专题4等腰三角形
4第四讲 等腰三角形(1)
第四讲等腰三角形(1)(一)等腰三角形的概念1、等腰三角形的腰或底已明确例1、若等腰三角形的底边长是8cm,腰长是5cm,则这个等腰三角形的周长是()A、21cmB、18cmC、18cm或21cmD、13cm或26cm练习:若等腰三角形的底边长是5cm,腰长是6cm,则这个等腰三角形的周长是 .2、等腰三角形的腰或底没明确例2、(1)已知等腰三角形的一边等于5,另一边等于6,则它的周长为;(2)已知等腰三角形的周长为13,其中一边长为3,则其他两边长为.例3、如果等腰三角形的三边长均为整数,且它的周长为10cm,那么它的三边长分别为.练习:(1)已知等腰三角形的一边等于5,另一边等于2,则它的周长为;(2)已知等腰三角形的周长为16,其中一边长为4,则其他两边长为 .(二)等腰三角形的性质1、等腰三角形“等边对等角”性质的应用例4、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为() A、200 B、1200 C、200或1200 D、360例5、如图,在△ABC中,D,E为BC边上的点,BD=AD,AE=EC,∠ADE=800,∠AED=660.求△ABC各内角的度数.例6、等腰三角形一腰上的高与一腰的夹角为200,求等腰三角形的底角的度数.练习:如图,在△ABC中,AB=AC,AE是△ABC的外角∠DAC的平分线.试判断AE与BC的位置关系.2、等腰三角形“三线合一”性质的应用例7、如图,在等腰△ABC中,AB=AC,D是BC的中点,DE⊥AC,DF⊥AB,垂足分别为E、F. 求证:DE=DF.练习:如图,在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=1300.求∠BAC的度数.3、等腰三角形轴对称性质的应用例8、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三点分点,若△ABC的面积为12cm2,则图中影阴部分的面积是 .练习:如图,在△ABC中,AB=AC,AD是BC边上的高,点O是AD的中点,若影阴部分的面积为8cm2,则△ABC的面积为 .(三)等腰三角形的判定1、判定等腰三角形的个数例11、如图,在△ABC中,AB=AC,∠B=360,D,E是BC上两点,且∠ADE=∠AED=2∠BAD.则图中的等腰三角形一共有()个A、3B、4C、5D、62、等腰三角形判定方法的应用例12、在一次数学课上,王老师在黑板上画出了下图,并写出了四个等式:①AB=DC;②BE=CE;③∠B=∠C;④∠BAE=∠CDE .要求同学们从这四个等式中选出两个作为条件,推出△AED是等腰三角形,请你试着完成王老师提出的要求,并说明理由.例13、如图,在△ABC中,AB=AC,D是AB上的一点,过D作DE⊥BC于E,并与CA的延长线交于点F.求证:△ADF是等腰三角形.练习:如图,在△ABC中,∠BAC=900,AD是BC边上的高,BE是角平分线,AD、BE相交于点F. 求证:△AEF是等腰三角形.强化训练:1、已知一个等腰三角形的两个角分别为(2x-2)0,(3x-5)0,求这个等腰三角形各角的度数.2、如图,在△ABC中,AB=AC,AD⊥BC,点P为AD延长线上一点,问:PB=PC成立吗?请说明理由.3、如图,在△ABC中,∠B=900,AD为角平分线,DE⊥AC,∠C=300,则图中有等腰三角形多少个?并指出来.4、如图,在△ABC中,如果AB=AC,AD⊥BC于点D,DE⊥AB于点E,DF⊥AC于点F,那么DE于DF 相等吗?请说明理由.5、如图,在△ABC中,AB=AC,D是BA延长线上一点,E在AC上,且AD=AE,DE的延长线交BC于点F. 求证:DF⊥BC.。
2020年中考数学专题训练(四)等腰三角形中的分类讨论思想
专题训练(四)等腰三角形中的分类讨论思想类型一腰与底不明或顶角与底角不明时需分类讨论解题策略:先分不同情况画出图形,再进行计算.当不明确腰和底时,还要利用三角形三边关系进行检验.1.(1)等腰三角形的两边长分别为2和5,则其周长为.(2)等腰三角形的两边长分别为2,3,则其周长为;(3)等腰三角形的两边长分别为2,4,则其周长为.2.若等腰三角形的一个角为80°,则顶角为.3.若等腰三角形的一个角为110°,则顶角为.4.若等腰三角形的一个角为另一个角的两倍,则其底角为.类型二锐角与钝角不明时需分类讨论解题策略:此类题目一般与三角形的高相联系,主要的讨论点在于三角形的形状不同,高的位置不同.5.等腰三角形一腰上的高与另一腰的夹角为45°,求这个三角形的底角的度数.6.已知△ABC中,CA=CB,AD⊥BC于点D,∠CAD=50°,求∠B的度数.7.已知△ABC的高AD,BE所在的直线交于点F,若BF=AC,求∠ABC的度数.类型三画等腰三角形时的分类讨论解题策略:在平面直角坐标系中找一个点,使它与另两个定点构成一个等腰三角形的基本方法有两种:(1)以两定点中的一个为圆心,以两点之间的距离为半径作圆;(2)连接两定点,作线段的垂直平分线.8.在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C(原点除外),使△ABC为等腰三角形,则满足条件的点C有个.9.在平面直角坐标系中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.10.已知点A和B,以点A和点B为两个顶点作等腰直角三角形,一共可以作出个.教师详解详析例112[解析] 本题在解答过程中,要分两种情况:①当2为腰长时,三角形的三边长为2,2,5,显然不能构成三角形;②当5为腰长时,三角形的三边长为5,5,2,能构成三角形,所以其周长为12.1.(1)7或8(2)102.20°或80°3.110°4.45°或72°例2(1)如图①,当△ABC是锐角三角形时,作BD⊥AC于点D.因为∠ABD=45°,所以∠BAC=45°.由三角形的内角和定理可得∠C=67.5°.(2)如图②,当△ABC是钝角三角形时,作BD⊥AC交CA的延长线于点D.因为∠ABD=45°,所以∠BAC=135°.由三角形的内角和定理可得∠C=22.5°.综上,这个三角形的底角的度数为67.5°或22.5°.5.解:当∠C为锐角时,∠B=70°;当∠C为钝角时,∠B=20°.6.解:先证△BDF≌△ADC,①当∠ABC为锐角时,∠ABC=45°;②当∠ABC为钝角时,∠ABC=135°.故∠ABC的度数为45°或135°.例34[解析] 如图,共4个点.7.88.6。
中考数学 考点系统复习 第四章 三角形 等腰三角形与直角三角 第1课时 等腰三角形
第1课时 等腰三角形
1.(2022·宿迁)若等腰三角形的两边长分别是3 cm和 5 cm,则它的周 长是( D ) A.8 cm B.13 cm C.8 cm或13 cm D.11 cm或13 cm
2.(2022·自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则 这个底角的度数是( B ) A.30° B.40° C.50° D.60°
AD
Ⅱ)如图②,当点 D 不在 AC 上时,判断线段 BE 与 AD 的数量关系,并说
明理由;
解:(1)Ⅱ)BE=AD,理由: ∵∠ACB=∠ACD+∠DCB=60°, ∠DCE=∠BCE+∠DCB=60°, ∴∠ACD= ∠BCE.∴△ACD≌△BCE(SAS), ∴BE=AD,
2)当 n=90 时,如图③,探究线段 BE 与 AD 的数量关系,并说明理由.
6.(2022·嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他 在括号内填上一个适当的条件 ∠∠BB==606°0(°答案(答不唯案一不).唯一)
7.(2022·云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶 角度数是4400°°或或11000.0°
8.已知△ABC和△DEC都为等腰三角形,AB=AC,DE=DC,∠BAC=∠ EDC=n°. (1)当n=60时, Ⅰ)如图①,当点D在AC上时,请直接写出BE与AD的数量关系:BBEE==AD;
3.(2022·荆州)如图,直线 l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2 的度数是( B) A.60° B.70° C.80° D.90°
4.(2022·苏州)定义:一个三角形的一边长是另一边长的2倍,这样的 三角形叫做“倍长三角形”.若等腰三角形ABC是“倍长三角形”,底 边BC的长为3,则腰AB的长为 6 . 5.(2022·岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6, 则CD=33.
初中数学复习几何模型专题讲解4---等腰直角三角形构造三垂直模型
初中数学复习几何模型专题讲解专题04 等腰直角三角形构造三垂直模型一、解答题1.如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=kx的图象交点为C(3,4).(1)求k值与一次函数y=k1x+b的解析式;(2)在x轴上有一动点P,求当PB+PC最小时P点坐标.(3)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标;【答案】(1)k= 43,y=23x+2;(2)P(1,0);(3)(﹣5,3)或(﹣2,5)【分析】(1)根据待定系数法求解即可;(2)作点B关于x轴对称的点B',连接B'C,交x轴于点P,此时PB+PC最小,求出直线B'C的解析式,求出直线B'C与x轴的交点坐标即可;(3)分两种情况讨论:①当∠DAB=90°时;②当∠D'BA=90°时,添加辅助线构造全等三角形进行求解即可.【详解】解:(1)由题意,将点C(3,4)代入y=kx 中,得:4=3k ,解得:k= 43, 再将点C(3,4)、点A (﹣3,0)代入y =k 1x +b 中,得:113034k b k b -+=⎧⎨+=⎩, 解得:1232k b ⎧=⎪⎨⎪=⎩, ∴函数y =k 1x +b 的解析式为:y=23x+2; (2)如图,作点B 关于x 轴对称的点B ',连接B 'C ,交x 轴于点P ,此时PB+PC 最小,在y=23x+2中,令x=0,则y=2, ∴B(0,2),则B '(0,﹣2),设直线B 'C 的解析式为y =k 2x ﹣2,将C (3,4)代入得:4=3k 2﹣2,解得:k 2=2,∴直线B 'C 的解析式为y =2x ﹣2,令y=0,由0=2x ﹣2得:x=1,∴点P 坐标为(1,0);(3)根据题意,OA=3,OB=2,分两种情况:①当∠DAB=90°时,DA=AB ,过点D作DM⊥x轴于E,∵∠DAM+∠BAO=90°,∠BAO+∠ABO=90°,∴∠DAM=∠ABO,∵∠DMA=∠AOB=90°,DA=AB,∴△DAM≌△ABO(AAS),∴DM=OA=3,MA=OB=2,∴D(﹣5,3);②当∠D'BA=90°时,D'B=AB,过D'作D'N⊥y轴于N,同理可证△D'BN≌△BAO(AAS),∴BN=OA=3,D'N=OB=2,∴D'(﹣2,5),故点D的坐标为(﹣5,3)或(﹣2,5).【点睛】本题是一次函数的综合题,主要考查待定系数法求一次函数的解析式、同角的余角相等、全等三角形的判定与性质、一次函数与几何图形及最短路径相关问题、解二元一次方程组等知识,熟练掌握一次函数的相关知识,添加辅助线构造全等三角形和利用分类讨论的数学思想是解答的关键.2.在ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系?请你直接写出这个数量关系,不要证明.【答案】(1)见解析;(2)见解析;(3)DE=BE﹣AD【分析】(1)由题意易得∠DAC+∠ACD=90°,则∠DAC=∠BCE,进而可证△ADC≌△CEB,然后根据全等三角形的性质可求解;(2)由题意易得∠CEB=∠ADC=90°,则可求∠CAD=∠BCE,进而可证△CAD≌△BCE,然后根据全等三角形的性质可求解;(3)根据题意可证△CAD≌△BCE,然后根据全等三角形的性质可求解.【详解】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB ,ADC CEBDAC ECB AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴CD =BE ,AD =CE ,∴DE =CE+CD =AD+BE ;(2)证明:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD =90°,∵∠ACB =90°,∴∠BCE+∠ACD =90°,∴∠DAC =∠BCE ,∵AC=BC ,∴△ADC ≌△CEB ,∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ;(3)解:DE =BE ﹣AD ,理由如下:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC =∠CEB =90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=BE﹣AD.【点睛】本题主要考查全等三角形的性质与判定及直角三角形的两个锐角互余,熟练掌握全等三角形的性质与判定及直角三角形的两个锐角互余是解题的关键.3.课间,小明拿着老师的等腰三角板玩,不小心掉在两墙之间,如图所示:(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相同)【答案】(1)见详解;(2)砌墙砖块的厚度a为5cm.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可.(2)利用(1)中全等三角形的性质进行解答.【详解】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中ADC CEBDAC BCE AC BC∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a,∴AD=4a,BE=3a,由(1)得:△ADC≌△CEB,∴DC=BE=3a,AD=CE=4a,∴DC+CE=BE+AD=7a=35,∴a=5,答:砌墙砖块的厚度a为5cm.【点睛】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.4.已知,A(-1,0).(1)如图1,B(0,2),以B点为直角顶点在第二象限作等腰直角△ABC.①求C点的坐标;②在坐标平面内是否存在一点P (不与点C 重合),使△PAB 与△ABC 全等? 若存在,直接写出P 点坐标; 若不存在,请说明理由;(2)如图2,点E 为y 轴正半轴上一动点,以E 为直角顶点作等腰直角△AEM ,设M (a ,b ),求a-b 的值.【答案】(1)①()2,3C -;②存在,()2,1P 或()1,1-或()3,1-;(2)1.【分析】(1)作CD ⊥y 轴于D ,证△CEB ≌△BOA ,推出CE=OB=2,BE=AO=1,即可得出答案;(2)分为三种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;(3)作MF ⊥y 轴于F ,证△EFM ≌△AOE ,求出EF ,即可得出答案.【详解】(1)①作CE ⊥y 轴于E ,如图1,∵A (-1,0),B (0,2),∴OA=1,OB=2,∵∠CBA=90°,∴∠CEB=∠AOB=∠CBA=90°,∴∠ECB+∠EBC=90°,∠CBE+∠ABO=90°, ∴∠ECB=∠ABO ,在△CBE 和△BAO 中ECB ABO CEB AOB BC AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△CBE ≌△BAO ,∴CE=BO=2,BE=AO=1,即OE=1+2=3,∴C (-2,3).②存在一点P ,使PAB △与ABC 全等,分为三种情况:①如图2,过P 作PE x ⊥轴于E ,则90PAB AOB PEA ∠=∠=∠=,90EPA PAE ∴∠+∠=,90PAE BAO ∠+∠=,EPA BAO ∴∠=∠,在PEA 和AOB 中EPA BAO PEA AOB PA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,PEA ∴≌AOB ,1PE AO ∴==,2EA BO ==,123OE ∴=+=,即P 的坐标是()3,1-;②如图3,过C 作CM x ⊥轴于M ,过P 作PE x ⊥轴于E ,则90CMA PEA ∠=∠=, CBA ≌PBA ,45PAB CAB ∴∠=∠=,AC AP =,90CAP ∴∠=,90MCA CAM ∴∠+∠=,90CAM PAE ∠+∠=, MCA PAE ∴∠=∠,在CMA 和AEP △中,CMA PEA AC AP ⎪∠=∠⎨⎪=⎩,CMA ∴≌AEP △,PE AM ∴=,CM AE =,()2,3C -,()1,0A -,211PE ∴=-=,0312OE AE A =-=-=,即P 的坐标是()2,1;③如图4,过P 作PE x ⊥轴于E ,CBA ≌PAB △,AB AP =∴,90CBA BAP ∠=∠=,则90AEP AOB ∠=∠=,90BAO PAE ∴∠+∠=,90PAE APE ∠+∠=,BAO APE ∴∠=∠,在AOB 和PEA 中,AOB PEA AB AP ⎪∠=∠⎨⎪=⎩,AOB ∴≌PEA ,1PE AO ∴==,2AE OB ==,0211E AE AO ∴=-=-=,即P 的坐标是()1,1-,综合上述:符合条件的P 的坐标是()3,1-或()1,1-或()2,1.(2)过M 作MF y ⊥轴于F ,得到下图5∵(),M a b∴,MF a FO b ==,由上图得:90AEM EFM AOE ∠=∠=∠=,90AEO MEF ∠+∠=,90MEF EMF ∠+∠=,AEO EMF ∴∠=∠,在AOE △和EMF △中AOE EFM AEO EMF AE EM ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEO ∴≌()EMF AAS ,1EF AO ∴==,MF OE =,MN x ⊥轴,MF y ⊥轴,90MFO FON MNO ∴∠=∠=∠=,∴四边形FONM 是矩形,MN OF ∴=,1a b MF OF EO OF EF OA -=-=-===.【点睛】本题考查全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.5.公路上,A ,B 两站相距25千米,C 、D 为两所学校,DA AB ⊥于点A ,CB AB ⊥于点B ,如图,已知15DA =千米,现在要在公路AB 上建一报亭H ,使得C 、D 两所学校到H 的距离相等,且90DHC ∠=︒,问:H 应建在距离A 站多远处?学校C 到公路的距离是多少千米?【答案】H 应建在距离A 站10千米处,学校C 到公路的距离是10千米.