GUI设计窗口设计一个界面程序。
其中主界面包含控制背景颜色与图形坐标的菜单;(2)含有一个按钮控件,它的作用能够对一个文件的数据进行多项式曲线拟合;(3)文件名通过一个编辑控件由用户给定,给定文件内包含要拟合曲线的数据;(4)拟合好的多项式曲线能够在另一个坐标控件中显示;(5)拟合好的曲线与实际数据曲线用不同的颜色并加各种必要标注在坐标中显示。
2)创新要求:GUI界面使程序更加友好、美观和合理3)课程设计论文编写要求(1)要按照课程设计模板的规格书写课程设计论文(2)论文包括目录、正文、心得体会、参考文献等(3)课程设计论文用B5纸统一打印,装订按学校的统一要求完成4)答辩与评分标准:(1)完成原理分析:20分;(2)完成设计过程:40分;(3)完成调试:20分;(4)回答问题:20分;5)参考文献:(1)刘卫国.MATLAB程序设计与应用(第二版). 北京:高等教育出版社,2008.(2)刘志刚.电力电子学.北京:清华大学出版社、北京交通大学出版社,2004.(3)李传琦. 电力电子技术计算机仿真实验.电子工业出版社,2006.6)课程设计进度安排内容天数地点构思及收集资料2图书馆编程设计与调试1实验室撰写论文2图书馆、实验室学生签名:2011 年月日课程设计(论文)评审意见(1)完成原理分析(20分):优()、良()、中()、一般()、差();(2)设计分析(20分):优()、良()、中()、一般()、差();(3)完成调试(20分):优()、良()、中()、一般()、差();(4)翻译能力(20分):优()、良()、中()、一般()、差();(5)回答问题(20分):优()、良()、中()、一般()、差();(6)格式规范性及考勤是否降等级:是()、否()(7) 总评分数优()、良()、中()、一般()、差();评阅人:职称:讲师2011年月日Matlab应用课程设计目录课程设计任务书 (1)一、Matlab 软件简介 (4)1.1 MATLAB产生的历史背景 (4)1.2 MATLAB的语言特点和开发环境 (4)1.3 基本语法 (5)二、URI简介 (8)2.1特点 (8)2.2组成部分 (8)2.3实现方法 (10)三、设计题目 (10)四、设计内容 (10)4.1Jacobi迭代法基本原理 (10)4.2实验内容 (11)4.3实验结果 (19)五、课程设计心得 (21)六、参考文献 (21)一、Matlab 软件简介MATLAB是美国MathWorks公司生产的一个为科学和工程计算专门设计的交互式大型软件,是一个可以完成各种精确计算和数据处理的、可视化的、强大的计算工具。
matlab:jacobi迭代法工具箱
8 %u为线性方程组的解
9 %n为求出所有精度的解实际的迭代步数
10 if nargin==3
11 eps=1.0e-10;
12 M=200;
13 elseif nargin<3
14 error
15 return
16 elseif nargin==5
17 M=varargin{1};
18 end
19 D=diag(diag(A));%求A的对角矩阵
matlab: jacobi迭代法工具箱
1 function [u,n]=Jacobi(A,b,u0,eps,varargin)
2 %Jacobi.m函数为用于雅可比迭代法求解线性方程组
3 %A为线性方程组的系数矩阵
4 %b为线性方程组的常数向量
5 %u0为迭代初始向量
6 %eps为解的精度控制
7 %varargin为迭代步数控制
29 n=n+1;
30 % if (n>=M)
31 %
disp('Warning:迭代次数太多,可能不收敛!');
32 %
return;
33 % end
34 end
20 L=-tril(A,-1);%求A的下三角阵
21 U=-triu(A,1);%求A的上三角阵
22 B=D\(L+U);
23 f=D\b;
24 u=B*u0+f;
25 n=1; %迭代次数
26 while norm(u-u0)>=eps & n<=1000
Hale Waihona Puke 27 u0=u;28 u=B*u0+f;
1functionunjacobiabu0epsvarargin2jacobim函数为用于雅可比迭代法求解线性方程组3a为线性方程组的系数矩阵4b为线性方程组的常数向量5u0为迭代初始向量6eps为解的精度控制7varargin为迭代步数控制8u为线性方程组的解9n为求出所有精度的解实际的迭代步数10ifnargin311eps10e10
matlab 解线性方程组的迭代法
小结
➢ 线性方程组求根方法的几何意义
➢ 线性方程组求根函数的理解与应用
设线性代数方程组为
展开为
若对角元素 逐一变量分离得方程组
即
此即为迭代公式
简单迭代解法的过程如下:
1 设定一组初值 2 第一次迭代:
得到
第k次迭代 第i个变量
3 第二次迭代: 得到
4 同样做法,得到第k+1次迭代:
迭代次数k的取值与精度要求有关,按下式判断:
若满足则停止迭代 为了便于编程,迭代公式可改写为:
matlab 解线性方程组的 迭代法
2020年4月22日星期三
第十讲 解线性方程组的迭代解法
内容提要
引言 简单迭代法 赛得尔迭代法 迭代解法的收敛性 MATLAB的线性方程组求解函数2 小结
1、引言
迭代解法的基本思想
根据给定方程组,设计出一个迭代公式,构造一 数组的序列 ,代入迭代公式,计算出 ,再代 入迭代公式,经过k次迭代运算后得到 ,若 收敛于某一极限数组xi,则xi就是方程组的近似解。
while(norm(x-x1)>eps) x1=x; x=(I-A)*x1+b; n = n + 1; if(n>=M) disp('Warning: 迭代次数太多,现
在退出!'); return;
end end
例:求解方程组
clear all; A =[ 1.0170 -0.0092 0.0095;