平行四边形性质和判定综合习题精选
平行四边形性质和判定习题(答案详细)
平行四边形性质和判定习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC 于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。
平行四边形的判定与性质专项训练题
平行四边形的判定与性质专项训练题1.如图,在▱ABCD中,∠C=60°,M、N分别是AD、BC的中点.(1)求证:四边形MNCD是平行四边形;(2)若BC=2CD,MN=1,求BD的长.2.如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.(1)求证:四边形DEFB是平行四边形:(2)若∠ACB=90°,AC=6cm,DE=2cm,求四边形DEFB的面积.3.已知:如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E,F,延长DE、BF,分别交AB于点H,交BC于点G,若AD∥BC,AE=CF.(1)求证:四边形ABCD为平行四边形;(2)若∠DAH=∠GBA,GF=2,CF=4,求AD的长.4.如图,在▱ABCD中,点E、F分别是AD、BC边的中点,求证:BE∥DF.5.如图,四边形ABCD中,BD垂直平分AC,垂足为点F、E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=3,AD=4,求AC的长.6.如图,已知∠AOB,P、F是OA、OB上一点.(1)用尺规作图法作▱OPEF;(2)若∠AOB=30°,OP=4,OF=5,求OP与EF的距离.7.在Rt△ABC中,∠ACB=90°,D是斜边AB上的一点,作DE⊥BC,垂足为E,延长DE到F,连结CF,使∠A=∠F.(1)求证:四边形ADFC是平行四边形.(2)连接CD,若CD平分∠ADE,CF=10,CD=12,求四边形ADFC的面积.8.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:四边形ABFC是平行四边形;(2)若AF平分∠BAD,∠D=60°,AD=8,求▱ABCD的面积.9.已知:如图,四边形ABCD中,AB∥CD,AB=CD.求证:(1)AD=BC;(2)AD与BC的位置关系为:.10.如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.11.如图,四边形ABCD是平行四边形AE⊥BD于点E,CF⊥BD于点F,连接AF和CE.(1)证明:四边形AECF是平行四边形;(2)已知BD=6,DF=2,BC=5,求CE的长.12.如图,BC∥AD,AB∥CD.(1)求证:△ABC≌△CDA;(2)若AB=3,BC=5,求四边形ABCD的周长.13.▱ABCD中,BD是对角线,CE⊥CD交BD于E点,AF⊥AB交BD于F点,连接AE、CF.求证:四边形AECF是平行四边形.14.如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC.(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O.若AC=AB=6.5,BC=5,求线段CE的长.15.如图,已知点A,C在线段EF上,且AE=CF.作AD∥BC,DE∥BF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).16.如图,在平行四边形ABCD中,BD是它的一条对角线,过A、C两点分别作AE⊥BD,CF⊥BD,E、F为垂足.(1)求证:四边形AFCE是平行四边形.(2)若AD=13cm,AE=12cm,AB=20cm,求四边形AFCE的面积.17.已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.18.如图,在▱ABCD中,E、F分别为边BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是平行四边形.(2)当∠B=60°,AB=6时,求AD与BC之间的距离.19.如图,在平行四边形ABCD中,点O是AD的中点,连接BO并延长交CD的延长线于点E,连接BD,AE.(1)求证:四边形ABDE是平行四边形;(2)若BD=CD,判断四边形ABDE的形状,并说明理由.20.如图,在△ABC中,D是边AC的中点,连结BD并延长至点E,使DE=BD,延长BC 至点F,使CF=BC,连结AE、EF.(1)求证:四边形ACFE是平行四边形.(2)连结AF,交线段BE于点G.若△ABC的面积为2,则△ADG的面积为.21.如图,在四边形ABCD中,AB=CD,AD=BC,直线MN交BD于点O,求证:∠1=∠2.22.如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧),且∠AEB=∠CFD=90°,求证:四边形AECF是平行四边形.23.已知,如图,在▱ABCD中,点E、F分别在AD、BC上,且∠BAF=∠DCE.求证:(1)△ABF≌△CDE.(2)四边形AECF是平行四边形.24.如图,在平行四边形ABCD中,E,F分别是AB,CD边上的点,若∠AED=∠CFB,求证:四边形DEBF是平行四边形.25.如图,在等边△ABC中,D、E两点分别在边BC、AC上,BD=CE,以AD为边作等边△ADF,连接EF,CF.(1)求证:△CEF为等边三角形;(2)求证:四边形BDFE为平行四边形;(3)若AE=2,EF=4,求四边形BDFE的面积.26.如图,▱ABCD的对角线AC与BD相交于点O,点E,F分别在OB和OD上,且∠AEB =∠CFD.(1)求证:四边形AECF是平行四边形;(2)若∠AEB=90°,AE=EF=2,求线段AC的长.27.如图,在平行四边形ABCD中,对角线AC,BD交于点O,分别过点B,D作BE⊥AC,DF⊥AC,垂足分别为点E、F.(1)求证:四边形BEDF是平行四边形;(2)若DF=EF,CE=7,AB=13,求平行四边形ABCD的面积.28.(1)如图,以线段AB,BC为邻边,用尺规作图画出平行四边形ABCD(保留作图痕迹),并说明它是平行四边形的判定方法?(2)连接AC,BD,若AB=6,BC=8,求AC2+BD2的值(要有必要的过程).。
平行四边形性质判定练习题
平行四边形性质判定练习题平行四边形是几何学中常见的一个概念,它具备一些独特的性质和判定条件。
为了更好地理解和应用这些性质,下面将通过一些练习题来帮助你巩固对平行四边形的认识。
练习题一:已知四边形ABCD,AB∥CD。
如果∠BAD = 80°,则∠ADC等于多少度?解析:由于AB∥CD,根据平行线性质可知∠BAD + ∠ADC = 180°。
又∠BAD = 80°,代入得80° + ∠ADC = 180°,解方程得∠ADC = 100°。
练习题二:在平行四边形ABCD中,已知AB = 6 cm,BC = 8 cm,AD = 5 cm,求CD的长度。
解析:由平行四边形的性质可知,对角线相等,即AC = BD。
又ABCD为平行四边形,AB∥CD,所以AD与BC平行,根据平行线性质可知∠ADC = ∠CBD。
根据余弦定理,可以得出∠ADC关于边长AD、CD、AC的关系:AD² + CD² - 2·AD·CD·cos∠ADC = AC²代入已知数据,得5² + CD² - 2·5·CD·cos∠ADC = AC²根据AC = BD,即6² + 8² = 10²,可以求得AC = 10 cm。
再代入已知数据,得25 + CD² - 10·CD·cos∠ADC = 100整理得CD² - 10·CD·cos∠ADC - 75 = 0根据解一元二次方程的方法,求得CD = 15 cm。
练习题三:平行四边形ABCD中,已知AB = 7 cm,将ABCD绕点A逆时针旋转120°得到四边形A'B'C'D',连接DD'交AC于点E。
(完整版)平行四边形的性质判定练习题