【分析】先根据垂直的定义可得90A B ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得D BHC ∠=∠,然后根据三角形全等的判定定理与性质可得,15AH BC DA HB ===千米,最后根据线段的和差可得.【详解】由题意得:DH HC =,25AB =千米,,DA AB CB AB ⊥⊥,90A B ∴∠=∠=︒,90D AHD ∠∴∠+=︒,90DHC ∠=︒,18090BH D HD C C H A ∴∠+∠=︒-∠=︒,D BHC ∴∠=∠,在ADH 和BHC △中,A B D BHC DH HC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADH BHC AAS ∴≅,,AH BC DA HB ∴==,15DA =千米,25AB =千米,15HB ∴=千米,10BC AH AB HB ∴==-=千米,答:H 应建在距离A 站10千米处,学校C 到公路的距离是10千米.【点睛】本题考查了垂直的定义、直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.6.如图所示,在ABC ∆和DBC ∆中,∠ACB=∠DBC=90°,点E 是BC 的中点,EF ⊥AB ,垂足为F ,且AB=DE .(1)求证:BC=BD;(2)若BD=10厘米,求AC的长.【答案】(1)证明见解析;(2)5厘米【分析】(1)由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC;(2)由(1)可知△ABC≌△EDB,根据全等三角形的对应边相等,得到AC=BE,由E是BC的中点,得到BE=12BC=12BD=5厘米.【详解】解:(1)∵DE⊥AB,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB,在△ABC和△EDB中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ;(2)∵△ABC ≌△EDB ,∴AC=BE ,∵E 是BC 的中点,BD=10厘米,∴BE=12BC =12BD =5厘米. 【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.7.综合与实践特例研究:将矩形ABCD 和Rt CEF 按如图1放置,已知90,,,FCE AD CD CE CF CF CD ∠=︒==>,连接',BF DE .()1如图1,当点D 在CF 上时,线段BF 与DE 之间的数量关系是__ ;直线BF 与直线DE 之间的位置关系是_ ;拓广探索:()2图2是由图1中的矩形ABCD 绕点C 顺时针旋转一定角度得到的,请探索线段BF 与DE 之间的数量关系和直线BF 与直线DE 之间的位置关系,并说明理由.【答案】(1),BF DE BF DE =⊥;(2),BF DE BF DE =⊥,理由见解析【分析】()1,BF DE BF DE =⊥,延长ED 交B F 于点G 先证△FBC ≌△EDC (SAS ),可知,BF DE CED CFB =∠=∠,由∠DCE=90º,可得∠DEC+∠CDE=90º,可推出∠FDG+∠GFD=90º即可,()2先下结论,,BF DE BF DE =⊥,再证明,证法与(1)类似,延长ED 交CF 于点,M 交FB 于点N .由四边形ABCD 为矩形且AD=CD 可得CD CB =,()DCE BCF SAS ≅可推出,BF DE CED CFB =∠=∠.由90,FCE ∠=︒知90CME CED ∠+∠=︒.由,CME FMN ∠=∠可用等量代换得90,FMN CFB ∠+∠=︒由三角形内角和得90,FNE ∠=︒即可.【详解】解:()1,BF DE BF DE =⊥,延长ED交B F于点G,∵四边形ABCD为矩形,且AD=DC,∴BC=CD,∴∠=∠=90º,BC CEF D由旋转的FC=EC,∴△FBC≌△EDC(SAS),BF DE CED CFB=∠=∠,,∵∠DCE=90º,∴∠DEC+∠CDE=90º,∴∠FDG+∠GFD=90º∠FGD=90º,()2,=⊥,BF DE BF DE理由如下:M交FB于点N.如答图,延长ED交CF于点,,90FCE ∠=︒,四边形ABCD 为矩形,BCD FCE ∴∠=∠,FCB FCD ECD FCD ∠+∠=∠+∠,FCB ECD ∴∠=∠,AD CD =,∴矩形ABCD 为正方形.CD CB ∴=,在DCE 和BCF △中,,,CD CB ECD FCB CE CF =⎧⎪∠=∠⎨⎪=⎩,()DCE BCF SAS ∴≅.,BF DE CED CFB ∴=∠=∠.90,FCE ∠=︒90CME CED ∴∠+∠=︒.,CME FMN ∠=∠90,FMN CFB ∴∠+∠=︒90,FNE ∴∠=︒BF DE ∴⊥.【点睛】本题考查旋转中两线段的数量与位置关系问题,关键是把两线段置于两个三角形中利用全等解决问题,会利用旋转找全等条件,会计算角的和差,和证垂直的方法. 8.已知:在ABC 中,∠BAC =90°,AB =CA ,直线m 经过点A ,BD ⊥直线m 于点D ,CE ⊥直线m 于点E .求证:BDA AEC ≅△△;【答案】证明见解析.【分析】先根据垂直的定义可得90ADB CEA ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得BAD ACE =∠∠,然后根据三角形全等的判定定理即可得证.【详解】,BD m CE m ⊥⊥,90ADB CEA ∴∠=∠=︒,90ACE CAE ∴∠+∠=︒,90BAC ∠=︒,18090BAD CAE BAC ∴∠+∠=︒-∠=︒,BAD ACE ∴∠=∠,在BDA 和AEC 中,ADB CEA BAD ACE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BDA AEC AAS ∴≅.【点睛】本题考查了垂直的定义、直角三角形的性质、三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.9.(提出问题)如图1,在直角ABC 中,∠BAC =90°,点A 正好落在直线l 上,则∠1、∠2的关系为(探究问题)如图2,在直角ABC 中,∠BAC =90°,AB =AC ,点A 正好落在直线l 上,分别作BD ⊥l 于点D ,CE ⊥l 于点E ,试探究线段BD 、CE 、DE 之间的数量关系,并说明理由.(解决问题)如图3,在ABC 中,∠CAB 、∠CBA 均为锐角,点A 、B 正好落在直线l 上,分别以A 、B 为直角顶点,向ABC 外作等腰直角三角形ACE 和等腰直角三角形BCF ,分别过点E 、F 作直线l 的垂线,垂足为M 、N .①试探究线段EM 、AB 、FN 之间的数量关系,并说明理由;②若AC =3,BC =4,五边形EMNFC 面积的最大值为【答案】提出问题:1290∠+∠=︒;探究问题:BD CE DE +=,理由见解析;解决问题:①EM FN AB +=,理由见解析;②492. 【分析】 提出问题:根据平角的定义、角的和差即可得;探究问题:先根据垂直的定义可得90ADB CEA ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得2ABD ∠=∠,然后根据三角形全等的判定定理与性质可得,BD AE AD CE ==,最后根据线段的和差即可得;解决问题:①如图(见解析),同探究问题的方法可得,EM AD FN BD ==,再根据线段的和差即可得;②如图(见解析),同探究问题的方法可得,ACD EAM BCD FBN ≅≅,再根据三角形全等的性质可得,ACD EAM BCD FBN S S S S ==,然后利用三角形的面积公式将五边形EMNFC 面积表示出来,由此即可得出答案.【详解】提出问题:12180,90BAC BAC ∠+∠+∠=︒∠=︒,2190∴∠+∠=︒,故答案为:1290∠+∠=︒;探究问题:BD CE DE +=,理由如下:,BD l CE l ⊥⊥,90ADB CEA ∴∠=∠=︒,190ABD ∴∠+∠=︒,由提出问题可知,1290∠+∠=︒,2ABD ∴∠=∠,在ABD △和CAE 中,2ADB CEA ABD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD CAE AAS ∴≅,,BD AE AD CE ∴==,DE AE AD BD CE ∴=+=+,即BD CE DE +=;解决问题:①EM FN AB +=,理由如下:同探究问题的方法可证:,EM AD FN BD ==,AB AD BD EM FN ∴=+=+,即EM FN AB +=;②如图,过点C 作CD l ⊥于点D ,同探究问题的方法可证:,ACD EAM BCD FBN ≅≅,,ACD EAM BCD FBN S S S S ∴==, ACE 和BCF △都是等腰直角三角形,且3,4AC BC ==,3,4AE AC BF BC ∴====, 191,8222ACE BCF S AC AE S BC BF ∴=⋅==⋅=, ∴五边形EMNFC 面积为EAM ACE ACD BCD BCF FBN S S S S S S +++++, 982ACD ACD BCD BCD S S S S =+++++, ()2522ACD BCD SS =++, 2522ABC S =+, 则当ABC 面积取得最大值时,五边形EMNFC 面积最大,设ABC的BC边上的高为h,则122ABCS BC h h=⋅=,在ABC中,CAB∠、CBA∠均为锐角,∴当90ACB∠=︒时,h取得最大值,最大值为3AC=,ABC∴面积的最大值为236ABCS=⨯=,则五边形EMNFC面积的最大值为2549 2622⨯+=,故答案为:492.【点睛】本题考查了垂直的定义、三角形全等的判定定理与性质、等腰直角三角形的定义等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.10.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.【答案】见解析【分析】根据题意易得Rt△ACE≌Rt△CBF,则有∠EAC=∠BCF,然后根据等角的余角相等及领补角可求证.【详解】证明:如图,在Rt △ACE 和Rt △CBF 中,AC BC AE CF=⎧⎨=⎩, ∴Rt △ACE ≌Rt △CBF (HL ),∴∠EAC =∠BCF ,∵∠EAC+∠ACE =90°,∴∠ACE+∠BCF =90°,∴∠ACB =180°﹣90°=90°.【点睛】本题主要考查直角三角形全等的判定与性质,熟练掌握三角形全等的判定条件及性质是解题的关键.11.如图1,在△ABC 中,∠ACB =90°,AC =BC ,过C 在△ABC 外作直线MN ,AM ⊥MN 于点M ,BN ⊥MN 于点N .(1)求证:MN =AM +BN ;(2)如图2,若过点C 作直线MN 与线段AB 相交,AM ⊥MN 于点M ,BN ⊥MN 于点N (AM >BN ),(1)中的结论是否仍然成立?说明理由.【答案】(1)见解析;(2)不成立,理由见解析【分析】(1)根据垂直的定义得到∠AMC=∠CNB=90°,则∠MAC+∠ACM=90°,又∠ACB=90°,则∠ACM+∠NCB=90°,于是根据等量代换得到∠MAC=∠NCB ,根据“AAS ”可证明△ACM ≌△CBN ,根据全等的性质得到AM=CN ,CM=BN ,则MN=MC+CN=AM+BN .(2)根据已知条件能证得△ACM ≌△CBN ,利用全等的性质得到AM=CN ,CM=BN ,而MN=CN-CM=AM-BN .【详解】解:(1)∵AM ⊥MN 于点M ,BN ⊥MN 于点N ,∴∠AMC=∠CNB=90°,∴∠MAC+∠ACM=90°,∵∠ACB=90°,∴∠ACM+∠NCB=90°,∴∠MAC=∠NCB ,在△ACM 和△CBN 中,AMC CNB MAC NCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩\ ∴ACM ≌△CBN ,∴AM=CN ,CM=BN ,∴MN=MC+CN=AM+BN .(2)题(1)中的结论不成立,同题(1)证明可知:ACM ≌△CBN ,∴AM=CN ,CM=BN ,∴MN=CN-CM=AM-BN ,【点睛】本题主要考查的是全等三角形的性质与判断,正确的掌握全等三角形的性质与判断是解题的关键.12.在平面直角坐标系中,函数443y x =-+的图像分别交x 轴、y 轴于点A C 、,函数y ax b =+的图象分别交x 轴、y 轴于点,B C ,且4OC OB =,过点C 作射线//CR x 轴. (1)求直线BC 的解析式;(2)点P 自点C 沿射线CR 以每秒1个单位长度运动,同时点Q 自点A 沿线段AC 以每秒1个单位长度的速度向终点C 运动,其中一个点停止运动时,另一个点也停止运动,连接PQ .设POC ∆的面积为S ,点Q 的运动时间为t (秒),求S 与t 的函数关系式,并直接写出t 的取值范围;(3)在(2)的条件下,过点P 作//PF CB ,交x 轴于点F ,连接QF ,在P Q 、运动的过程中,是否存在t 值,使得45PFQ ︒∠=,若存在,求t 值:若不存在,请说明理由.【答案】(1)44y x =+;(2)()222055S t t t =-+<<;(3)存在,1511或257【分析】(1)利用待定系数法求出A ,C 两点坐标,再求出点B 坐标即可解决问题; (2)想办法用t 表示点Q 坐标,利用三角形面积公式计算即可;(3)分两种情形,通过辅助线构造等腰直角三角形,利用相似三角形解决问题.【详解】解:(1)函数443y x =-+的图象分别交x 轴、y 轴于点A ,C , (3,0)A ∴,(0,4)C ,3OA =,4OC =,4OC OB =,1OB =∴,(1,0)B ∴-,设直线BC 的解析式为y kx b =+,则有40b k b =⎧⎨-+=⎩, 解得44k b =⎧⎨=⎩, ∴直线BC 的解析式为44y x =+.(2)如图1中,由题意AQ PC t ==,易知3(35Q t -,4)5t ,2142(4)2(05)255S t t t t t ∴=-=-+<< (3)存在;情形①如图2中,取点(4,3)M ,连接CM ,BM ,作MG CR ⊥垂足为G 交OA 于K ,作QH OA ⊥垂足为H .4CG CO ==,90CGM COB ∠=∠=︒,1MG BO ==()CGM COB ASA ∴≅△△,GCM OCB ∴∠=∠,CB CM =,90BCM OCG ∴∠=∠=︒,BCM ∴∆的等腰直角三角形,1345∴∠=∠=︒,//PF BC ,2145∴∠=∠=︒,445∠=︒,24∴∠=∠,//FQ BN ∴,QFH MBK ∴∠=∠,90QHF MKB ∠=∠=︒,QHF MKB ∴△∽△, ∴QH FH MK BK =,∴433(1)5535t t t ---=, 1511t ∴=. 情形②如图3中,由2445∠=∠=︒,可知90MNF ∠=︒,由QHF BKM △∽△得到QH HF BK MK=, ∴43(4)5553t t t --=, 257t ∴=, 综上所述1511t或257. 【点睛】此题考查一次函数的应用,直角三角形的性质及全等三角形以及相似三角形的判定及性质,属于综合性较强的题目,对于此类动点型题目,首先要确定符合题意的条件下动点所在的位置,然后用时间t 表示出有关线段的长度,进而建立关于线段的关系式,学会添加常用辅助线,构造特殊三角形解决问题,难度较大.13.已知:如图,在平面直角坐标系中,点A (a ,0)、C (b ,c ),且a 、b 、c满足()2b 32c -++∣=0. (1)求点A 、C 的坐标;(2)在x 轴正半轴上有一点E ,使∠ECA =45°,求点E 的坐标;(3)如图2,若点F 、B 分别在x 轴正半轴和y 轴正半轴上,且OB=OF ,点P 在第一象限内,连接PF ,过P 作PM ⊥PF 交y 轴于点M ,在PM 上截取PN=PF ,连接PO 、BN ,过P 作∠OPG=45°交BN 于点G ,求证:点G 是BN 的中点.【答案】(1)(-3,0);(3,-2);(2)(2,0);(3)证明见详解【分析】(1)根据题意,由算术平方根,绝对值和平方数的非负性,求出a 、b 、c 的值,即可得出点A 、C 的坐标;(2)通过辅助线作图,构造一线三垂直模型,证明ALG CKA S≌S ,求出点G 的坐标,由等面积法求出AE 长度即可求出点E 坐标;(3)作EO ⊥OP 交PG 的延长线于E ,连接EB 、EN 、PB ,只要证明四边形ENPB 是平行四边形即可.【详解】(1()2b 32c -++∣=0, 所以a=-3,b=3,c=-2,点A 坐标为(-3,0),点C 坐标为(3,-2),故答案为:(-3,0);(3,-2);(2)过点A 作AC 的垂线,交CE 的延长线于点G ,过点A 作x 轴的垂线KL ,过点C 作KL 的垂线于点K ,过点G 作KL 的垂线于点L ,过点G 作x 轴的垂线于M ,过点C作x 轴的垂线于N ,∵∠ECA =45°,AG ⊥AC ,∴∠CAG=90°,AG=AC ,△CAG 为等腰直角三角形,由一线三垂直模型可知,∠GAL=∠ACK ,在△ALG 和△CKA 中90GAL ACKAG A AC LG CKA ∠=∠∠=∠==︒⎧⎪⎨⎪⎩∴ALG CKA S ≌S ,∴AL=CK=AN=3+3=6,LG=AK=CN=2,∴GM=6,OM=3-2=1,∴点G 坐标为(-1,3),在Rt △ANC 中,AN=6,CN=2,由勾股定理得,由等面积法,得11()22AC AG AE GM CN ⨯⨯=⨯⨯+,∴11822AE ⨯⨯⨯, ∴AE=5,∴OE=AE-OA=5-3=2,故点E 坐标为(2,0),故答案为:(2,0);(3)如图,作EO ⊥OP 交PG 的延长线于E ,连接EB 、EN 、PB ,∵∠EOP=90°,∠EPO=45°,∴∠OEP=∠EPO=45°,∴EO=PO ,∵∠EOP=∠BOF=90°,∴∠EOB=∠POF ,在△EOB 和△POF 中,BO OF EOB POF OE OP =⎧⎪∠=∠⎨⎪=⎩∴△EOB ≌△POF ,∴EB=PF=PN ,∠1=∠OFP ,∵∠2+∠PMO=180°,∵∠MOF=∠MPF=90°,∴∠OMP+∠OFP=180°,∴∠2=∠OFP=∠1,∴EB ∥PN ,∵EB=PN ,∴四边形ENPB 是平行四边形,∴BG=GN ,即点G 是BN 的中点.【点睛】本题考查了算术平方根,绝对值和平方数的非负性,一线三垂直模型,等面积法求线段长度,三角形全等的判定和性质,平行四边形的判定和性质应用,熟练掌握图形的判定和性质是解题的关键.14.在平面直角坐标系中,已知点(),0A a 、()0,C b 满足2(2)0+=a(1)直接写出:a =____________,b =________.(2)点B 为x 轴正半轴上一点,如图1,BE AC ⊥于点E ,交y 轴于点D ,连接OE ,若OE 平分AEB ∠,求直线BE 的解析式.