初二数学竞赛题-二次根式(含答案)
八年级奥数二次根式试题及答案
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。
下⾯是⽆忧考为⼤家带来的⼋年级奥数⼆次根式试题及答案,欢迎⼤家阅读。
⼀、单选题 1.已知函数y=(m+1)是正⽐例函数,且图象在第⼆、四象限内,则m的值是( )A. 2B. ﹣2C. ±2D. 【答案】B 2.已知正⽐例函数y=3x的图象经过点(1,m),则m的值为() A. B. 3 C. ﹣ D. ﹣3 【答案】B 【解析】把点(1,m)代⼊y=3x,m=3,所以选B. 3.若函数y=(-1)x+ -1是正⽐例函数,则的值是( )A. -1B. 1C. -1或1D. 任意实数 【答案】A 【解析】试题解析:函数是正⽐例函数, 则:解得: 故选A. 4.若y关于x的函数y=(m-2)x+n是正⽐例函数,则m,n应满⾜的条件是( )A. m≠2且n=0B. m=2且n=0C. m≠2D. n=0 【答案】A 【解析】试题解析:若y关于x的函数是正⽐例函数, 解得: 故选A. 5.如果5a=3b,那么a和b的关系是()A. 成正⽐例B. 成反⽐例C. 不成⽐例D. 没有关系 【答案】A 【解析】由5a=3b,可得a:b= ,是个定值,⼀个因数⼀定,积和另⼀个因数成正⽐例.故选A. 6.若函数y=(2m+6)x2+(1-m)x是正⽐例函数,则m的值是()A. m=-3B. m=1C. m=3D. m>-3 【答案】A 【解析】 7.已知直线y=-6x,则下列各点中⼀定在该直线上的是( )A. (3,18)B. (-18,-3)C. (18,3)D. (3,-18) 【答案】D 8.设点是正⽐例函数图象上的任意⼀点,则下列等式⼀定成⽴的是(). A. B. C. D. 【答案】D 【解析】试题解析:把点代⼊正⽐例函数,可得,所以,选项正确.故选D.21世纪教育 9.关于函数,下列判断正确的是()A. 图象必经过点(-1,-2)B. 图象必经过第⼀、第三象限C. 随的增⼤⽽减⼩D. 不论为何值,总有 【答案】C 10.设正⽐例函数y=mx的图象经过点A(m,4),且y的值随x值的增⼤⽽减⼩,则m=( )A. 2B. -2C. 4D. -4 【答案】B 【解析】把x=m,y=4代⼊y=mx中, 可得:m=±2, 因为y的值随x值的增⼤⽽减⼩, 所以m=-2, 故选B. 11.已知A(x1,y1)、B(x2,y2)是正⽐例函数y=x(<0)图像上两点,若x1>x2,则下列结论正确的是( )A. y1<y2B. y1=y2C. y1>y2D. -y1<-y2 【答案】A 【解析】∵正⽐例函数y=x(<0), ∴y随x的增⼤⽽减⼩, ⼜∵x1>x2, ∴y1 故选A. 12.下列函数中,满⾜y的值随x的值增⼤⽽增⼤的是() A. B. C. D. 【答案】B ⼆、填空题 13.已知y与成正⽐例,并且=-3时,y=6,则y与的函数关系式为________. 【答案】 【解析】设y=x,6=-3,解得=-2.所以y=-2x. 14.已知与成正⽐例,且当时,,写出与的函数关系式________ 【答案】 【解析】由y与4x-1成正⽐例,设y=(4x-1)(≠0), 把x=1,y=6代⼊得,(4-1)=6, 解得=2, 所以,y与x的函数关系式为y=2(4x-1)=8x-2, 故答案为:y=8x-2. 15.若函数是正⽐例函数,则该函数的图象经过第____象限. 【答案】⼀、三 16.在同⼀直⾓坐标平⾯内,直线与双曲线没有交点,那么m的取值范围是_____. 【答案】m<2 【解析】由题意得:经过第⼆、四象限 则 即 17.对每个x,y是, , 三个值中的最⼩值,则当x变化时,函数y的值是__________. 【答案】6 【解析】分别联⽴、,y1、,、, 可知、的交点A(2,4);、y3的交点B(,);、的交点C(4,6),∴当x≤2时,y最⼩=4;当2 当x>4时,y最⼩>6, 故答案为:6 18.已知P1(1,y1),P2(2,y2)是正⽐例函数y=x的图象上的两点,则y1___y2(填“>”或“<”或“=”). 【答案】< 【解析】∵1>0, ∴y随x的增⼤⽽增⼤, ∵1<2, ∴y1 故答案为:< 19.如果正⽐例函数的图像经过原点和第⼀、第三象限,那么 ______. 【答案】 【解析】由正⽐例函数y=(-1)x的图像经过原点和第⼀、第三象限可得-1>0,解得>1. 20.已知P1(1,y1),P2(2,y2)是正⽐例函数y=x的图象上的两点,则y1____y2(填“>”或“<”或“=”). 【答案】<。
人教版八年级数学 竞赛专题:二次根式的化简与求值(含答案)
人教版八年级数学 竞赛专题:二次根式的化简与求值(含答案)【例1】 化简(1(ba b ab b -÷--(2(3(4解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例2】 比6大的最小整数是多少?解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y ==想一想:设x =求432326218237515x x x x x x x --++-++的值.的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例3】 设实数x ,y 满足(1x y =,求x +y 的值.解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例4】 (1的最小值.(2的最小值.解题思路:对于(1)的几何意义是直角边为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =,设A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例5】 设2)m a =≤≤,求1098747m m mm m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.若满足0<x<y=x,y)是_______2.2x-3,则x的取值范围是()A.x≤1B. x≥2C. 1≤x≤2D. x>03)A.1B C. D. 54、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A.0个B.1个C.2个D.3个5、化简:(1(2(3(4(56、设x =(1)(2)(3)(4)x x x x ++++的值.77x =,求x 的值.B 级1.已知3312________________x y x xy y ==++=则.2.已知42______1x x x ==++2x 那么.3.a =那么23331a a a++=_____.4. a ,b 为有理数,且满足等式14a +=++则a +b =( )A .2B . 4C . 6D . 85. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b6.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 7. 若[a ]表示实数a 的整数部分,则等于( )A .1B .2C .3D . 48. 把(1)a - )A .B C. D .9、化简:(110099+(2(310、设01,x << 1≤<.12、已知a, b, c为有理数,证明:222a b ca b c++++为整数.参考答案例1 (1)⎤(2)+5.(3)3-;(4-++=-.例2 x+y=,xy=1,于是x2+y2=(x+y)2-2xy=22,x3+y3=(x+y)(x2-xy+y2)=,x6+y6=(x3+y3)2-2x3y3=10582 .∵01,从而0<6<1,故10 581<6<10 582.例 3 x=-y…①;同理,y=x…②.由①+②得2x=-2y,x+y=0.例4 (1)构造如图所示图形,P A PB.作A关于l的对称点A',连A'B交l于P,则A'B13为所求代数式的最小值.(2)设yA(x,0),B(4,5),C(2,3).作C关于x轴对称点C1,连结BC1交x轴于A点.A即为所求,过B作BD⊥CC1于D点,∴AC+AB=C1B=例 5 m=+=.∵1≤a≤2,∴01,∴-11≤0,∴m=2.设S=m10+m9+m8+…+m-47=210+29+28+…+2-47 ①,2S=211+210+29+…+22-94 ②,由②-①,得S=211-2-94+47=1 999.A级1.(17,833),(68,612),( 153,420) 2.B 3.C4.A 5.(1)()2x yx y+-(2)22-(4) 6.48提示:由已知得x2+5x=2,原式=(x2+5x+4)(x2+5x+6).7.由题设知x>0,(+)(-)=14x.∴-=2,∴2=7x+2,∴21x2-8x-48=0.其正根为x=127.B级1.642.9553.1提示:∵-1)a=2-1,即1a-1.4.B提示:由条件得a+3+a=3,b=1,∴a+b=4.5.B提示:a-b-11=0.同理c-a>0 6.B 7.B 8.D提示:注意隐含条件a-1<0.9.(1)910提示:考虑一般情形=-(2)原式=8153+=2+(3)210.构造如图所示边长为1的正方形ANMD,BCMN.设MP=x,则CPAP,AC,AM AC≤PC+P A<AM+MC,,则≤+<1+11.设y=-=,设A(4,5),B(2,3),C(x,0),易求AB的解析式为y=x+1,易证当C在直线AB上时,y有最大值,即当y=0,x=-1,∴C(-1,0),∴y=12b c+-=)22233ab bc b acb c-+--为有理数,则b2 -ac=0.又a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=(a+b+c)2-2(ab+bc+b2)=()2cba++-2b(a+b+c)=(a+b+c)(a-b+c),∴原式=a-b+c为整数.。
2024全国初中数学重点高中自招竞赛试题精选精编:二次根式含参考答案
二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.4(2024·全国·八年级竞赛)计算:2+520172-52017=.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.8(2024·全国·八年级竞赛)化简:-(x+1)2=.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.11(2024·全国·八年级竞赛)5+26+5-26=.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.14(2024·全国·七年级竞赛)计算:1-2+2-3+3-4+⋅⋅⋅+2016-2017=.15(2024·全国·九年级竞赛)计算:9+18-27=.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3=(n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.410019(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-120(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥221(2024·全国·八年级竞赛)已知13-7的整数部分是m,小数部分是n,则m m+7n+mn的值为()A.10B.7C.6D.422(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则ab的值为()A.18B.8C.2D.9223(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5B.0C.3D.7524(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则bb a+aa b的值为()A.23B.