第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。
变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。
例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。
变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。
例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。
变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
(完整版)平行四边形的性质和判定练习题.doc
初 2017 级寒假培训(八) A 层----平行四边形的性质与判定班级: 姓名:1.定 :两 互相平行的四 形叫做平行四 形,平行四 形 ABCD 作: □ ABCD几何 言:AB // CD , AD // BC , 四边形 ABCD 是平行四边形AD2.性 :平行四 形的 平行且相等, 角相等, 角互 , 角 互相平分;几何 言:∵四 形 ABCD 是平行四 形O∴ AD ∥ BC, _________ ( 平行); AD=BC ,__________( 相等);BCBAC BCD , _________( 角相等); BACABC 180 ⋯( 角互 ) ;OA OC ,( 角 互相平分) 。
平行四边形的判定:判定 1.两 分 平行的四 形是平行四 形 判定 2.两 分 相等的四 形是平行四 形 判定 3.两 角分 相等的四 形是平行四 形 判定 4. 角 互相平分的四 形是平行四 形 判定 5. 一 平行且相等的四 形是平行四 形; 几何 言判定 1.AB // CD , AD // BC , 四边形 ABCD 是平行四边形判定 2. AB DC , AD BC , 四边形 ABCD 是平行四边形判定 3. ABCADC , BADBCD , 四边形 ABCD 是平行四边形 判定 4. AO CO, BO DO , 四边形 ABCD 是平行四边形 判定 5.AB // CD , AB CD ,四边形 ABCD 是平行四边形夯 基 :1. 如 ,将 □ ABCD 的一 BC 延 至 E ,若∠ A =110°, ∠ 1=________.ADABADB E1 D C BCCE242. 如 ,在 □ ABCD 中, A 120,D =°.3. 在平行四 形ABCD 中, AB6cm , BC 8cm , 平行四 形ABCD 的周cm .4. 如 ,在 □ ABCD 中,已知 AD 8CM , AB 6CM , ,DE 平分 ADC 交 BC 于点 E ,则 BE 等于()A.2CMB.4CMC.6CM D .8CM5.平行四边形中一边的长为10cm,那么它的两条对角线的长度可以是()A.4cm和 6cmB.20cm和30cmC.6cm和8cmD.8cm和12cm6.在□ABCD中,对角线 AC,BD相交于点 O,若 BD与 AC的和为 18cm,CD: DA=2:3,AOB的周长为 13cm,那么 BC的长为()A. 6cmB. 9cm C .3cm D .12cm7.如图, ?ABCD 中, AC 、 BD 为对角线, BC=6 , BC 边上的高为4,则阴影部分的面积为.8. 在下面给出的条件中,能判定四边形ABCD是平行四边形的是()A. AB BC, AD CDB.AB // CD, AD BCC.AB // CD , B DD. AB, C D9. 一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是()A.88 ,108 ,88B.88 ,104 ,108 C .88 ,92 ,92 D.108 ,72 ,10810.点 A, B,C, D 在同一平面内,从①AB∥CD,② AB=CD,③ BC∥ AD,④ BC=AD 这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()种A. 3 B.4 C.5 D. 6 ADB C8.如图,在平行四边形 ABCD 中,若 AB=6 ,AD=10 ,?ABC 的平分线交 AD 于点 E,交 CD 的延长线于点 F,求 DF 的长.9. 已知:如图a,ABCD 的对角线 AC 、 BD 相交于点 O , EF 过点 O 与 AB 、 CD 分别相交于点 E 、 F .(1)求证:OE OF , AE CF , BE DF .(2)若上题中的条件都不变,将EF 转动到图 b 的位置,那么结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图 c 和图 d),结论是否成立,说明你的理由.10.已知如图, O 为平行四边形 ABCD的对角线 AC 的中点, EF 经过点 O,且与 AB 交于 E,与 CD 交于 F,求证:四边形 AECF是平行四边形。
平行四边形性质与判定练习题
平行四边形性质与判定练习题1. 平行四边形的定义平行四边形是指有四条边对两对相邻边均平行的四边形。
2. 平行四边形的性质根据平行四边形的定义,我们可以得出以下性质:- 对边相等:平行四边形的对边相等,即两对相邻边的长度相等。
- 对角线互相平分:平行四边形的两条对角线互相平分,即把平行四边形分成四个相等的三角形。
- 对角线长的一半为高:平行四边形的两条对角线交点到任意边的距离等于对角线的一半,即为平行四边形的高。
3. 判定平行四边形的条件可以利用以下条件来判定一个四边形是否为平行四边形:- 边对边平行:四边形的对边必须互相平行。
- 对角线相等:四边形的对角线必须相等。
4. 练题请回答以下平行四边形的判定练题:1. 判断四边形ABCD是否为平行四边形:- A(2, 3), B(4, 7), C(8, 5), D(6, 1)- AB = 5, BC = 3, CD = 5, DA = 3- AC ≠ BD2. 判断四边形EFGH是否为平行四边形:- E(-1, -3), F(3, -3), G(5, 1), H(1, 1)- EF = 4, FG = 5, GH = 5, HE = 4- EG = FH, EF ≠ GH3. 判断四边形IJKL是否为平行四边形:- I(-2, 1), J(-2, 4), K(2, 4), L(2, 1)- IJ = KL = 3, JK = LI = 5- IJ ≠ KL, JK = LI根据以上判定条件,我们可以得出:- 题目1的四边形ABCD不是平行四边形;- 题目2的四边形EFGH不是平行四边形;- 题目3的四边形IJKL是平行四边形。
以上是关于平行四边形性质与判定的练习题。
希望能帮助你更好地理解平行四边形和判定条件。
平行四边形性质和判定综合习题精选(答案详细)-(1)
《平行四边形性质和判定》综合练习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状2.如图,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s 的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?9.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.10.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.11.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.12.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG 是平行四边形.13.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA 和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)14.