2017高考数学知识点之立体几何

合集下载

(新课标)2017高考数学一轮复习 第七章 立体几何 第2讲.

(新课标)2017高考数学一轮复习 第七章 立体几何 第2讲.

四面体的棱长);
面体的棱长).
●双基自测
1 . 下 列 结 论 正 确 的 打 “√” , 错 误 的 打 “×”. 导学号 25401614 (1)圆柱的一个底面积为 S,侧面展开图是一个正方形,那 么这个圆柱的侧面积是 2πS.( ) ) ) (2)设长方体的长、宽、高分别为 2a,a,a,其顶点都在一 个球面上,则该球的表面积为 3πa2( (3)若一个球的体积为 4 3π,则它的表面积为 12π.(
体积
Sh V=____________
1 V=3Sh
1 1 正棱台 S 侧= (c+c′)h′ V= (S 上+S 下+ S上· S下)h 2 3 球
4πR2 S 球面=______
4 3 V=3πR
2.几何体的表面积 各面面积之和. (1)棱柱、棱锥、棱台的表面积就是____________ 矩形 、_____ 扇形 、 (2)圆柱、圆锥、圆台的侧面展开图分别是_____ 扇环形 ;它们的表面积等于_______ 侧面积 与底面面积之和. ____________
3.几何体的外接球与内切球 (1)长方体的外接球:
a2+b2+c2 2 ①球心:体对角线的交点;②半径:r=____________( a,
b,c为长方体的长、宽、高). (2)正方体的外接球、内切球及与各条棱相切的球: 3 a为正方体的 ①外接球:球心是正方体中心;半径r=____( 2a 棱长); a ②内切球:球心是正方体中心;半径r=____( 2 a为正方体的 棱长);
[ 答案]
1:47
5.(必修 2P36T10 改编)一直角三角形的三边长分别为 6 cm,8 cm,10 cm , 绕 斜 边 旋 转 一 周 所 得 几 何 体 的 表 面 积 为 _______________. 导学号 25401618

高中数学立体几何知识点总结

高中数学立体几何知识点总结

高中数学立体几何知识点总结高中数学立体几何知识点总结立体几何是数学中的一个重要分支,它研究的是空间中的图形、体积以及它们之间的关系。

高中数学中的立体几何知识点较多,包括立体图形的基本概念、立体图形的体积与表面积计算、立体图形的投影等。

下面将对高中数学中的立体几何知识点进行详细总结。

1. 空间几何基本概念空间中的图形包括点、直线和平面等基本几何元素。

其中,直线是由无数个点组成的,平面是由无数个直线组成的。

2. 立体图形的基本概念立体图形是由平面围成的图形。

常见的立体图形包括立方体、正方体、长方体、棱柱、棱锥、球体、圆锥、圆柱等。

这些图形都有特定的性质和特征。

3. 立体图形的投影立体图形在投影面上的投影是指某一光线在经过立体图形后,再次射到平面上所形成的图形。

常见的立体图形投影包括正交投影和透视投影。

4. 立体图形的体积计算立体图形的体积是指该立体图形所占据的空间大小。

不同的立体图形计算方式不同,常见的计算公式包括:立方体的体积=边长的立方,正方体的体积=边长的立方,长方体的体积=长×宽×高,球体的体积=4/3×Π×半径的立方等。

5. 立体图形的表面积计算立体图形的表面积是指该立体图形各个面的总面积。

常见的计算公式包括:立方体的表面积=6×边长的平方,正方体的表面积=6×边长的平方,长方体的表面积=2×(长×宽+长×高+宽×高),圆柱的表面积=2×Π×半径×(半径+高),球体的表面积=4×Π×半径的平方等。

