精英新课堂2017年春八年级数学下册16.2.2第2课时二次根式的混合运算课件

合集下载

畅优新课堂八年级数学下册 16.2 二次根式的运算(第2课时)教学案 (新版)沪科版-(新版)沪科版

畅优新课堂八年级数学下册 16.2 二次根式的运算(第2课时)教学案 (新版)沪科版-(新版)沪科版

二次根式的运算1.二次根式的加减(1)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.(2)在合并同类二次根式时,只需要把二次根式的系数相加减,根指数和被开方数不变.(3)合并同类二次根式的理论依据是逆用乘法对加法的分配律.(4)二次根式加减的方法二次根式加减时,先将二次根式化成最简二次根式,再将同类二次根式进行合并.(5)二次根式的加减法的一般步骤:①将每一个二次根式化成最简二次根式;②找出其中的同类二次根式;③合并同类二次根式.知识点拓展:(1)①当式子中有括号时要先去括号,并且在运算过程中应注意符号;②二次根式的加减与整式的加减相类似,体现了数学中的类比思想,在学习时应注意对比理解和应用.(2)在进行二次根式的加减时,易出现以下几个方面的错误:①去括号时符号错;②合并同类二次根式时易漏掉系数为1的二次根式;③把不是同类二次根式的根式进行了合并,从而导致错误的出现.【例1】计算:(1)32-8;(2)8+182.解:2.二次根式的加减混合运算(1)二次根式的加减,就是合并同类二次根式.(2)合并同类二次根式的方法与整式加减运算中的合并同类项类似,合并同类二次根式,只把系数相加减,根指数与被开方数不变.(3)进行二次根式的加减运算时,过去在学习整式的加减运算中的交换律,结合律及去括号,添括号法则仍然适用.二次根式的加减运算结果应写成最简结果或几个被开方数不相同的二次根式的和.【例2】计算:(1)-23-32+53+42; (2)(12-13)-( 4.5-0.75). 分析:进行二次根式的加减法可按一化(把二次根式化成最简二次根式)、二看(看被开方数是否相同)、三合并(把被开方数相同的二次根式进行合并)的步骤进行.(1)题中的每个二次根式都是最简二次根式,可直接识别出:-23与53,-32与42被开方数相同,因此可直接进行合并.解:(1)-23-32+53+4 2 =(-2+5)3+(-3+4)2=33+ 2. (2)原式=(122-133)-(322-123)=122-133-322+12 3 =(12-32)2+(-13+12) 3 =-2+16 3.3.二次根式的混合运算整式混合运算的顺序是:先乘方,再乘除,最后加减;有括号时要先算括号里面的.二次根式的混合运算顺序与整式的混合运算顺序是完全相同的,其最终结果一定要化为最简形式.并且我们在前面所学习的运算律:加法的交换律、结合律,乘法的交换律、结合律以及分配律在二次根式的混合运算中同样适用;所学习的乘法公式:平方差公式a 2-b 2=(a +b )(a -b ),完全平方公式(a +b )2=a 2+2ab +b 2,(a -b )2=a 2-2ab +b 2对于二次根式的混合运算也同样适用,它们可以使二次根式的运算更为简便.名师归纳:(1)二次根式的混合运算顺序:①先乘方,再乘除,最后加减.②有括号时要先算括号里面的.(2)说明:①运算过程中一定要注意符号;②运算结果一定要化为最简形式.(理解并掌握) 知识点拓展:(1)在二次根式的运算中,整式运算中的运算律(加法交换律、结合律,乘法交换律、结合律以及分配律)同样适用.(2)在二次根式的运算中,多项式乘法法则与乘法公式仍然适用,常用的公式有:①平方差公式:a 2-b 2=(a +b )(a -b );②完全平方公式:(a ±b )2=a 2±2ab +b 2. 【例3-1】计算:(1)(2+23-6)(2-23+6); (2)13-2+25-3-22-55-2. 分析:(1)利用平方差公式计算,把23-6看作一个整体.(2)先把分母去掉,再进行计算.解:(1)(2+23-6)(2-23+6) =[2+(23-6)][2-(23-6)] =(2)2-(23-6)2=2-(18-122)=-16+12 2.(2)13-2+25-3-22-55-2=3+2(3-2)(3+2)+2(5+3)(5-3)(5+3)-222·2-5(5+2)(5-2)(5+2)=3+2+5+3-2-(5+25)=23-5-5.【例3-2】计算:30÷(6-5).分析:解答本题时易出现如下错解:原式=30÷6-30÷5=5- 6.显然,由5-6<0,则得出两个正数相除结果为负的错误结果,解法有错,错就错在误用了所谓除法分配律,分配律不能在除法中随意套用.解:原式=306-5=30(6+5)(6+5)(6-5)=306+30 5.4.二次根式的综合运用二次根式的综合运用,知识面比较广,有化简、求值以及新题型等.解决这类问题的关键是熟练掌握基本知识和常用的数学思想.(1)化简求值题要注意先化简,再求值,此类题常与分式一起综合命题.如果直接代入计算,则计算量较大,而且容易出错.通过观察已知条件和欲求值的式子,发现它们是否都可以化简,这样采取变更问题的条件和结论的方法,然后采取整体代入思想,比较容易求出问题的解来.