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.15.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.16.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.17.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?18.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.19.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.20.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P 从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm 的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q 运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.。
平行四边形的性质与判定典型解答题综合训练(含解析)印刷版
平行四边形的判定解答题综合训练一.解答题(共20小题)1.证明命题:如果四边形ABCD和BEFC都是平行四边形,则四边形AEFD也是平行四边形请先指出小海同学证明过程中的错误之处,并写出你的证明过程.2.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:3.如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.4.如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.5.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.6.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD 的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.7.如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB 于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.8.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.9.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.10.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.11.如图,在▱ABCD中,AF平分∠BAD交BC于点F,CE平分∠BCD交AD于点E.(1)若AD=12,AB=8,求CF的长;(2)连接BE和AF相交于点G,DF和CE相交于点H,求证:EF和GH互相平分.12.如图,平行四边形ABCD的对角线相交于点O,直线EF过点O分别交BC,AD于点E、F、C、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.13.如图,已知四边形ABCD为平行四边形,BE⊥AC于点E,DF⊥AC于点F.(1)求证:AE=CF;(2)若M、N分别为边AD、BC上的点,且DM=BN,证明:四边形MENF是平行四边形.14.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=30°,时,求D,F两点间的距离.15.如图在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点P是BC边上的一动点P 与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明不管点P在何位置,四边形PCQD始终是平行四边形.(2)当点P在点B.C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.16.如图,在▱ABCD中,G是边CD上一点,BG的延长线交AD的延长线于点E,AF=CG.(1)求证:四边形DFBG是平行四边形.(2)若∠DGE=105°,求∠AFD的度数.17.如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,(1)如图(1)求证:四边形EFGH是平行四边形;(2)如图(2)若EG平分∠HEF,在不添加辅助线的条件下,直接写出长度等于EH的线段(不包括EH)18.如图,在平行四边形ABCD中,E为AD上一点,连接EB并延长到点F,使BF=BE,连接EC并延长到点M,使CM=EC,连接FM,N为FM的中点,连接AF、DN(1)求证:四边形AFND为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FM的一半的所有线段.19.如图,在四边形ABCD中,AD∥BC,∠A=∠C,CD=2AD,BE⊥AD于点E,F为CD的中点,连接EF、BF.(1)求证:四边形ABCD是平行四边形;(2)求证:BF平分∠ABC;(3)请判断△BEF的形状,并证明你的结论.20.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE =1cm,若M、N两点同时从点D出发,到第一次相遇时停止运动.(1)求经过几秒钟M、N两点停止运动?(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;(3)设运动时间为t(s),用含字母t的代数式表示△EMN的面积S(cm2).平行四边形的判定解答题综合训练参考答案与试题解析一.解答题(共20小题)1.证明命题:如果四边形ABCD和BEFC都是平行四边形,则四边形AEFD也是平行四边形请先指出小海同学证明过程中的错误之处,并写出你的证明过程.【分析】错误之处是特例:特殊图形,应该画一般图形;画出图形,由平行四边形的性质得出AD∥BC,AD=BC,BC∥EF,BC=EF,得出AD∥EF,AD=EF,即可得出结论.【解答】解:小海同学证明过程中的错误之处是特例:特殊图形,应该画一般图形;理由如下:如图所示:∵四边形ABCD和BEFC都是平行四边形,∴AD∥BC,AD=BC,BC∥EF,BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形.2.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:【分析】连接AC,由SSS证明△ABC≌△CDA得出∠BAC=∠DCA,∠ACB=∠CAD,证出AB∥CD,BC∥AD,即可得出结论.【解答】证明:连接AC,如图所示:在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形.3.如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.【分析】首先根据四边形ABCD是平行四边形,判断出AB∥CD,且AB=CD,然后根据AE=CF,判断出BE=DF,即可推得四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,且AB=CD,又∵AE=CF,BE=DF,∴BE∥DF且BE=DF,∴四边形BFDE是平行四边形.4.如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.【分析】利用平行四边形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE(ASA),∴CD=FA,又∵CD∥AF,∴四边形ACDF是平行四边形.5.