6. 空间的位置关系立体图形在空间中可以有不同的位置关系,包括重叠、相离、切平面、直角垂直、平行等。

通过对不同图形的位置关系的分析,可以解决立体几何的应用问题。

7. 立体图形的相交与切割两个立体图形可以相交或切割。

相交是指两个立体图形有公共部分,切割是指一个立体图形被另一个立体图形分割成两部分。

高中数学立体几何知识要点

高中数学立体几何知识要点

高中数学立体几何知识要点在高中数学的学习中,立体几何是一个重要的板块。

它不仅能够培养我们的空间想象力和逻辑思维能力,还在实际生活中有着广泛的应用。

接下来,让我们一起梳理一下高中数学立体几何的知识要点。

一、空间几何体1、棱柱棱柱是由两个平行且全等的多边形底面和若干个平行四边形侧面围成的多面体。

棱柱根据侧棱与底面的关系可分为直棱柱和斜棱柱。

直棱柱的侧棱垂直于底面,斜棱柱的侧棱不垂直于底面。

2、棱锥棱锥是由一个多边形底面和若干个三角形侧面围成的多面体。

棱锥的顶点到底面的距离叫做棱锥的高。

3、棱台棱台是由棱锥被平行于底面的平面所截,截面和底面之间的部分。

4、圆柱圆柱是以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

5、圆锥圆锥是以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

6、圆台圆台是用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。

7、球球是以半圆的直径所在直线为轴,将半圆旋转一周所形成的曲面所围成的几何体。

二、空间几何体的表面积和体积1、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。

棱柱的侧面积等于底面周长乘以侧棱长。

棱锥的侧面积等于各个侧面三角形面积之和。

棱台的侧面积等于各个侧面梯形面积之和。

2、圆柱、圆锥、圆台的表面积圆柱的表面积等于侧面积加上两个底面积,侧面积等于底面圆的周长乘以圆柱的高。

圆锥的表面积等于侧面积加上底面积,侧面积等于底面圆的周长乘以母线长的一半。

圆台的表面积等于侧面积加上上底面积和下底面积,侧面积等于上底面圆的周长与下底面圆的周长之和乘以母线长的一半。

3、球的表面积球的表面积公式为\(S = 4\pi R^2\),其中\(R\)为球的半径。

4、棱柱、棱锥、棱台的体积棱柱的体积等于底面积乘以高。

棱锥的体积等于\(\frac{1}{3}\)乘以底面积乘以高。

棱台的体积等于\(\frac{1}{3}\)乘以高乘以(上底面积加下底面积加上底面积乘以下底面积的平方根)。

高考数学立体几何知识点

高考数学立体几何知识点

高考数学立体几何知识点立体几何是高考数学考试中的一个重要知识点,涉及到空间图形的性质、计算和分析。

在准备高考数学考试时,掌握立体几何的基本概念和关键知识点是非常关键的。

本文将介绍高考数学立体几何的相关知识点,帮助你更好地备考。

1. 点、线、面、体的基本概念在立体几何中,点是没有大小和形状的,用来表示位置;线是由一组相邻无交点的点组成,有长度但没有宽度和厚度;面是由一组无交点的线组成的,有长度和宽度但没有厚度;体是由一组无交点的面组成的,有长、宽、高。

2. 空间图形的分类和性质空间图形可以分为普通图形和特殊图形两类。

普通图形包括点、线、面和体,特殊图形则是由特殊的性质和关系构成的。

在解题过程中,需要熟悉不同空间图形的性质,如直线上的点的性质、平面内的线的性质,以及不同的图形之间的关系。

3. 空间图形的投影在几何图形的表示中,我们通常使用正交投影和斜投影两种方式。

正交投影是指将图形沿着与平面垂直的方向进行投影,得到的投影与真实图形相似。

斜投影则是指将图形沿着与平面不垂直的方向进行投影,得到的投影与真实图形略有差异。

4. 空间坐标系立体几何中,为了方便表示和计算,常常使用空间直角坐标系。

空间直角坐标系是由三个相互垂直的坐标轴确定的,分别是x轴、y轴和z轴。

在解题时,可以通过确定点在坐标系中的位置,来计算和分析其性质。

5. 空间几何体的计算在立体几何中,我们经常需要计算不同几何体的体积、表面积和重心等重要参数。

对于不同的几何体,计算方法各不相同。

例如,计算长方体的体积可以利用公式V=lwh,其中l、w和h分别表示长方体的长、宽和高。

在解题时,需要熟悉各种几何体的计算公式,并能够灵活运用。

6. 空间几何体的相交和包含关系在解决实际问题时,我们常常需要分析不同几何体之间的相交和包含关系。

例如,判断一个点是否在一个几何体内部,或者判断两个几何体是否相交等。

对于不同的几何体,判断方法也不相同。

在解题时,需要注意对几何体的特征进行分析,并灵活运用相应的判断方法。

高中立体几何基础知识点全集(图文并茂)

高中立体几何基础知识点全集(图文并茂)

立体几何知识点整理姓名:一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,mlα方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

立体几何和平面解析几何知识点

立体几何和平面解析几何知识点

立体几何和平面解析几何知识点一、立体几何1.点、线、面和体:在立体几何中,点是没有大小和形状的,是具有位置的对象。

线由无数个点组成,线是没有宽度的。

面是由无数个线组成,面是二维的,具有长度和宽度。

体是由无数个面组成,体是三维的,具有长度、宽度和高度。

2.平行和垂直关系:在立体几何中,平行是两条线或两个面永远不会相交的关系,垂直是两条线或两个面相互垂直的关系。

3.点的投影:在立体几何中,点的投影是指垂直于水平面(或垂直于垂直面)的直线与平面的交点。

点的投影可以用来确定点在一些平面上的位置。

4.线和面的交点:在立体几何中,线和面的交点是指线与面相交的点。

线和面的交点可以用来确定线在一些面上的位置。

5.体的体积和表面积:在立体几何中,体的体积是指所占据的空间大小,可以通过计算底面积与高度的乘积来得到。

体的表面积是指体的外部空间的面积,可以通过计算底面积与侧面积的和来得到。

二、平面解析几何1. 直线的方程:在平面解析几何中,直线可以用一般式、截距式和斜截式等形式来表示。

一般式的直线方程是Ax + By + C = 0,其中A、B和C是常数;截距式的直线方程是x/a + y/b = 1,其中a和b分别是x轴和y轴上的截距;斜截式的直线方程是y = mx + c,其中m是斜率,c是y轴上的截距。