-23C.-2D.-13三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.26(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.29(2024·全国·八年级竞赛)已知a =4-15,求:(1)a -1a;(2)a 5-6a 4-16a 3+7a 2+23a -4 2008.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?二次根式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)4+15+4-15=.【答案】10【分析】本题考查二次根式的运算,将式子进行平方,运用完全平方公式展开后化简,即可解答.【详解】∵4+15+4-152=4+152+24+15⋅4-15+4-152=4+15+216-15+4-15=8+2=10,又4+15>0,4-15>0∴4+15+4-15=10.故答案为:10.2(2024·全国·九年级竞赛)已知x为实数,则x-2+4-x的最大值为.【答案】2【分析】本题考查二次根式有意义的条件和配方法,掌握被开方数为非负数和配方法是解题关键.先确定x的取值范围,然后利用配方法分析其最值.【详解】解:由题意可得x-2≥04-x≥0,解得2≤x≤4,令y=x-2+4-x y≥0,则y2=x-2+4-x2=x-2+2x-24-x+4-x=2+2-x2+6x-8=2+2-x-32+1∵0≤-x-32+1≤1∴y2的最大值为4,∴y的最大值为2,即x-2+4-x的最大值为2.故答案为:2.3(2024·全国·八年级竞赛)定义一种新的运算“@”:x@y=ax+by,其中a、b为常数,且使得等式a-2-8-4a+a b=12恒成立,那么2@3=.【答案】1【分析】本题考查了二次根式的意义,幂的运算,求代数式的值,正确理解二次根式的意义是解答本题的关键.先根据二次根式的意义列出不等式组并求解,得到a=2,再代入方程求出b的值,从而得到x@y=2x -y,依此即可求得答案.【详解】根据题意得a-2≥08-4a≥0 ,∴a≥2 a≤2 ,∴a=2,将a=2代入a-2-8-4a+a b=12得0-0+2b=12,解得b=-1,∴x@y=2x-y,∴2@3=2×2-3=1.故答案为:1.4(2024·全国·八年级竞赛)计算:2+520172-52017=.【答案】-1【分析】本题主要考查了分式混合运算,平方差公式和积的乘方运算,解题的关键是熟练掌握运算法则,准确计算.根据相关的运算法则进行计算即可.【详解】解:2+520172-52017=2+52-52017=4-52017=-12017=-1.故答案为:-1.5(2024·全国·八年级竞赛)若不等式x+4+x-1≥a-x-2-2对任意实数x都成立,则a的最大值为.【答案】8【分析】本题考查了绝对值不等式的解法,根据题设借助绝对值的几何意义得x+4+x-2有最小值为6,又由x-1≥0得出当x=1时,x+4+x-2+x-1的最小值为6,然后由不等式恒成立即可求解.【详解】解:x+4+x-1≥a-x-2-2,∴x+4+x-2+x-1≥a-2当-4≤x≤2时,x+4+x-2有最小值为6,∵x-1≥0,∴当x=1时,x+4+x-2+x-1的最小值为6,∴6≥a-2,∴解得a≤8,∴a的最大值为8,故答案为:8.6(2024·全国·八年级竞赛)计算12×1327+75+313-48-24-3232=.【答案】12【分析】本题考查了二次根式的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式,解题的关键是掌握运算法则.【详解】解:原式=23×13×33+53+3×33-43-26-3×632=23×33-6=12.7(2024·全国·八年级竞赛)计算:2009×2010×2011×2012+1-2009=.【答案】2010【分析】本题考查整式的混合运算、二次根式的性质,设参数计算是解答的关键.设a=2009,利用整式的混合运算法则和二次根式的性质是解答的关键.【详解】解:记a=2009,则原式=a a+1+1-aa+3a+2=a a+3+1-aa+2a+1=a2+3a+1-aa2+3a+2=a2+3a2+2a2+3a+1-a=a2+3a+12-a=a2+3a+1-a=a+12=a+1=2010,故答案为:2010.8(2024·全国·八年级竞赛)化简:-(x+1)2=.【答案】0【分析】本题考查了二次根式有意义的条件,由被开方数为非负数得到-x+12≤0,可确2≥0,即x+1定x+12=0,进而求解,掌握二次根式有意义的条件是解题的关键.【详解】解:由题意可得,-(x+1)2≥0,∴x+12≤0∴(x+1)2=0,∴-x+12=0=0,故答案为:0.9(2024·全国·八年级竞赛)已知实数x满足20122-4024x+x2+x-2013=x,则x-20122=.【答案】2013【分析】本题考查了二次根式有意义的条件,二次根式的性质,熟练掌握各知识点是解答本题的关键.先根据二次根式有意义的条件求出x的取值范围,再根据二次根式的性质化简得x-2013=2012,然后两边平方即可求解.【详解】解:∵x-2013≥0,∴x≥2013,∴x>2012.∵20122-4024x+x2+x-2013=x,∴2012-x2+x-2013=x,∴2012-x+x-2013=x,∴x-2012+x-2013=x,∴x-2013=2012,即x-2013=20122,故x-20122=2013.故答案为:2013.10(2024·全国·八年级竞赛)计算:1+20092+2009220102-12010=.【答案】2009【分析】本题考查了完全平方公式和二次根式化简,熟练巧用完全平方公式是解本题的关键;首先化简为完全平方公式形式,然后根据二次根式开方即可解答.【详解】解:1+20092+20092 20102-12010=1+2010-12+20092 20102-12010=1+20102-2×2010+1+2009220102-1 2010=20102-2×2010+2+200920102-12010=20102-2×2010-1+200920102-12010=20102-2×2009+200920102-12010=2010-200920102-12010=2010-20092010-1 2010=2009.故答案为:2009.11(2024·全国·八年级竞赛)5+26+5-26=.【答案】23【分析】本题考查二次根式的化简,熟练利用完全平方公式化简二次根式是解本题的关键.把原式化为3+22+3-22,再利用二次根式的性质化简即可.【详解】解:5+26+5-26=3+22+3-22=3+2+3-2=23,故答案为:23.12(2024·全国·八年级竞赛)计算:(π+999)0-12+-3+8+(-1)3+(2+1)23-22=.【答案】22-3+1【分析】本题主要考查了二次根式的运算,先将二次根式化简,再根据二次根式的运算法则计算即可.【详解】原式=1-23+3+22-1+(3+22)(3-22)=22-3+(9-8)=22-3+1.故答案为:22-3+1.13(2024·全国·九年级竞赛)已知正整数a、b满足等式a+b=369,则a-b=.【答案】123或-123【分析】本题考查了二次根式的加减运算,掌握二次根式的运算法则是解题的关键.先把369化成最简二次根式,再把满足正整数a、b的所有值列举出来代入计算即可.【详解】解:∵369=341,正整数a、b满足等式a+b=369,∴a=41,b=241,即a=41,b=164,或a=241,b=41,即a=164,b=41,∴a-b=41-164=-123或a-b=164-41=123,故答案为:123或-123.14(2024·全国·七年级竞赛)计算:1-2=.+2-3+⋅⋅⋅+2016-2017+3-4【答案】2017-1/-1+2017【分析】本题主要考查了二次根式混合运算,解题的关键是根据绝对值的意义,去掉绝对值,然后根据二次根式加减运算法则进行计算即可.【详解】解:1-2+⋯+2016-2017+3-4+2-3=2-1+3-2+4-3+⋯+2017-2016=2017-1.故答案为:2017-1.15(2024·全国·九年级竞赛)计算:9+18-27=.【答案】3+32-33【分析】本题考查二次根式的加减运算,理解二次根式的性质,准确化简各数是解题关键.直接根据二次根式的性质化简即可.【详解】解:9+18-27=3+32-33故答案为:3+32-33.16(2024·全国·八年级竞赛)若实数a满足a-8+a-2015=a,则a=.【答案】2079【分析】本题考查二次根式有意义的条件、绝对值的化简、算术平方根,熟知二次根式有意义的条件是解答的关键.先求得a≥2015,则a-8=a-8,进而得到a-2015=8,然后求解即可.【详解】解:依题意得a-2015≥0,则a≥2015,∴a-8=a-8,∴原式化为a-8+a-2015=a,即a-2015=8,得a-2015=64,∴a=2079.故答案为:2079.17(2024·全国·八年级竞赛)已知-2<x<3,则x2-6x+9-x2+4x+4化简为.【答案】1-2x【分析】先判断出x-3<0,x+2>0,再根据二次根式的性质化简原式即可.此题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.【详解】解:∵-2<x<3,∴x-3<0,x+2>0,∴x2-6x+9-x2+4x+4=x-32-x+22=x-3-x+2=3-x-x-2=1-2x故答案为:1-2x二、单选题18(2021·全国·九年级竞赛)设n,k为正整数,A1=(n+3)(n-1)+4,A2=(n+5)A1+4,A3= (n+7)A2+4,A4=(n+9)A3+4,⋯,A k=(n+2k+1)A k-1+4,⋯,已知A100=2005,则n的值为( ).A.1806B.2005C.3612D.4100【答案】A【详解】A1=[(n+1)+2][(n+1)-2]+4=(n+1)2-22+4=(n+1)2=n+1,A2=[(n+3)+2][(n+3)-2]+4=(n+3)2-22+4=(n+3)2=n+3,A3=[(n+5)+2][(n+5)-2]+4=(n+5)2-22+4=(n+5)2=n+5,同理A4=n+7,A5=n+9,⋯,A100=n+2×100-1=n+199=2005⇒n=2005-199=1806.故选:A.19(2011·湖北黄冈·九年级竞赛)设a、b是整数,方程x2+ax+b=0的一根是4-23,则a2+b2 ab的值为()A.2B.0C.-2D.-1【答案】C【分析】先化简4-23,再代入方程x2+ax+b=0并整理,根据题意列出二元一次方程组并求解求得a 和b的值,再代入计算即可.【详解】解:4-23=32-23+1==3-12=3-1.∵方程x2+ax+b=0的一根是4-23,∴4-232+4-23a+b=0.∴3-12+3-1a+b=0.∴a-23+4-a+b=0.∵a、b是整数,∴a-2=0,4-a+b=0.解得a=2, b=-2.∴a2+b2ab =22+-222×-2=-2.故选:C.【点睛】本题考查二次根式的化简,一元二次方程的解,二元一次方程组的应用,正确构造二元一次方程组是解题关键.20(2024·全国·八年级竞赛)若二次根式x-2在实数范围内没有意义,则x的取值范围是() A.x<2 B.x≤2 C.x>2 D.x≥2【答案】A【分析】此题主要考查了二次根式有意义的条件,根据二次根式没有意义的条件可得x-2<0,再解不等式即可,关键是掌握二次根式中的被开方数是非负数.