(2)灵活运用乘法公式,可使计算过程得到简化.形如(52+35)(52-35)这样的式子,可利用平方差公式计算. (3)利用二次三项式的变形,也可以解决有关分式的求值问题.二次三项式x 2±xy +y 2可变为(x ±y )2∓xy 的形式,于是,两个互为倒数的二次根式相加,我们可以套用a b +b a =(a +b )2-2ab ab 这一规律把它化简.形如:“已知x =3+23-2,y =3-23+2时,求x y +y x的值.”这样的题目可以利用此法解决.__________________________________________________________________________ ____________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 【例4-1】已知x =12(7+5),y =12(7-5),求下列各式的值.(1)x 2-xy +y 2;(2)x y +y x.解:因为x =12(7+5),y =12(7-5),所以x +y =7,xy =12.(1)x 2-xy +y 2=(x +y )2-3xy =(7)2-3×12=512.(2)x y +y x =x 2+y 2xy=(x +y )2-2xyxy =(7)2-2×1212=12.【例4-2】已知x ,y 为非负整数,且x +y = 2 004,求x +y 的值.分析:若a +b =c (a ,b ,c 为非负数),则a ,b ,c 是同类二次根式,这是一个常用的性质,由题可知x ,y , 2 004是同类二次根式,又 2 004=2501,所以设x =a 501,y =b 501(a ,b 为非负整数),再由已知可求得x ,y 的值,从而可求出x +y 的值.解:∵x +y = 2 004,∴x ,y 与 2 004是同类二次根式. 又∵ 2 004=2501,∴可设x =a 501,y =b 501, 则a 501+b 501=2501,∴a +b =2. 由题意可知a ,b 为非负整数,∴当⎩⎪⎨⎪⎧a =1,b =1时,⎩⎪⎨⎪⎧x =501,y =501,∴x +y =1 002;当⎩⎪⎨⎪⎧ a =0,b =2时,⎩⎪⎨⎪⎧ x =0,y =2 004,∴x +y =2 004;当⎩⎪⎨⎪⎧a =2,b =0时,⎩⎪⎨⎪⎧x =2 004,y =0,∴x +y =2 004.∴x +y 的值为1 002或2 004.点拨:当两个二次根式可以合并时,说明这两个二次根式是同类二次根式,所以x ,y 与2 004是同类二次根式.5.易错疑难辨析易错点1 判断二次根式是否为同类二次根式时,未化到最简而出错易错点解读:判断几个二次根式是否为同类二次根式,必须先把每一个二次根式化为最简二次根式之后再判断,易出现的错误是不化简直接判断. 易错点2 在二次根式的运算中应用运算律不当而出错易错点解读:只有乘法有分配律,除法没有分配律,在运算过程中,易把乘法分配律错误地用在除法上,从而导致错误.易错点3 合并同类二次根式时,易忽略将系数加括号而出错易错点解读:在二次根式的混合运算中,化简、合并二次根式时,很多二次根式的前面是多项式,整个多项式是二次根式的系数,不要忘记加括号,以免导致计算结果的错误.__________________________________________________________________________ ____________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________________________________ 【例5-1】判断正误:a2与3a 是同类二次根式.错解:√ 解析:a2不是最简二次根式,由于a 2=a2=2a 2,所以a2与3a 不是同类二次根式. 正解:×点拨:在判断两个根式是否是同类二次根式时,一定要注意两个条件:(1)根指数是2;(2)被开方式为最简式. 【例5-2】计算:12÷(12+13). 错解:12÷(12+13)=122+123=6×22+4×33=6+2. 正解:12÷(12+13)=12÷(22+33)=12÷32+236=23×632+23=123(32-23)(32+23)(32-23)=123(32-23)6=23(32-23)=66-12.解题策略:乘法有分配律,除法没有分配律,在运算过程中,不能把除法按乘法分配律直接运算.【例5-3】计算12a +34a 3-78a a 5-14a2a 7.错解:原式=12a +3a 4a -7a 8a -a 4a =12+3a 4-7a 8-a 4a =12-38a a .解析:在二次根式的计算过程中,逆用乘法分配律时忽略了加括号而出错. 正解:原式=12a +3a 4a -7a 8a -a 4a =(12+3a 4-7a 8-a 4)a =(12-38a )a .解题策略:在合并同类二次根式时,将系数相加的和作为系数.有时二次根式的系数为多项式,那么整个多项式是二次根式的系数,不能忘记加括号.。

