人教版数学九年级下册27.1 图形的相似

合集下载

人教版数学九年级下册第27章 相似 27.1 图形的相似

人教版数学九年级下册第27章 相似 27.1 图形的相似
22、我们一直喜欢利用自然的方式来改变人生的棘手道路,但很少承认,现实的本性实际上并不是我们力所能及的,而是两只手无所作为。 3.有希望的地方,痛苦也成快乐。 13、您所学到的一切以及所遭受的一切痛苦都会在您人生中的某个时刻派上用场。 21.忌妒别人,不会给自己增加任何的好处。忌妒别人,也不可能减少别人的成就。 10、对地位和特权的喜爱陪伴我们走完人生之路,从摇篮到坟墓。——堂恩 18.没有人能替你承受痛苦,也没有人能抢走你的坚强。 14、阅读是唯一的陪伴。杜拉斯的埃米莉。书中写着,它使人想起漫长的海上旅行。中途不停靠的横渡和阿拉伯海孟加拉湾。贡布平原和瞿 罗的天空。还有不可能的爱情和无法停止的写作。埃米莉没有思想。只有对他的爱。——安妮宝贝 95.忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获得不到的收获。 90.我从不把安逸和快乐看作是生活的本身--这种伦理基础,我叫它猪栏的理想。 8、概念的变化系伴随着人生的现实变化而生。——奥铿 12、不要急于让生活给你所有的答案。有时,您必须表现出耐心等等。即使您向空谷大喊,也要等一会儿才能听到长声回音。换句话说,生 活总会给你答案,但不会立即告诉你一切。
拉长
判断两个图形是否相似,就是看这两个图 形的形状是否相同,这是相似图形的本质.
跟踪训练 1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?
跟踪训练 2.如图,图形( a )~( f )中,哪些与图形(1)或(2)相似?
新知探究
知识点:成比例线段
1.线段的比:在同一长度单位下,量得的两条线段长度 的比叫做这两条线段的比.
复印机把一个图形放大,放大后的图形 与原来的图形是相似图形.
新知探究
国旗上的大五角星与小五角星是相似图形吗? 四颗小五角星呢?
全等图形是特殊的相似图形,也就是说全 等图形一定是相似图形,但相似图形不一 定是全等图形.

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。

教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。

但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。

三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。

2.学会运用相似图形解决实际问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.相似图形的概念和性质。

2.运用相似图形解决实际问题。

五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。

2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。

3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。

4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。

六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。

2.练习题:准备相关的练习题,巩固学生的学习效果。

3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。

七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。

提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。

教师总结:这就是我们今天要学习的相似图形。

2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。

通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。

新人教版九年级数学下册27.1.图形的相似 (21张PPT)

新人教版九年级数学下册27.1.图形的相似 (21张PPT)

7.试一试:将下列图形分成四块, 使它们的大小,形状完全相同, a 且与原图形相似,你会分吗?怎 样分?
a 2a 2a
相似图形 ——形状相同的图形 判断两个图形是否相似
利用相似放大或缩小图形
相似多边形的特征和识别: 相似多边形
特征
识别
对应角相等 对应边成比例
作业布置
书面作业:
1.书上27页练习题; 2.书上27-28页1-8题.
相似
2.下列说法正确的是 ( D) A.小明上幼儿园时的照片和初中毕业时的照片 相似. B.商店新买来的一副三角板是相似的. C.所有的课本都是相似的. D.国旗的五角星都是相似的.
3.观察下列图形,指出哪些是相似图形:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
相似图形有:
(1)和(8); (2)和(6); (3)和(7).
6.如图所示的两个三角形相似吗?为什么?
相似!因为它们角对应相等,边对应成比例.
1 90 45 45 , 2 90 , 45 45 ;
x 5 5 5 2, y 10 10 10 2
2 2 2 2
1 2.
5 1 10 2 10 2
5 2,
⑵.如图,两个六边形的每个内角都 等于120 °,它们相似吗?请说明 理由.
不相似!因为虽然角对应相等,但边没有对应成比例.
5.如图矩形草坪长20m,宽10m,沿草坪 四周有2m宽的环形小路,小路内外边 缘所成的矩形EFGH和矩形ABCD是 否相似?
不相似!因为虽然角对应相等,但边没有对应成比例.
20 4 6 10 4 7 6 7 , ; 20 5 10 5 5 5