【详解】解:二次根式x -2在实数范围内没有意义,∴x -2<0,解得:x <2故选:AD .21(2024·全国·八年级竞赛)已知13-7的整数部分是m ,小数部分是n ,则m m +7n +mn 的值为()A.10B.7C.6D.4【答案】A 【分析】本题考查了无理数的估算,分母有理化,代数式求值,先根据无理数的估算求出m ,n 的值,再代入进行求解即可.【详解】解:13-7=3+73+7 3-7=3+72,∵4<7<9,∴2<7<3,∴2.5<3+72<3,∴m =2,n =3+72-2,∴m m +7n +mn =22+7×3+72-2 +2×3+72-2 =10,故选:A .22(2024·全国·九年级竞赛)若1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,则a b 的值为()A.18 B.8 C.2 D.92【答案】B【分析】本题考查了根与系数的关系.先整理成一般式,利用根与系数的关系分另求得b 和a 的值,再代入求解即可.【详解】解:方程a (x -b )2=7整理得ax 2-2abx +ab 2-7=0,∵1±72是关于x 的一元二次方程a (x -b )2=7a ≠0 的两根,∴1+72+1-72=1=--2ab a=2b ,∴b =12,1+72⋅1-72=-32=ab 2-7a ,∴-32=12 2-7a,∴a =4,∴a b =412=8.故选:B .23(2024·全国·八年级竞赛)已知75m 是整数,则满足条件的最小正整数m =( ).A.5 B.0 C.3 D.75【答案】C【分析】此题考查了无理数与有理数的联系,根据二次根式的定义进行解答,解题的关键是正确理解75m 什么情况下为正整数.【详解】解:∵75m =52×3m ,∴3m 是一个平方数,∴正整数m 最小是3,故选:C .24(2021·全国·九年级竞赛)已知实数a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,则b b a +a a b 的值为()A.23B.-23C.-2D.-13【答案】B【分析】由题意可得a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,根据根与系数的关系可得a +1+b +1=-3,a +1 b +1 =-3,整理可得a +b =-5,ab =1,即得a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,然后把所求的式子变形后整体代入即可求解.【详解】解:∵a ≠b ,且满足a +1 2=3-3a +1 ,b +1 2=3-3b +1 ,∴a +1,b +1是方程x 2=3-3x 即x 2+3x -3=0的两个根,∴a +1+b +1=-3,a +1 b +1 =-3,整理,得a +b =-5,ab =1,∴a <0,b <0,a 2+b 2=a +b 2-2ab =25-2=23,∴b b a+a a b =-b a ab -a b ab =-b a -a b =-a 2+b 2ab =-23;故选:B .【点睛】本题考查了一元二次方程根与系数的关系,二次根式的化简求值,由题意得出a +b =-5,ab =1,是解题的关键.三、解答题25(2024·全国·八年级竞赛)若m 满足关系式2x +3y +4x +5y -m =x -2012+y +2012-x -y ,求m 的值.【答案】4024【分析】本题考查了非负数的性质以及二次根式有意义的条件,得到x +y =2012是关键.根据二次根式的性质:被开方数是非负数求得2x +3y +4x +5y -m =0,然后根据非负数的性质得到关于x 和y 的方程组,然后结合x +y =2012即可求得m 的值.【详解】解:由x -2012+y ≥02012-x -y ≥0 可得x +y =2012,∴x +y =20122x +3y =04x +5y -m =0 ∴m =4x +5y =2x +y +2x +3y =402426(2024·全国·八年级竞赛)设等腰三角形的腰为a ,底边为b ,底边上的高为h .(1)如果a =6+3,b =6+43,求h ;(2)如果b =46+2,h =26-1,求a .【答案】(1)32;(2)52.【分析】此题考查了等腰三角形的基本性质,学会在等腰三角形中构造直角三角形从而应用勾股定理来求解.(1)知道等腰三角形、底边利用等腰三角形高的特殊性质可构成直角三角形,再应用勾股定理求解h 值;(2)知道等腰三角底边和高,同理在等腰三角形中构造直角三角形,利用勾股定理来求a 值.【详解】(1)解:在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴6+3 2=146+43 2+h 2,∴36+123+3=1436+483+48 +h 2,∴39+123=9+123+12+h 2,∴h 2=18,∴h =18=32.(2)解:同理在等腰△ABC 中,由勾股定理知,∵a 2=12b 2+h 2,∴a 2=12×46+22+26-1 2∴a 2=26+1 2+26-1 2∴a 2=50,∴a =52.27(2024·全国·八年级竞赛)先化简,再求值:(2x -1)2-(3x +2)(3x -2)+(5x -4)(x +2),其中x =2.【答案】2x -3,22-3【分析】本题考查平方差公式、完全平方公式及多项式乘多项式、整式的加减,熟练掌握并灵活运用它们是本题的关键.分别利用完全平方和、平方差公式、多项式乘多项式的法则、整式加减的运算法则计算即可.【详解】解:原式=4x 2-4x +1-9x 2+4+5x 2+6x -8,=2x -3当x =2时,原式=2x -3=22-3.28(2024·全国·八年级竞赛)已知:y =3x -15+15-3x +4,求2x +y 2-2x +y 2x -y ÷2y -12y 的值.【答案】12【分析】先根据二次根式有意义的条件得出x =5,进而得出y =4,再化简求值,代入即可得出答案.【详解】解:由3x -15≥0,15-3x ≥0,∴x =5,∴y =4,∴2x +y 2-2x +y 2x -y ÷2y -12y =2x +y 2x +y -2x +y ÷2y -12y=2x+y-12y=2x+12y=12.29(2024·全国·八年级竞赛)已知a=4-15,求:(1)a-1a;(2)a5-6a4-16a3+7a2+23a-42008.【答案】(1)-6(2)1【分析】本题考查完全平方公式,无理数的估算:(1)先根据完全平方公式变形得出a+1a =8,求出a-1a2=6,再估算出0<4-15<1,即0<a<1,最后求出答案即可;(2)将式子变形,再将a2-8a+1=0代入,进而可得出答案.【详解】(1)解:a=4-15,∴a-42=15,∴a2-8a+1=0.∴a+1a=8,∴a-1a2=a+1a-2=8-2=6,∵3<15<4,∴-4<-15<-3,∴0<4-15<1,即0<a<1,∴a-1a<0,∴a-1a=-6.(2)解:∵a5-6a4-16a3+7a2+23a-4=a3a2-8a+1+2a2a2-8a+1-a a2-8a+1 -3a2-8a+1-1=0+0-0-0-1=-1,∴a5-6a4-16a3+7a2+23a-42008=-12008=1.30(2024·全国·八年级竞赛)已知△ABC的三边长分别为a,b,c,且满足a-2+b2-10b+25=0.(1)求△ABC第三边c的取值范围;(2)求△ABC的周长l的取值范围;(3)若△ABC为等腰三角形,你能求出△ABC的周长吗?【答案】(1)3<c<7(2)10<l<14(3)12【分析】本题考查二次根式的非负性,等腰三角形的定义,三角形的三边关系:(1)先根据非负性得出∴a=2,b=5,再根据三角形第三边的取值范围即可得出答案;(2)根据周长三边之和,即可得出答案;(3)当c=2时,可知不能构成三角形,当c=5时,求出三边之和即可.【详解】(1)解:a-2+(b-5)2=0,∴a=2,b=5,∵b-a<c<a+b,∴3<c<7.(2)l=a+b+c=7+c,∴10<l<14.(3)c=2时,三边长(2,2,5)不能构成三角形,舍去.∴c=5,l=2+5+5=12.。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.计算(1)(2)【答案】(1);(2)2.【解析】(1)根据二次根式的乘除法则运算;(2)根据二次根式有意义的条件得到-(a+2)2≥0,得到a=-2,然后把a=-2代入原式进行计算.试题解析:(1)原式===(2)∵-(a+2)2≥0,∴a=-2,原式==3-5+4=2.【考点】二次根式的混合运算.2.计算:【答案】.【解析】先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.试题解析:原式=3﹣3+2+2+1=.【考点】二次根式的混合运算.3.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.当1≤x≤5时,【答案】4.【解析】根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.试题解析:∵1≤x≤5,∴x-1≥0,x-5≤0.故原式=(x-1)-(x-5)=x-1-x+5=4.考点: 二次根式的性质与化简.6.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.7.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项【考点】根式运算.8.=________________.【答案】6【解析】由题, .,由题, .【考点】二次根式的化简.9.函数中自变量x的取值范围是.【答案】x≥4【解析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.10.的平方根是()A.4B.±4C.±2D.2【答案】C【解析】一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根.,平方根是±2,故选C.【考点】平方根点评:本题属于基础应用题,只需学生熟练掌握平方根的定义,即可完成.11.函数y=中,自变量x的取值范围是。
二次根式测试题及答案
二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。
选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。
而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。
2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。
3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。
4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。
5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。