新人教版初中八年级数学下册16.3 第2课时 二次根式的混合运算公开课优质课教学设计

新人教版初中八年级数学下册16.3 第2课时 二次根式的混合运算公开课优质课教学设计

第2课时二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm,43cm,高为6cm,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62 (cm2).他的做法正确吗?二、合作探究探究点一:二次根式的混合运算【类型一】二次根式的四则运算计算:(1)12223×9145÷35;(2)⎝⎛⎭⎪⎫312-213+48÷23+⎝⎛⎭⎪⎫132;(3)2-(3+2)÷ 3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝⎛⎭⎪⎫63-23+43÷23+13=2833×123+13=143+13=5;(3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算: (1)(2+3-6)(2-3+6);(2)(2-1)2+22(3-2)(3+2);(3)⎝ ⎛⎭⎪⎫6-1332-3424×(-26).解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝ ⎛⎭⎪⎫6-66-326×(-26)=-236×(-26)=8. 方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n =⎩⎪⎨⎪⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-46B .2C .2 5D .20解析:∵3>2,∴3※2=3-2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n=1、2代入式子化简即可.解:第1个数,当n=1时,15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n=15[1+52-1-52]=15×5=1;第2个数,当n=2时,15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+522-⎝⎛⎭⎪⎫1-522=15⎝⎛⎭⎪⎫1+52+1-52⎝⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。

人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案

人教版初中数学八年级下册16.3.2《二次根式的混合运算》教案
在教学方法上,我也要不断尝试创新。例如,利用多媒体教学手段,以动画或图像的形式展示二次根式的混合运算过程,让学生更加直观地理解。同时,引入一些趣味性的数学游戏,让学习变得更加轻松愉快。
最后,关注学生的个体差异,对于学习有困难的学生,给予更多的关心和指导。在课后,我会主动询问他们是否理解课堂内容,针对他们的疑问进行解答,帮助他们克服学习难点。
4.培养学生的抽象思维能力:通过二次根式的混合运算,让学生从具体实例中抽象出数学规律,提升学生的数学抽象思维水平。
三、教学难点与重点
1.教学重点
a.掌握二次根式的乘除法则:\(\sqrt{a} \times \sqrt{b} = \sqrt{ab}\)(a≥0,b≥0)和\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)(a≥0,b>0);
c.了解二次根式的乘方运算:\((\sqrt{a})^n = \sqrt{a^n}\)(n为正整数);
举例:通过\((\sqrt{2})^2\)和\((\sqrt{3})^3\)等例题,强调乘方运算的规则。
2.教学难点
a.理解并运用二次根式乘除法则进行简化时的步骤和方法;
难点解析:学生在进行\(\sqrt{18} \times \sqrt{2}\)等计算时,可能会忽略先简化根号内的乘积,直接相乘,导致计算复杂。教师需强调先简化根号内的乘积,再进行乘法运算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式混合运算的基本概念、运算法则和实际应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版数学八年级下册 16.3 第2课时 二次根式的混合运算 教案