人教版九年级数学下册27.1 图形的相似 课件

人教版九年级数学下册27.1 图形的相似 课件
2. 若一张地图的比例尺是 1:150000,在地图上量得甲、乙
两地的距离是 5cm,则甲、乙两地的实际距离是( D )
A. 3000 m B. 3500 m C. 5000 m D. 7500 m
课堂检测
3. 如图所示的两个矩形相似吗?为什么?如果相似,
相似比是多少?
A 3D
2
B
C
E 1.5 H
相似图形的定义
观察 全等图形
指能够完全重合的两个图形, 即它们的形状和大小完全相同.
探究新知
观察两张黄山松、 两张天坛的照片 有什么特点?
黄山松 天坛
探究新知 【思考】这两张中国地图的照片有什么关系?
探究新知 【想一想】我们刚才所见到的图形有什么相同 和不同的地方?
相同点: 形状相同.
不同点: 大小不同.
人教版 数学 九年级 下册
27.1 图形的相似
导入新知
导入新知
导入新知
导入新知
我们刚才所见到的图形有什么联系? 其中一个图形可以看作是另一个图形放大或者缩小得到的.
素养目标
3.能根据多边形相似进行相关的计算. 2.理解相似多边形的定义. 1.了解相似图形和相似比的概念.
探究新知 知识点 1
应边成比例.
探究新知 任意两个相似三角形,它们的对应角相等吗?对
应边成比例吗?
【结论】任意两个相似三角形,它们的对应角相等!对 应边成比例!
探究新知
图中两个四边形是相似形,仔细观察这两个图形,它们的对 应边之间是否有以上的关系呢?对应角之间又有什么关系?
【结论】任意两个相似多边形,它们的对应角相等!对应边 成比例!
探究新知
归纳总结
两个图形的形状 _完__全_相__同__,但图形的 大小位置 _不__一_定__相__同__,这样的图形叫做相似 图形.

最新人教版九年级数学下册27.1图形的相似

最新人教版九年级数学下册27.1图形的相似
完全相同 两个图形的形状 ________ ,但图形 不一定相同 的大小位置 __________ ,这样的图形叫 做相似图形。
图形的放大
图形的放大
两个图形相似
图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以 看做是由另一个图形_________ 放大 或 _________ 缩小 得到的,实际的建筑物 相似 的,用 和它的模型是___________ 复印机把一个图形放大或缩小后所 得的图形,也是与原来的图 _________ 相似 的.
4. 如图所示的两个矩形相似吗?为什么? 如果相似,相似比是多少?
A 2 B C 3 D
E 1 F
1.5
H
G
解;矩形ABCD相似于矩形EFGH 因为它们的对应角相等,对应边成比例。
AB 2 相似比为: EF 1
2、下列说法中,错误的是( B) (A)两个全等三角形一定是相似形 (B)两个等腰三角形一定相似 (C)两个等边三角形一定相似 (D)两个等腰直角三角形一定相似 3、在下列各组图形: ①两个平行四边形;②两个圆;③两个矩形; ④均有一个内角是80°的两个等腰三角形;⑤ 两个正五边形;⑥均有一个内角是100°的两个 等腰三角形. 其中一定是相似图形的是 ②, ⑤, ⑥ .(填序号)
A、大小不同 B、大小相同 C、形状相同 D、形状不同 答案:( C )
小练习
1、下列说法正确的是( D ) A.小明上幼儿园时的照片和初中毕业 时的照片相似. B.商店新买来的一副三角板是相似的. C.所有的课本都是相似的. D.国旗的五角星都是相似的.
相似的图形具有传递性;
图形 A
图形 B
图形 C
人教版九年级数学下册
第二十七章相似

人教版数学九年级下册27.1图形的相似(教案)