6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.2.当a<0时,化简|2a- |的结果是………()A.a B.-a C.3a D.-3a【答案】D.【解析】∵a<0,∴|a|=-a,则原式=|2a-|a||=|2a+a|=-3a.故选D【考点】二次根式的性质与化简.3.下列计算错误的是 ( )A.B.C.D.【答案】D.【解析】A.,计算正确;B.,计算正确;C.,计算正确;D.,计算错误.故选D.考点: 二次根式的运算.4.下列说法正确的是()A.一个数的立方根有两个,它们互为相反数B.一个数的立方根与这个数同号C.如果一个数有立方根,那么它一定有平方根D.一个数的立方根是非负数【答案】B【解析】一个数的立方根只有一个,A错误;一个数有立方根,但这个数不一定有平方根,如,C错误;一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0,所以D是错误的,故选B5.已知,求的值.【答案】2005【解析】解:因为,所以,即,所以.故,从而,所以,所以.6.下列说法错误的是()A.5是25的算术平方根B.1是1的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C【解析】A.因为=5,所以A正确;B.因为±=±1,所以1是1的一个平方根说法正确;C.因为±=±=±4,所以C错误;D.因为=0, =0,所以D正确.故选C.7.的平方根是,的算术平方根是 .【答案】3【解析】;,所以的算术平方根是3.8.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.9.下列计算正确的是()A.B.C.D.【答案】A.【解析】根据根式运算法则.不是同类项不能合并同类项根式运算.10.若有意义,则________.【答案】1.【解析】由题意,得:,解得,则=1.故答案是:1.【考点】二次根式有意义的条件.11.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.12. 16的算术平方根是()A.4B.-4C.D.256【答案】A【解析】16的算术平方根是=4,选A.一个非负数a有两个平方根±,它们互为相反数, 称为a的算术平方根,由题,16的算术平方根是=4,选A.【考点】算术平方根.13.已知,那么= .【答案】4【解析】由题意分析可知,在满足本题的条件下,,代入得y=1,所以=4【考点】二次根号的意义点评:本题属于对二次根号的基本性质和代数式有意义的条件的基本考查和运算14.函数y=中自变量x的取值范围是________.【答案】x≥-1【解析】易知根号下为非负数。
有关二次根式的竞赛题
有关二次根式的竞赛题(2)1、(1996江苏)已知实数a 满足11=--a a ,那么()221a a +-等于2、(1996湖北)设y x m 、、均为正整数,且y x m -=-28,则=++y x m3、(1997陕西)化简:=+++-+--13251823362101534、(1996四川)化简()()233623346++++的结果是5、(1999湖北武汉)化简=++⎪⎭⎫ ⎝⎛999199819981998199835715337 6、(1996全国卷)设19953x =19963y =19973z ,>xyz ,且3333222199719961995199719961995++=++z y x ,则=++zy x 1117、(1999希望杯)计算:()()()()()()=--+--+--199920011997200120011997199920011999199920011997199919971997(2003年山东省初中数学竞赛题)已知-1<a<0得 . (2003年“希望杯”全国数学邀请赛初二试题)设012,x y <<<<则.(2003年全国中小学生数学公开赛)计算9997()3= .(15届希望杯初二第2试)Given m is a real number, and |1-m|=|m|+1,simplify an algebraic expression,)(A)|m|-1 (B)-|m|+1 (C)m-1 (D)-m+1 (英汉小词典simplify :化简;algebraic expression :代数式)(12届希望杯初二第2试)化简代数式322322++-的结果是( )A. 3B. 12+C. 22+D. 22(12届希望杯初二第2试) 化简:2532306243+--+的结果是_________.(02希望杯全国数学竞赛初二第1试题)最后得_________.(14届希望杯初二第2试)已知:对于正整数n,=,若某个正整数k 满足23+,则k=___________.(02希望杯全国数学竞赛初二第1试)已知a b c ===,其中m>0,那么a,b,c 的大小关系是( ).(A)a>b>c (B)c>a>b; (C)a>c>b (D)b>c>a(02希望杯全国数学竞赛初二第1试题)If N is natural number,and 61N N <<+,then the value of N is______.( natural number 自然数)。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.与﹣2的乘积是有理数的是()A.﹣2B.C.2﹣D.+2【答案】D.【解析】∵-2的有理化因式为+2,∴与-2的乘积是有理数的是+2,故选D.【考点】分母有理化.2.式子在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤﹣1D.x>1【答案】B.【解析】根据二次根式的性质,被开方数大于等于0,所以x﹣1≥0,即x≥1时,二次根式有意义.故选B.【考点】二次根式有意义的条件.3.下列计算中正确的是()A.B.C.D.【答案】C.【解析】根据二次根式的性质化简即可:A.,计算错误;B.,计算错误;C.,计算正确;D.,计算错误.故选C.【考点】二次根式化简.4.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.5.计算:(1);(2)【答案】(1)4;(2).【解析】(1)根据二次根式的性质化简计算.(2)根据分配律和完全平方公式展开后合并同类根式即可.(1)原式=.(2)原式=【考点】二次根式的计算.6.化简的结果 .【答案】【解析】写成分式的形式,然后分子、分母都乘以(1+),化简整理即可..【考点】分母有理化.7.方程的解是 .【答案】1【解析】先进行分母有理化,把所给方程化为一元一次方程,求出方程的解即可.分母有理化得:去分母整理得:;解得x=1.【考点】解一元一次方程.8.是整数,则最小的正整数a的值是。
【答案】5.【解析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5.试题解析:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.考点: 二次根式的定义.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.10.比较下列各组数的大小:(1)与; (2)与.【答案】(1)>(2)小于【解析】解:(1)因为,,所以.(2)因为,,所以.11.计算:______.【答案】13【解析】12.已知正数的两个平方根是和,则=【答案】49.【解析】∵正数x的两个平方根是m+3和2m-15,∴m+3+2m-15=0,∴3m=12,m=4,∴m+3=7,即x=72=49.【考点】平方根.13. 9的平方根是()A.3B.C.D.【答案】B.【解析】此题主要考查了平方根的定义,易错点正确区别算术平方根与平方根的定义.根据平方根的定义:若一个数的平方等于a,那么这个数就是数a的平方根.∵(±3)2=9,∴±3是9的平方根.故选B.【考点】平方根的定义.14.以下说法正确的是()A.B.C.16的算术平方根是±4D.平方根等于本身的数是1.【答案】A.【解析】A.,正确;B.,故本选项错误;C.16的算术平方根是4,故本选项错误;D.平方根等于本身的数是1和0,故本选项错误.故选A.【考点】1.平方根;2.算术平方根.15.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.16.如图所示,数轴上表示2,的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A. B. C. D.【答案】C.【解析】因为表示2,的对应点分别为C,B,所以CB=,因为点C是AB的中点,则设点A的坐标是x,则,所以点A表示的数是.故选C.【考点】实数与数轴.17.已知是实数,且,则()A.31B.21C.13D.13或21或31【答案】C【解析】由可得,再结合二次根式有意义的条件即可求得x的值,最后代入代数式计算即可.∵∴解得∵即∴∴故选C.【考点】解一元二次方程,二次根式有意义的条件,代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.18.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可. (1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分. 19.下列实数:,3.14,,,,,,无理数有( )A.2个B.3个C.4个D.5个【答案】B【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.∵∴无理数有,,共3个,故选B.【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.20.请写出一个介于1与2之间的无理数: .【答案】【解析】此题答案不唯一,,,即此无理数只要存在于和之间即可【考点】无理数的定义点评:答案不唯一,此题考查学生对无理数概念的掌握,无理数,即无限不循环小数,且不能化成整数之比21.观察下面的等式:=7,=67,=667,则=6667。
初二数学竞赛题-二次根式(含答案)
初二数学竞赛题-二次根式(含答案)二次根式1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式ya a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223y xy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么nx x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n-;(D)11991)1(--n.5.若01132=+-x x ,则44-+x x 的个位数字是( )(A)1(B)3(C)5(D)7.6.若≠x ,则xx x x 44211+-++的最大值是__________. 7.13333)919294(3-+-可以化简成( )(A))12(333+ (B))12(333- (C)123-(D)123+8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a9.当219941+=x 时,多项式20013)199419974(--x x的值为( )(A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足nm a -=-242,则这样的n m a ,,的取值( )(A )有一组; (B )有两组; (C )多于二组; (D )不存在12。
15+=m ,那么m m 1+的整数部分是________。
初二数学竞赛题-二次根式(含答案)
6. 3 2
7.(D)
原式
1
33
(
1
)
1 3
(2
2 3
9
1
23
1)1
1
1
3
(23 )3 1
1
2 3 1
1
23
1 3
2
1
8 .( A ) ∵ , ∴ (a 1)2 (1 a) 1 a2 原 式
aa
a
. 1 a2 a 1 1 a a a 1 1 a 1 a
29.函数
的自变量 x 的取值范围是_____。
30.正实数 a,b,c,d 满足 a + b + c + d =
1 , 设 p = 3a + 1+ 3b + 1+
3c + 1+
3d + 1,
则
( )(A) p > 5
(B) p = 5
(C) p < 5 答案:
(D) p 与 5 的大小关系不确定
2
2 1991 n
)
4
4.(D)
1
1
(1991n
1 2 1991 n ) ,
2
所以 原式
(
1991
1 n
)
n
(1) n 19911.