(3)在(2)的条件下,点M 为直线BE 上一动点,连OM ,将线段OM 绕点M 逆时针旋转90︒,如图2,点O 的对应点为N ,当点M 运动时,判断点N 的运动路线是什么图形,并说明理由.【答案】(1)2-,5-;(2)2y x 25=-;(3)点N 的运动路线是直线32077=--y x ,理由见解析【分析】(1)根据题意得到关于a 、b 的方程,求a 、b 即可;(2)如图1,过点O 作OF OE ⊥,交BE 于F ,分别证明EOC FOB ∆∆≌,AOC DOB ∆∆≌,得到OB OC =,OA OD =,确定点B 、D 坐标,利用待定系数法即可求解; (3)如图2,过点M 作MG x ⊥轴,垂足为G ,过点N 作⊥NH GM 交GM 的延长线于H ,证明NOM ∆为等腰直角三角形,得到=OG MH ,=GM NH ,设2,25⎛⎫- ⎪⎝⎭M m m ,则3,25--⎛⎫ ⎪⎝⎭H m m ,得到732,255⎛⎫--- ⎪⎝⎭N m m ,即752-=m x ,325--=m y ,消去m ,即可得到点N 运动轨迹.【详解】解:(1)由题意得a+2=0,b+5=0,解得a=2-,b=5-,故答案为:2-,5-;(2)如图1,过点O 作OF OE ⊥,交BE 于F ,∵BE AC ⊥,OE 平分AEB ∠,∴EOF ∆为等腰直角三角形,∴OE=OF ,∠BOF=∠COE=45°,∵BE AC ⊥于点E ,∴∠1+∠BAC=90°,∵∠2+∠BAC=90°,∴∠1=∠2,∴EOC FOB ∆∆≌,∴OB OC =,∵∠1=∠2, ∠AOC=∠DOB=90°,∴AOC DOB ∆∆≌,∴OA OD =,∵()2,0A -,()0,5C -,∴()0,2D -,()5,0B ,设直线BD 解析式为y kx b =+,∴250b k b =-⎧⎨+=⎩, ∴ 225b k =-⎧⎪⎨=⎪⎩, ∴直线BD ,即直线BE 的解析式为2y x 25=-;(3)由题意得,NOM ∆为等腰直角三角形如图2,过点M 作MG x ⊥轴,垂足为G ,过点N 作⊥NH GM 交GM 的延长线于H , ∵NOM ∆为等腰直角三角形,∴≌∆∆GOM HMN ,∴=OG MH ,=GM NH ,由(2)得直线BD 的解析式2y x 25=-, 设2,25⎛⎫- ⎪⎝⎭M m m ,则3,25--⎛⎫ ⎪⎝⎭H m m , ∴732,255⎛⎫--- ⎪⎝⎭N m m , 令752-=m x ,325--=m y , ∴32077=--y x , 即点N 的运动路线是直线32077=--y x .【点睛】本题为一次函数综合题,考查了三角形全等判定,等腰直角三角形性质,待定系数法等,综合性强,根据题意构造全等,理解函数图象是点的运动轨迹是解题的关键.15.如图,将Rt△ABC的斜边BC绕点B顺时针旋转90°得边BD,过点D作AB的垂线,交AB延长线于点E,求证:△EDB≌△ABC.【答案】见解析.【分析】先由旋转的性质得到BC=BD,∠DBC=90°=∠CAB,再运用“AAS”证得△EDB≌△ABC 即可.【详解】证明:∵BC绕点B顺时针旋转90°得边BD,∴BC=BD,∠DBC=90°=∠CAB,∴∠ABC+∠ACB=90°,∠ABC+∠DBE=90°,∴∠ACB=∠DBE,又∵∠CAB=∠DEB=90°,∴△EDB≌△ABC(AAS).【点睛】本题考查了全等三角形的判定和旋转的性质,根据旋转的性质得到判定全等三角形的条件是解答本题的关键.16.如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE 长.【答案】(1)见解析;(2)7【分析】(1)此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF了.【详解】解:(1)∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=FC,BE=AF.∴EF=EB+CF.(2)解:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△AFC中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△BEA≌△AFC.∴EA=FC=3,BE=AF=10.∴EF=AF﹣CF=10﹣3=7.【点睛】此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.17.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,(1)当直线MN绕点C旋转到图(1)的位置时,请你探究线段DE、AD、BE之间的数量关系并加以证明;(2)当直线MN绕点C旋转到图(2)的位置时,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.【答案】(1)DE=AD+BE,理由见详解;(2)发生变化,AD=BE+DE,理由见详解;(3)BE=AD+DE.【分析】(1)由题意易得∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠DCA+∠DAC=90°,则有∠DAC=∠ECB,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可求证;(2)由题意易得∠CDA=∠BEC=90°,∠DCA+∠CAD=90°,∠DCA+∠BCE=90°,则有∠DAC=∠ECB,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可求证;(3)由题意易得∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠EBC+∠BCE=90°,则有∠ACD=∠CBE,进而可知△ADC≌△CEB,然后根据全等三角形的性质及线段等量关系可得解.【详解】解:(1)DE=AD+BE,理由如下:∠ACB=90°,AD⊥MN于D,BE⊥MN于E,∴∠CDA=∠BEC=90°,∠DCA+∠ECB=90°,∠DCA+∠DAC=90°,∴∠DAC=∠ECB,AC=BC,∴△ADC≌△CEB,∴AD=CE,CD=BE,DE=DC+CE∴DE=AD+BE;(2)发生变化,AD=BE+DE,理由如下:∠ACB=90°,AD⊥MN于D,BE⊥MN于E,∴∠CDA=∠BEC=90°,∠DCA+∠CAD=90°,∠DCA+∠BCE=90°,∴∠DAC=∠ECB,AC=BC,∴△ADC≌△CEB,∴AD=CE,CD=BE,CE=DC+DE∴AD=BE+DE;(3)BE=AD+DE,理由如下:同理(2)的方法可得△ADC≌△CEB,∴AD=CE,CE=AD,CD=EC+DE∴BE=AD+DE.【点睛】本题主要考查三角形全等的判定与性质,熟练掌握三角形全等的性质与判定是解题的关键.18.如图,在ABC 中∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)求证:ADC CEB △≌△;(2)若AD=2,BE=3,求ABC 的面积.【答案】(1)见解析;(2)132【分析】 (1)根据垂直定义求出∠BEC =∠ACB =∠ADC ,根据等式性质求出∠ACD =∠CBE ,根据AAS 证出△ADC 和△CEB 全等即可;(2)由(1)可推出CD =BE ,AD =CE ,进而可得到AC=AB=△ABC 面积即可.【详解】解:(1)证明:∵∠ACB =90°,AD ⊥MN ,BE ⊥MN ,∴∠BEC =∠ACB =∠ADC =90°,∴∠ACE+∠BCE =90°,∠BCE+∠CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中ADC=BEC ACD=CBE AC=BC ⎧⎪⎨⎪⎩∠∠∠∠,∴△ADC ≌△CEB (AAS );(2)∵△ADC ≌△CEB∴BE =CD ,AD =CE ,AC=BC ,又AD=2,BE=3,∴∴△ABC 的面积为11322=, 故△ABC 的面积为132.【点睛】全等三角形的性质和判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.二、填空题19.一个等腰直角三角尺不小心掉到两墙之间(如图),已知90,ACB AC BC ∠=︒=,从三角尺的刻度可知20,AB cm AD =为三块砖的厚度,BE 为两块砖的厚度,小聪很快就知道了砌墙所用砖块的厚度(每块砖的厚度相等,两块砖间的缝隙忽略不计)为____________cm .【答案】13【分析】设砖块的厚度为xcm ,由题意可知:AD=3x ,BE=2x ,根据等腰直角三角形的性质和勾股定理求出AC ,利用AAS 即可证出△DAC ≌△ECB ,从而得出CD=BE=2xcm ,利用勾股定理列出方程即可求出x .【详解】解:设砖块的厚度为xcm ,由题意可知:AD=3xcm ,BE=2xcm∵90,ACB AC BC ∠=︒=,20AB cm =∴222AC BC AB +=解得AC BC ==由题意可知:∠ADC=∠CEB=90°∴∠DAC +∠ACD=90°,∠ECB +∠ACD=90°∴∠DAC=∠ECB∴△DAC ≌△ECB∴CD=BE=2xcm在Rt △ADC 中,222AD DC AC +=即()()(22232x x +=解得:x=13. 【点睛】此题考查的是等腰直角三角形的性质、勾股定理和全等三角形的判定及性质,掌握等腰直角三角形的性质、勾股定理和全等三角形的判定及性质是解题关键.20.如图,在平面直角坐标系中,A(0,5),B(2,0),点C是第一象限内的点,且△ABC 是以AB为直角边,满足AB=AC,则点C的坐标为________.【答案】(5,7)【分析】依题∠BAC=90°,AB=AC,画出C点位置,利用全等三角形的判定与性质,即可求得点C的坐标.【详解】解:如图:当∠BAC=90°,AB=AC时,过点C作CD⊥y轴于点D,在△OAB和△DCA中,AOB CDA OAB DCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△OAB ≌△DCA (AAS ),∴AD=OB=2,CD=OA=5,∴OD=OA+AD=7,∴点C 的坐标为(5,7);【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的性质,注意掌握数形结合思想的应用.21.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B . C 作过点A 的直线的垂线BD 、CE ,垂足分别为D 、 E ,若BD=4,CE=2,则DE=___.【答案】6【分析】先证明∠DBA=∠CAE ,从而根据AAS 定理证明△BDA ≌△AEC ,根据全等三角形的性质可得AD=CE=2,AE=BD=4,进而得到答案.【详解】解:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD ⊥DE ,∴∠BDA=90°,∴∠BAD+∠DBA=90°,∴∠DBA=∠CAE ,∵CE ⊥DE ,∴∠AEC=90°,在△BDA 和△AEC 中,ABD CAE BDA AEC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDA ≌△AEC (AAS ),∴AD=CE=2,AE=BD=4,∴DE=AD+AE=2+4=6;故答案为:6.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,关键是掌握全等三角形的判定定理与性质定理.22.如图,直线a 经过正方形ABCD 的顶点A ,已知BE a ⊥于点E ,DF a ⊥于点F .若3BE =,8DF =,则线段EF 的长为______.【答案】11【分析】根据题意易得△AEB ≌△DFA ,则有BE=AF ,DF=AE ,进而问题可得解.【详解】解:∵四边形ABCD 是正方形,∴AD=AB ,∠DAB=90°,∵BE a ⊥,DF a ⊥,∴∠DFA=∠AEB=90°,∴∠FAD+∠ADF=90°,又∵∠FAD+∠BAE=90°,∴∠ADF=∠BAE ,∴△AEB ≌△DFA ,∵3BE =,8DF =,∴BE=AF=3,DF=AE=8,∴EF=AF+AE=3+8=11;故答案为11.【点睛】本题主要考查全等三角形的判定与性质及正方形的性质,熟练掌握全等三角形的判定与性质及正方形的性质是解题的关键.23.如图,AO⊥OM,OA=7,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P 点,当点B在射线OM上移动时,则PB的长度____________.【答案】7 2【分析】根据题意过点E作EN⊥BM,垂足为点N,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE并分析即可得出答案.【详解】解:如图,过点E作EN⊥BM,垂足为点N,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE,∵△ABE、△BFO均为等腰直角三角形,。
新人教版数学八年级上册 小专题(四) 等腰三角形问题中常见的解题策略
小专题( 四)等腰三角形问题中常见的解题策略在解决等腰三角形的角度( 或边长)问题时,若题目中没有明确顶角和底角( 或腰长和底边),做题时要注意分类讨论,这是解题的关键.有时候在解决问题时,需要通过添加辅助线的方式构造等腰三角形求解,如截长补短法等,这也是一种常见的解题策略,可以将零碎的知识加以整合,进而将复杂问题简单化.类型1分类讨论法——求角度在题目没有给出图形,已知条件也未确定顶角或底角的情况下,要进行分类讨论,一般情况都是锐角三角形与钝角三角形两种形状.1.如果等腰三角形中有一个内角等于70°,那么这个三角形最小的内角等于55°或40°.2.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为21°或69°.3.( 改编)在等腰三角形ABC中,( 1 )若∠A=100°,则∠B=40°;( 2 )若∠A=50°,则∠B=65°或80°或50°.类型2分类讨论法——求边长在题目没有出示图形,也未确定腰长和底边长时,要进行分类讨论,并利用三角形的三边关系加以验证,以确定能否组成三角形,这是最容易错的点.4.已知等腰△ABC的两边长分别为2和5,则等腰△ABC的周长为( B)A.9B.12C.9或12D.不能确定5.已知一个等腰三角形的三边长分别为2x-1,x+1,3x-2,求这个等腰三角形的周长.( 1 )完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x-1=x+1时,解得x=2,此时能构成等腰三角形( 填“能”或“不能”).②当2x-1=3x-2时,解得x=1,此时不能构成等腰三角形( 填“能”或“不能”). ( 2 )请你根据( 1 )中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.解:( 2 )③当x+1=3x-2时,解得x=,此时能构成等腰三角形,周长为7.类型3分类讨论法——分割等腰三角形分割三角形时,根据“等角对等边”定理,重点关注三角形的内角度数,尤其是两个底角相等,进而得到等腰三角形.6.在△ABC中,∠A=70°,∠B=30°.请在平面内画一条直线,将△ABC分割成两个三角形,使其中一个为等腰三角形,请在图中画出至少两种方案.解:提供四种分割方案如图所示.( 答案不唯一)类型4构造等腰三角形——作平行线在解决几何问题时,构造等腰三角形是常见的解题方法.这里提供三种构造方案,供大家参考:①“角平分线+平行线”;②作腰的平行线;③作底边的平行线.7.如图,在△ABC中,AB=AC,点D在AB上,点E在AC的延长线上,DE交BC于点F,且DF=EF.求证:BD=CE.证明:过点D作DG∥AE,交BC于点G.易证△DGF≌△ECF,∴DG=CE.∵AB=AC,∴∠B=∠ACB.∵DG∥AE,∴∠DGB=∠ACB,∴∠B=∠DGB,∴DG=BD,∴BD=CE.8.已知,△ABC为等边三角形,D为AC上的一个动点,E为BC延长线上一点,且BD=DE.( 1 )如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;( 2 )如图2,若点D在AC的延长线上,那么( 1 )中的结论是否仍然成立,请说明理由.解:( 1 )AD=CE.理由:过点D作DP∥BC,交AB于点P.∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠ADP=60°.∵DB=DE,∴∠DBC=∠DEC.∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC.又∵∠BPD=∠A+∠ADP=120°,∠DCE=∠A+∠ABC=120°,∴∠BPD=∠DCE.在△BPD和△DCE中,∠PDB=∠DEC,∠BPD=∠DCE,DB=DE,∴△BPD≌△DCE,∴PD=CE,∴AD=CE.( 2 )AD=CE仍然成立.理由:过点D作DP∥BC,交AB的延长线于点P.∵△ABC是等边三角形,∴△APD也是等边三角形,∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°.∵DB=DE,∴∠DBC=∠DEC.∵DP∥BC,∴∠PDB=∠CBD,∴∠PDB=∠DEC.在△BPD和△DCE中,∴△BPD≌△DCE( AAS ),∴PD=CE,∴AD=CE.类型5构造等腰三角形——截长补短法解决此类题,都需要添加辅助线,利用将长线段“截短”或短线段“延长”的方法,使之长度相等,再综合全等三角形的知识加以证明.9.如图,在△ABC中,∠BAC=108°,AB=AC,BD平分∠ABC,交AC于点D.求证:BC=CD+AB.解:如图,延长BA至点E,使BE=BC,连接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.易证△EBD≌△CBD,∴DE=DC,∠E=∠C=36°.∵∠EAD=72°,∴∠EDA=∠EAD=72°,∴EA=ED,∴CD=DE=AE,∴BC=BE=AB+AE=AB+CD.类型6构造等腰三角形——倍角关系在解决此类问题时,可利用角平分线的性质,添加辅助线,构造等腰三角形.10.如图,在△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE.∵AD平分∠BAC,∴∠BAD=∠DAC.在△ABD和△AED中,∴△ABD≌△AED( SAS ),∴∠B=∠AED,BD=DE,又∵∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.。
等腰三角形4
B
图8.3.3
C
等腰三角形
图形
(腰与底边不等)
两边相等的三角形
等边三角形
定义 特 征
三边都相等的三角形
轴对称图形(1条) 轴对称图形(3条)
等边对等角
三线合一
等边对等角
三线合一
各内角都是60º
等边三角形一定是等腰三角形,等腰三角 关系 形不一定是等边三角形.