人教版数学九年级下册27.1图形的相似(教案)
-将相似图形的性质灵活运用于解决非标准形式的实际问题。
举例解释:
-对于相似图形性质证明的难点,通过分步骤的引导和图形演示,帮助学生理解面积比和周长比是由相似比平方这一数学原理。
-在识别相似图形时,教师需要提供不同难度的图形练习,指导学生如何从复杂图形中提取关键信息,应用判定法。
-在解决实际问题时,教师应设计多样化的题目,如不规则图形的相似变换、实际物体尺寸的测量等,以训练学生将理论应用到不同情境中的能力。
3.重点难点解析:在讲授过程中,我会特别强调相似图形的定义和相似判定法这两个重点。对于难点部分,如相似性质证明,我会通过举例和逐步推导来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并测量其边长比,从而观察周长比和面积比的关系。
三、教学难点与重点
1.教学重点
-理解并掌握相似图形的定义及其性质,特别是相似图形的周长比和面积比。
-掌握AA相似判定法和SAS相似判定法的应用。
-学会将相似图形的性质应用于解决实际问题,如地图比例尺的计算、物体放大与缩小的比例等。
举例解释:
-在讲解相似图形的定义时,重点强调对应角相等、对应边成比例的两个条件,并通过具体图形的例子加深理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

人教版数学九年级下册27.1《图形的相似》教案

人教版数学九年级下册27.1《图形的相似》教案
举例:运用相似性质解决实际问题,如求三角形的未知边长、计算相似图形的面积比等。
(3)相似变换的性质:相似变换是本节课的另一个难点,教师需要详细讲解相似变换的性质,如对应点、对应线段的比等,并通过实例使学生理解这些性质。
举例:讲解旋转变换、平移变换等相似变换的性质,让学生在实际操作中体会相似变换的特点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个形状看起来很相似的物体?”(如两个相似的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题,如相似三角形的周长比、面积比等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并比较它们的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
教学内容与课本紧密相关,旨在帮助学生掌握图形相似的相关知识,提高解决问题的能力。
二、核心素养目标
《图形的相似》章节的核心素养目标如下:
1.培养学生的空间观念,提高对图形相似性的认识,增强观察、分析图形的能力。
2.培养学生运用数学语言进行表达、交流、合作的能力,提高解决实际问题的能力。
3.培养学生逻辑思维和推理能力,能运用相似性质进行严密的论证。
举例:分析相似四边形的性质,解决面积、周长等与相似多边形相关的问题。
2.教学难点
(1)相似图形的识别:学生往往在识别相似图形时存在困难,需要教师通过丰富的实例和引导,帮助学生掌握识别相似图形的方法。

人教版九年级数学下册27.1图形的相似(共43张PPT)

人教版九年级数学下册27.1图形的相似(共43张PPT)
相似
2.如图,图形a ~ f中,哪些是与图形(1)或(2)相似的?
ABDF
相似多边形
这个零 件中,有没
根据相似多边形的特有征相,似的给图 相似多边形下定义。 形?
这两个图案 中,有没有 相似的图形?
对应角有什么关系?对应边有什么关系?
图27、1-4(1 a)中,△A1B1C1和△ABC都 是等边三角形,观察这两个图形,填空:
C
D
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 ∠D =∠D1,∠E =∠E1, ∠F =∠F1
D1 对应角相等
对应边有什么关系? A1 正八边形
AF
B
放大 B1 E
F1 E1
C
D
AB
=
BC
=
CD=Βιβλιοθήκη DE=EF
=
C1 FA

D1
A1B1 = B1C1 = C1D1 = D1E1 = E1F1 = F1A1

17、儿童是中心,教育的措施便围绕 他们而 组织起 来。2021/8/102021/8/102021/8/102021/8/10
• 2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四
AB BC CD DE EF FA
=
=
=
=
=
A1B1 B1C1 C1D1 D1E1 E1F1 F1A1
对应边的比相等