5.(D)
由 知 . x2 13x 1 0
x0
所 以 , x x1 13
. x 2 x 2 132 2 167
x4 x4 1672 2 ,从而 x2 x4 的个位数字为 9-2=7.
x y 26
的解是
_________________。
27.方程 2x2+7x+21=5 的有所实根 2x2+7x+15
初二数学二次根式竞赛习题及答案
二次根式竞赛习题1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n -;(D)11991)1(--n . 5.若01132=+-x x ,则44-+x x 的个位数字是( )(A)1(B)3(C)5(D)7.6.若0≠x ,则xx x x 44211+-++的最大值是__________.7.13333)919294(3-+-可以化简成( ) (A))12(333+ (B))12(333- (C)123- (D)123+ 8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a 9.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值( ) (A )有一组; (B )有两组; (C )多于二组; (D )不存在 12。
15+=m ,那么mm 1+的整数部分是________。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.如图,数轴上点P表示的数可能是()A.B.C.﹣3.2D.【答案】B.【解析】∵≈2.65,≈-3.16,设点P表示的实数为x,由数轴可知,-3<x<-2,∴符合题意的数为−.故选B.【考点】1.估算无理数的大小;2.实数与数轴.2.计算(1);(2);(3)(a≥0,b≥0).【答案】(1);(2)5;(3).【解析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可. (2)先利用完全平方公式和二次根式的乘法法则运算,然后合并即可.(3)利用二次根式的乘法法则运算.试题解析:(1)原式=.(2)原式=.(3)原式=.【考点】二次根式的混合运算..3.化简后的结果是()A.B.C.D.【答案】B.【解析】.故选B.【考点】二次根式的化简.4.观察下列等式:①;②;③;……回答下列问题:(1)仿照上列等式,写出第n个等式: ;(2)利用你观察到的规律,化简:;(3)计算:【答案】(1);(2);(3).【解析】根据观察,可得规律,根据规律,可得答案.(1)写出第n个等式.(2)原式=.(3)原式=【考点】1.探索规律题(数字的变化类);2.分母有理化.5.化简的结果为 .【答案】.【解析】.【考点】二次根式化简.6.若二次根式有意义,则x的取值范围是()A.x≥2B.x>2C.x≤2D.x<2【答案】C.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须. 故选C.【考点】二次根式有意义的条件.7.如果代数式有意义,那么在坐标系中的位置为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】:∵代数式有意义,∴,解得:,故可判断出点P在第三象限.故选C.【考点】1.二次根式有意义的条件; 2.点的坐标.8.是整数,则最小的正整数a的值是。
【答案】5.【解析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5.试题解析:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.考点: 二次根式的定义.9.(1)计算: (2)解方程组:【答案】(1);(2)方程组的解为:.【解析】(1)根据二次根式混合运算的运算顺序计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1);(2)②-①×3得x=5,把x=5代入①得,10﹣y=5,解得y=5,故此方程组的解为:.【考点】1.二次根式的运算,2.解方程组.10.已知+,那么 .【答案】8【解析】由+,得,所以.11.若,则的值等于_________.【答案】1996.【解析】根据题意得,,解得,∴,∴,两边平方得,,所以,.【考点】二次根式有意义的条件.12. 4的平方根是;的算术平方根是;的立方根为-2.【答案】±2,,-8.【解析】本题考查了平方根、算术平方根、立方根的定义.一个正数的平方根有两个,它们是互为相反数.所以4的平方根是±2.一个正数的算术平方根有一个,是正的平方根,所以的算术平方根是.因为-2的立方是-8,所以-8的立方根是-2.故应分别填:±2,,-8.【考点】1、平方根.2、算术平方根.3、立方根的定义.13.在数轴上与表示的点距离最近的整数点所表示的数是 .【答案】2【解析】本题主要考查了实数与数轴的对应关系,解题应看这个无理数的被开方数在哪两个能开得尽方的数的被开方数之间,比较无理数的被开方数和这两个能开得尽方的数的被开方数的距离,进而求解.先利用估算法找到与的点两边的两个最近整数点,再比较这两个点与的大小即可解决问题.因为,所以左右两边的整数点是1和2,又因为3与4的距离最近,所以与的点的距离最近的整数点所表示的数是2,故填2.【考点】实数与数轴.14.如图所示,数轴上表示2,的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A. B. C. D.【答案】C.【解析】因为表示2,的对应点分别为C,B,所以CB=,因为点C是AB的中点,则设点A的坐标是x,则,所以点A表示的数是.故选C.【考点】实数与数轴.15.如果实数满足y=,那么的值是().A.0B.1C.2D.-2【答案】C【解析】由题意可知,,,所以,,所以.故选.【考点】1、算术平方根的非负性.16.-的相反数是.【答案】.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-的相反数是.【考点】相反数.17.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较大18.如果的值等于()A.B.C.D.【答案】C【解析】先根据二次根式的性质化简,再根据绝对值的规律求解即可.当时,故选C.【考点】二次根式的性质,绝对值的规律点评:解题的关键是熟记绝对值的规律:正数和0的绝对值是它本身,负数的绝对值是它的相反数.19.计算的结果是.【答案】3【解析】先根据二次根式的性质计算小括号里的,再算除法即可..【考点】实数的运算点评:实数的运算是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.20.下列说法中正确的是()A.的平方根是±2B.36的平方根是6C.8的立方根是-2D.4的算术平方根是-2【答案】A【解析】的平方根是±2;36的平方根是,所以B错误;8的立方根是2,所以C错误;4的算术平方根是2,所以D错误【考点】平方根和立方根点评:本题考查平方根和立方根,掌握平方根和立方根的概念,考生会求任何数的平方根和立方根21.的算数平方根为 .【答案】2【解析】因为所以4的算术平方根即是所求,所以【考点】代数式求值点评:本题是属于基础应用题,只需学生熟练掌握代数式求值的方法,即可完成.22.已知n是一个正整数,是整数,则n的最小值是____________.【答案】15【解析】,即,所以n最小值为【考点】开放式的计算点评:本题看似复杂,实则为因数分解,将135拆分成若干质数,将相同质数两两提取出来,最后剩下的质数之积即为所求值23.的平方根是()A.±4B.±2C.4D.2【答案】B【解析】正数的立方根是正数;一个正数有两个平方根,且它们互为相反数.,平方根是±2,故选B.【考点】立方根,平方根点评::本题属于基础应用题,只需学生熟练掌握立方根、平方根的定义,即可完成.24.若有意义,则的取值范围是()A.B.C.≥3D.【答案】D【解析】二次根号下的数为非负数,二次根式才有意义.由题意得,解得,故选D.【考点】二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.25. 64的立方根是()A.±4B.±8C.4D.8【答案】C【解析】正数的立方根是正数,负数的立方根是负数,0的立方根是0,64的立方根是4.【考点】实数的立方根点评:此种题目是对实数的简单考查,学生要明确平方根和立方根的区别。
初二数学二次根式试题答案及解析
初二数学二次根式试题答案及解析1.已知n是正整数,是整数,则n的最小值是.【答案】21【解析】∵189=32×21,∴,∴要使是整数,n的最小正整数为21.故填:21.【考点】二次根式的定义2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.列二次根式中,最简二次根式是()A.B.C.D.【答案】B.【解析】A、,被开方数含能开得尽方的因数,不是最简二次根式,故A选项错误;B、,满足最简二次根式条件,故B选项正确;C、,被开方数含分母,不是最简二次根式,故C选项错误;D、,被开方数含能开得尽方的因数和因式,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.计算下列各题(1)(2)(3)(4)【答案】(1);(2);(3);(4).【解析】(1)先将括号里面的式子进行通分化简,然后再进行除法运算即可;(2)先化简二次根式,再合并同类二次根式即可;(3)先把方程组中的①化简,利用加减消元法或者代入消元法求解即可;(4)先去分母,然后利用前两个方程消掉y,第一个方程和第三个方程消掉y得到两个关于x、z的方程,然后根据二元一次方程组的解法求出x、z的值,再代入第一个方程求出y的值,从而得解.试题解析:(1)原式=;(2)原式=;(3),由①得:③,③×3-②×2得:,解得:,把代入①得:,∴;(4)整理得:,①+②×2,得:④,①+③得:⑤,④+⑤×7,得:,把代入⑤,得:,把,代入①,得:,∴.【考点】1.二次根式的混合运算;2.解二元一次方程组;3.解三元一次方程组.5.(1)已知:(x+5)2=16,求x;(2)计算:【答案】(1),;(2).【解析】本题考查了平方根、立方根的定义及性质和绝对值的性质.(1)根据平方根的定义,先得出:,再分别计算出的值;(2)先利用平方根、立方根的性质及绝对值的性质分别计算出每个式子的值,最后相加.试题解析:解:(1)∵∴∴,原式【考点】1、平方根的定义及性质;2、立方根的定义及性质;3、绝对值的性质.6.如果实数满足y=,那么的值是().A.0B.1C.2D.-2【答案】C【解析】由题意可知,,,所以,,所以.故选.【考点】1、算术平方根的非负性.7.-的相反数是.【答案】.【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此-的相反数是.【考点】相反数.8.若m=-2,则m的范围是A.1 < m < 2B.2 < m < 3C.3 < m < 4D.4 < m < 5【答案】C【解析】根据,可得,即可作出判断.故选C.【考点】无理数的估算点评:解题的关键是熟练掌握“夹逼法”是估算无理数的常用方法,也是主要方法.9.设,,则的值等于 .【答案】-【解析】先解方程同时结合得到a与b的关系,再代入求值即可.解方程得当时,当时,.【考点】解方程,代数式求值点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.10.当时,二次根式的值为 .【答案】3【解析】先把代入二次根式,再根据二次根式的性质求值即可.当时,.【考点】绝对值的规律,二次根式的性质点评:解题的关键是熟练掌握二次根式的性质:当,;当,.11.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可.(1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.平方等于64的数是 .【答案】±8【解析】由题意分析可知,,所以平方等于64的数是±8【考点】平方根点评:本题属于对平方的基本知识和平方根定义的熟练把握13.