2.圆的方程:在平面解析几何中,圆可以用标准式和一般式来表示。

标准式的圆方程是(x-a)²+(y-b)²=r²,其中(a,b)是圆心的坐标,r是半径的长度;一般式的圆方程是x²+y²+Dx+Ey+F=0,其中D、E和F是常数。

3.直线和圆的交点:在平面解析几何中,直线和圆可以相交于零个、一个或两个交点。

可以通过求解直线方程和圆方程的联立方程组来确定直线和圆的交点。

4.曲线的方程:在平面解析几何中,曲线可以用隐式方程、参数方程和极坐标方程来表示。

隐式方程是F(x,y)=0,其中F是关于x和y的方程;参数方程是x=f(t),y=g(t),其中t是参数;极坐标方程是r=f(θ),其中r是距离原点的距离,θ是与x轴的夹角。

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)

高中数学立体几何知识点总结(全)垂直直线:两条直线的夹角为90度。

XXX.三.点与平面的位置关系点在平面上:点在平面内部;点在平面外:点在平面的一侧;点在平面上方或下方:需要指定一个方向向量,点在平面的哪一侧就取决于该方向向量与平面法向量的夹角。

四.直线与平面的位置关系直线在平面上:直线的每一点都在平面上;直线在平面内部:直线与平面没有交点;直线与平面相交:直线与平面有且只有一个交点;直线平行于平面:直线与平面没有交点,且方向向量与平面法向量垂直。

改写后:一、空间几何体的三视图空间几何体的三视图包括正视图、侧视图和俯视图。

其中,正视图是指从几何体的前面向后面正投影得到的投影图,反映了物体的高度和长度;侧视图是指从几何体的左面向右面正投影得到的投影图,反映了物体的高度和宽度;俯视图是指从几何体的上面向下面正投影得到的投影图,反映了物体的长度和宽度。

在三视图中,长对正,高平齐,宽相等是反映长、宽、高特点的简洁表述。

二、空间几何体的直观图斜二测画法是一种用于绘制空间几何体直观图的方法。

基本步骤包括建立适当的直角坐标系xOy,建立斜坐标系x'O'y',并画出对应图形。

在直观图中,已知图形平行于X轴的线段画成平行于X'轴,长度不变;已知图形平行于Y轴的线段画成平行于Y'轴,长度变为原来的一半。

直观图与原图形的面积关系是直观图面积为原图形面积的四分之一。

三、空间几何体的表面积与体积圆柱、圆锥、圆台的侧面积分别为2πrl、πrl和πr(l+R),其中r表示底面半径,l表示母线长度,R表示上底面半径。

圆柱、圆锥、圆台的体积分别为Sh、S/3h和S(h/3),其中S为底面积,h为高度。

球的表面积和体积分别为4πR²和(4/3)πR³。

四、点、直线、平面之间的位置关系平面的基本性质包括三条公理,分别是公理1、公理2和公理3.直线与直线的位置关系有相交、平行和垂直;点与平面的位置关系有在平面上、在平面内部、在平面外部、在平面上方或下方;直线与平面的位置关系有在平面上、在平面内部、相交和平行。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。

②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。

(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。

3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积 S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底 (3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。

(完整版)高中数学立体几何重要知识点(经典),推荐文档

(完整版)高中数学立体几何重要知识点(经典),推荐文档

S 'S S 'S 圆柱表 圆锥表 立体几何知识点1、柱、锥、台、球的结构特征 (1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义: 以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