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.【分析】(1)通过证明四边形ABCE是平行四边形,可得结论;(2)由平行四边形的性质可求DE=AD=2,即可求四边形ABCE的面积.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=66.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD 的中点.求证:(1)△ADF≌△ECF.(2)四边形ABCD是平行四边形.【分析】(1)根据平行线的性质得到∠DAF=∠E,根据线段中点的定义得到DF=CF,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AD=EC,等量代换得到AD=BC,根据平行四边形的判定定理即可得到结论.【解答】证明:(1)∵AD∥BC,∴∠DAF=∠E,∵点F是CD的中点,∴DF=CF,在△ADF与△ECF中,,∴△ADF≌△ECF(AAS);(2)∵△ADF≌△ECF,∴AD=EC,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.7.如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB 于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.【分析】(1)只要证明DN∥BM,DM∥BN即可;(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;(2)解:∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=5,在Rt△AFN中,AN===13.8.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.9.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.【分析】(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;(2)四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义得到结论.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD,∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD===2.∵D是BC的中点,∴BC=2CD=4.10.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.【分析】(1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;(2)根据平行四边形的性质及(1)的结论可得BM=DN,BM∥DN,则由有一组对边平行且相等的四边形是平行四边形即可证明.【解答】证明:(1)四边形ABCD是平行四边形,∴∠DAB=∠BCD,∴∠EAM=∠FCN,又∵AD∥BC,∴∠E=∠F.∵在△AEM与△CFN中,,∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD又由(1)得AM=CN,∴BM=DN,BM∥DN,∴四边形BMDN是平行四边形.11.如图,在▱ABCD中,AF平分∠BAD交BC于点F,CE平分∠BCD交AD于点E.(1)若AD=12,AB=8,求CF的长;(2)连接BE和AF相交于点G,DF和CE相交于点H,求证:EF和GH互相平分.【分析】(1)由平行线的性质得出∠DAF=∠AFB,由已知得出∠BAF=∠DAF,得出∠AFB=∠BAF,证出BF=AB=8,即可得出答案;(2)证明△ABF≌△CDE(ASA),得出AF=CE,证出四边形AFCE是平行四边形,再证明四边形BFDE 是平行四边形,得出BE∥DF,得出四边形EGFH是平行四边形,即可得出EF和GH互相平分.【解答】(1)解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=12,∠BAD=∠BCD,∠ABF=∠CDE,AB=CD,∴∠DAF=∠AFB,∵AF平分∠BAD,∴∠BAF=∠DAF,∴∠AFB=∠BAF,∴BF=AB=8,∴CF=BC﹣BF=12﹣8=4;(2)证明:∵∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD,∴∠BAF=∠DAF=∠FCE=∠DCE,∵∠DAF=∠AFB,∴∠FCE=∠AFB,∴AF∥CE,▱ABCD中,AE∥CF,∴四边形AFCE是平行四边形,∴AE=CF,∴DE=BF,∵AD∥BC,∴四边形BFDE是平行四边形,∴BE∥DF,∵AF∥CE,∴四边形EGFH是平行四边形,∴EF和GH互相平分.12.如图,平行四边形ABCD的对角线相交于点O,直线EF过点O分别交BC,AD于点E、F、C、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.【分析】OG=OH可以根据线段之间的等量关系求出,而OE=OF则需通过证明全等得出.解本题则可利用这一判定,利用全等证明OE=OF即可证明四边形GEHF是平行四边形.【解答】证明:∵四边形ABCD为平行四边形,∴BO=DO,AD=BC且AD∥BC.∴∠ADO=∠CBO.又∵∠FOD=∠EOB,在△FOD和△EOB中∴△FOD≌△EOB(ASA).∴FO=EO.又∵G、H分别为OB、OD的中点,∴GO=HO.∴四边形GEHF是平行四边形.13.如图,已知四边形ABCD为平行四边形,BE⊥AC于点E,DF⊥AC于点F.(1)求证:AE=CF;(2)若M、N分别为边AD、BC上的点,且DM=BN,证明:四边形MENF是平行四边形.【分析】(1)由平行四边形的性质可得AB=CD,AB∥CD,由“AAS”可证△ABE≌△CDF,可得AE =CF;(2)由“SAS”可证△AME≌△CNF,可得ME=NF,∠AEM=∠CFN,可的ME∥NF,即可证四边形MENF是平行四边形.【解答】证明(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°,BE∥DF∵∠BAC=∠DCA,AB=CD,∠AEB=∠DFC=90°∴△ABE≌△CDF(AAS)∴AE=CF(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC∴∠DAC=∠BCA,∵DM=BN∴AM=CN,且∠DAC=∠BCA,AE=CF∴△AME≌△CNF(SAS)∴ME=NF,∠AEM=∠CFN∴∠MEF=∠NFE∴ME∥NF,且ME=NF∴四边形MENF是平行四边形14.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=30°,时,求D,F两点间的距离.【分析】(1)由等腰三角形的性质得出∠ABC=∠C,证出∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,得出∠DEG=∠C,证出∠F=∠DEG,得出BF∥DE,即可得出结论;(2)证出△BDE、△BEF是等腰三角形,得出BE=DE=BF,由直角三角形的性质得出BN=BD=,EN==1,BF=BE=2EN=2,FM=BF=1,得出BM=FM=,求出DM=BM+BD=3,由勾股定理即可得出答案.