把下列各数分别填入相应的集合中: -,, 0.232323有理数集合无理数集合【答案】无理数:,-有理数是,0.232323【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,所以无理数是,-,有理数是,0.232323【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.14.下列说法正确的是()A.8的立方根是±2B.负数没有立方根C.互为相反数的两个数立方根也互为相反数D.立方根是它本身的数是0【答案】C【解析】根据立方根的定义依次分析各选项即可判断.A.8的立方根是2,B.负数的立方根是负数,D.立方根是它本身的数是0,±1,故错误;C.互为相反数的两个数立方根也互为相反数,本选项正确.【考点】立方根点评:解题的关键是熟练掌握正数的立方根是正数,0的立方根是0,负数的立方根是负数.15.设,则代数式的值为( ).A.-6B.24C.D.【答案】A【解析】先根据完全平方公式配方,再代入求值即可.当时,故选A.【考点】代数式求值点评:解题的关键是熟练掌握完全平方公式:16.如果一个数的平方根与它的立方根相同,那么这个数是()A.±1B.0C.1D.0和1【答案】B【解析】根据平方根、立方根的定义依次分析各选项即可判断.∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1∴平方根与它的立方根相同的数是0故选B.【考点】平方根,立方根点评:本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成.17.估算的值是()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【答案】B【解析】根据,即可作出判断.的值是在2和3之间故选B.【考点】无理数的估算点评:解答本题的关键是熟练掌握“夹逼法”是估算无理数的常用方法,也是主要方法.18.若,,那么a b的值等于A.-8B.8C.-16D.16【答案】D【解析】先根据立方根及算术平方根的定义求得a、b的值,再根据乘方法则计算即可.∵,∴故选D.【考点】立方根、算术平方根点评:解题的关键是熟记一个正数有两个平方根,且它们互为相反数,其中正的平方根叫算术平方根.19.在,,,,这五个实数中,无理数的是.【答案】,【解析】是循环小数,不是无理数;是整数之比,不是无理数;开放后是无限小数,是有理数;为无限小数;,不是无理数。
八年级数学二次根式32道典型题(含答案和解析)
八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。
初二数学《二次根式》竞赛培优精选题(含解析)
二次根式竞赛培优题(含解析)一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.39940002.计算:=()A.B.C.D.3.的结果是()A.B.C.D.4.的值是()A.B.C.1D.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为.7.化简=.8.化简.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为.10.方程的解是x=11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=.12.计算:=(其中a>0)13.的值为.14.已知:对于正整数n,有,若某个正整数k满足,则k=.15.若n为整数,且是自然数,则n=.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为.17.若u、v满足v=,则u2﹣uv+v2=.18.已知a为实数,且与都是整数,则a的值是.19.使得++=1的一组正整数(a,b,c)为:.20.计算﹣20062的结果是.21.设=.22.若,,则x6+y6的值是.23.当时,的值为.24.已知,,则k=.25.当1≤x≤2时,经化简等于.26.计算=.27.已知x=,那么+1的值是.28.化简:,得到.29.=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).二次根式竞赛培优题(含解析)参考答案与试题解析一.选择题(共5小题)1.计算:=()A.3994001B.3994002C.3994003D.3994000【分析】设1998=a,把被开方数变形后,利用多项式的乘法法则计算后,加上a2再减去a2,前三项结合提取a2,剩下的三项利用完全平方公式化简,接着三项合并后提取2a,整体再利用完全平方公式化简,从而得到被开方数为一个数的完全平方,利用化简公式=|a|及a大于0即可得到最后结果.【解答】解:设1998=a,则1997×1998×1999×2000+1=(a﹣1)a(a+1)(a+2)+1=a4+2a3+a2﹣a2﹣a2﹣2a+1=a2(a+1)2﹣2a(a+1)+1=[a(a+1)﹣1]2,所以==1998×1999﹣1=3994001.故选:A.【点评】此题考查了二次根式的化简求值,考查了换元的思想,本题的技巧性比较强,要求学生熟练掌握完全平方公式的结构特点,同时注意利用凑项的方法构造满足公式的特征,以及注意二次根式的化简公式=|a|的运用.2.计算:=()A.B.C.D.【分析】根据每个加数的特点,推出一般规律为,将所得式子化简,分别取n=1,2,3,…,40,寻找抵消规律,得出结论.【解答】解:∵=()=()=()=(﹣)∴分别取n=1,2,3, (40)原式=[(1﹣)+(﹣)+(﹣)+…+(﹣)]=(1﹣)=.故选:B.【点评】本题考查了二次根式的化简求值,观察式子的特点,得出一般规律,将一般规律化简代值,再观察抵消规律是解题的关键.3.的结果是()A.B.C.D.【分析】把每个加数分母有理化,然后通分计算即可.【解答】解:=()=.故选:D.【点评】主要考查二次根式的分母有理化.主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.4.的值是()A.B.C.1D.【分析】认真观察式子的特点,总结规律,可发现,,,据此作答.【解答】解:由题意可知第k项是∴原式=(++=1﹣=1﹣=.故选:B.【点评】此题考查二次根式的化简求值,关键是审清题意,找准规律答题.5.在这1000个二次根式中,与是同类二次根式的个数共有()A.3B.4C.5D.6【分析】找到1000<5×x2<2000中符合x的整数值即可得出答案.【解答】解:由题意得:与=20,是同类二次根的被开方数一定为5,由此及题意可:1000<5×x2<2000,x可取15、16、17、18、19,共5个.故选:C.【点评】本题考查同类二次根式的知识,有一定难度,关键是根据同类二次根式的形式得出的同类二次根式应该满足.二.填空题(共24小题)6.已知实数x1,x2,x3,…,x1999满足.则x1+2x2+3x3+…+1999x1999的值为3998000.【分析】由等式可知=x1,=x2,…解得x1=x2=x3=…=x1999=2,由此代入求得数值即可.【解答】解:∵,∴=x1,=x2,…∴x1=x2=x3=…=x1999=2,∴x1+2x2+3x3+…+1999x1999=2×(1+2+3+ (1999)=2×(1999+1)×1999÷2=3998000.故答案为:3998000.【点评】此题考查二次根式的化简求值,解答此题的关键是找出对应关系,求出x1、x2、x3、…、x1999的值.7.化简=2011.【分析】先根据平方差公式和二次根式的性质得到=,然后根据同样的方法由内到外依次化简即可得到答案.【解答】解:∵=,∴原式=======2011.故答案为2011.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了平方差公式.8.化简后2.【分析】由于===﹣1,其他根式也可以进行同样的化简,然后合并同类二次根式即可求解.【解答】解:=﹣1+﹣++++++=3﹣1=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,解题的关键是利用完全平方公式化简二次根式从而达到化简题目的目的.9.观察图形,用S i表示第i个三角形的面积,有;;,…,若S1+S2+S3+…+S n>10,则n的最小值为10.【分析】利用不等式≤,结合S1+S2+S3+…+S n >10,解不等式即可.【解答】解:∵S i表示第i个三角形的面积,由不等式≤n,得≤n=n,而S1+S2+S3+…+S n=,S1+S2+S3+…+S n>10,∴n>10,即n2(n+1)>800,n为正整数,n的最小值为9.但n=9时,代入S1+S2+S3+…+S n<10,不符合题意,故n=10.【点评】本题考查了二次根式的运用.利用均值不等式和不等式的传递性解题.10.方程的解是x=2011【分析】将各分式中的分母有理化,再通分,注意观察抵消规律.【解答】解:原方程化为:+++…+=,通分得=,解得x=2011.故答案为:2011.【点评】本题考查了二次根式的化简在解方程中的运用.关键是将各分式的分母有理化,寻找抵消规律.11.设M=+++┉+,N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994,则=﹣.【分析】首先将M式中各个分式进行分母有理化,再求出N式的值,代入代数式求值即可解答.【解答】解:将M分母有理化可得M=(﹣1)+(﹣)+(﹣)+…+(﹣)=﹣1.N=1﹣2+3﹣4+5﹣6+┉+1993﹣1994=(1﹣2)+(3﹣4)+(5﹣6)+┉+(1993﹣1994)=﹣1×997=﹣997,∴==﹣.故答案为﹣.【点评】本题主要考查分母有理化的方法,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.12.计算:=4(其中a>0)【分析】仔细观察会发现有以下规律:第1项加上第8项等于1,第2项加上第7项等于1,依此类推最后求得的结果4.【解答】解:第一项与最后一项相加得:+,=+,=,=1,同理可得:第二项与倒数第二项的和也是1;第三项与倒数第三项的和也是1;所以原式=1+1+1+1=4.故应填:4.【点评】本题考查了二次根式的加减运算,同时也考查了学生的逻辑思维能力,是一道不错的规律型问题.13.的值为1998999.5.【分析】本题涉及数字大且数字之间有联系,可用换元法解题,设k=2000,将所求算式转化为关于k的算式,将被开方数配成完全平方式,开平方,再将k的值代入即可.【解答】解:设k=2000,原式=====,当k=2000时,原式=1998999.5.故本题答案为:1998999.5.【点评】本题考查了二次根式的化简求值,当算式数字较大,并且数字之间有联系时,用换元法解题,可使运算简便.14.已知:对于正整数n,有,若某个正整数k满足,则k=8.【分析】读懂规律,按所得规律把左边所有的加数写成的形式,把互为相反数的项结合,可使运算简便.【解答】解:∵,∴+,即1﹣,∴,解得k=8.故答案为:8.【点评】解答此题的关键是读懂题意,总结规律答题.15.若n为整数,且是自然数,则n=﹣14或﹣7或﹣2或5.【分析】设=p,再把等式两边同时乘以4,利用平方差公式把等式左边化为两个因式积的形式,列出关于p、n的方程组,求出n 的值即可.【解答】解:∵设=p(P为非负整数),则n2+9n+30=p2,∴4n2+36n+120=4p2,∴(2n+9)2+39=4p2,∴(2p+2n+9)(2p﹣2n﹣9)=39,∴或或或,解得或或或,∴n=﹣14或﹣7或﹣2或5.故答案为:﹣14或﹣7或﹣2或5.【点评】本题考查的是二次根式的性质与化简,先根据题意把原式化为两个因式积的形式是解答此题的关键.16.如果,并且表示为时的值,即,表示当时的值,即,那么的值为2012.5.【分析】根据新定理得f()=,f()=,则f()+f()=1;f()=,f()=,则f()+f()=1,由此得到f()+f()=1(n≥2的整数),所以原式=+.【解答】解:f()=,∵f()==,f()=,则f()+f()=1,f()==,f()==,则f()+f()=1,∴f()+f()=1,∴=+=2012.5.故答案为2012.5.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.