4、柱体、锥体、台体的表面积与体积(1) 几何体的表面积为几何体各个面的面积的和。

(2) 特殊几何体表面积公式(c 为底面周长,h 为高, h ' 为斜高,l 为母线)S= ch S = 2r h S = 1 ch ' S =rl 直棱柱侧面积 S= 1 (c + c )h ' 圆柱侧S 正棱锥侧面积 2 = (r + R )l 圆锥侧面积 正棱台侧面积 2 1 2 圆台侧面积 S = 2r (r + l ) S = r (r + l ) S (3) 柱体、锥体、台体的体积公式 = (r 2 + rl + Rl + R 2 )V 柱 = Sh V 圆柱 = Sh =r 2h V = 1 Sh 锥 3V 圆锥 = 1r 2h 3 V = 1 (S ' + + S )h 台 3V 圆台 = 1 (S ' + + S )h = 1(r 2 + rR + R 2 )h 3 3 (4)球体的表面积和体积公式:V = 4R 3 ; S = 4R 2球 3 球面圆台表⎪ ⎭⎭ a ⊂⎬ ⎭ 1、平面及基本性质 公理 1 A ∈ l , B ∈ l , A ∈, B ∈⇒ l ⊂公理 2 若 P ∈, P ∈ ,则⋂ = a 且 P ∈公理 3 不共线三点确定一个平面(推论 1 直线和直线外一点,2 两相交直线,3 两平行直线)2、空间两直线的位置关系共面直线:相交、平行(公理 4) 异面直线3、异面直线 (1) 对定义的理解:不存在平面,使得 a ⊂ 且b ⊂(2) 判定:反证法(否定相交和平行即共面) 判定定理: P 15★(3)求异面直线所成的角:①平移法 即平移一条或两条直线作出夹角,再解三角形.②向量法 cos =| cos < a ,b >|= | a ⋅ b | | a || b |(注意异面直线所成角的范围(0,])2 (4) 证明异面直线垂直,①通常采用三垂线定理及逆定理或线面垂直关系来证明;②向量法 a ⊥ b ⇔ a ⋅ b = 0(5) 求异面直线间的距离:大纲仅要求掌握已给出公垂线或易找出公垂线的有关问题计算.9.2 直线与平面的位置关系1、直线与平面的位置关系a ⊂ , a //, a ⋂= A 2、直线与平面平行的判定 b ⊄ ⎫ (1) 判定定理: b // a ⎬ ⇒ b // (线线平行,则线面平行 P 17)a ⊂ ⎪ // ⎫(2) 面面平行的性质: a ⊂ ⎬⇒ a // (面面平行,则线面平行) 3、直线与平面平行的性质a //,a ⊂ ⎫⇒ a //b (线面平行,则线线平行 P ) ⋂= b ⎬ 18★4、直线与平面垂直的判定 (1) 直线与平面垂直的定义的逆用l ⊥ ,⎫ ⇒ l ⊥ a ⎭⎬ 51 ⎭ ⎭ ⎭⎭⎭ l ⊥ m , l ⊥ n ⎫⎪(2) 判定定理: m , n ⊂ m ⋂ n = A a // b ⎫⎬ ⇒ l ⊥ (线线垂直,则线面垂直 P 23 ) ⎪ ⎭(3) b ⊥ ⎭⎬ ⇒ a ⊥ ( P 25 练习 第 6 题)⊥ (4) 面面垂直的性质定理:⋂ = l ⎫ ⎪ ⇒ a ⊥(面面垂直,则线面垂直 P ) a ⊂, a ⊥ l ⎪ // ⎫(5) 面面平行是性质: l ⊥ ⎬ ⇒ l ⊥ 5、射影长定理 ★6、三垂线定理及逆定理 线垂影 ⇔ 线垂斜9.3 两个平面的位置关系1、空间两个平面的位置关系 相交和平行2、两个平面平行的判定 a //,b // ⎫ (1) 判定定理: a ,b ,a ⋂ b = P ⎬ ⇒// (线线平行,则面面平行 P 19 ) l ⊥ ⎫ (2) l ⊥ ⎬⇒ // 垂直于同一平面的两个平面平行 (3) //,//⇒ // 平行于同一平面的两个平面平行 ( P 21 练习 第 2 题)3、两个平面平行的性质(1)性质 1:// , a ⊂ ⇒ a //// ⎫ (2)面面平行的性质定理:⋂= a ,⋂= b ⎬ ⇒ a // b (面面平行,则线线平行 P 20 ) (3)性质 2:// , l ⊥ ⇒ l ⊥4、两个平面垂直的判定与性质 (1) 判定定理: a ⊥ ,a ⊂⇒⊥(线面垂直,则面面垂直 P 50 )⎬ 51 ⎭ ⊥ (2) 性质定理:面面垂直的性质定理:⋂ = l ⎫⎪ ⇒ a ⊥ (面面垂直,则线面垂直 P )a ⊂ , a ⊥ l⎪9.4 空间角1、异面直线所成角(9.1)2、斜线与平面所成的角 (0, 2 )(1) 求作法(即射影转化法):找出斜线在平面上的射影,关键是作垂线,找垂足.(2) 向量法:设平面的法向量为 n ,则直线 AB 与平面所成的角为,则sin =| cos < AB , n >|= (3) 两个重要结论| AB ⋅ n | ∈ (0,) 2最小角定理 P 48 : cos = cos 1 cos 2 , P 26 , 例 4 P 28 第 6 题9.5 空间距离1、求距离的一般方法和步骤(1) 找出或作出有关的距离;(2) 证明它符合定义;(3) 在平面图形内计算(通常是解三角形)2、求点到面的距离常用的两种方法(1) 等体积法——构造恰当的三棱锥;(2) 向量法——求平面的斜线段,在平面的法向量上的射影的长度: d = | AB ⋅ n | | n |3、直线到平面的距离,两个平行平面的距离通常都可以转化为点到面的距离求解4、异面直线的距离① 定义:和两异面直线都垂直相交且夹在异面直线间的部分(公垂线段)② 求法:法 1 找出两异面直线的公垂线段并计算,法 2 转化为点面距离| AB ⋅ n |向量法 d = | n | ( A , B 分别为两异面直线上任意一点, 为垂直于两异面直线的向量)注意理解应用: l 2 = m 2 + n 2 + d 2 ± 2mn c os 重点例题: P 51 和 P 55 例 2“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2017年高考数学—立体几何(解答+答案)

2017年高考数学—立体几何(解答+答案)