1、等边对等角(性质定理)
等腰三角形
三 条 边 相 等
(等腰三角等腰三角形顶角平分线、底边上 的中线、底边上的高互相重合)
1、每个内角都等于60o (推论2) 2、三组“三线合一”
(每个角的平分线都与它对边上 的中线及高互相重合)
等边三角形
等腰三角形的底边长为4cm,腰长为7cm,
则周长为 18cm ;
C
B
等腰三角形的底角可以是直角或钝角吗? 为什么?
因为如果底角大于或等于 90o ,则2倍底角 大于或等于 180o ,这样三角形的内角和就大 于 180o ,显然不可能
如果等腰三角形的顶角为 80o ,那么它 的一个底角为____. 50
已知△ABC中,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数。
5、等腰三角形一个外角为50 °呢?
通过上题练习发现 (1)等腰三角形若有一个内角是60度,则其它 两个内角也是60度。 有一个内角是60度的等腰三角形是等边三角形 (2)等腰直角三角形是特殊的直角三角形, 它的两直角边相等,并且两锐角相等都等于 45度 (3)等腰三角形的顶角为α ,则底角为 (180°- α )/2,等腰三角形的底角为β ,则 顶角为180°-2 β
已知等腰三角形的底边和一腰长是方程组
初中数学综合复习等腰三角形(含等边三角形)部分4
初中数学综合复习等腰三角形(含等边三角形)部分4一、选择题1. 如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°.则∠A等于()A.80°B.90°C.100°D.110°【答案】C2.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是A、85°B、80°C、75°D、70°【答案】A3.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是( )A.(12)n·75°B.(12)n-1·65°C.(12)n-1·75°D.(12)n·85°【答案】C4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A1A2A3A4CBDEF…第11题图第10题图AB CDEA .2B .3C .4D .5分析:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P .由AB =BC ,△ABC ≌△DEF ,就可以得出△AKC ≌△CHA ≌△DPF ,就可以得出结论.解:如图,作AH 、CK 、FP 分别垂直BC 、AB 、DE 于H 、K 、P . ∴∠DPF =∠AKC =∠CHA =90°. ∵AB =BC , ∴∠BAC =∠BCA . 在△AKC 和△CHA 中。
等腰三角形专题复习
等腰三角形专题复习
1. 等腰三角形的定义和性质
- 等腰三角形是指有两条边相等的三角形。
- 等腰三角形的顶角和底角相等。
- 等腰三角形的高线(高)是底边的垂直平分线。
2. 等腰三角形的判定方法和例题
- 判定方法:
- 两边相等(边边边,即SSS判定法)。
- 底角顶角相等(角边角,即AAS判定法)。
- 两边夹角相等(边角边,即SAS判定法)。
- 例题:
- 已知三角形的两边分别为5cm和5cm,夹角为60°,判断该三角形是否为等腰三角形。
3. 等腰三角形的性质
- 顶角和底角相等,即∠A = ∠B。
- 等腰三角形的高线是底边的垂直平分线,即AD = DB。
- 等腰三角形的两底角相等,即∠C = ∠D。
4. 等腰三角形的面积和周长计算公式
- 面积公式:S = (底边长 ×高)/ 2。
- 周长公式:P = 2 ×底边长 + 斜边长。
5. 等腰三角形的应用举例
- 塔尖角:一根高塔边向下俯视角为60°,根据观察图可以判定塔尖为等腰三角形。
- 喷泉造型:喷泉的喷水口为等腰三角形,设计中需要计算出三角形的高来确定喷水的高度。
以上是关于等腰三角形的专题复习内容。
希望能帮助你更好地理解等腰三角形的定义、性质和应用。
如有疑问,请随时提问。
等腰三角形专题
等腰三角形专题关键信息项1、等腰三角形的定义及性质定义:至少有两边相等的三角形叫等腰三角形性质 1:等腰三角形的两腰相等性质 2:等腰三角形的两个底角相等(简写成“等边对等角”)性质 3:等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)2、等腰三角形的判定定义判定:有两条边相等的三角形是等腰三角形等角对等边:如果一个三角形有两个角相等,那么这两个角所对的边也相等3、等腰三角形的周长和面积计算周长:等腰三角形的周长=腰长×2 +底边长度面积:等腰三角形的面积=底×高÷24、等腰三角形的分类一般等腰三角形等边三角形(特殊的等腰三角形,三边相等,三个角都为 60°)11 等腰三角形的定义和性质详细阐述111 等腰三角形的定义是至少有两边相等的三角形。
这意味着只要一个三角形存在两条边长度相等,就可以被认定为等腰三角形。
在几何图形中,通过观察边的长度关系可以快速判断一个三角形是否为等腰三角形。
112 等腰三角形的性质之一是两腰相等。
这是等腰三角形最基本的特征,也是其名称的由来。
当已知一个等腰三角形的腰长时,可以通过这一性质迅速得出另一条腰的长度。
113 等腰三角形的两个底角相等,这被简称为“等边对等角”。
这一性质在解决与角度相关的问题时非常有用。
例如,已知等腰三角形的顶角角度,可以通过这一性质计算出底角的角度。
114 等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合,简称为“三线合一”。
这一性质是等腰三角形的一个重要特征,在证明和计算中经常被运用。
通过已知其中一条线的性质,可以推导出其他两条线的相关结论。
12 等腰三角形的判定方法深入分析121 定义判定是最直接的方法,即当一个三角形有两条边相等时,就可以判定为等腰三角形。
这是基于等腰三角形的定义得出的判定规则。
122 等角对等边的判定方法则是从角度的角度来判断。
如果一个三角形的两个角相等,那么它们所对的边也相等,从而可以判定该三角形为等腰三角形。
等腰三角形性质(4)
ABC的角平分线 B 的角平分线
(等腰三角形 底边上的中线与顶角平分 线互相重合)。 线互相重合)。 又 DE⊥AB,DF⊥AC, ⊥ , ⊥ , ∴DE=DF(角平分线上的点到角的 ( 两边距离相等)。 两边距离相等)。
已知:如图, 已知:如图,AB=AC,DB=DC 有什么关系? 问: AD与BC有什么关系? 猜想: 猜想:AD垂直平分BC
{
AD=AD
B
D
C
∴Rt△ABD≌Rt△ACD △ ≌ △ (HL) ∴∠B=∠ ∴∠ ∠C
已知: 证明: 已知:AB=AC 证明:取BC的中点 连 的中点D,连 结AD,则BD=CD 则 求证∠ ∠ 求证∠B=∠C A 在△ABD和△ACD中 和 中
B
D
C
∴△ABD≌△ACD ≌ (SSS) ∴∠B=∠ ∴∠ ∠C
1.判断: 判断: 判断
(1)在等腰三角形中,有一个角是 0, )在等腰三角形中,有一个角是84 是顶角( 则这个角必定 是顶角( ) (2)等腰直角三角形斜边上的中线与斜 ) 边上的高重合 ( )
1.判断: 判断: 判断
(3)等边三角形任一个角的平分线都 ) 垂直平分这个角的对边( 垂直平分这个角的对边( )。
性质定理: 性质定理:
等腰三角形的两个底角相等 简写成“等边对等角” (简写成“等边对等角”)。
A
几何书写: 几何书写:
已知) ∵AB=AC(已知) 等边对等角) ∴∠B=∠C(等边对等角)
B C
已知: 已知:AB=AC 求证∠ ∠ 求证∠B=∠C
A
证明: 证明:作AD⊥BC ⊥ ∴∠ADB=∠ADC=90° ∠ ∴∠ ° 在Rt△ABD和Rt△ACD中 △ 和 △ 中 AB=AC
【初中数学】人教版八年级上册专题训练(四) 等腰三角形问题中的分类讨论思想(练习题)
人教版八年级上册专题训练(四)等腰三角形问题中的分类讨论思想(159)1.已知等腰三角形一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.2.已知一个等腰三角形一边上的高等于这边的一半,求这个三角形顶角的度数.3.等腰三角形的一个外角是60∘,则它的顶角的度数是4.若等腰三角形的周长为16,其中一边长为6,则另两边长为.5.若等腰三角形的一个外角等于110∘,则这个三角形的三个角分别为6.若实数x,y满足|x−4|+√y−8=0,则以x,y的值为边长的等腰三角形的周长为.7.等腰三角形一腰上的高与另一腰的夹角为48∘,则该等腰三角形的底角的度数为.8.在等腰三角形中,马彪同学做了如下探究:已知一个角是60∘,则另两个角是唯一确定的(60∘,60∘);已知一个角是90∘,则另两个角也是唯一确定的(45∘,45∘);已知一个角是120∘,则另两个角也是唯一确定的(30∘,30∘).由此马彪同学得出结论:在等腰三角形中,已知一个角的度数,则另两个角的度数是唯一确定的.马彪同学的结论是的(填“正确”或“错误”).9.等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若三角形ABC的边长为1,AE=2,求线段CD的长.10.一个等腰三角形的一个内角比另一个内角的2倍少30∘,求这个三角形的三个内角的度数.11.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12B.9C.12或9D.9或712.如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A,B,请在此点阵图中找一个阵点C,使得以点A,B,C为顶点的三角形是等腰三角形,则符合条件的点C有()A.3个B.4个C.5个D.6个13.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个B.2个C.3个D.4个参考答案1.【答案】:如图,在△ABC中,AB=AC,且AD=BD,设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则{x2+x=15,x 2+y=12,解得{x=10,y=7.(2)当AC+AD=12,BC+BD=15时,有{x2+x=12,x2+y=15,解得{x=8,y=11.且这两种情况下三角形的三边都符合三角形的三边关系,故这个三角形的三边长为10,10,7或8,8,11【解析】:解决此题,注意进行分类讨论.2.【答案】:(1)若这一边为底边,如图①,AB=AC,AD⊥BC,AD=BD=CD,则△ABD和△ACD均为等腰直角三角形,所以∠BAC=45∘+45∘=90∘;(2)若这一边为腰,①当顶角为锐角时,如图②,AB=AC,CD⊥AB,CD=12AB=12AC,则顶角∠A=30∘;②当顶角为钝角时,如图③,AB=AC,CD⊥AB交BA的延长线于点D,因为CD=12AB=1AC,2所以∠DAC=30∘,所以∠BAC=150∘.综上所述,这个等腰三角形的顶角度数为90∘或30∘或150∘.【解析】:解决此题,注意进行分类讨论.3.【答案】:120∘【解析】:等腰三角形的一个外角为60∘,则与它相邻的内角为120∘.因为三角形内角和为180∘,如果这个内角为底角,内角和将超过180∘,所以120∘的角只可能是顶角.故答案为120∘4.【答案】:6,4或5,5【解析】:若6为腰长,则底边长为4,三边长6,6,4可以构成三角形;若6为底边长,则腰长为5,三边长5,5,6也可以构成三角形.故答案为6,4或5,55.【答案】:70∘,55∘,55∘或70∘,70∘,40∘【解析】:当顶角的外角是110∘时,这个三角形的三个角为70∘,55∘,55∘;当底角的外角是110∘时,这个三角形的三个角为70∘,70∘,40∘.所以这个三角形的三个角为70∘,55∘,55∘或70∘,70∘,40∘6.【答案】:20【解析】:由|x−4|+√y−8=0,x−4≥0,√y−8≥0,可得x−4=0,√y−8=0,求解可得x=4,y=8,于是此等腰三角形的三边长为4,4,8或8,8,4.由于4+4=8,利用三角形的三边关系,可得4,4,8不符合题意,同理可得8,8,4符合题意,故等腰三角形的周长为8+8+4=207.【答案】:69∘或21∘【解析】:分两种情况讨论:①若∠A<90∘,如图(a)所示:∵BD⊥AC,∴∠A+∠ABD=90∘.∵∠ABD=48∘,∴∠A=90∘−48∘=42∘.∵AB=AC,∴∠ABC=∠C=12×(180∘−42∘)=69∘.②若∠A>90∘,如图(b)所示:同①可得:∠DAB=90∘−48∘=42∘,∴∠BAC=180∘−42∘=138∘.∵AB=AC,∴∠ABC=∠C=12×(180∘−138∘)=21∘.综上所述,等腰三角形底角的度数为69∘或21∘8.【答案】:错误【解析】:举一个反例即可.如当等腰三角形一个角的度数是50∘时,若这个50∘的角为顶角,则另两个角是65∘,65∘;若这个50∘的角是底角,则另一个底角为50∘,顶角为80∘.综上所述,另两个角是65∘,65∘或50∘,80∘.因此另两个角的度数不是唯一确定的.故马彪同学的结论是错误的9.【答案】:当E在线段BA的延长线上,D在线段BC的延长线上时,如图①所示,过点E作EF⊥BD,垂足为F,可得∠EFB=90∘.∵EC=ED,∴F为CD的中点,即CF=DF=12CD.∵△ABC为等边三角形,∴∠ABC=60∘,∴∠BEF=30∘.∵BE=AB+AE=1+2=3,∴FB=12EB=32,∴CF=FB−BC=12,∴CD=2CF=1.当E在线段AB的延长线上,D在线段CB的延长线上时,如图②所示,过点E作EF⊥BD,垂足为F,可得∠EFC=90∘. ∵EC=ED,∴F为CD的中点,即CF=DF=12CD.∵△ABC为等边三角形,∴∠ABC=∠EBF=60∘,∴∠BEF=30∘.∵BE=AE−AB=2−1=1,∴FB=12BE=12,∴CF=BC+FB=32,∴CD=2CF=3.综上,CD的长为1或3【解析】:解决此题,注意进行分类讨论.10.【答案】:设其中一角的度数为x∘,则另一角的度数为(2x−30)∘,则x+x+2x−30=180或x+2(2x−30)=180或x=2x−30,解得x=52.5或x=48或x=30,所以这个三角形三个内角的度数为52.5∘,52.5∘,75∘或48∘,66∘,66∘或30∘,30∘,120∘.【解析】:设其中一角的度数为x∘,则另一角的度数为(2x−30)∘, 则x+x+2x−30=180或x+2(2x−30)=180或x=2x−30, 解得x=52.5或x=48或x=30, 所以这个三角形三个内角的度数为52.5∘,52.5∘,75∘或48∘,66∘,66∘或30∘,30∘,120∘.11.【答案】:A【解析】:∵一个等腰三角形的两边长分别是2和5,∴当腰长为2时,则2+2<5,此时不成立,当腰长为5时,能组成三角形,则这个等腰三角形的周长为5+5+2=12. 故选A12.【答案】:C13.【答案】:D【解析】:如图,以点O为圆心,OA长为半径画弧,交x轴于点B,C;以点A为圆心,AO长为半径画弧,交x轴于一点D(点O除外),∴以OA为腰的等腰三角形有3个;当以OA为底时,作OA的垂直平分线,交x轴于一点,∴以OA为底的等腰三角形有1个.综上所述,符合条件的点P共有4个。
一次函数压轴题专题突破4:一次函数与等腰直角三角形(含解析)