人教版九年级数学下册第二十七章27.1 图形的相似

人教版九年级数学下册第二十七章27.1 图形的相似

解:∠A=65° , ∠B=65° , ∠D=∠C=180° -65° =115° , 15 15 A′D′= 4 cm,B′C′=A′D′= 4 cm.
15. 在△ ABC 中,AB=12,点 E 在 AC 上,点 D AD AE 在 AB 上,若 AE=6,EC=4,且DB=EC. (1)求 AD 的长; DB EC (2)试问 AB =AC能成立吗?请说明理由.
13. 一个四边形的边长分别是 3,4,5,6,另一 个和它相似的四边形的最小边长为 6,那么另一个四 边形的周长为 36 .
14. 如 图所 示 , 等腰 梯 形 ABCD 与等 腰 梯 形 A′B′C′D′相似,∠A′=65° ,A′B′=6 cm,AB=8 cm, AD=5 cm,试求梯形 ABCD 各角的度数与 A′D′,B′C′ 的长.
(2)请归纳出相似体的 3 条主要性质: ①相似体的一切对应线段(或弧)长的比等 于
相似比
; ; .
②相似体表面积的比等于 相似比的平方 ③相似体体积的比等于 相似比的立方
17. (1)已知图①中的两个矩形相似,求它们的对 应边的比;
(2)如图②,两个六边形的边长分别都为 a 和 b, 且每一个六边形的内角均是 120° ,它们相似吗?为什 么?
S甲 6 a2 a2 则 =6b2 =b ,又设 V 甲、V 乙分别表示这两个正 S乙 V甲 a3 a3 方体的体积,则 =b3=b . V乙
(1)下列几何体中,一定属于相似体的是( A ) A.两个球体 C.两个圆柱体 B.两个圆锥体 D.两个长方体
8. 在比例尺为 1∶n 的某市地图上,A,B 两地相 距 5 cm,则 A,B 之间的实际距离为( C ) 1 A.5n cm C.5n cm 1 2 B.25n cm D是相似形的是 ( B )

人教版九年级数学下册27.1《 图形的相似》 课件 (共29张PPT)

人教版九年级数学下册27.1《 图形的相似》 课件 (共29张PPT)

练一练
2.下列说法正确的是
( C)
A.相似形是全等形;
B.不相似的图形可能是全等形;C.全等形是相似形;D.不全等的图形不是相似形.
练一练
(1) (2)
(3)
下列各组图形 相似吗?
什么样的两个多边形是相似的?
二、相似多边形
1、定义:两个边数相同的多边形,如果它们的角分 别相等,对应边的比相等,那么这两个多边形叫做相 似多边形 2、相似比:相似多边形对应边的比叫做相似比
读着△ABC相似于△ A'B’C’
∽读作“相似于”通常把对应顶点写在对应位置上
ABC 和 DEF相似
4 CD E
7
12 14
6
AB DE
BC DF
AC EF
2 A BF
∠A =∠_E____, ∠B =∠_D____, ∠C =∠_F____;
△ABC的三条边的长分别为6、8、 10,与△ABC相似的△A/B/C/的最长 边为30。则△A/B/C/的最短边的长 为___1_8___。
ABC 和 EDF 相似
AB BC AC K ED DF EF
C DE
K表示这两个相似三角形
的相似比
F
相似比就是它们的对应边的比
AB
☺ 它有顺序关系
ABC ∽ EDF 它的相似比为
AB K ED
EDF∽ ABC 它的相似比为
ED 1 AB K
判断下列两个三角形是否相似?简单说明理由, 如果相似,写出对应边的比例
探索
请观察下面展示的图片的大 小和形状有什么关系?
观察
探索
日归常纳生活中我们会碰到很多这样形状 相同、大小不一定相同的图形,在数 学上,我们把具有相同形状的图形称 为相似形

人教版数学九年级下册27.1《图形的相似》课件(共17张PPT)

人教版数学九年级下册27.1《图形的相似》课件(共17张PPT)

探究相似图形的关系
图形的放大 图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以看作 由另一个图形放大或缩小得到。
随堂练习
1、教材P25.练习
补充:
1、你认为下列属于选项中哪个才是相似图形的本质属性(D )
A.大小不同
B.大小相同
C.形状不同
D.形状相同
2、下列说法:
①全等的图形一定相似;
归纳总结
所有的直角三角形不一定是相似图形 所以的等腰三角形不一定是相似图形 所有的锐角三角形不一定是相似图形 所有的等边三角形是相似图形 所有的等腰直角三角形是相似图形
相似图形的形状必须完全相同 相似图形与图形的大小、颜色、位置无关
购买楼房时,消费者只能根据户型平面图 纸选房,并且建筑工人建筑是严格按照图纸进 行施工,你认为选好的楼房结构可靠吗?
②相似图形一定全等;
③关于某条直线轴对称的两个图形一定相似;
④关于某个点中心对称的两个图形相似。
正确的有:__①_②_③____
课堂小结
相似图形的定义:
形状相同的图形叫做相似图形。
两个图形相似,如果大小不同, 其中一个图形可以看作由另一个 图形放大或缩小得到。
小练习
1.在下列图形中找出相似图形。
解后思考:
F
位置不同, 但形状相同
F
2.判断下列各组图形是否相似
等 腰 直 角 三 角 形
(1)
等腰Βιβλιοθήκη 直角三角