2017年高考数学—立体几何(解答+答案)1.(17全国1理18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.2.(17全国1文18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.如图,四棱锥P ABCD -中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45 ,求二面角M AB D --的余弦值4.17全国2文18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=o 。

(1) 证明:直线//BC 平面PAD ; (2) 若PCD ∆的面积为27,求四棱锥P ABCD -的体积。

如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.6.(17全国3文19.(12分))如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.DABCE7.(17北京理(16)(本小题14分))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面,6,4MAC PA PD AB ===(I )求证:M 为PB 的中点; (II )求二面角B PD A --的大小;(III )求直线MC 与平面BDP 所成角的正弦值.8.(17北京文(18)(本小题14分))如图,在三棱锥P ABC -中,,,,2PA AB PA BC AB BC PA AB BC ⊥⊥⊥===,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA BD ⊥;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当//PA 平面BDE 时,求三棱锥E BCD -的体积.9.(17山东理17.)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是»DF的中点. (Ⅰ)设P 是»CE上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.10.(17山东文(18)(本小题满分12分))由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD, (Ⅰ)证明:1A O ∥平面11B CD ;(Ⅱ)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .11.(17天津理(17)(本小题满分13分))如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为7,求线段AH 的长.12.(17天津文(17)(本小题满分13分))如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.14.(17江苏15.(本小题满分14分))-中,AB⊥AD,BC⊥BD,平如图,在三棱锥A BCD面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD。

2017年高中数学 第一章 立体几何初步 1.2 点、线、面之间的位置关系 1.2.3.2 平面与平面垂直课件 新人教B版

2017年高中数学 第一章 立体几何初步 1.2 点、线、面之间的位置关系 1.2.3.2 平面与平面垂直课件 新人教B版
①利用定义; ②利用判定定理:若一个平面经过另一个平面的垂线,则这两个
平面互相垂直.
归纳总结 关于垂直问题的论证中要注意线线垂直、线面垂直、 面面垂直的相互转化,每一种垂直的判定都是从某一种垂直开始转 向另一种垂直,最终达到目的,其转化关系如下图所示:
题型一
题型二
题型三
题型四
题型五
题型一 对面面垂直关系的理解
A.①②③
B.①②③④
C.②③ D.②③④
答案:C
12345
3.已知平面α⊥平面β,α∩β=l,则下列命题中错误的是 ( ) A.如果直线a⊂α,那么直线a必垂直于平面β内的无数条直线 B.如果直线a⊂α,那么直线a不可能与平面β平行 C.如果直线a⊂α,a⊥l,那么直线a⊥平面β D.平面α内一定存在无数多条直线都垂直于平面β内的所有直线 答案:B
(1)证明第三个平面与两个相交平面的交线垂直; (2)证明这两个相交平面与第三个平面的交线垂直; (3)根据定义,这两个平面互相垂直.
题型一
题型二
题型三
题型四
题型五
【变式训练2】 在正方体ABCD-A1B1C1D1中,求证:平面 ABC1D1⊥平面A1B1CD.
证明:如图,平面ABC1D1∩平面A1B1CD=MN,

������,������⋂������ ������ ⊥ ������,������
= ������ ⊥ ������
⇒l⊥α;
③利用推论:a∥b,a⊥α⇒b⊥α; ④利用结论:α∥β,a⊥α⇒a⊥β; ⑤利用面面垂直的性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
(2)证明面面垂直的方法:
证明:连接AC交BD于点O,连接OE. 因为O为AC的中点,E为PA的中点, 所以EO是△PAC的中位线,EO∥PC. 因为PC⊥平面ABCD,所以EO⊥平面ABCD. 又因为EO⊂平面BDE,所以平面BDE⊥平面ABCD.

2017高考复习数学立体几何解题技巧_答题技巧

2017高考复习数学立体几何解题技巧_答题技巧

2017高考复习数学立体几何解题技巧_答题技巧高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

由查字典数学网小编精心提供的数学立体几何解题技巧,请老师及家长认真阅读,关注孩子的成长。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2. 判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:⑴由定义知:“两平行平面没有公共点”。