一次函数压轴题之等腰直角三角形1.【模型建立】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】①已知直线l1:y=x+4与x轴交于点A,与y轴交于点B,将直线l1绕着点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;②如图3,在平面直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q是直线y=2x﹣6上的动点且在第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.2.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.3.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.4.如图1,在平面直角坐标系中,直线l1:y=x+b与直线l2:y=﹣x﹣8交于点A,已知点A的横坐标为﹣5,直线l1与x轴交于点B,与y轴交于点C,直线l2与y轴交于点D.(1)求直线l1的解析式;(2)将直线l2向上平移6个单位得到直线l3,直线l3与y轴交于点E,过点E作y轴的垂线l4,若点M为垂线l4上的一个动点,点N为x轴上的一个动点,当CM+MN+NA的值最小时,求此时点M的坐标及CM+MN+NA 的最小值;(3)在(2)条件下,如图2,已知点P、Q分别是直线l1、l2上的两个动点,连接EP、EQ、PQ,是否存在点P、Q,使得△EPQ是以点P为直角顶点的等腰直角三角形,若存在,求点P的坐标,若不存在,说明理由.5.如图,在平面直角坐标系中,已知直线BD:y=x﹣2与直线CE:y=﹣x+4相交于点A.(1)求点A的坐标;(2)点P是△ABC内部一点,连接PA、PB、PC,求PB+PA+PC的最小值;(3)将点D向下平移一个单位得到点D1,连接BD1,将△OD1B绕点O旋转至△OB1D2的位置,使B1D2∥x轴,再将△OB1D2沿y轴向下平移得到△O1B2D3,在平移过程中,直线O1D3与x轴交于点K,在直线x=3上任取一点T,连接KT,O1T,△O1KT能否以O1K为直角边构成等腰直角三角形?若能,请直接写出所有符合条件的T点的坐标;若不能,请说明理由.6.如图1,直线y=﹣x+3交x轴于点B,交y轴于点C.点A在x轴负半轴上且∠CAO=30°.(1)求直线AC的解析式;(2)如图2,边长为3的正方形DEFG,G点与A点重合,现将正方形以每秒1个单位地速度向右平移,当点G与点O重合时停止运动.设正方形DEFG与△ACB重合部分的面积为S,正方形DEFG运动的时间为t,求s关于t的函数关系式;(3)如图3,已知点Q(1,0),点M为线段AC上一动点,点N为直线BC上一动点,当三角形QMN为等腰直角三角形时,求M点的坐标.7.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C点的横坐标为1.(1)如图1,过点A作x轴的垂线,若点P(x,2)为垂线上的一个点,Q是y轴上一动点,若S△CPQ=5,求此时点Q的坐标;(2)若P在过A作x轴的垂线上,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时P的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形?若存在,求出N点的坐标;若不存在,请说明理由.8.如图,在矩形ABCO中,点O为坐标原点,点B(4,3),点A、C在坐标轴上,点Q在BC边上,直线L1:y=kx+k+1交y轴于点A.对于坐标平面内的直线,先将该直线向右平移1个单位长度,再向下平移1个单位长度,这种直线运动称为直线的斜平移.现将直线L1经过2次斜平移,得到直线L2.(1)求直线L1与两坐标轴围成的面积;(2)求直线L2与AB的交点坐标;(3)在第一象限内,在直线L2上是否存在一点M,使得△AQM是等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.9.如图1,在平面直角坐标系中,直线l:y=与x轴交于点A,且经过点B(2,m),已知点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M 的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E 再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.10.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1,l2交于点C,且C点的横坐标为1.(1)求直线l1的解析式;(2)如图1,过点A作x轴的垂线,若点P为垂线上的一个动点,点Q(0,2),若S△CPQ=4,求此时点P 的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C逆时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M 点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由.11.已知直线l1:y=﹣x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交于点C,且C点的纵坐标为﹣4.(1)求△ABC的面积;(2)如图1,过点A作x轴的垂线,若点P为垂线上的一个动点,点Q(0,2),若S△CPQ=2,求此时点P 的坐标;(3)如图2,点E的坐标为(﹣2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E.过点C作平行于x轴的直线l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M 点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标:若不存在,请说明理由.12.如图,直线y=kx+k分别交x轴、y轴于点A,C,直线BC过点C交x轴于点B,且OA=OC,∠CBA =45°,点P是直线BC上的一点.(1)求直线BC的解析式;(2)若动点P从点B出发沿射线BC方向匀速运动,速度为个单位长度/秒,连接AP,设△PAC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,并写出t的取值范围;(3)若点Q是直线AC上且位于第三象限图象上的一个动点,点M是y轴上的一个动点,当以点B、M、Q 为顶点的三角形为等腰直角三角形时,求点Q和点M的坐标.13.如图,在平面直角坐标系中,直线AB:y=﹣x+与直线AC:y=+8交于点A,直线AB分别交x轴、y轴于B、E,直线AC分别交x轴、y轴于点C、D.(1)求点A的坐标;(2)在y轴左侧作直线FG∥y轴,分别交直线AB、直线AC于点F、G,当FG=3DE时,过点G作直线GH ⊥y轴于点H,在直线GH上找一点P,使|PF﹣PO|的值最大,求出P点的坐标及|PF﹣PO|的最大值;(3)将一个45°角的顶点Q放在x轴上,使其角的一边经过A点,另一边交直线AC于点R,当△AQR为等腰直角三角形时,请直接写出点R的坐标.14.模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED 于D,过B作BE⊥ED于E.求证:△BEC≌△CDA.模型应用:(1)已知直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.(2)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.15.如图,已知直线y=x+4与x轴、y轴分别相交于点A、B,点C从O点出发沿射线OA以每秒1个单位长度的速度匀速运动,同时点D从A点出发沿AB以每秒1个单位长度的速度向B点匀速运动,当点D到达B点时C、D都停止运动.点E是CD的中点,直线EF⊥CD交y轴于点F,点E′与E点关于y轴对称.点C、D的运动时间为t(秒).(1)当t=1时,AC=,点D的坐标为;(2)设四边形BDCO的面积为S,当0<t<3时,求S与t的函数关系式;(3)当直线EF与△AOB的一边垂直时,求t的值;(4)当△EFE′为等腰直角三角形时,直接写出t的值.16.如图1,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+m与x、y轴的正半轴分别相交于点A、B,过点C(﹣4,﹣4)画平行于y轴的直线交直线AB于点D,CD=10.(1)求点D的坐标和直线l的解析式;(2)求证:△ABC是等腰直角三角形;(3)如图2,将直线l沿y轴负方向平移,当平移适当的距离时,直线l与x、y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形.请直接写出所有符合条件的点P的坐标.(不必书写解题过程)17.如图,在平面直角坐标系中,直线y=﹣x+b(b>0)分别交x轴,y轴于A,B两点,以OA,OB为边作矩形OACB,D为BC的中点.以M(4,0),N(8,0)为斜边端点作等腰直角三角形PMN,点P在第一象限,设矩形OACB与△PMN重叠部分的面积为S.(1)求点P的坐标.(2)当b值由小到大变化时,求S与b的函数关系式.(3)若在直线y=﹣x+b(b>0)上存在点Q,使∠OQM等于90°,请直接写出b的取值范围.(4)在b值的变化过程中,若△PCD为等腰三角形,请直接写出所有符合条件的b值.18.如图,直线l与x轴、y轴的正半轴分别交于A、B两点,OA、OB的长分别是关于x的方程x2﹣14x+4(AB+2)=0的两个根(OB>OA),P是直线l上A、B两点之间的一动点(不与A、B重合),PQ∥OB交OA 于点Q.(1)求tan∠BAO的值;(2)若S△PAQ=S四边形OQPB时,请确定点P在AB上的位置,并求出线段PQ的长;(3)当点P在线段AB上运动时,在y轴上是否存在点M,使△MPQ为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.1.【解答】解:(1)证明:∵△ABC为等腰直角三角形∴CB=CA,∠ACD+∠BCE=180°﹣90°=90°又∵AD⊥CD,BE⊥EC∴∠D=∠E=90°又∵∠EBC+∠BCE=90°∴∠ACD=∠EBC在△ACD与△CBE中,∠D=∠E,∠ACD=∠EBC,CA=BC,∴△ACD≌△CBE(AAS);(2)过点B作BC⊥AB交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°∴△ABC为等腰Rt△由(1)可知:△CBD≌△BAO∴BD=AO,CD=OB∵l1:,令y=0,则x=﹣3∴A(﹣3,0),令x=0,则y=4∴B(0,4)∴BD=AO=3,CD=OB=4∴OD=4+3=7.∴C(﹣4,7),设直线l2的解析式为y=kx+b,将点A(﹣3,0),C(﹣4,7)代入y=kx+b中,得解得,k=﹣7,b=﹣21,则l2的解析式:y=﹣7x﹣21;(3)如下图,设点Q(m,2m﹣6),当∠AQP=90°时,由(1)知,△AMQ≌△QNP(AAS),∴AM=QN,即|8﹣m|=6﹣(2m﹣6),解得:m=4或,故:Q(4,2),.2.【解答】解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),解得:BP=,故点P(,6)或(﹣,6)(3)设点E(m,m)、点P(n,6);①当∠EPA=90°时,如左图,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即|m﹣n|=6,m﹣6=8﹣n,解得:m=或16,故点E(,)或(16,20);②当∠EAP=90°时,如右图,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14,故点E(2,)或(14,);综上,E(,)或(14,)或;(2,)或(16,20).3.【解答】解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=y N=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).4.【解答】解:(1)∵点A的横坐标为﹣5,∴A(﹣5,﹣3),将点A代入y=x+b,∴b=4,∴直线l1的解析式y=x+4;(2)l2:y=﹣x﹣8与y轴的交点D(0,﹣8),∵将直线l2向上平移6个单位得到直线l3,直线l3与y轴交于点E,∴E(0,﹣2),∵过点E作y轴的垂线l4,点D是点C关于直线l4的对称点,作点A关于x轴的对称点A′(﹣5,3),连接AD′交x轴、l4于点N、M,则此时CM+MN+NA最小,最小值为:A′D,CM+MN+NA=MD+MN+A′N=A′D,A′D==;∴CM+MN+NA的值最小为;(3)存在,理由:设点P、Q的坐标分别为:(m,m+4)、(n,﹣n﹣8),当点E在点P右边时,过点Q作x轴的平行线交y轴于点M,过点P作PN⊥QM于点N,PN交l4于点K,则△PNQ≌△EKP(AAS),∴PN=KE,QN=PK,即:m+4+n+8=﹣m,m﹣n=m+4+2,解得:m=﹣3,∴点P(﹣3,﹣)当点E在点P的左侧时,同理可得:(﹣,﹣5),故答案为:(﹣3,﹣)或(﹣,﹣5),5.【解答】解:(1)直线,则点B、D的坐标分别为:(,0)、(0,﹣2);直线,则点C、E的坐标分别为:(4,0)、(0,4);联立BD、CE的表达式并解得:x=2,故点A(2,2);(2)如图,将△APB绕点C逆时针旋转60°得到△EFC,则△BFP是等边三角形,∠ECB=90°,BC=3,AC==CE,在Rt△EBC中,BE==,∵PA+PB+PC=EF+FP+PB≥BE,∴PA+PB+PC≥,∴PA+PB+PC的最小值为;(3)存在,理由:点D1(0,﹣3),点B(,0),则∠BD1O=30°,B1D2∥x轴,则直线OD2的倾斜角为30°,设直线O1K的表达式为:y=x+m,则点O1(0,m),点K(﹣m,0),则MO1=﹣m,MK=﹣m,KN=﹣m,TN=|﹣m﹣3|,则点T(3,﹣m)△O1KT能否以O1K为直角边构成等腰直角三角形,则O1K=TK,TK⊥O1K,过点K作y轴的平行线分别交过点O1、T与x轴的平行线于点M、N,∵∠NKT+∠NTK=90°,∠NKT+∠O1KM=90°,∴∠O1KM=∠NTK,∠KNT=∠O1MK=90°,O1K=TK,∴△KNT≌△O1MK(AAS),∴TN=KM,即:|﹣m﹣3|=﹣m,解得:m=,故点T(3,)或(3,).6.【解答】解:(1)直线y=﹣x+3交x轴于点B,交y轴于点C,则点B、C的坐标为(3,0)、(0,3),∵∠CAO=30°,则AC=2OC=6,则OA=3,将点A、C的坐标代入一次函数表达式:y=kx+b并解得:直线AC的表达式为:y=x+3;(2)如图2所示:①当0≤t≤3时,(左侧图),正方形的DA边交AC于点H,点A运动到点M处,则点M(﹣3+t,0),则点H(﹣3+t,t),S=S△AHM=×AM×HM=×t×t=t2,②当3<t≤3时,(右侧图),正方形的DA边交AC于点H,点A运动到点G处,E、F交直线AC于点R、S,AG=t,则AS=t﹣3,则RS=(t﹣3),同理HG=t,同理可得:S=S梯形RSHG=×3×(t+t﹣)=t﹣;故:S=;(3)∵点M为线段AC上一动点,经画图,∠MQN分别为90°时,点M不在线段AC上,①NMQ=90°时,三角形QMN为等腰直角三角形,过点M作y轴的平行线交x轴于点G,过点N作x轴的平行线交MG于点R、交y轴于点H,设点M、N的坐标分别为(m,m+3)、(n,3﹣n),∵∠NMR+∠RNM=90°,∠MNR+∠GMQ=90°,∴∠GMQ=∠RNM,∠NRM=∠MGO=90°,MR=MQ,∴△NRM≌△MGO(AAS),则MG=RN,GQ=RM,即:n﹣m=m+3,3﹣n﹣(m+3)=1﹣m,解得:m=﹣2,故点M的坐标为(﹣2,1);②当∠MNQ=90°时,同理可得:点M(﹣,2);综上,点M的坐标为:(﹣2,1)或(﹣,2).7.【解答】解:(1)直线l2:y=x﹣,令x=1,则y=﹣4,故C(1,﹣4),把C(1,﹣4)代入直线l1:y=﹣x+b,得:b=﹣3,则l1为:y=﹣x﹣3,所以A(﹣3,0),所以点P坐标为(﹣3,2),如图,设直线AC交y轴于点M,设y PC:y=mx+t得:,解得,∴y PC=﹣1.5x﹣2.5,即M(0,﹣2.5).S△CPQ=QM×(x C﹣x P)=(y Q+2.5)×4=5,解得:y Q=0或﹣5,∴Q的坐标为(0,0)或(0,﹣5);(2)确定C关于过A垂线的对称点C′(﹣7,﹣4)、A关于y轴的对称点A′(3,0),连接A′C′交过A点的垂线与点P,交y轴于点Q,此时,CP+PQ+QA的值最小,将点A′、C′点的坐标代入一次函数表达式:y=k′x+b′得:则直线A′C′的表达式为:y=x﹣,即点P的坐标为(﹣3,﹣),(3)将E、C点坐标代入一次函数表达式,同理可得其表达式为:y=﹣x﹣①当点M在直线l4上方时,设点N(n,﹣4),点M(s,﹣s﹣),点B(4,0),过点N、B分别作y轴的平行线交过点M与x轴的平行线分别交于点R、S,∵∠RMN+∠RNM=90°,∠RMN+∠SMR=90°,∴∠SMR=∠RNM,∠MRN=∠MSB=90°,MN=MB,∴△MSB≌△NRM(AAS),∴RN=MS,RM=SB,即,解得:,故点N的坐标为(﹣16,﹣4),②当点M在l4下方时,同理可得:N(﹣,﹣4),即:点N的坐标为(﹣,﹣4)或(﹣16,﹣4).8.