也考查了阅读理解能力.17.若u、v满足v=,则u2﹣uv+v2=.【分析】根号里面的式子大于等于0,从而可得≥0,﹣≥0,从而能得出u和v的值,继而可得出答案.【解答】解:由题意得:≥0,﹣≥0,从而=0,2u﹣v=0,u=v,又v=,∴u=,∴u2﹣uv+v2=.故答案为.【点评】本题考查二次根式有意义的条件,注意掌握根号里面的式子大于等于0这个知识点比较关键.18.已知a为实数,且与都是整数,则a的值是或.【分析】由是正整数可得,a是含﹣2的代数式;再由是整数,可得化简后为﹣2的代数式分母有理化后,是1或﹣1,据此确定a的值.【解答】解:∵是正整数,∴a是含﹣2的代数式;∵是整数,∴化简后为﹣2的代数式分母有理化后,是1或﹣1,∴a=或.故答案为:或.【点评】此题主要考查二次根式的混合运算,要熟练掌握合并同类二次根式和分母有理化.19.使得++=1的一组正整数(a,b,c)为:答案不唯一;如(288,8,8),(48,24,8).【分析】由于三个复合二次根式的和为1,则它们的被开方数为完全平方数,设任意一个复合二次根式的被开方数为()2(x,y为正整数,x>y),然后通过正整数的含义,得到x,y为两个相邻正整数,即每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后是﹣1,则第二个复合二次根式化简后必为﹣,第三个复合二次根式化简后必为,最后求的a,b,c的值.【解答】解:因为几个复合二次根式的和为1,则每个复合二次根式的被开方数一定为完全平方数.设==x+y﹣2,(x,y为正整数,x>y),所以有=x+y,﹣=﹣2.∴a+1=(x+y)2,a=4xy,∴(x﹣y)2=1,即x﹣y=1.则每个复合二次根式化简后为两个相邻正整数的算术平方根.若第一个化简后为﹣1,而要消掉,则第二个复合二次根式化简后必为﹣,要消掉,则第三个复合二次根式化简后必为.最后正好为﹣=1.所以=(﹣1)2=3﹣=3﹣,则a=8,同理得b=24,c=48.故得到一组正整数(a,b,c)为:8,24,48.故答案为8,24,48.【点评】本题考查了二次根式的性质和二次根式的化简:.20.计算﹣20062的结果是2005.【分析】先把“2005×2006×2007×2008+1=(20052+3×2005+1)2”化为完全平方的形式,再开平方,然后再来求值.【解答】解:∵2005×2006×2007×2008+1=2005×(2005+3)×(2005+1)(2005+2)+1=(20052+3×2005)×(20052+3×2005+2)+1=(20052+3×2005)2+2(20052+3×2005)+1=(20052+3×2005+1)2∴=20052+3×2005+1;∴﹣20062=20052+3×2005+1﹣20062=(2005+2006)(2005﹣2006)+3×2005+1=2005;故答案为:2005.【点评】本题主要考查了二次根式的化简求值.解答此题的难点是化“2005×2006×2007×2008+1”为完全平方的形式,并开平方,然后再利用平方差公式求出20052﹣20062=(2005+2006)(2005﹣2006)的值.21.设=.【分析】把已知条件的左边相乘得,这样出现了所求代数式,设=z,代入变形所得的等式,逐步变形,消去x、y,即可求得z.【解答】解:据条件式令=z,则(1)式化为:z+xy+=9,即有9﹣z=xy+,平方得,81﹣18z+z2=x2y2+(x2+1)(y2+4)+2xy(2),又由z2==x2(y2+4)+y2(x2+1)+2xy,代入(2)得,81﹣18z=4,所以.即=,故答案为:.【点评】此题考查二次根式的化简求值,难度较大,多次利用已知条件求解.22.若,,则x6+y6的值是40.【分析】根据题意可求出x2+y2,x2﹣y2,利用平方差公式可求得x4﹣y4,(x2﹣y2)(x4﹣y4)=x6+y6﹣x2y4﹣y2x4,由此可得答案.【解答】解:由题意得:x2+y2=2++2﹣=4,x2﹣y2=2+﹣(2﹣)=2,x4﹣y4=(x2+y2)(x2﹣y2)=8,又(x2﹣y2)(x4﹣y4)=x6+y6+x2y4+y2x4,∴可得:x6+y6=32﹣x2y2(x2+y2)=32+2×4=40.故答案为:40.【点评】本题考查二次根式的乘除法运算,有一定难度,关键是熟练运用平方差及完全平方公式.23.当时,的值为.【分析】利用完全平方公式对代数式化简再把代入化简的结果计算即可.【解答】解:原式=﹣,∵,∴=2005,∴x<,∴原式=﹣+x,=x,当时,原式=.故答案为.【点评】本题考查的是二次根式的化简求值和二次根式的性质=a(a≥0)的应用.24.已知,,则k=﹣1.【分析】先从等式右边进行分母有理化,即原式=﹣2,然后依次循环即可求k的值.【解答】解:由原式可知=+2﹣4=﹣2,∴4+=+2,依此类推得:=+2,∴k=﹣1.故答案为﹣1.【点评】本题考查了分母有理化的知识,解题时可从等式右边进行分母有理化,那样会简便些.25.当1≤x≤2时,经化简等于2.【分析】先配成完全平方式,再根据二次根式的性质化简计算即可.【解答】解:∵1≤x≤2,∴=+=+1+1﹣=2.故答案为:2.【点评】考查了二次根式的性质,解题的关键是将根号内的式子配成完全平方式.26.计算=2010.【分析】因为=,=,=,…,可发现=1+=1+1﹣,=1+=1+﹣…,依此类推再把1+1﹣,1+﹣…相加可得问题答案.【解答】解:原式=++++…+,=1+1﹣+1+﹣+1+﹣+1+﹣…+1+﹣,=2010+(1﹣+﹣+﹣…+﹣),=2010+(1﹣),=2010.【点评】本题考查了二次根式的化简,在化简中注意有关数列的规律.27.已知x=,那么+1的值是2.【分析】先根据分母有理化得到x=﹣1,所以x+1=,然后将代数式化为含有(x+1)2的形式,把x+1的值代入求出代数式的值.【解答】解:∵x==﹣1,∴x+1=.原式=(3x3+10x2+5x+4)=[(3x3+6x2+3x)+3x2+(x2+2x+1)+3]=[3x(x+1)2+3x2+(x+1)2+3]=[3x•2+3x2+2+3]=[(3x2+6x+3)+2]=[3(x+1)2+2]=(3×2+2)=2.故答案是:2.【点评】本题考查的是二次根式的化简求值,先根据分母有理化把x的值化简,得到x+1=,再把代数式化成含有x+1的形式,然后代入代数式可以求出代数式的值.28.化简:,得到1.【分析】将被开方数的分子、分母提公因式,约分,再开平方,约分即可.【解答】解:原式=()1004=()1004()1004=1.【点评】本题考查了二次根式的化简求值,关键是将被开方数的分子、分母提公因式,约分.29.=﹣3.【分析】因为=,代入并通分计算即可.【解答】解:原式===﹣1﹣1﹣1=﹣3.故答案为:﹣3.【点评】此题考查二次根式的混合运算,关键是求=.三.解答题(共1小题)30.计算:(1);(2);(3);(4).【分析】(1)设n=1999,从而可将根号里面的数化为完全平方的形式,继而可得出答案.(2)分别将各二次根式配方可得出答案.(3)将分子及分母分别化简,然后运用提公因式的知识将分子及分母简化,继而得出答案.(4)设=a,=b,=c,从而可将原式化简,继而可得出答案.【解答】解:(1)设n=1999,则原式===n2+3n+1,故原式=20002+1999;(2)原式=+++++++=﹣1+﹣+﹣+﹣+﹣+﹣+﹣+﹣,=﹣1,=3﹣1,=2;(3)原式=,=,=+,=﹣;(4)设=a,=b,=c,则原式=++,=,=0.【点评】本题考查了二次根式的混合运算,难度较大,注意换元法及完全平方知识的运用.。
八年级数学竞赛题二次根式(含答案)
二次根式1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式y a a x a y a a x a ---=-+-)()(在实数围成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n -;(D)11991)1(--n .5.若01132=+-x x ,则44-+xx 的个位数字是( )(A)1(B)3(C)5(D)7.6.若0≠x ,则xx x x 44211+-++的最大值是__________.7.13333)919294(3-+-可以化简成( ) (A))12(333+ (B))12(333- (C)123- (D)123+ 8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a 9.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值( ) (A )有一组; (B )有两组; (C )多于二组; (D )不存在 12。
15+=m ,那么mm 1+的整数部分是________。
13.计算的值是( ) . (A) 1 (B) 5 (C) (D) 514.a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( )(A )1999(B )2000(C )2001(D )不能确定15.已知a=2-1,b=22-6,c=6-2,那么a ,b ,c 的大小关系是( ) (A) a<b<c (B) b<a<c (C) c<b<a(D)c<a<b16.等于( )A.5-1 C.5 D.117.满足等式2003的正整数对()x y ,的个数是( )A.1 B.2 C.3 D.4 计算2003++19.已知x 为非零实数,且1212x xa -+=,则 21x x +=______________。
(完整版)初二数学竞赛题-二次根式(含答案)
二次根式1.31231131144++-++的值是( )(A )1(B )-1(C )2(D )-2 2、已知82121=+-xx,则xx 12+=3.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是( )(A)11991-;(B)11991--; (C)1991)1(n -;(D)11991)1(--n .5.若01132=+-x x ,则44-+xx 的个位数字是( )(A)1(B)3(C)5(D)7.6.若0≠x ,则xx x x 44211+-++的最大值是__________.7.13333)919294(3-+-可以化简成( ) (A))12(333+ (B))12(333- (C)123- (D)123+ 8.若0<a<1,则a a a a +⨯+÷-+11)11(2122可化简为( )(A )a a +-11 (B )11+-a a (C )21a - (D )12-a 9.当219941+=x 时,多项式20013)199419974(--x x 的值为( ) (A )1; (B )-1; (C )22001(D )-2200110.已知α是方程0412=-+x x 的根,则234521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=-242,则这样的n m a ,,的取值( ) (A )有一组; (B )有两组; (C )多于二组; (D )不存在 12。
15+=m ,那么mm 1+的整数部分是________。
13.计算的值是( ) . (A) 1 (B) 5 (C)(D) 514.a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( )(A )1999(B )2000(C )2001(D )不能确定15.已知a=2-1,b=22-6,c=6-2,那么a ,b ,c 的大小关系是( ) (A) a<b<c(B) b<a<c(C) c<b<a(D)c<a<b16.232217122--等于( )A.542- B.421 C.5 D.1 17.满足等式2003200320032003x y xy x y xy 的正整数对()x y ,的个数是( )A.1 B.2 C.3 D.4 计算12233420032004+++++L .19.已知x 为非零实数,且1212x xa -+=,则 21x x +=______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式
1.