⑴由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

⑴两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

⑴一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

⑴夹在两个平行平面间的平行线段相等。

⑴经过平面外一点只有一个平面和已知平面平行。

以上性质⑴、⑴、⑴、⑴在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

2017高考复习数学立体几何解题技巧已经呈现在各位同学面前,望各位同学能够努力奋斗,更多精彩尽在查字典数学网!。

专题04 立体几何-2017年高考数学【理】考纲揭秘及预测

专题04 立体几何-2017年高考数学【理】考纲揭秘及预测

(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.•公理1 :如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.•公理2:过不在同一条直线上的三点,有且只有一个平面.•公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.•公理4:平行于同一条直线的两条直线互相平行.•定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.学*科(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.•如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.•如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.•如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.•如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.•如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.•垂直于同一个平面的两条直线平行.•如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(十六)空间向量与立体几何1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.与2016年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在2017年的高考中预计仍会以“一小一大或两小一大”的格局呈现,在选择题或填空题中,考查空间几何体三视图的识别,空间几何体的体积或表面积的计算,空间线面位置关系的判定等,难度中等;在解答题中主要考查空间线面位置关系中的平行或垂直的证明,空间几何体表面积或体积的计算,空间角或空间距离的计算等,难度中等.1.已知某几何体的三视图如图所示,则该几何体的表面积为 A .(51)+π B .(51)2+π+ C .(51)4+π+D .34π+2.已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则 A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n3.如图,已知三棱锥A BCD -中, 4AB AC AD ===,则当△△△ABC ABD ACD S S S ++取得最大值时(其中,,△△△ABC ABD ACD S S S 分别为,,△△△ABC ABD ACD 的面积),三棱锥A BCD -的外接球体积为A.2πB.322πC.3πD.3π4.如图,AB 是圆O 的直径,C 是圆O 上异于,A B 的一点,DC BC ^,DC EB ∥,AC CE ⊥,1DC EB ==,4AB =.(1)求证:DE ACD ^平面;(2)若AC BC =,求平面AED 与平面ABE 所成的锐二面角的余弦值.1.C 【解析】由三视图可知,该几何体是两个同顶点的圆锥的一半,底面半圆的半径为1,对应每个圆锥的母线长为5,其表面积为2112(15122⨯π⨯⨯+⨯π⨯122)2+⨯⨯=(51)4+π+.故选C.2.C 【解析】由题意知,l l αββ=∴⊂I ,,n n l β⊥∴⊥Q .故选C .4.【解析】(1)DC EB Q ∥,DC EB =,∴四边形BCDE 是平行四边形.又因为AB 是圆O 的直径,C 是圆O 上异于,A B 的一点,∴AC BC ^. 又因为AC CE ⊥,AC ∴⊥平面CBED ,所以AC DE ⊥,又因为DC BC ^,所以DC DE ^,又AC DC C =I ,所以DE ^平面ACD .(2)由(1)可得AC ⊥平面CBED ,∴AC CD ⊥.又因为DC BC ^,所以CD ^平面ABC , 如图,以C 为原点建立空间直角坐标系,则(22,0,0)A ,(0,0,1),(0,22,0),(0,2,1)D B E ,(22,0,1),(0,2,0)AD DE u u u r u u u r=-=,(2,22,0)AB =-u u u r ,(0,0,1)BE =u u u r.设1(,,)x y z n =为平面ADE 的法向量,则11220220AD x z DE u u u ru u u rn n ì?-+=ïíï?=î,令1x =,得1(1,0,22)n =.设2111(,,)x y z n =为平面ABE 的法向量,则21121222200ABx y BEz u u u r u u u rn n ì?-+=ïíï?=î,令11,x =得2=(1,1,0)n .所以1212122cos ,||||632n n n n n n ×===×, ∴平面AED 与平面ABE 所成的锐二面角的余弦值为26.。

高考数学立体几何知识点梳理

高考数学立体几何知识点梳理

高考数学立体几何知识点梳理关键信息:1、立体几何基本概念与公理点、线、面的位置关系三公理及推论2、直线与平面的位置关系直线与平面平行直线与平面垂直3、平面与平面的位置关系平面与平面平行平面与平面垂直4、空间几何体棱柱棱锥棱台圆柱圆锥圆台球5、空间几何体的表面积与体积表面积公式体积公式6、空间向量在立体几何中的应用空间向量的坐标表示空间向量的数量积利用空间向量证明位置关系利用空间向量求空间角11 立体几何基本概念与公理111 点、线、面的位置关系点是空间中最基本的元素,线是由无数个点组成的,面是由无数条线组成的。

点动成线,线动成面。

直线与平面的位置关系有:直线在平面内、直线与平面平行、直线与平面相交。

平面与平面的位置关系有:平行、相交。

112 三公理及推论公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

公理 2:过不在一条直线上的三点,有且只有一个平面。

公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

推论 1:经过一条直线和这条直线外一点,有且只有一个平面。

推论 2:经过两条相交直线,有且只有一个平面。

推论 3:经过两条平行直线,有且只有一个平面。

21 直线与平面的位置关系211 直线与平面平行判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

性质定理:一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行。

212 直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。

判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

性质定理:垂直于同一个平面的两条直线平行。

31 平面与平面的位置关系311 平面与平面平行判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

312 平面与平面垂直定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

2017年高考数学立体几何知识点总结与2017年高考数学第一轮复习重点总结汇编.doc

2017年高考数学立体几何知识点总结与2017年高考数学第一轮复习重点总结汇编.doc

2017年高考数学立体几何知识点总结与2017年高考数学第一轮复习重点总结汇编2017年高考数学立体几何知识点总结(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2017年高考数学第一轮复习重点总结数学的备考重点在于巩固基础和掌握解题技巧。