【解答】解:(1)将点A(0,3)代入直线L1:y=kx+k+1并解得:k=2,故L1的表达式为:y=2x+3,设:L1与x轴交点坐标为D,则其坐标为(﹣,0),直线l1与两坐标轴围成的面积=OD×AO=×3=;(2)将直线L1经过2次斜平移,得到直线L2:y=2(x﹣2)+3﹣2=2x﹣3,当y=3时,x=3,即直线L2与AB的交点坐标为(3,3);(3)①当∠QAM为直角时,点M在第四象限,舍去;②当∠AQM为直角时,对于L2,当x=4时,y=5,故点M(4,5)(舍去);③当∠AMQ为直角时,AM=MQ,过点M作x轴的平行线分别交AO、BC于点G、H,设点M(m,2m﹣3),点Q(4,n),∵∠AMG+∠GAM=90°,∠AMG+∠QMH=90°,∴∠QMH=∠GAM,∠AGM=∠MHQ=90°,AM=MQ,∴△AGM≌△MHQ(AAS),∴AG=MH,即:|3﹣2m+3|=4﹣m,解得:m=2或,故点M(,)或(2,1),故点M(,)或(2,1).9.【解答】解:(1)将点B坐标代入直线l的表达式得:m==3,点B(2,3),令y=0,则x=﹣2,即点A(﹣2,0),将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得:,故:直线BC的表达式为:y=﹣3x+9;(2)过点O作OD∥AB交BC于点D,则D点为所求,直线AB表达式得k值为,则直线OD的表达式为y=x,将直线BC与OD表达式联立并解得:x=,即:点D的坐标为(,);(3)过点P作x轴的平行线分别于过点A、M与y轴的平行线于点G、H,设点P的坐标为(0,n)、点M(m,9﹣3m),∵∠GPA+∠GAP=90°,∠GPA+∠HPM=90°,∴∠HPM=∠GAP,又PA=PM,∠G=∠H=90°,∴△AGP≌△PHM(AAS),GP=HM=2,GA=PH,即:,解得:m=或,即点M的坐标为(,)或(,﹣);(4)t=+=BE+AE,过点A作倾斜角为45度的直线l2,过点E作EF⊥l2交于点F,则:EF=AE,即t=BE+EF,当B、E、F三点共线且垂直于直线l2时,t最小,即:t=BF′,同理,直线l2的表达式为:y=﹣x﹣2,直线BF表达式为:y=x+1,将上述两个表达式联立并解得:x=﹣,即:点F′(﹣,﹣),t=BF′==.10.【解答】解:(1)直线l2:y=,令x=1,则y=﹣4,故点C(1,﹣4),把点C(1,﹣4)代入直线l1:y=﹣x+b,得:b=﹣3,则直线l1的表达式为:y=﹣x﹣3,(2)对于直线y=﹣x﹣3,当y=0时,有﹣x﹣3=0,解得x=﹣3,即A(﹣3,0),如图,设直线AC交y轴于点M,设点P坐标为(﹣3,m),将点P、C的坐标代入一次函数表达式y=sx+t得:,解得,即M.S△CPQ=QM×(x C﹣x P)=•|2﹣+3|•(1+3)=4,解得:m=12或28,即点P的坐标为(﹣3,12)或(﹣3,28);(3)将E、C点坐标代入一次函数表达式,同理可得其表达式为①当点M在直线l4上方时,设点N(n,﹣4),点M(s,﹣s﹣),点B(4,0),过点N、B分别作y轴的平行线交过点M与x轴的平行线分别交于点R、S,∵∠RMN+∠RNM=90°,∠RMN+∠SMR=90°,∴∠SMR=∠RNM,∠MRN=∠MSB=90°,MN=MB,∴△MSB≌△NRM(AAS),∴RN=MS,RM=SB,即,解得.故点N的坐标为(﹣16,﹣4),②当点M在l4下方时,如图1,过点M作PQ∥x轴,与过点B作y轴的平行线交于Q,与过点N作y轴的平行线交于P,同①的方法得N(﹣,﹣4),③如图2中,当点N在y轴的右侧,△BMN是等腰直角三角形时,同法可得N(,﹣4)即:点N的坐标为(﹣,﹣4)或(﹣16,﹣4)或(,﹣4).11.【解答】解:(1)直线l2:y=x﹣,令y=4,则x=1,则点C(1,﹣4),令y=0,则x=4,即点B(4,0),把点C坐标代入直线l1:y=﹣x+b得:b=﹣3,则直线l1的表达式为:y=﹣x﹣3,令y=0,则x=﹣3,即点A(﹣3,0),S△ABC=AB×|y C|=7×4=14;(2)如下图,设直线AC交y轴于点M,设点P坐标为(﹣3,m),将点P、C的坐标代入一次函数表达式y=sx+t得:,解得:,即:点M坐标为(0,),S△CPQ=QM×(x C﹣x P)=(2﹣+3)×(1+3)=2,解得:m=16,即点P的坐标为(﹣3,16)当PC与y轴交于x轴上方时,同理可得:点P(﹣3,24),故点P(﹣3,16)或(﹣3,24);(3)将E、C点坐标代入一次函数表达式,同理可得其表达式为:y=﹣x﹣,设点N(n,﹣4),点M(s,﹣s﹣),点B(4,0),过点N、B分别作y轴的平行线交过点M与x轴的平行线分别交于点R、S,∵∠RMN+∠RNM=90°,∠RMN+∠SMR=90°,∴∠SMR=∠RNM,∠MRN=∠MSB=90°,MN=MB,∴△MSB≌△NRM(AAS),∴RN=MS,RM=SB,即:,解得:,故点N的坐标为(﹣16,﹣4).12.【解答】解:(1)直线y=kx+k分别交x轴、y轴于点A,C,则点A(﹣1,0),且OA=OC,则点C(0,3),则k=3,故直线AC的表达式为:y=3x+3,∵∠CBA=45°,∴OB=OC=3,∴点B(3,0),∵点C(0,3)、点B(3,0),则直线BC的表达式为:y=﹣x+3;(2)当点P在线段BC时,过点P作PH⊥x轴于点H,∵∠CBA=45°,PH=PBsin45°=t×=t,S=S△ABC﹣S△ABP=×BA×(OC﹣PH)=4×(3﹣t)=6﹣2t,(0≤t≤3);当点P在y轴右侧的射线BC上时,同理可得:S=S△ABP﹣S△ABC=2t﹣6,(t>3);故S=;(3)设点M(0,m),点Q(n,3n+3),①如图2(左侧图),当∠BMQ=90°时,(点M在x轴上方),分别过点Q、P作y轴的平行线QG、BH,过点M作x轴的平行线分别交GQ、BH于点G、H,∵∠GMQ+∠MQG=90°,∠GMQ+∠HMB=90°,∴∠HMB=∠GQM,∠MHB=∠QGM=90°,MB=MQ,∴△MHB≌△QGM(AAS),∴GQ=MH,BH=GM,即:m=﹣n,m﹣3n﹣3=3,解得:m=,n=﹣;故点M(0,)、点Q(﹣,﹣);同理当点M在x轴下方时,3n+3﹣m=3且﹣m=﹣n,解得:m=n=0(舍去);②当∠MQB=90°时,同理可得:﹣n=﹣3n﹣3,3n+3﹣m=3﹣n,解得:m=﹣6,n=﹣,故点M(0,﹣6)、点Q(﹣,﹣);③当∠QBM=90°时,同理可得:﹣3n﹣3=3,m=3﹣n解得:m=5,n=﹣2,点M(0,5)、点Q(﹣2,﹣3);综上,M(0,)、Q(﹣,﹣)或M(0,﹣6)、Q(﹣,﹣)或M(0,5)点Q(﹣2,﹣3).13.【解答】解:(1)联立,解得:,故点A的坐标为(﹣2,7);(2)由题意得:点E、D、B、C的坐标分别为(0,)、(0,8)、(,0)、(﹣16,0),过点A作MN∥x轴,分别交FG、DE于点M、N,则:AN=2,∵FG∥DE,∴△AFG∽△AED,∴=3,则AM=6,∴点M的横坐标为:﹣8,则点F、G的坐标分别为(﹣8,)、(﹣8,4),在y轴上找到点O关于直线GH的对称点O′(0,8),连接FO′并延长,交直线GH于点P,此时,|PF﹣PO|的值最大,最大值为PO′,直线O′F的表达式为:y=﹣x+8,当y=4时,x=,即点P坐标为(,4),|PF﹣PO|=FO′==,故:点P坐标为(,4),|PF﹣PO|=;(3)△AQR为等腰直角三角形,有如下图所示的两种情况,①当AQ⊥AC,当点R在点A下方时,∴直线AQ的表达式为:y=﹣2x+b,将点A坐标代入得:7=﹣2×(﹣2)+b,解得:b=3,故:直线AQ的表达式为:y=﹣2x+3,则点Q坐标为(,0),过点A作x轴的平行线,过点R作y轴的平行线,过点Q作y轴的平行线,围成矩形GMQH,∠GAR+∠QAH=90°,∠QAH+∠AQH=90°,∴∠AQH=∠GAR,∠AGR=∠QHA=90°,AR=AQ,∴△AGR≌△QHA(AAS),∴HQ=GA=7,GR=AH=2+=,OM=2+GA=9,∴RM=7﹣=故点R的坐标为(﹣9,),当点R在点A上方时,同理可得点R坐标为(5,);②当R′Q′⊥AC时,同理,点R′的坐标为(12,14)或(﹣,),故:点R的坐标为(﹣9,)或(5,)或(12,14)或(﹣,).14.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,又∵AD⊥CD,BE⊥EC,∴∠D=∠E=90°,∠ACD+∠BCE=180°﹣90°=90°,又∵∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴△ACD≌△EBC(AAS);(2)解:过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,如图1,∵∠BAC=45°,∴△ABC为等腰Rt△,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4,∴A(0,4),B(﹣3,0),∴BD=AO=4.CD=OB=3,∴OD=4+3=7,∴C(﹣7,3),设l2的解析式为y=kx+b(k≠0),∴,∴,∴l2的解析式:y=x+4;(3)当点D位于直线y=2x﹣6上时,分两种情况:①点D为直角顶点,分两种情况:当点D在矩形AOCB的内部时,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,2x﹣6);则OE=2x﹣6,AE=6﹣(2x﹣6)=12﹣2x,DF=EF﹣DE=8﹣x;则△ADE≌△DPF,得DF=AE,即:12﹣2x=8﹣x,x=4;∴D(4,2);当点D在矩形AOCB的外部时,设D(x,2x﹣6);则OE=2x﹣6,AE=OE﹣OA=2x﹣6﹣6=2x﹣12,DF=EF﹣DE=8﹣x;同1可知:△ADE≌△DPF,∴AE=DF,即:2x﹣12=8﹣x,x=;∴D(,);②点P为直角顶点,显然此时点D位于矩形AOCB的外部;设点D(x,2x﹣6),则CF=2x﹣6,BF=2x﹣6﹣6=2x﹣12;同(1)可得,△APB≌△PDF,∴AB=PF=8,PB=DF=x﹣8;∴BF=PF﹣PB=8﹣(x﹣8)=16﹣x;联立两个表示BF的式子可得:2x﹣12=16﹣x,即x=;∴D(,);综合上面六种情况可得:存在符合条件的等腰直角三角形;且D点的坐标为:(4,2),(,),(,).15.【解答】解:(1)如图1,过D作DH⊥AC于H,∵直线y=x+4与x轴、y轴分别相交于点A,A、B,∴A(﹣3,0),B(0,4),∴AO=3,BO=4,∴AB===5,当0≤t≤3时,如图1,∵CO=t,AD=t,∴AC=3﹣t,DH=AD•sin∠BAO=t,AH=ADcos∠BAO=t,当t=1时,AC=3﹣1=2,点D的坐标为(,);(2)∵AO=3,BO=4,AB=5∴sin∠BAO==,cos∠BAO==过D作DH⊥AC于H,当0≤t≤3时,如图1,∵CO=t,AD=t,∴AC=3﹣t,DH=AD•sin∠BAO=t,∴S=S△ABO﹣S△ADC=×3×4﹣•(3﹣t)•t,S=t2﹣t+6(0<t<3).(3)如图2,当EF⊥BO时,∵EF⊥CD,∴CD∥BO,∴∠ACD=90°,在Rt△ADC中,=cos∠BAO,∴=,t=,当EF⊥AB时,如图3,∵EF⊥CD,∴直线CD和直线AB重合,∴C点和A点重合,∴t=3.(4)①如图4,当0<t<,且且重叠部分为等腰梯形PEQM时,则∠PEQ=∠MQE,∵菱形CDMN,∴CD∥MN,∴∠MQE=∠CEQ,∵EF⊥CD,即∠CEF=90°,∴∠CEQ=45°,∴∠ACD=∠CEQ=45°,过D作DH⊥AC于H,则△DHC是等腰直角三角形,∴DH=HC,∴t=3﹣t﹣t,∴t=;②如图5,当<t<5,且重叠部分为等腰梯形EHNK时,同理可得∠CHE=45°,连接DHDH,∵EF垂直平分CD,∴CH=DH,∠DHE=∠CHE=45°,∴∠DHC=90°,∴DH=t,而CH=CO﹣HO=CO﹣(AO﹣AH)=t﹣(3﹣t),∴t﹣(3﹣t)=t,∴t=.16.【解答】解:(1)∵CD=10,点C的坐标为(﹣4,﹣4),∴点D的坐标为(﹣4,6),把点D(﹣4,6)代入得,m=4.∴直线l的解析式是;(2)∵,∴A(8,0),B(0,4),过点C画CH⊥y轴于H,则CH=OH=4,BH=8.在△AOB和△BHC中,∵AO=BH,∠AOB=∠BHC,BO=CH,∴△AOB≌△BHC,∴AB=BC,∠HBC=∠OAB,∴∠ABC=90°,∴△ABC是等腰直角三角形;(3)p(﹣4,﹣)或(﹣4,8)或(﹣4,﹣12)或(﹣4,﹣4)或(﹣4,4).17.【解答】解:(1)作PK⊥MN于K,则PK=KM=NM=2,∴KO=6,∴P(6,2);(2)①当点A落在线段OM上(可与点M重合)时,如图(一),此时0<b≤2,S=0;②当点A落在线段AK上(可与点K重合)时,如图(二),此时2<b≤3,设AC交PM于H,MA=AH=2b﹣4,∴S=(2b﹣4)2=2b2﹣8b+8,③当点A落在线段KN上(可与点N重合)时,如图(三),此时3<b≤4,设AC交PN于H,AN=AH=8﹣2b,∴S=S△PMN﹣S△ANH=4﹣2(4﹣b)2=﹣2b2+16b﹣28,④当点A落在线段MN的延长线上时,b>4,如图(四),S=4;(3)以OM为直径作圆,当直线y=﹣x+b(b>0)与圆相切时,b=+1,如图(五);当b≥4时,重合部分是△PMN,S=4设Q(x,b﹣x),因为∠OQM=90°,O(0,0),M(4,0)所以OQ2+QM2=OM2,即[x2+(b﹣x)2]+[(x﹣4)2+(b﹣x)2]=42,整理得x2﹣(2b+8)x+2b2=0,x2﹣(b+4)x+b2=0,根据题意这个方程必须有解,也就是判别式△≥0,即(b+4)2﹣5b2≥0,﹣b2+2b+4≥0,b2﹣2b﹣4≤0,可以解得 1﹣≤b≤1+,由于b>0,所以0<b≤1+.故0<b≤+1;(4)b的值为4,5,.∵点C、D的坐标分别为(2b,b),(b,b)当PC=PD时,b=4;当PC=CD时,b1=2(P、C、D三点共线,舍去),b2=5;当PD=CD时,b=8±2.18.【解答】解:(1)∵OA、OB的长分别是关于x的方程x2﹣14x+4(AB+2)=0的两个根,∴OA+OB=﹣=14,由已知可得,又∵OA2+OB2=AB2,∴(OA+OB)2﹣2OA•OB=AB2,即142﹣8(AB+2)=AB2,∴AB2+8AB﹣180=0,∴AB=10或AB=﹣18(不合题意,舍去),∴AB=10,∴x2﹣14x+48=0,解得x1=6,x2=8,∵OB>OA,∴OA=6,OB=8,∴tan∠BAO=.(2)∵S△PAQ=S四边形OQPB,∴S△PAQ=S△AOB,∵PQ∥BO,∴△PQA∽△BOA,∴,∴.∵AB=10,∴AP=5,又∵tan∠BAO=,∴sin∠BAO=,∴PQ=PA•sin∠BAO=.(3)存在,设AB的解析式是y=kx+b,则,解得:,则解析式是:y=﹣x+8,即4x+3y=24(*)①当∠PQM=90°时,由PQ∥OB且|PQ|=|MQ|此时M点与原点O重合,设Q(a,0)则P(a,a)有(a,a)代入(*)得a=.②当∠MPQ=90°,由PQ∥OB且|MP|=|PQ|设Q(a,0)则M(0,a),P(a,a)进而得a=247.③当∠PMQ=90°,由PQ∥OB,|PM|=|MQ|且|OM|=|OQ|=|PQ|设Q(a,0)则M(0,a)点P坐标为(a,2a)代入(*)得a=125.综上所述,y轴上有三个点M1(0,0),M2(0,247)和M3(0,125)满足使△PMQ为等腰直角三角形.。
微专题4巧用等腰三角形的性质与判定课件
证明:延长 AE、BC 交于点 F.