【解答】(1)证明:∵△ABC是等腰三角形,∴∠ABC=∠C,∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,∴∠DEG=∠C,∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC,∴∠F=∠DEG,∴BF∥DE,∴四边形BDEF为平行四边形;(2)解:作EN⊥BD于N,作FM⊥BD于M,连接DF,如图所示:∵∠C=30°,AB=AC,四边形BDEF为平行四边形;∴∠ABC=∠BFE=∠BEF=∠NBF=∠C=30°,∴△BDE、△BEF是等腰三角形,∴BE=DE=BF,∵EN⊥BD,∴BN=BD=,∴EN==1,∴BF=BE=2EN=2,∴FM=BF=1,∴BM=FM=,∴DM=BM+BD=3,由勾股定理得:DF===2,即D,F两点间的距离为2.15.如图在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点P是BC边上的一动点P 与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明不管点P在何位置,四边形PCQD始终是平行四边形.(2)当点P在点B.C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.【分析】(1)由“ASA”可证△PCM≌△QDM,可得DQ=PC,即可得结论;(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出.【解答】解:(1)∵AD∥BC∴∠QDM=∠PCM∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,DM=CM,∠QDM=∠PCM∴△PCM≌△QDM(ASA).∴DQ=PC,∵AD∥BC,∴四边形PCQD是平行四边形,∴不管点P在何位置,四边形PCQD始终是平行四边形;(2)当四边形ABPQ是平行四边形时,PB=AQ,∵BC﹣CP=AD+QD,∴9﹣CP=5+CP,∴CP=(9﹣5)÷2=2.∴当PC=2时,四边形ABPQ是平行四边形.16.如图,在▱ABCD中,G是边CD上一点,BG的延长线交AD的延长线于点E,AF=CG.(1)求证:四边形DFBG是平行四边形.(2)若∠DGE=105°,求∠AFD的度数.【分析】(1)根据全等三角形的判定和性质以及平行四边形的判定解答即可;(2)由全等三角形的性质可求解.【解答】证明:(1)∵▱ABCD,∴∠A=∠C,AD=CB,又AF=CG,∴△ADF≌△CBG(SAS)∴DF=BG,(2)∵△ADF≌△CBG,∴∠AFD=∠BGC=∠DGE=105°17.如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,(1)如图(1)求证:四边形EFGH是平行四边形;(2)如图(2)若EG平分∠HEF,在不添加辅助线的条件下,直接写出长度等于EH的线段(不包括EH)【分析】(1)由(SAS)可证△AEH≌△CGF,可得EH=GF,同理可得FE=HG,即可得结论;(2)通过证明四边形EFGH是菱形,可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,且AE=CG,AH=CF∴△AEH≌△CGF(SAS),∴EH=GF,同理EF=GH,∴四边形EFGH是平行四边形(2)∵四边形EFGH是平行四边形∴EH∥FG∴∠HEG=∠EGF∵EG平分∠HEF∴∠HEG=∠FEG∴∠EGF=∠FEG∴EF=FG,且四边形EFGH是平行四边形∴四边形EFGH是菱形,∴EH=EF=FG=GH18.如图,在平行四边形ABCD中,E为AD上一点,连接EB并延长到点F,使BF=BE,连接EC并延长到点M,使CM=EC,连接FM,N为FM的中点,连接AF、DN(1)求证:四边形AFND为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FM的一半的所有线段.【分析】(1)只要证明AD∥FM,AD=FN即可;(2)根据三角形的中位线的性质和平行四边形的性质即可得到结论.【解答】(1)证明:如图,∵EB=BF,EC=CM,∴BC∥FM,BC=FM,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥FM,∵N为FM的中点,∴FN=FM,∴AD=FN,∴四边形AFND是平行四边形;(2)解:∵四边形ABCD为平行四边形,∴AD=BC,∵BF=BE,CM=CE,∴BC=FM,∴AD=FM,∵四边形AFND是平行四边形,∴FN=AD=FM,∴MN=FM,∴长度为FH的一半的所有线段为:AD,BC,FN,MN.19.如图,在四边形ABCD中,AD∥BC,∠A=∠C,CD=2AD,BE⊥AD于点E,F为CD的中点,连接EF、BF.(1)求证:四边形ABCD是平行四边形;(2)求证:BF平分∠ABC;(3)请判断△BEF的形状,并证明你的结论.【分析】(11)由平行线的性质得出∠A+∠ABC=180°,由已知得出∠C+∠ABC=180°,证出AB∥CD,即可得出四边形ABCD是平行四边形;(2)由平行四边形的性质得出BC=AD,AB∥CD,得出∠CFB=∠ABF,由已知得出CF=BC,得出∠CFB=∠CBF,证出∠ABF=∠CBF即可;(3)作FG⊥BE于G,证出FG∥AD∥BC,得出EG=BG,由线段垂直平分线的性质得出EF=BF即可.【解答】(1)证明:∵AD∥BC,∴∠A+∠ABC=180°,∵∠A=∠C,∴∠C+∠ABC=180°,∴AB∥CD,∴四边形ABCD是平行四边形;(2)证明:∵四边形ABCD是平行四边形;∴BC=AD,AB∥CD,∴∠CFB=∠ABF,∵CD=2AD,F为CD的中点,∴CF=BC,∴∠CFB=∠CBF,∴∠ABF=∠CBF,∴BF平分∠ABC;(3)解:△BEF是等腰三角形;理由如下:作FG⊥BE于G,如图所示:∵AD∥BC,BE⊥AD,∴FG∥AD∥BC,∵F为CD的中点,∴EG=BG,∴EF=BF,∴△BEF是等腰三角形.20.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE =1cm,若M、N两点同时从点D出发,到第一次相遇时停止运动.(1)求经过几秒钟M、N两点停止运动?(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;(3)设运动时间为t(s),用含字母t的代数式表示△EMN的面积S(cm2).【分析】(1)由题意可得:M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),则可得t=30÷(2+3)=6;(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,然后设经过t秒,四点可组成平行四边形,①当构▱成▱AEMN时,10﹣2t=14﹣3t,②当构成▱AMEN时,10﹣2t=3t﹣14,继而求得答案;(3)分别从当0<t<时,当≤t<时,当<t≤5时,当5<t<6时,去分析求解即可求得答案.【解答】解:(1)∵矩形ABCD中,AB=5cm,BC=10cm,∴M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),∴t=30÷(2+3)=6(s)答:经过6s两点相遇.(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10﹣2t=14﹣3t,解得t=4;②当构成▱AMEN时,10﹣2t=3t﹣14,解得t=4.8;答:当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4s或4.8s.﹣S△DMN﹣S△CEM=×(2t+9)×5﹣×2t×3t﹣×9(3)如图(1),当0<t<时,S=S梯形CDNE×(5﹣3t)=﹣3t2+t;=EM•CD=×(14﹣3t)×5=35﹣t;如图(2),当≤t<时,S=S△EMN=×(3t﹣14)×5=t﹣35;如图(3),当<t≤5时,S=S△EMN=MN•BE=×(30﹣2t﹣3t)×1=15﹣t.如图(4),当5<t<6时,S=S△EMN。
初中数学专训:平行四边形性质和判定