因此复习可分为两个阶段。

高中数学立体几何知识点

高中数学立体几何知识点

高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。

2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。

棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。

底面是几边形就叫做几棱柱。

(2):棱柱中除底面的各个面。

(3):相邻侧面的公共边叫做棱柱的侧棱。

(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。

如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。

棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱(1):旋转轴叫做圆柱的轴。

(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。

(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。

(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。

圆锥(1):作为旋转轴的直角边叫做圆锥的轴。

(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。

(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。

(4):作为旋转轴的直角边与斜边的交点。

(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。

圆锥可以用它的轴来表示。

如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。

棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。

高三数学立体几何知识点

高三数学立体几何知识点

高三数学立体几何知识点
立体几何是高中数学中的重要知识点,它可以用来测量和分析物体的形状、体积等属性。

立体几何的主要内容有:
一、空间中的点、直线、面的定义
(1)空间中的点是无大小的,由三维坐标定义而成。

(2)直线是一维无穷长的物体,可以由两点定义,或者用一条直线上两点或更多点的方程定义。

(3)面是二维物体,由一条或多条交点组成,可以由直线或曲线模拟。

二、平面几何关系
(1)直线与直线、点与直线夹角的大小及其关系,如平行线、垂线、平分线、平分角、锐角和钝角的定义及其关系;
(2)线段、圆弧、椭圆形的定义及其关系;
(3)多边形面积的计算,如矩形、菱形、平行四边形等;
(4)三角形内角和外角和两边关系,如洛必达定理、勾股定理、余弦定理及相关应用;
(5)平面有关对称性的推论及其应用;
(6)几何形状的判断,如斜三角形、等腰三角形、等边三角形、矩形等。

三、立体几何
(1)立体几何的概念,包括四面体、棱柱、正四棱台、锥体等几体的几何特点;
(2)立体几何图形的构成,以及棱、边、面、点的定义;
(3)三角投影原理及其应用;
(4)立体几何图形的空间关系,如平行线、平面、直线、面积、体积、重心等;
(5)立体几何图形的判断;
(6)立体几何图形的工程应用,如几何尺寸检查与测量,机械装配精度及逆向工程等。

【2017高一数学立体几何知识点总结】 高一数学知识点总结

【2017高一数学立体几何知识点总结】 高一数学知识点总结

【2017高一数学立体几何知识点总结】高一数学知识点总结各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢立体几何是高一数学的重要内容,并且在每年的高考题中都占有一定的分值,下面是小编给大家带来的2017高一数学立体几何知识点总结,希望对你有帮助。

高一数学立体几何知识点总结1、柱、锥、台、球的结构特征棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(8)了解多面体、凸多面体的概念。了解正多面体的概念. (9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图. (10)了解棱锥的概念,掌握正棱锥的性质。会画正棱锥的直观图. (11)了解球的概念.掌握球的性质.掌握球的表面积、体积公式. (考生可在 9(A)和 9(B)中任选其一)
§09. 立体几何 知识要点
在平面内的射影在这个角的平分线上 平面平行与平面垂直. 1. 空间两个平面的位置关系:相交、平行. 2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面, 哪么这两个平面平行.( “线面平行,面面平行” ) 推论: 垂直于同一条直线的两个平面互相平行; 平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面. 3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么 它们交线平行.( “面面平行,线线平行” ) 4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面 垂直. 两个平面垂直性质判定二: 如果一个平面与一条直线垂直,那么经过这条直线的 平面垂直于这个平面.( “线面垂直,面面垂直” ) 注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系. 5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们
2017 高考数学知识点之立体几何
考试内容: 平面及其基本性质.平面图形直观图的画法. 平行直线. 直线和平面平行的判定与性质. 直线和平面垂直的判定. 三垂线定理及其逆定理. 两个平面的位置关系. 空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积. 直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离. 直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的 角.向量在平面内的射影. 平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直 的判定和性质. 多面体.正多面体.棱柱.棱锥.球. 考试要求: (1) 掌握平面的基本性质。 会用斜二测的画法画水平放置的平面图形的直观图: 能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像 它们的位置关系. (2) 掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念. 掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理. (3)理解空间向量的概念,掌握空间向量的加法、减法和数乘. (4) 了解空间向量的基本定理;理解空间向量坐标的概念.掌握空间向量的坐标 运算. (5)掌握空间向量的数量积的定义及其性质:掌握用直角坐标计算空间向量数 量积的公式;掌握空间两点间距离公式. (6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念. (7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异 面直线的距离, 只要求会计算已给出公垂线或在坐标表示下的距离掌握直线和平 面垂直的性质定理掌握两个平面平行、垂直的判定定理和性质定理.
P
线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.
O a
若 PA ⊥ , a ⊥ AO ,得 a ⊥ PO (三垂线定理) , 得不出 ⊥ P线定理的逆定理亦成立.
A
直线与平面垂直的判定定理一: 如果一条直线和一个平面内的两条相交直线都垂 直,那么这两条直线垂直于这个平面.( “线线垂直,线面垂直” ) 直线与平面垂直的判定定理二: 如果平行线中一条直线垂直于一个平面,那么另 一条也垂直于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面 的两个平面平行.(×) (可能相交,垂直于同一条直线 .... ..... 的两个平面平行) ②垂直于同一直线的两个平面平行.(√) (一条直线垂直于平行的一个平面,必 垂直于另一个平面) ③垂直于同一平面的两条直线平行.(√) 5. ⑴垂线段和斜线段长定理:从平面外一点 向这个平面所引的垂线段和斜线段 .. 中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的 射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短. [ 注 ] :垂线在平面的射影为一个点 . [ 一条直线在平面内的射影是一条直线 . (×)] ⑵射影定理推论: 如果一个角所在平面外一点到角的两边的距离相等,那么这点
一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面, 那么另一条也平行于这个平面. (×) (可 能在此平面内) ⑤平行于同一直线的两个平面平行.(×) (两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×) (两直线可能相交或者异面) ⑦直线 l 与平面 、 所成角相等,则 ∥ .(×) ( 、 可能相交) 3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的 平面和这个平面相交,那么这条直线和交线平行.( “线面平行,线线平行” ) 4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直
l1 , l 2 是异面直线,则过 l1 , l 2 外一点
P,过点 P 且与 l1 , l 2 都平行平面有一个或没有,
但与 l1 , l 2 距离相等的点在同一平面内.( L 1 或 L 2 在这个做出的平面内不能叫 L 1 与
L 2 平行的平面)
直线与平面平行、直线与平面垂直. 1. 空间直线与平面位置分三种:相交、平行、在平面内. 2. 直线与平面平行判定定理: 如果平面外一条直线和这个平面内一条直线平行, 那么这条直线和这个平面平行.( “线线平行,线面平行” ) [注]:①直线 a 与平面 内一条直线平行,则 a ∥ . (×) (平面外一条直线) ②直线 a 与平面 内一条直线相交,则 a 与平面 相交. (×) (平面外一条直线) ③若直线 a 与平面 平行,则 内必存在无数条直线与 a 平行. (√) (不是任意
(直线与直线所成角
0 ,90 )
(斜线与平面成角
0 ,90 )
(直线与平面所成角
0 ,90 )
(向量与向量所成角 [0 ,180 ]) 推论: 如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角 (或直角)相等. 5. 两异面直线的距离:公垂线的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直.
1. 棱柱. ⑴①直棱柱侧面积: S Ch ( C 为底面周长, h 是高)该公式是利用直棱柱的侧 面展开图为矩形得出的. ②斜棱住侧面积: S C1l ( C1 是斜棱柱直截面周长, l 是斜棱柱的侧棱长)该公 式是利用斜棱柱的侧面展开图为平行四边形得出的. ⑵{四棱柱} {平行六面体} {直平行六面体} {长方体} {正四棱柱} { 正 方体}. {直四棱柱} {平行六面体}={直平行六面体}.
l m 2 n 2 d 2 2mn cos ( 为锐角取加, 6. 两异面直线任意两点间的距离公式:
为钝取减,综上,都取加则必有 0, ) 2
θ1 θ θ 7. ⑴最小角定理: cos cos 1 cos 2 ( 1 为最小角,如图)
P
交线的直线也垂直于另一个平面.
θ