人教版数学八年级下册 16.3 第2课时 二次根式的混合运算 教案

第2课时 二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确吗? 二、合作探究探究点一:二次根式的混合运算 【类型一】 二次根式的四则运算计算:(1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132; (3)2-(3+2)÷3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5; (3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26). 解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8.方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用 【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n=⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-46B .2C .25D .20解析:∵3>2,∴3※2=3- 2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】 二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n=1、2代入式子化简即可.解:第1个数,当n=1时,15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n=15[1+52-1-52]=15×5=1;第2个数,当n=2时,15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+522-⎝⎛⎭⎪⎫1-522=15⎝⎛⎭⎪⎫1+52+1-52⎝⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。

(精品)最新八年级下册16.3二次根式的加减第2课时二次根式的混合运算教案新人教版

(精品)最新八年级下册16.3二次根式的加减第2课时二次根式的混合运算教案新人教版

1第2课时 二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确吗? 二、合作探究探究点一:二次根式的混合运算 【类型一】 二次根式的四则运算计算:(1)12223×9145÷35; (2)⎝ ⎛⎭⎪⎫312-213+48÷23+⎝⎛⎭⎪⎫132;(3)2-(3+2)÷ 3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝ ⎛⎭⎪⎫63-233+43÷23+13=2833×123+13=143+13=5; (3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎪⎫6-1332-3424×(-26). 解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝ ⎛⎭⎪⎫6-66-326×(-26)=-236×(-26)=8. 方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用 【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n =⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-4 6B .2C .2 5D .20解析:∵3>2,∴3※2=3-2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题2的关键.【类型二】二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可.解:第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15[1+52-1-52]=15×5=1;第2个数,当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计 1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。

最新人教版初中八年级数学下册16.3 第2课时 二次根式的混合运算公开课教学设计

最新人教版初中八年级数学下册16.3 第2课时 二次根式的混合运算公开课教学设计

第2课时 二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确吗? 二、合作探究探究点一:二次根式的混合运算 【类型一】 二次根式的四则运算计算:(1)12223×9145÷35; (2)⎝ ⎛⎭⎪⎫312-213+48÷23+⎝⎛⎭⎪⎫132; (3)2-(3+2)÷ 3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝ ⎛⎭⎪⎫63-233+43÷23+13=2833×123+13=143+13=5;(3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6);(2)(2-1)2+22(3-2)(3+2);(3)⎝⎛⎭⎪⎫6-1332-3424×(-26).解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝⎛⎭⎪⎫6-66-326×(-26)=-236×(-26)=8.方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用【类型一】与二次根式的混合运算有关的新定义题型对于任意的正数m、n定义运算※为m※n=⎩⎪⎨⎪⎧m-n(m≥n),m+n(m<n).计算(3※2)×(8※12)的结果为( )A.2-46B.2C.2 5 D.20解析:∵3>2,∴3※2=3-2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可.解:第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15[1+52-1-52]=15×5=1;第2个数,当n =2时,15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15×1×5=1. 方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算 先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。

人教版数学八年级下册 16.3 第2课时 二次根式的混合运算 教案

人教版数学八年级下册 16.3 第2课时 二次根式的混合运算 教案

第2课时 二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2).他的做法正确吗? 二、合作探究探究点一:二次根式的混合运算 【类型一】 二次根式的四则运算计算:(1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132; (3)2-(3+2)÷3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5; (3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26). 解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8.方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用 【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n=⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-46B .2C .25D .20解析:∵3>2,∴3※2=3- 2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】 二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n=1、2代入式子化简即可.解:第1个数,当n=1时,15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n=15[1+52-1-52]=15×5=1;第2个数,当n=2时,15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+52n-⎝⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+522-⎝⎛⎭⎪⎫1-522=15⎝⎛⎭⎪⎫1+52+1-52⎝⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。

人教版八年级下册数学16.3 二次根式的加减 第2课时 二次根式的混合运算课件(共16张PPT)

人教版八年级下册数学16.3 二次根式的加减  第2课时 二次根式的混合运算课件(共16张PPT)