初中数学组卷:平行四边形一.选择题1.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30° ②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.42.如图,点D是△ABC内一点,BD⊥CD,AD=11,BD=8,CD=6,点E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.14B.18C.21D.243.如图:在4×4的正方形(每个小正方形的边长均为1)网格中,以A为顶点,其他三个顶点都在格点(网格的交点)上,且面积为2的平行四边形的共有()个.A.10B.12C.14D.234.有两个内角分别为90°,60°,30°的完全一样的三角形拼成四边形,其形状不同的有()A.2个B.3个C.4个D.6个二.填空题5.如图,点E是平行四边形ABCD的对角线BD上一点,连接CE,若点E在线段AD的垂直平分线上,点D在线段EC的垂直平分线上,且∠DCE=66°,则∠BCE=.6.如图,在R△ABC中,∠ACB=90°,BC=3,AC=4,点M为边AC的中点,点N为边BC上任意一点,若点C关于直线MN的对称点C′恰好落在△ABC的中位线上,则CN的长为.7.如图,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.8.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接PA,以PA、PC为邻边作▱PAQC,连接PQ,则PQ的最小值为.9.如图,顺次连结△ABC三边的中点D,E,F得到的三角形面积为S1,顺次连结△CEF三边的中点M,G,H得到的三角形面积为S2,顺次连结△CGH三边的中点得到的三角形面积为S3.设△ABC的面积为S,则S1+S2+S3=.10.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A 出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动__________秒时,以点P、Q、E、F为顶点的四边形是平行四边形.11.如图,平行四边形ABCD中,∠A是它的外角的,延长CB到E,使CE=CD,过E作EF⊥CD于F,若EF=1,则DF的长等于.12.如图在平行四边形ABCD中,PQ、MN分别平行DC、AD、PQ、MN交于O点,其中S四边形AMOP=3,S四边形MBQO=4,S四边形NCQO=10,则△DMQ的面积=.三.解答题13.如图,在四边形ABCD中,∠ADC=90°,AB=AC,E,F分别为AC,BC的中点,连接EF,ED,FD.(1)求证:ED=EF;(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的长.14.如图:在平行四边形ABCD中,∠BAD=45°,∠BDA=60°,点E为线段BD边上一动点,连接AE,将△AED剪下平移到△BGC,将△ABE剪下平移到△DCF.(1)试证明点G、C、F在一条直线上.(2)判断四边形BDFG的形状,并加以证明.15.已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.17.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.求证:(1)△ABE是等边三角形;(2)△ABC≌△AED;(3)S△ABE =S△CEF.18.如图,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C 从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少?19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=8,DC=6,AD=10.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)若四边形ABQP为平行四边形,求运动时间t.(2)当t为何值时,三角形BPQ是以BQ或BP为底边的等腰三角形?20.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,∠ADC的平分线交AB于点M,交AE于点N,连接DE(1)求证:BC=CE;(2)若BC=2,∠ABC=120°,求DE的长.21.在△ABC中,BD是角平分线,点E、F分别在BC、AB边上,DE∥AB,BE=AF,EF交BD于点G.(1)如图1,求证:四边形ADEF是平行四边形;(2)如图2,若∠ABC=30°,D为AC边中点,请直接写出图中所有与BE长相等的线段.22.如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H分别是DE、BE、BC的中点.(1)求∠FGH度数;(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.23.在△ABC中,AB=AC,点P为△ABC所在平面内的一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,此时PD=0,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(2)请直接利用(1)中的结论解答下列问题:(a)如图2,当点P在△ABC内,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(b)如图3,当点P在△ABC外,猜想并写出PD、PE、PF与AB满足的数量关系.(不用说明理由)。
平行四边形的性质与判定练习题
平行四边形的性质及判定练习1.如图,O 是平行四边形ABCD 的对角线AC 的中点,E 是AO 的中点,F 是OC 的中点,连结DE 并延长交AB 于点M ,连结BF 并延长交CD 于点N 。
求证:四边形DMBN 是平行四边形。
2.如图,在平行四边形ABCD 中,已知AE,CF 分别是∠DAB, ∠BCD 的角平分线,试证明四边形AFCE 是平行四边形.3.如图,在平行四边形ABCD 中,E 、G 、F 、H 分别是各条边上的一点, 且DE=BF ,AG=CH ,求证:EF 与GH 互相平分。
4.如图, ABCD ,AE 、CF 分别与直线DB 相交于E 和F,且AE//CF ,求证:CE//AF 。
5.如图,口ABCD 中,点M 、N 是对角线AC 上的点,且AM=CN ,DE=BF 。
求证:四边形MFNE 是平行四边形。
ABCD EMNF6.如图:AD 是△ABC 的角平分线,DE ∥AB ,如果BF=AE.试说明:EF=BD7.平行四边形ABCD 中,E,F 分别是CD,AB 上的点,若AF=CE,那么BD 和EF 能互相平分吗? 说明理由。
8. 如图,在平行四边形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 交DC 的延长线于点F ,AE=3cm ,AF=7cm ,∠EAF=30°,求平行四边形ABCD 各内角的度数和周长。
9. 如图,在平行四边形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于F ,BE=3cm , DF=4cm ,∠EAF=60°,求平行四边形ABCD 的各内角的度数及边长。
10. 已知:平行四边形ABCD 中,AB=8,∠C=︒60,∠A 的平分线与∠B 的平分线相交于点E ,EF ⊥AB ,求EF 的长。
ABECDFABCDF EFEDCBAOFEDCBA。
平行四边形的性质与判定练习题
平行四边形的性质与判定练习题
平行四边形的性质
平行四边形是指具有以下性质的四边形:
- 两对对边分别相等;
- 两对对边分别平行;
- 两对对角线分别相等。
平行四边形的判定方法
平行四边形可以通过以下方法进行判定:
方法一:边长判定法
若一个四边形的两对对边分别相等,则该四边形为平行四边形。
方法二:角度判断法