∵AE⊥BE,
∴∠BEF=90°,
又∠ACF=∠ACB=90°,
∴∠DBC+∠AFC=∠FAC+∠AFC=90°,
∴∠DBC=∠FAC,
在△ ACF 和△ BCD 中,
∠ACF=∠BCD=90°,
AC=BC,
∠FAC=∠DBC,
∴△ACF≌△BCD(A. S. A. ), ∴AF=BD. 又 AE=12BD, ∴AE=EF,即点 E 是 AF 的中点. ∴AB=BF, ∴BD 是∠ABC 的角平分线.
类型 4 与判断三角形形状有关的综合问题 7.如图,点 O 是等边△ ABC 内一点,∠AOB=110°, ∠BOC=α. 将△ BOC 绕点 C 按顺时针方向旋转 60°得 △ ADC,连结 OD. (1)求证:△ COD 是等边三角形;
(2)当 α=150°时,试判断△ AOD 的形状,并说明理 由;
2. (易错题)已知一个等腰三角形的两角分别为(2x- 2)°,(3x-5)°,求这个等腰三角形各角的度数.
解:(1)①当(2x-2)°作为顶角时,即(2x-2)+2×(3x -5)=180,解得 x=24,三角形三个角的度数分别为: 46°,67°,67°;
② 当 (3x - 5)°为 顶 角 时 , 即 (3x - 5) + 2×(2x - 2) = 180,解得 x=27,三角形三个角的度数分别为:52°,52°, 76°;
(3)如果继续转动△ AEF,使 AE 与 AH 在一条直线上 (如图③),EF 与 AC 交于点 D,请判断△ ADF 的形状, 并说明理由.
①
②
③
解:(1)∵△ABC 是等边三角形, ∴∠ABC=60°,∵∠E=40°,∴∠EAB=20°; (2)∵AE=AF,∴∠E=∠F=40°. ∵AE 与 AB 在一条直线上,∴∠ABC=∠E+∠BME =60°,∴∠EMB=20°. ∵∠ANF=∠BAC+∠E=100°, ∴∠NAF=40°,∴AN=NF,∴△ANF 是等腰三角形;
有关等腰三角形问题
初一暑期数学基础巩固与方法培养训练(十四)专题(四):有关等腰三角形问题等腰三角形是一类特殊的三角形,正因为它特殊,所以它比一般的三角形应用更为广泛,因此学好等腰三角形有关知识是很必要的.下面就有关知识从四个方面进行解读.一、概念篇1.等腰三角形概念:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做等腰三角形的腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.2.等边三角形概念:三条边都相等的三角形叫做等边三角形,也叫正三角形.说明:等边三角形是特殊的等腰三角形,等边三角形一定是等边三角形,而等腰三角形不一定是等边三角形.3.等腰直角三角形概念:顶角是直角的等腰三角形叫做等腰直角三角形.二、特征篇1.等腰三角形特征:(1)等腰三角形是轴对称图形,其底边中线所在直线是它的对称轴,或底边上的高所在直线是它的对称轴,或顶角的平分线所在直线是它的对称轴;(2)等腰三角形的两个底角相等,简称“等边对等角”;(3)等腰三角形顶角的平分线、底边上的高、底边的中线互相重合,称“三线合一”.说明:根据等腰三角形的轴对称性,可以发现等腰三角形中两底角的平分线、两腰的中线、两腰的高相等;等腰三角形的两底角相等是说明两角相等的依据;“三线合一”是说明两角相等、两线相等及两线垂直的重要依据.2.等边三角形特征:等边三角形是特殊的等腰三角形,它除了具有等腰三角形所有特征外,还具有:(1)它只有三条对称轴;(2)三个内角都相等,都等于60º;(3)每条边上的中线都是“三线合一”的线段.三、识别篇1.等腰三角形的识别:如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称等角对等边.说明:(1)等腰三角形的识别方法是说明两线段相等的重要方法,它是三角形中角相等关系转化为边相等关系的重要依据,同学们要重点掌握.(2)要注意等腰三角形特征与识别是两个不同的结论,学习时分清它们之间的区别.2.等边三角形的识别:(1)三条边相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形或有两个角为60º的三角形是等边三角形;(3)有一个角为60º的等腰三角形是等边三角形.四、注意篇1.等腰三角形一腰上的高与底边的夹角等于顶角的一半.2.在计算等腰三角形有关边、角问题时,要注意利用分类讨论思想进行全面考虑.3.注意“三线合一”在处理等腰三角形问题时的综合运用.五、等腰三角形问题注意分情况讨论等腰三角形因其内角有顶角和底角之分;其边有底边和腰之分;其形状有锐角三角形、钝角三角形和直角三角形;其高的位置有在形内、在形外和在三角形的一边上;因而有关等腰三角形问题,当题中条件不明确时应分情况讨论,谨防漏解.(一)对角的讨论例1 已知等腰三角形的一个内角是另一个内角的2倍,求三个内角.(二)对边的讨论例2 已知等腰三角形的两边长分别为(2x-1)cm和(x+1)cm,周长19cm,求x和三边长.(三)对形状及高的位置的讨论例3 已知等腰三角形一腰上的高与另一腰的夹角为60°,求三个内角的度数.(四)对问题本身的讨论例4 如图3,等腰三角形ABC 中,AB=AC ,AC 边中线BE 分三角形周长为21cm 和15cm ,求三边长.六、利用等腰三角形的“三线合一”性质解题我们知道,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,被称做为“三线合一”.等腰三角形的“三线合一”性质在几何解题中有着广泛地运用,现举例说明. (一)、证明线段相等例5 如图1,在△ABC 中,AB =AC ,BD =CD ,DE ⊥AB 于点E , DF ⊥AC 于点F .求证:DE =DF .(二)、证明两条线垂直例6 如图2,AB =AE ,∠B =∠E ,BC =ED ,CF =DF .求证:AF ⊥CD .(三)、证明角的倍半关系例7 如图3,△ABC 中,AB =AC ,BD ⊥AC 交AC 于D .求证:∠DBC =12∠BAC .(四、证明线段的倍半关系例8 如图4,已知等腰Rt △ABC 中,AB =AC ,∠BAC =90°,图4BF DE CAF E 图3 D CBACDE F 图1BAF D图2BECA(五)、证明一个角是直角例9 如图5,△ABC 中,∠ACB =2∠B ,BC =2AC .求证:∠A =90°.(六)、证明线段的和差关系例10 如图6,在△ABC 中,AD ⊥BC 于D ,且∠ABC =2∠C .求证:CD =AB +BD . 练习:.1、已知:等腰三角形的一边长等于4,另一边长等于5,求它的周长.2、10.如果以4cm 长的线段为底组成一个等腰三角形,腰长x 应在的范围是( ) A.x>4cm B.x>2cm C.x≥4cm D.x≥2cm3、如图,一个顶角为︒40的等腰三角形纸片,剪去顶角后,得到一个四边形,则=∠+∠21____.4、如图,︒=∠15A ,作线段⋅⋅⋅DE CD BC 、、,使⋅⋅⋅====DE CD BC AB ,如此进行下去,一共可以得到 个等腰三角形.5、已知:等腰三角形的一边长等于6,另一边长等于15, 求它的周长.6、已知等腰三角形一腰上的中线把该三角形的周长分为15和18两部分,求这个等腰三角形的腰长和底边长.7、已知等腰三角形的一个角是另一个角的2倍,求这个等腰三角形的三个内角大小.8、已知:等腰三角形一腰上的高与另一腰的夹角是40°,求这个等腰三角形的底角的度数.图5ABCDED 图6CE BA.9、 如图1,已知AH ⊥BC 于H ,∠C=28°,且AB+BH=HC ,求∠B 的度数.图110、 如图2,已知AD 平分∠BAC ,∠B=2∠C ,求证AB+BD=AC.图211 如图3,在△ABC 中,AC=AB ,E 在CA 的延长线上,∠AEF=∠AFE ,求证:EF ⊥BC.图312.如图,D E ,分别为ABC △的边A B A C ,上的点,BE 与C D 相交于O 点.现有四个条件:①A B A C =,②O B O C =,③ABE AC D ∠=∠,④B E C D =.请你认为这四个结论正确吗?写出一个正确..的的理由。
专题课堂(四)-等腰三角形中的证明
【对应训练(xùnliàn)】 3.如图,在△ABC中,AB=AC,AD,BE是高,相交于点H,且AE=BE,求证:AH= 2BD.
证明(zhèngmíng):∵AD,BE是△ABC的高,∴∠ADB=∠AEB= 90°,又∵∠BHD=∠AHE,∴∠EBC=∠EAH,可证 △BCE≌△AHE(ASA),∴AH=BC.又∵AB=AC,AD⊥BC,∴BC =2BD,∴AH=2BD
证明:连接(liánjiē)AD.∵AB=AC,∴∠B=∠C.∵∠BAC=90°, ∴∠B+∠C=90°,∴∠B=∠C=45°.∵D是BC的中点,AB=AC, ∴AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAD=90°-∠B=45°, ∠CAD=90°-∠C=45°,∴AD=BD,∠B=∠CAD.∵AB=AC, AE=CF,∴BE=AF.在△BDE和△ADF中,∵AD=BD,∠B=∠CAD, BE=AF,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE= ∠ADF.∵∠BDE+∠EDA=90°,∴∠ADF+∠EDA=90°,即∠EDF =90°,∴△DEF是等腰直角三第四角页,共形10页。
第九页,共10页。
内容(nèiróng)总结
专题课堂(四) 等腰三角形中的证明。分析:过点E作EG∥AC交BC于G,构造等腰△EBG,可 得EB=EG=FC,再证△EGD≌△FCD即可.。【对应训练】。3.如图,在△ABC中,AB=AC,AD
No ,BE是高,相交(xiāngjiāo)于点H,且AE=BE,求证:AH=2BD. Image
=CF,∴EG=CF.在△EGD 和△FCD 中,∠∠DEDEGG==∠∠FF,DC,∴△EGD EG=FC,
≌△FCD(AAS),∴DE=DF
第三页,共10页。
专题04 等腰(直角)三角形共点综合探究问题(老师版)
专题4等腰(直角)三角形共点综合探究问题【典型例题】1.(2021·福建·龙岩二中八年级期中)问题发现:(1)如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE,①求证:△ACD ≌△BCE ;②求∠AEB 的度数.(2)拓展探究:如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高交AE 于M ,连接BE .请求∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.【答案】(1)①见解析;②∠AEB =60°(2)∠AEB =90°,AE =BE +2CM .理由见解析【解析】【分析】(1)①先证明,ACD BCE ∠=∠SAS 证明△ACD ≌△BCE 即可;②先求解120,ADC ∠=︒由△ACD ≌△BCE 可得∠ADC =∠BEC ,再利用角的和差关系可得答案;(2)先证明,135,ACD BCE ADC Ð=°V V ≌再结合全等三角形的性质与等腰直角三角形的性质可得90,AEB ∠=︒由,CM DE ^结合等腰直角三角形的性质,可得,CM DM EM ==结合全等三角形的性质可得2.AE BE CM =+(1)证明:①∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD =60°﹣∠DCB =∠BCE .在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪=⎨⎪=⎩∠∠,∴△ACD ≌△BCE (SAS ).解:②∵△ACD ≌△BCE ,∴∠ADC =∠BEC .∵△DCE 为等边三角形,∴∠CDE =∠CED =60°.∵点A ,D ,E 在同一直线上,∴∠ADC =120°,∴∠BEC =120°.∴∠AEB =∠BEC ﹣∠CED =60°.(2)解:∠AEB =90°,AE =BE +2CM .理由如下:如图2所示:由题意得:,CM DE ^∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACD =∠BCE .在△ACD 和△BCE 中,CA CB ACD BCE CD CEì=ïïÐ=Ðíï=ïî,∴△ACD ≌△BCE (SAS ).∴AD =BE ,∠ADC =∠BEC .∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一直线上,∴∠ADC =135°,∴∠BEC =135°.∴∠AEB =∠BEC ﹣∠CED =90°.∵CD =CE ,CM ⊥DE ,∴DM =ME .∵∠DCE =90°,∴DM =ME =CM .∴AE =AD +DE =BE +2CM .【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,确定每一问中的两个全等三角形是解本题的关键.【专题训练】一、解答题1.(2022·福建·厦门市第十一中学八年级期末)ABC ,CDE △均为等腰直角三角形,90ACB DCE ∠=∠=︒,点E 在AB 上;(1)求证:CDA CEB △△≌;(2)若4BC =,2AD =,求DCE 的面积.【答案】(1)见详解;(2)5.【解析】【分析】(1)利用SAS 证明CDA CEB △△≌即可;(2)过点E 作EF ⊥BC 于点F ,在Rt F C E ∆中求出EC ,再根据三角形面积公式求出即可.(1)证明:ABC ∆,CDE △均为等腰直角三角形,∴AC =BC ,EC =DC ,∠ACB =∠ECD =90︒,∴∠ACB -∠ACE =∠ECD -∠ACE ,即:∠BCE =∠ACD ,∴CDA CEB △△≌(SAS )(2)解:由(小问1)知,BE =AD 2过点E 作EF ⊥BC 于点F ,B 45∠=︒,222BF EF BE +=BF EF ∴=,222=2BF EF +,1EF ∴=413FC BC BF ∴=-=-=,22221310EC EF FC ∴=+=+=Δ11·1010522ECD S EC DC ∴===.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰三角形的性质及求三角形的面积,过点E 作EF ⊥BC 是解决本题的关键.2.(2022·江苏省锡山高级中学实验学校八年级期末)如图,在等边△ABC 中,AD 是∠BAC 的平分线,E 为线段AD 上一点,以BE 为一边且在BE 下方作等边△BEF ,连接CF .(1)求证:△ABE≌△CBF;(2)直接写出∠ACF的度数=_______.【答案】(1)见解析(2)90°【解析】【分析】(1)根据△ABC和△BEF是等边三角形,可得AB=BC,EB=BF,∠ABE=∠CBF,即可求证;(2)根据等边三角形的性质可得∠BAE=30°,∠ACB=60°,再有△ABE≌△CBF,可得∠BCF=∠BAE=30°,即可求解.(1)证明:(1)∵△ABC是等边三角形,∴AB=BC,∠ABE+∠EBC=60°,∵△BEF是等边三角形,∴EB=BF,∠CBF+∠EBC=60°,∴∠ABE=∠CBF,在△ABE和△CBF,∵AB=BC,∠ABE=∠CBF,EB=BF,∴△ABE≌△CBF(SAS);(2)解:∵等边△ABC中,AD是∠BAC的角平分线,∴∠BAE=30°,∠ACB=60°,∵△ABE≌△CBF,∴∠BCF=∠BAE=30°,∴∠ACF=∠BCF+∠ACB=30°+60°=90°.【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,熟练掌握等边三角形的性质,全等三角形的判定和性质定理是解题的关键.3.(2021·上海金山·七年级期末)如图,已知△ACM是等边三角形,点E在边CM上,以CE为边作等边△CEF,联结AE并延长交CF的延长线于点N,联结MF并延长交AC的延长线于点B,联结BN.(1)说明△ACE≌△MCF的理由;(2)说明△CNB为等边三角形的理由.【答案】(1)见解析(2)见解析【解析】【分析】(1)由△ACM 和△CEF 是等边三角形,得CA =CM ,CE =CF ,∠ACM =∠ECF =60°,再利用SAS 即可证出△ACE ≌△MCF ;(2)由△ACE ≌△MCF ,得∠CAE =∠CMF ,由∠ACN =∠ACM +∠ECF =120°,∠MCB =180°-∠ACM =120°,可得∠ACN =∠MCB ,再利用ASA 证出△ACN ≌△MCB ,得到CN =CB ,再由∠BCN =180°-∠ACM -∠ECF =60°,即可证明△CNB 是等边三角形.