(3)

















春季人教版九年级数学下册§27.1 图形的相似(共21张PPT)

春季人教版九年级数学下册§27.1 图形的相似(共21张PPT)


15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月上午1时37分21.9.1901:37September 19, 2021

16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021年9月19日星期日1时37分33秒01:37:3319 September 2021
EH EF ,即 X 24 AD AB 21 18
解得 x=28(cm)
九、小试牛刀
1.如图:△ABC与△DEF相似,则x=_6__,y=__2_4_
A
12
D
y
3
x
B8
C
F
A1
65╰0 D1 E
16
D 800
A 800 B ╮1250 C 图2 B1
2.如图2,已知这两个四边
α╭
形相似,则α= 90
BC长.(2)求矩形ABEF与矩形ABCD的相似比.
解:(1)∵矩形ABCD∽矩形EABFA
E
D
又∵E是AD的中点
B
F
C
(2)求矩形ABEF与矩 形ABCD的相似比为:
九、小试牛刀 A
F
B
C
D
E
4.如图,△ABC与△FED相似,∠A= ∠F, 则BC的对应边是__D_E___.
十、课堂小结
1、相似图形定义 问:本堂课你有何收获?
的大小和EH的长度x
X
H
21cm
D
E 118
A
24cm
18cm
78
B
83
C
F
G
解: 四边形ABCD和EFGH相似,它们的对应角相等,由此可得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七章 相似
27.1 图形的相似
基础题
1.下列各组图形相似的是( )
2.将左图中的箭头缩小到原来的12
,得到的图形是( )
3.将一个直角三角形三边扩大3倍,得到的三角形一定是( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .以上三种情况都有可能
4.下列各线段的长度成比例的是( )
A .2 cm ,5 cm ,6 cm ,8 cm
B .1 cm ,2 cm ,3 cm ,4 cm
C .3 cm ,6 cm ,7 cm ,9 cm
D .3 cm ,6 cm ,9 cm ,18 cm
5.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( )
A.23
B.32
C.49
D.94
6.(莆田中考)下列四组图形中,一定相似的是( )
A .正方形与矩形
B .正方形与菱形
C .菱形与菱形
D .正五边形与正五边形
7.在比例尺为1∶200的地图上,测得A ,B 两地间的图上距离为4.5 cm ,则A ,B 两地间的实际距离为______m.
8.在一张复印出来的纸上,一个多边形的一条边由原图中的2 cm 变成了6 cm ,这次复印的放缩比例是________.
9.如图所示是两个相似四边形,求边x、y的长和∠α的大小.
中档题
10.下列说法:
①放大(或缩小)的图片与原图片是相似图形;
②比例尺不同的中国地图是相似形;
③放大镜下的五角星与原来的五角星是相似图形;
④放电影时胶片上的图象和它映射到屏幕上的图象是相似图形;
⑤平面镜中,你的形象与你本人是相似的.
其中正确的说法有()
A.2个B.3个
C.4个D.5个
11.(重庆中考)如图,△ABC与△DE F相似,相似比为1∶2,BC的对应边是EF,若BC =1,则EF的长是()
A.1 B.2
C.3 D.4
12.某机器零件在图纸上的长度是21 mm,它的实际长度是630 mm,则图纸的比例尺是()
A.1∶20 B.1∶30
C.1∶40 D.1∶50
13.如图,正五边形FGHMN与正五边形ABCDE相似,若AB∶FG=2∶3,则下列结论正确的是()
A.2DE=3MN
B.3DE=2MN
C.3∠A=2∠F
D.2∠A=3∠F
14.如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()。

相关文档
最新文档