若一个四边形的两对对角线所代表的角度相等,则该四边形为
平行四边形。
方法三:结合边长与角度判断法
若一个四边形的两对对边分别平行且两对对角线所代表的角度相等,则该四边形为平行四边形。
练题
1. 判定下列四边形是否为平行四边形:
正方形 ABCD,其中 AB = BC = CD = DA
矩形 EFGH,其中 EF = FG = GH = HE
菱形 IJKL,其中 IJ = JK = KL = LI
梯形 MNOP,其中 MN ∥ OP
平行四边形 QRST,其中 QR ∥ TS
2. 对于练题1中的每个四边形,判断其是否满足平行四边形的判定方法。
3. 写出一个例子,展示一种方法可以判定一个四边形是平行四边形的。
请按照题目要求回答练习题,并在回答中使用适当的数学符号和推理步骤。
平行四边形性质和判定综合习题精选(答案详细)
平行四边形测试平行四边形性质和判定综合习题精选一.解答题(共30小题)1.如图所示.□AECF的对角线相交于点O.DB经过点O.分别与AE.CF交于B.D.求证:四边形ABCD是平行四边形.2如图.已知.□ABCD中.AE=CF.M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.3如图.平行四边形ABCD.E、F两点在对角线BD上.且BE=DF.连接AE.EC.CF.FA.求证:四边形AECF是平行四边形.4.在□ABCD中.分别以AD、BC为边向内作等边△ADE和等边△BCF.连接BE、DF.求证:四边形BEDF是平行四边形.5已知:如图.在□ABCD中.对角线AC交BD于点O.四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE 都是平行四边形.6如图:□ABCD中.MN∥AC.试说明MQ=NP.7已知:如图所示.平行四边形ABCD的对角线AC.BD相交于点O.EF经过点O并且分别和AB.CD相交于点E.F.点G.H分别为OA.OC的中点.求证:四边形EHFG是平行四边形.8如图.已知在□ABCD中.E、F是对角线BD上的两点.BE=DF.点G、H分别在BA和DC的延长线上.且AG=CH.连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形;9.如图.已知△ABC是等边三角形.点D、F分别在线段BC、AB上.∠EFB=60°.DC=EF.求证:四边形EFCD是平行四边形;答案与评分标准一.解答题(共30小题)1.(2011•资阳)如图.已知四边形ABCD为平行四边形.AE⊥BD于E.CF⊥BD于F.(1)求证:BE=DF;(2)若 M、N分别为边AD、BC上的点.且DM=BN.试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。
分析:(1)根据平行四边形的性质和已知条件证明△ABE≌△CDF即可得到BE=DF;(2)根据平行四边形的判定方法:有一组对边平行且相等的四边形为平行四边形判定四边形MENF的形状.解答:(1)∵四边形ABCD是平行四边形.∴AB=CD.AB∥CD.∴∠ABD=∠CDB.∵AE⊥BD于E.CF⊥BD于F.∴∠AEB=∠CFD=90°.∴△ABE≌△CDF(A.A.S.).∴BE=DF;(2)四边形MENF是平行四边形.证明:有(1)可知:BE=DF.∵四边形ABCD为平行四边行.∴AD∥BC.∴∠MDB=MBD.∵DM=BN.∴△DNF≌△BNE.∴NE=MF.∠MFD=∠NEB.∴∠MFE=∠NEF.∴MF∥NE.∴四边形MENF是平行四边形.点评:本题考查了平行四边形的性质以及平行四边形的判定和全等三角形的判定以及全等三角形的性质.2.(2011•昭通)如图所示.▱AECF的对角线相交于点O.DB经过点O.分别与AE.CF交于B.D.求证:四边形ABCD是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质。
(完整版)平行四边形的性质及判定典型例题
平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。
平行四边形性质和判定综合习题精选(答案详细)
第十九章平行四边形性质和判定综合习题精选一.解答题(共30小题)1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.(2005•贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.三角形的中位线练习题姓名1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE 的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20mA 、20081B 、20091C 、220081D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF •的周长是( )A .10B .20C .30D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .16.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .17.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.18.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.C19.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .1、 已知在四边形ABCD 中,AB=CD ,E 、F 、G 分别是BD 、AC 、BC 的中点,H 是EF 的中点.求证:EF ⊥GH.3、如图所示,△ABC 中,AB >AC ,AD 平分∠BAC ,CD ⊥AD ,点E 是BC 的中点。
判断平行四边形练习题
判断平行四边形练习题平行四边形是一种特殊的四边形,它的特点是四条边两两平行。
在几何学中,判断平行四边形的练习题是常见的考察学生对平行四边形性质的理解和运用能力的方式之一。
本文将通过几个练习题来帮助读者掌握判断平行四边形的方法。
练习题一:已知四边形ABCD,AB∥CD,AC⊥BD,AD=BC。
判断四边形ABCD是否为平行四边形。
解析:根据题目给出的条件,我们知道AB∥CD,所以ABCD的对边是平行的。
又因为AC⊥BD,所以ABCD的一对对边是垂直的。
综合这两个条件,我们可以得出结论:四边形ABCD是一个平行四边形。
练习题二:在平行四边形ABCD中,已知AB=CD,AC⊥BD,BD=8cm,求AC的长度。
解析:根据已知条件可知AB=CD,而ABCD是一个平行四边形,所以AD∥BC。
根据三角形的性质,我们知道AC垂直于BD,所以三角形ACD和三角形ABC是相似的。
那么根据相似三角形的性质,我们可以得到一个比例关系:AC/AB=CD/BC。
由于AB=CD,化简上式可得:AC/AB=1。
所以AC=AB。
又因为AB=CD,所以AC的长度就等于CD的长度。
故AC的长度为8cm。
练习题三:已知平行四边形ABCD中,AB=5cm,BC=8cm,CD=10cm,求AD的长度。
解析:根据平行四边形的性质,我们知道AB∥CD,所以AD∥BC。
根据相似三角形的性质,我们可以得到一个比例关系:AD/AB=CD/BC。
将已知值代入上式,可得:AD/5=10/8。
通过交叉相乘得到AD=6.25cm。
练习题四:已知平行四边形ABCD中,AB=5cm,AD=7cm,∠BAD=60°,求BD的长度。
解析:根据平行四边形的性质,我们知道AB∥CD,所以AD∥BC。
根据三角形的内角和为180°的性质,我们可以得到∠ADC=180°-60°=120°。
在三角形ADC中,已知AD=7cm,AC⊥BD,所以角ADC为直角。
平行四边形的性质与判定练习题
平行四边形的性质与判定练习题
1.如图,已知E,F分别是 ABCD的边AD,BC上的点,且AE=CF,求证:BE=DF.