3
123
113
114
4
+
+
-
+
+
的值是( )
(A )1(B )-1(C )2(D )-2 2、已知82
12
1=+-
x
x
,则x
x 1
2+=
3.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,
x ,y 是两两不同的实数,则2
22
23y
xy x y xy x +--+的值是( )(A )3(B)31(C )2(D )35 4.已知:)19911991(2
1
1
1
n n x --=(n 是自然数).那么n x x )1(2+-,的值是
( )(A)11991-;(B)1
1991--; (C)1991)1(n -;(D)1
1991
)1(--n .
5.若01132=+-x x ,则4
4-+x
x 的个位数字是( )(A)1(B)3(C)5(D)7.
6.若0≠x ,则x
x x x 44211+-++的最大值是__________.
7.1333
3)9
19294(3-+-可以化简成( ) (A))12(333+ (B))12(333- (C)123- (D)123+ 8.若0<a<1,则a a a a +⨯+÷-+
11
)11(212
2
可化简为( )
(A )
a a +-11 (B )1
1+-a a (C )21a - (D )12
-a 9.当2
19941+=
x 时,多项式2001
3)199419974(--x x 的值为( ) (A )1; (B )-1; (C )2
2001
(D )-2
2001
10.已知α是方程04
1
2
=-+x x 的根,则2
34521ααααα--+-的值等于________。
11.设正整数n m a ,,满足n m a -=
-242,
则这样的n m a ,,的取值( ) (A )有一组; (B )有两组; (C )多于二组; (D )不存在 12。
15+=
m ,那么m
m 1
+
的整数部分是________。
13.计算
的值是( ) . (A) 1 (B) 5 (C)
(D) 5
14.a ,b ,c 为有理数,且等式62532+=++c b a 成立,则2a+999b+1001c 的值是( )(A )1999(B )2000(C )2001(D )不能确定
15.已知a=2-1,b=22-6,c=6-2,那么a ,b ,c 的大小关系是( ) (A) a<b<c
(B) b<a<c
(C) c<b<a
(D)c<a<b
16.232217122--等于( )A.542- B.421 C.5 D.1 17.满足等式2003200320032003x y xy x y xy 的正整数对()x y ,的个数是( )A.1 B.2 C.3 D.4 计算
122334
20032004
++
++++ .
19.已知x 为非零实数,且1
2
12
x x
a -
+=,则 21
x x +=______________。
2011
459+302
366402
+--_________。
A 、无理数
B 、真分数
C 、奇数
D 、偶数
21227x +9x+13+7x 5x+13=7x -,则x =____________ 22.设r ≥4,a =1
1r
r+1-
,b 11r r+1
-c 1r(r +r+1),则下列各式一定成立的是__________。
A 、a>b>c B 、b>c>a C 、c>a>b D 、c>b>a 23.已知实数a 满足:,2005|2004|a a a =-+-那么a-20042=( ) A 2003 B 2004 C 2005 D 2006 24.已知5252
a b =
=-+227a b ++的值为( )(A )3 (B )
4(C )5 (D )6
25.设a 、b 、c 是△ABC 的三边的长,化简(a – b – c )2 + (b – c – a )2 +
(c – a – b )2 的结果是 . 26.方程组
2113
3
=-+
+y x
26=+y x 的解是_________________。
27.方程2x2+7x +21=515722++x x 的有所实根之和为 ( )
(A )-11
(B )-7
(C )-
211 (D )-2
7 28.计算(13+)2005-2(13+)2004-2(13+)2003+2005=_________.
29.函数的自变量x 的取值范围是_____。
30.正实数a ,b ,c ,d 满足a + b + c + d = 1,设p = 3a + 1 + 3b + 1 + 3c + 1
+ 3d + 1 ,则 ( )(A ) p > 5 (B ) p = 5 (C ) p < 5 (D) p 与5的大小关系不确定 答案: 1.(D ) 原式=
3
123
12+
+
-
=
22
3
222322-=--+-+
3.(B )据算术根性质,由右端知y <a <x ,又由左端知a ≥0且a ≤0,故a =0. 由此得x=-y ,代入所求式算得值为
3
1
4.(D ).
(所以 原式, 11
2112
2
2
1991)1()1991)19911991(21)
199121991(4
111--
---=-=⎥⎦
⎤
⎢⎣⎡+=+-+=+n n n
n n n n
x 5.(D) 由01132
-+-x x 知0≠x .所以131
=+-x
x ,167213222=-=+-x x .
.
622)(1
1.2221
21
2=-++=+-x x x
x x x
2167244-=+-x x ,从而42-+x x 的个位数字为9-2=7.
6.23-
7.(D )
原式131323131)122()91(3--+-=1212121)2(333
1
1
31331+=+=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡++⋅
=-
8.(A )∵a a a a a a 221)1()1(-=-=-,∴ 原式a
a
a a a a a +-=+⨯+⨯-=1111112.
9.(B )因为2
19941+=
x ,所以1994)12(2=-x ,即01993442
=--x x .于是,2001
3
)199419974(--x x []
2001
221
)199344()1993414(---+--=x x x x x
1)1(2001-=-=
10.20 )1)(1()1(12
3
++-=-=-a a a a a 2
2
2
3
4
5
)1)(1(+-=--+a a a a a a a
∵a 满足等式 04
1
2
=-
+a a ,∴ 1≠a ,01≠-a . 所以 22223453)1(11+++=
--+-a a a a a a a a a 20)4
1(1
4
12
=+= 11.(A ) 原式两边平方得 mn n m a 2242
-+=-. 由题设a ,m ,n 是自然数,从而242
-a 是无理数.于是
⎪⎩⎪⎨⎧=+=.,82
a n m mn 即⎩⎨⎧=+=.
,
82a n m mn 由已知有m >n ,故只有8=m ,1=n ,3=a 这组取值
12.3 3
] 1 [ , 435451,
41
51511 , 15=++=+∴-=+=+=m
m m m m m
13.(C) ∵ 2
)53(5614+=+,
,
∴ 原式
14.B 15.B 16.3-22 = (2 -1)2
,17-122 =(3-22 )2
,便可立即作出判断.本题应选D .
17.讲解:根据题目的特点,可考虑从分解因式入手.已知等式可化为 (2003-xy )(2003y x ++
)=0 ∵2003y x ++>0
∴2003-xy =0,即xy=2003.又2003为质数,且x 、y 为正整数.∴⎩⎨
⎧==2003
y 1
x
或⎩
⎨⎧==1y 2003x 故应选B .
18.25011 19.由1
2
12
x x
a -
+=两边平方得 12x x a -++= 故
2121
2x x x a x
-+=+=- 20.D 21.127 22.D 23。
C 24.C
25. a + b + c 26.(-2,28)、(26,0) 27.D 28.2005
29.60≤≤X 且 4≠X 30.A。