B)
A.2 B.4 C.2 a D.4 a
6.已知 a= 51-2,则(a-1)(a-3)=__ _4_. 7.已知 x1= 3+ 2,x2= 3- 2,则 x12+x22=_1_0__. 8.若 a+1a= 5,则 a-1a=___±__1_.
9.计算: (1)2 3×( 12-3 75)+31 108÷2 3;
3.计算: (1)(3 2+2 3)(3 2-2 3);
解:6
(2)( 2- 3)2+( 2+ 3)2; 解:10
(3)( 10+ 7)( 10- 7)-( 2+1)2. 解:-2 2
4.计算( 28-2 3+ 7)× 7+ 84的结果是( C )
A.11 7 B.15 3 C.21 D.24
5.计算( a+ 1a)2-( a- 1a)2 的结果是(
1 2 3 2 - 5 2 5 3 5 - 3
变式练习
( 1 ) ( 22 3 ) 2 0 1 8 ( 22 3 ) 2 0 1 8 ;
( 2) ( 2- 3) 201( 72 3) 20192 3. 2
求代数式的值
例3 已知
试求x2+2xy+y2的值.பைடு நூலகம்
解: x2 2xy y2 x y2
解:-77
(2)(2015·临沂)( 3+ 2-1)( 3- 2+1); 解:2 2
(3)(a+2 ab+b)÷( a+ b)-( b- a). 解:2 a
10.阅读下列解题过程:
21+1=( 12×+(1)(2-12)-1)= 2-1,
1 3+
2=(
1×( 3- 3+ 2)(
2) 3-
2)=
3-
第十六章 二次根式

八年级数学下册第十六章二次根式16.3二次根式的加减第2课时二次根式的混合运算教案新版新人教版

八年级数学下册第十六章二次根式16.3二次根式的加减第2课时二次根式的混合运算教案新版新人教版

第2课时 二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点)2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22cm ,43cm ,高为6cm ,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm 2). 他的做法正确吗? 二、合作探究探究点一:二次根式的混合运算 【类型一】 二次根式的四则运算计算:(1)12223×9145÷35; (2)⎝ ⎛⎭⎪⎫312-213+48÷23+⎝⎛⎭⎪⎫132; (3)2-(3+2)÷ 3. 解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝ ⎛⎭⎪⎫63-233+43÷23+13=2833×123+13=143+13=5;(3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算: (1)(2+3-6)(2-3+6);(2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎪⎫6-1332-3424×(-26). 解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝ ⎛⎭⎪⎫6-66-326×(-26)=-236×(-26)=8.方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n =⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-4 6B .2C .2 5D .20解析:∵3>2,∴3※2=3-2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】 二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可.解:第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15[1+52-1-52]=15×5=1; 第2个数,当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算 在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。

人教版数学八年级下册16.3 第2课时 二次根式的混合运算.ppt

人教版数学八年级下册16.3 第2课时 二次根式的混合运算.ppt

3 2
3.
( 2 ) 2 + 21 - 2 . ( 2 ) 2 + 21 - 2
= 2-2 2 + 2- 2 2 = 2-2 2 + 2-2 =- 2.
二 利用乘法公式进行二次根式的运算
问题1 整式乘法运算中的乘法公式有哪些?
平方差公式:(a+b)(a-b)=a2-b2; 完全平方公式:(a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2. 问题2 整式的乘法公式对于二次根式的运算也适
(3) 3 2 48 18 4 3 ; (4) a3 a2b a b .
a ab
a b
解:(3) 3 2 48 18 4 3 3 2 4 3 3 2 4 3
2
2
3 2 4 3 30.
(4) a3 a2b a b
a
a b
内的,最后按照二次根式的相应的运算法则进行.
【变式题】计算: (1) (3 2 3) 27+ 6 3 ;
(2( ) 2016 3)0 + 3 12 - 6 . 2
解:(1)原式 6 3 3 3 3 6
3 3 .
(2)原式 1+2 3 3 3
32.
归纳 有绝对值符号的,同括号一样,先去绝对值,注 意去掉绝对值后,得到的数应该为正数.
4 3+3 2 .
2 3 3. 2
(3)( 2 3)( 2 5). 解(:3)( 2 3)( 2 5)
此处类比“多项式×多 项式”即 (x+a)(x+b)=x2+(a+b)x+ab.
( 2)2 5 2+3 2 15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档