B M A O

推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面. 证明:如图,找 O 作 OA、OB 分别垂直于 l 1 ,l 2 , 因为 PM , OA , PM , OB 则 PM OA, PM OB .
平面. 1. 经过不在同一条直线上的三点确定一个面. 注:两两相交且不过同一点的四条直线必在同一平面内. 2. 两个平面可将平面分成 3 或 4 部分.(①两个平面平行,②两个平面相交) 3. 过三条互相平行的直线可以确定 1 或 3 个平面. (①三条直线在一个平面内平 行,②三条直线不在一个平面内平行) [注]:三条直线可以确定三个平面,三条直线的公共点有 0 或 1 个. 4. 三个平面最多可把空间分成 8 部分.(X、Y、Z 三个方向) 空间直线. 1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公 共点;平行直线—共面没有公共点;异面直线—不同在任一平面内 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×) (可能两 条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交 ③若直线 a、b 异面,a 平行于平面 ,b 与 的关系是相交、平行、在平面 内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) (射影不一定只有直线,也可以 是其他图形) ⑥在同一平面内的射影长相等,则斜线长相--等.(×) (并非是从平面外一点 向 .. 这个平面所引的垂线段和斜线段) ⑦ a, b 是夹在两平行平面间的线段,若 a b ,则 a, b 的位置关系为相交或平行或异 面. 2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点
四棱柱 底面是 侧棱垂直 底面是 平行六面体 直平行六面体 底面 矩形 平行四边形 长方体 底面是 正方形 正四棱柱 侧面与 正方体 底面边长相等
⑶棱柱具有的性质: ①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是 ...... 矩形 ;正棱柱的各个侧面都是全等的矩形 . .. ..... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等 多边形. .. ③过棱柱不相邻的两条侧棱的截面都是平行四边形. 注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图) ②(直棱柱定义)棱柱有一条侧棱和底面垂直. ⑷平行六面体: 定理一:平行六面体的对角线交于一点 ,并且在交点处互相平分. ............. [注]:四棱柱的对角线不一定相交于一点. 定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和. 推论一 :长 方体 一条 对角线 与同 一个 顶点 的三条 棱所 成的 角为 , , ,则
相关文档
最新文档