22,E,F是对角线BD上的两点,且DE=BF.
求证:四边形AECF•是平行四边形.
23,E,F是对角线BD所在直线上的两点,且AE∥CF。
求证:CE∥AF.
24.如图,已知AD是△ABC的边BC上的中线,△BME是△AMD绕点M按顺时针方向旋转180°得到的,连结AE,求证:DE=AC.
25
,分别延长BC ,DA 至点E ,F ,如果∠E=∠F. 求证:四边形FBED 是平行四边形.
26.如图,已知AC ∥DE 且AC=DE ,AD ,CE 交于点B ,AF ,DG 分别是△ABC ,△BDE 的中线,•求证:四边形AGDF 是平行四边形.
27.如图所示,在△ABC 中,分别以AB 、AC 、BC 为边在BC 的同侧作等边△ABD ,等边△ACE 、等边△BCF .
求证:四边形DAEF 是平行四边形.
28.如图,△ABC 是等边三角形,D ,E 分别是BC ,CA 边上的点, 且BD =CE ,以AD 为边作等边△ADF ,使点F 位于AB 的同侧. 求证:∠EFD =∠EBD .
C
A D
F
E。
判断平行四边形的性质练习题
判断平行四边形的性质练习题平行四边形是一种特殊的四边形,它具有一些独特的性质和特征。
通过判断题目中给出的练习题,我们可以进一步巩固和理解平行四边形的性质。
下面是一些练习题及其解答,帮助你更好地掌握平行四边形的相关知识。
练习题一:在平行四边形ABCD中,已知AB ║ CD,且∠A = 60°,求∠C的度数。
解答:由于AB ║ CD,因此∠A + ∠C = 180°(同位角和为180°)。
已知∠A = 60°,代入上述等式可得:60° + ∠C = 180°。
解方程得:∠C = 180° - 60° = 120°。
所以,∠C的度数为120°。
练习题二:已知平行四边形EFGH中,EF = 6cm,EH = 8cm,且∠G = 90°,求FG的长度。
解答:由于EFGH是平行四边形,因此EF ║ GH,EH ║ FG。
根据平行线性质,我们可以得到以下相应角相等的结论:∠FEH = ∠GHF (对应角相等)∠EHF = ∠FGH (对应角相等)由于∠G = 90°,可以判断EF和GH是互相垂直的边。
从而,可以得出∠FEH = ∠FGH = 90°。
根据勾股定理,我们可以得到:EF² + EH² = FH²(直角三角形的斜边的平方等于两直角边平方和)代入已知数据:6² + 8² = FH²。
解方程得:36 + 64 = FH²。
计算得:100 = FH²,可以得到FH = 10cm。
所以,FG的长度为10cm。
练习题三:在平行四边形IJKL中,已知IJ = 8cm,LK = 10cm,且IL的长度为12cm,求JK的长度。
解答:由于IJKL是平行四边形,因此IJ ║ LK,IK ║ JL。
根据平行线性质,我们可以得到以下相应角相等的结论:∠ILJ = ∠JIK (对应角相等)∠IJK = ∠LIK (对应角相等)由于IL和JK是交叉线段,可以判断IJKL为一个平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形性质和判定综合习题精选
一.解答题(共30小题)
1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.
(1)求证:BE=DF;
(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).
2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,
分别与AE,CF交于B,D.
求证:四边形ABCD是平行四边形.
3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,
垂足分别为E,F.
(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.
5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,
DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,
并加以证明.
6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.
7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.
求证:四边形AECF是平行四边形.
8.(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.
9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.
10.(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?
11.(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,
求证:AE与DF互相平分.
12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四
边形.求证:四边形ABOE、四边形DCOE都是平行四边形.
13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.
求证:EF和GH互相平分.
14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.
15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.
16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.
(1)求证:四边形GEHF是平行四边形;
(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)
17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)求证:AF=CE;
(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.
18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2
(1)求证:D是EC中点;
(2)求FC的长.
19.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;
(2)若BF=EF,求证:AE=AD.
20.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
21.(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.
(1)当AB≠AC时,证明:四边形ADFE为平行四边形;
(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.
22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、
△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如
果不是,请说明理由.
23.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.
请直接应用上述信息解决下列问题:
当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证
明.
24.(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.
探究:
(1)请猜想与线段DE有关的三个结论;
(2)请你利用图2,图3选择不同位置的点P按上述方法操作;
(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;
如果你认为你写的结论是错误的,请用图2或图3加以说明;
(注意:错误的结论,只要你用反例给予说明也得分)
(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).
25.(2005•贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;
(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;
(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;
(3)由上述实验操作过程,你发现所画的两条直线有什么规律?
26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.
(1)求CD的长;
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;
(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.
27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?
28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且
cm,,求平行四边形ABCD的面积.
29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.
(1)求D点的坐标;
(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得
的四边形A1B1C1D1四个顶点的坐标是多少?
(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?
30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,
DE⊥AF交CB于E.求证:BE=CF.。