(1)证明:△ACM 和△CEF 是等边三角形,∴CA =CM ,CE =CF ,∠ACM =∠ECF =60°,在△ACE 和△MCF 中,CA CM ACE MCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△MCF (SAS );(2)解:∵△ACE ≌△MCF (SAS ),∴∠CAE =∠CMF ,∵∠ACN =∠ACM +∠ECF =120°,∠MCB =180°-∠ACM =120°,∴∠ACN =∠MCB ,在△ACN 与△MCB 中,CAM CMB CA CM ACN MCB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACN ≌△MCB (ASA ),∴CN =CB ,∵∠BCN =180°-∠ACM -∠ECF =60°,∴△CNB 是等边三角形.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质以及等边三角形的判定与性质是解题的关键.4.(2022·吉林·九年级期末)如图①,在等边三角形ABC 中,点D 、E 分别在边AB 、AC 上,AD AE =,连接BE 、CD ,点M 、N 、P 分别是BE 、CD 、BC 的中点,连接DE 、PM 、PN 、MN.(1)观察猜想:图①中PMN ∆是三角形(填“等腰”或“等边”);(2)探究证明:如图②,ADE ∆绕点A 按逆时针方向旋转,其他条件不变,则PMN ∆的形状是否发生改变?并说明理由.【答案】(1)等边;(2)PMN ∆的形状不发生改变,仍为等边三角形,理由见解析.【解析】【分析】(1)利用三角形的中位线定理证明PM =PN ,再证明∠MPN =60°即可解决问题;(2)△PMN 的形状不发生改变,仍为等边三角形.如图2中,连接BD ,CE .证明△ABD ≌△ACE (SAS ),即可解决问题.【详解】(1)结论:PMN ∆是等边三角形.理由:如图1中,ABC ∆是等边三角形,AB AC ∴=,60ABC ACB ∠=∠=︒,AD AE =,BD EC ∴=,PB PC =,CN ND =,BM EM =,//PN BD ∴,//PM EC ,12PN BD =,12PM EC =,PM PN ∴=,60NPC ABC ∠=∠=︒,60MPB ACB ∠=∠=︒,60MPN ∴∠=︒,PMN ∴∆是等边三角形,故答案为等边.(2)PMN ∆的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD ,CE .由旋转可得BAD CAE ∠=∠,ABC ∆是等边三角形,AB AC ∴=,60ACB ABC ∠=∠=︒又AD AE =,()ABD ACE SAS ∴∆≅∆,BD CE ∴=,ABD ACE ∠=∠,M 是BE 的中点,P 是BC 的中点,PM ∴是BCE ∆的中位线,12PM CE ∴=,且//PM CE .同理可证12PN BD =且//PN BD ,PM PN ∴=,MPB ECB ∠=∠,NPC DBC ∠=∠,()()120MPB NPC ECB DBC ACB ACE ABC ABD ACB ABC ∴∠+∠=∠+∠=∠+∠+∠-∠=∠+∠=︒,60MPN ∴∠=︒,PMN ∴∆是等边三角形.【点睛】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.5.(2021·河南·泌阳县第一初级中学八年级期中)△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合),以AD 为边在AD 右侧作等腰直角三角形ADF ,使∠DAF =90°,连接CF .(1)如图1,当点D 在线段BC 上时;证明:①BC ⊥CF②BC =CD +CF(2)如图2,当点D 在线段CB 的延长线上时,结论(1)中的①、②是否仍然成立?若成立,请给予证明:若不成立,请你写出正确结论再给予证明.【答案】(1)①证明见解析;②证明见解析(2)①BC ⊥CF 成立;②BC =CD +CF 不成立,正确结论:BC =DC ﹣CF .【解析】【分析】(1)①只要证明△ADB ≌△AFC (SAS ),利用全等三角形的性质即可解决问题;②利用全等三角形的性质可得,BD CF =再利用线段的和差可得答案;(2)结论(1)中的①成立.②不成立.结论为:BC =CD ﹣DF .同(1)证明△ABD ≌△ACF (SAS )即可解决问题.(1)证明:①△ABC 与△ADF 都是等腰直角三角形,∴AB =AC ,AD =DF ,45,45,ABC ACB ADF AFD ∠=∠=︒∠=∠=︒∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,∴△ADB ≌△AFC (SAS ),∴∠ACF =∠B =45°,∵∠ACB =45°,∴∠DCF =90°,∴BC ⊥CF ,②∵△ABD ≌△ACF ,∴CF =BD ,∵BC =BD +CD CD CF =+.(2)解:结论①成立.理由:∵△ABC 与△ADF 都是等腰直角三角形,∴AB =AC ,AD =AF ,∠DAF =∠BAC =90°,∴∠DAB =∠FAC ,∴△ABD ≌△ACF (SAS ),∴∠ABD =∠ACF ,∠ABD =∠BAC +∠ACB ,∠ACF =∠ACB +∠DCF ,∴∠DCF =∠BAC =90°,.BC CF \^②不成立,结论的:BC =CD ﹣CF∵△ABD ≌△ACF ,∴CF =BD ,∴BC =DC ﹣BD =DC ﹣CF .【点睛】本题考查考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是准确寻找全等三角形解决问题.6.(2021·江苏兴化·八年级期中)如图1,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE =90°,连接BD 、CE .(1)求证:△ABD ≌△ACE .(2)如图2,连接CD ,若BD =13,CD =5,DE =12,求∠ADC 的度数.(3)如图3,取BD ,CE 的中点M ,N ,连接AM ,AN ,MN ,判断△AMN 的形状,并说明理由.【答案】(1)见解析(2)45°(3)等腰直角三角形【解析】【分析】(1)根据SAS 证明ABD ACE ∆∆≌即可;(2)通过全等三角形的性质证得BD =CE ,再根据勾股定理的逆定理,等腰三角形的性质即可求解;(3)根据全等三角形的性质可证得AM =AN ,MAD NAE ∠=∠,由此不难判断△AMN 的形状.(1)证明:90BAC DAE ∠=∠=︒,BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠,AB AC AD AE ==,,()ABD ACE SAS ∆∆∴≌(2)解:由(1)知ABD ACE ∆∆≌,BD CE ∴=,13BD =,13CE ∴=,512CD DE ==,,222CD DE CE ∴+=,90CDE \Ð=°,在R t A D E ∆中,AD AE =,45ADE AED ∴∠=∠=︒,’904545ADC CDE ADE ∴∠=∠-∠=︒-︒=︒(3)解:△AMN 是等腰直角三角形,理由如下:由(1)知,ABD ACE ∆∆≌,BD CE ∴=,点M ,N 是BD ,CE 的中点,AM AN ∴=,MD NE=()AMD ANE SSS ∴∆∆≌,MAD NAE ∴∠=∠,90DAE DAN NAE ∠=∠+∠=︒,90DAN MAD ∴∠+∠=︒,90MAN ∴∠=︒,MAN ∴∆是等腰直角三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理的逆定理,根据图形灵活运用图形的性质是解题的关键.7.(2022·广东东莞·八年级期末)如图,在平面直角坐标系中,点A 的坐标为(1,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 轴正半轴上一动点(OC >1),连接BC ,以线段BC 为边在第四象限内作等边△CBD ,连接DA 并延长交y 轴于点E .(1)求证:△OBC≌△ABD.(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?【答案】(1)见解析;(2)点C在运动过程中,∠CAD的度数不会发生变化,∠CAD=60°;(3)当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.【解析】【分析】(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;(2)由△AOB是等边三角形知∠BOA=∠OAB=60°,再由△OBC≌△ABD知∠BAD=∠BOC=60°,根据∠CAD=180°-∠OAB-∠BAD可得结论;(3)由(2)易求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.【详解】解:(1)∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABD,在△OBC和△ABD中,∵OB ABOBC ABDCB DB=⎧⎪∠=∠⎨⎪=⎩,∴△OBC≌△ABD(SAS);(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:∵△AOB是等边三角形,∴∠BOA=∠OAB=60°,∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°-∠OAB-∠BAD=60°;(3)由(2)得∠CAD=60°,∴∠EAC=180°-∠CAD=120°,∴∠OEA=∠EAC-90°=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.【点睛】本题是三角形的综合问题,主要考查了全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是利用等腰三角形的性质求出点C的坐标.8.(2022·福建·厦门一中八年级期末)在锐角△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D.(1)如图1,过点B 作BG ⊥AC 于点G ,求证:AC =BF ;(2)动点P 从点D 出发,沿射线DB 运动,连接AP ,过点A 作AQ ⊥AP ,且满足AP AQ =.①如图2,当点P 在线线段BD 上时,连接PQ 分别交AD 、AC 于点M 、N .请问是否存在某一时刻使得△APM 和△AQN 成轴对称,若有,求此刻∠APD 的大小;若没有,请说明理由.②如图3,连接BQ ,交直线AD 与点F ,当点P 在线段BD 上时,试猜想BP 和DF 的数量关系并证明;当点P 在DB 的延长线上时,若27AD FD =,请直接写出PB BD的值.【答案】(1)证明过程见解析.(2)①存在某一时刻使得△APM 和△AQN 成轴对称,∠APD =30°,理由见解析.②BP =2DF ,47PB BD =【解析】【分析】(1)根据已知条件,证明△BDF 和△ADC 全等,即可得出AC =BF .(2)①因为∠C =60°在Rt △ABC 中∠CAD =30°,∠PAQ =90°,由对称的性质可知∠PAD =∠QAC =30°,所以可以得出∠APD =60°;②过Q 作QE ⊥AD ,交AD 与点E ,可证△APD ≌△QAE ,得出AE =PD ,再证△APD ≌△QAE ,得出EF =DF ,再通过等量代换即可.(1)证明:∵AD ⊥BC∴∠ADB =∠ADC =90°又∵∠B =45°∴△ABD 是等腰直角三角形∴AD =BD∵BG ⊥AC∴∠BGC =90°又∵∠C =60°∴∠DAC =90°-∠C =90°-60°=30°∠FBD =90°-∠C =90°-60°=30°∴∠DAC =∠FBD 在△BDF 和△ADC 中,FBD CDA BDF ADC BD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△ADC∴AC =BF(2)①存在某一时刻使得△APM 和△AQN 成轴对称∵AQ ⊥AP∴∠QAP =90°由(1)的证明知∠DAC =30°,根据对称的性质,得∠PAD =∠QAC =2QAP CAD ∠-∠=90︒︒-302=30°∵∠ADP =90°∴∠APD =90°-∠PAD =90°-30°=60°②BP =2DF理由如下:如图4所示,过Q 作QE ⊥AD ,交AD 与点E ,那么∠AEQ =∠FEQ =90°∴∠AQE +∠QAE =90°又∵∠PAD +∠QAE =90°∴∠AQE =∠PAD在△APD 和△QAE 中,AQE AEQ PDA AQ AP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△QAE∴AE =PD ;AD =QE ∴DE =BP又∵AD =BD ∴BD =QE在△QEF 和△BDF 中,QEF BDFEFQ DFB EQ DB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△QEF ≌△BDF∴EF =DF ∴BP =2DF 当点P 在DB的延长线上时,如下图所示,由上述证明过程可知PB =2DF ,BD =AD又已知27AD FD=∴DF=27 AD∴PB=2×27BD=47BD∴PB BD=47【点睛】本题考查了三角形全等的判定与性质,解题的关键是通过适当的作辅助线找等量关系从而得出三角形全等,再由全等的性质找出线段的关系,本题是一道压轴题,比较难.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形
一、内容分析
等腰三角形有以下性质:
等腰三角形有以下判定:
二、例题与练习
1.如图,△ABC中,AB=AC,分别在AB、BC的延长线上截取点G、H,使BG=BH,延长AC交GH于点K,且AK=KG,求∠BAC的度数。
2.如图,B、C、D在一直线上,ΔABC、ΔADE是等边三角形,若CE=15cm,CD=6cm,则AC=_____,
∠ECD=_____.并说明理由。
3.如图:在△ABC中,AB=AC,P为BC边上任意一点,PE⊥AB于E,PF⊥AC于F,
若AC边上的高BD=a.
(1)试证明:PE+PF=a;
(2)若点P在BC的延长线上,其它条件不变,上述结论还成立吗?如果成立请说
明理由;如果不成立,请重新给出一个关于PE,PF,a的关系式,直接写出结论不
需要说明理由.
4.在△ABC中,∠ABC 的平分线BF与∠ACB的平分线CF交与点F,过点F
做FM∥AB,FN∥AC,三角形FMN的周长等于BC长。
5.如图,在△ABC中,CE、CF分别为∠ACB和∠ACB的外角的角平分线,且EF‖BC交AC于点M.求
证:EM=MF.
6.已知:如图,在等边三角形ABC中,点D是AC边上的一个动点(D与A,C不重合),延长AB到E,使
BE=CD,连接DE交BC于点F.
(1)求证:DF=EF;
(2)若△ABC的边长为10,设CD=x,BF=y,求y与x的函数关系式,写出自变量
x的取值范围.
7.已知:如图,AD是△ABC的角平分线,∠C=2∠B,求证:AB=AC+DC
8.在△ABC中,AB=BC,∠ABC=90°,D是AB上一点,AE⊥CD交其延长线于点E,且AE=1
2
CD,BD=8cm,求
D到AC的距离.
9、如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.
(1)求证:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当α为多少度时,△AOD是等腰三角形.
三课后练习
1.如图,在△ABC中,AB=AC=32cm,DE是AB的垂直平分线,分别交AB、AC于D、E
2.已知等腰三角形的一个角为42 ,则它的底角度数_______.
3.等腰三角形的两边分别为6cm和11cm,则它的周长为 _______.
4.已知:如图,点D是∠ABC的角平分线与∠ACB的外角平分线的交点,DE∥BC,DE
交AB于点E,交AC于点F。
求证:EF=BE-CF。
分别是AB,AC上的点,且BE=AF
拓展训练:
如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证: ME=BD.。