20100510高一数学(正、余弦定理的应用举例)
正弦定理和余弦定理的应用举例(解析版)
正弦定理和余弦定理的应用举例考点梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等;(3)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.【助学·微博】解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.考点自测1.(2012·江苏金陵中学)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________.解析记三角形三边长为a-4,a,a+4,则(a+4)2=(a-4)2+a2-2a(a-4)cos120°,解得a=10,故S=12×10×6×sin 120°=15 3.答案15 32.若海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC=75°,则B,C间的距离是________海里.解析由正弦定理,知BCsin 60°=ABsin(180°-60°-75°).解得BC=56(海里).答案5 63.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为________海里/时.解析由正弦定理,得MN=68sin 120°sin 45°=346(海里),船的航行速度为3464=1762(海里/时).答案176 24.在△ABC中,若23ab sin C=a2+b2+c2,则△ABC的形状是________.解析由23ab sin C=a2+b2+c2,a2+b2-c2=2ab cos C相加,得a2+b2=2ab sin ⎝ ⎛⎭⎪⎫C +π6.又a 2+b 2≥2ab ,所以 sin ⎝ ⎛⎭⎪⎫C +π6≥1,从而sin ⎝ ⎛⎭⎪⎫C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形.答案 等边三角形5.(2010·江苏卷)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若b a +a b=6cos C ,则tan C tan A +tan C tan B 的值是________.解析 利用正、余弦定理将角化为边来运算,因为b a +a b =6cos C ,由余弦定理得a 2+b 2ab =6·a 2+b 2-c 22ab ,即a 2+b 2=32c 2.而tan C tan A +tan C tan B =sin C cos C ⎝ ⎛⎭⎪⎫cos A sin A +cos B sin B =sin C cos C ·sin Csin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 答案 4考向一 测量距离问题【例1】 如图所示,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.(1)求证:AB =BD ;(2)求BD .(1)证明 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .(2)解 在△ABC 中,AB sin ∠BCA =AC sin ∠ABC, 即AB =AC sin 60°sin 15°=32+620(km),因此,BD =32+620(km)故B 、D 的距离约为32+620 km.[方法总结] (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.(3)应用题要注意作答.【训练1】 隔河看两目标A 与B ,但不能到达,在岸边先选取相距3千米的C ,D 两点,同时测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解 如题图所示,在△ACD 中,∵∠ADC =30°,∠ACD =120°,∴∠CAD =30°,AC =CD =3(千米).在△BDC 中,∠CBD =180°-45°-75°=60°.由正弦定理,可得BC =3sin 75°sin 60°=6+22(千米).在△ABC 中,由余弦定理,可得AB 2=AC 2+BC 2-2AC ·BC cos ∠BCA ,即AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-23·6+22cos 75°=5, ∴AB =5(千米).所以两目标A ,B 间的距离为5千米.考向二 测量高度问题【例2】 (2010·江苏)某兴趣小组要测量电视塔AE 的高度H (单位:m)如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H 的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?解 (1)由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD 得H tan α+h tan β=H tan β解得H =h tan αtan α-tan β=4×1.241.24-1.20=124. 因此,算出的电视塔的高度H 是124 m.(2)由题设知d =AB ,得tan α=H d .由AB =AD -BD =H tan β-h tan β,得tan β=H -h d ,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H (H -h )d ≤h 2H (H -h ), 当且仅当d =H (H -h )d,即d =H (H -h )=125×(125-4)=555时,上式取等号.所以当d =555时,tan(α-β)最大.因为0<β<α<π2,则0<α-β<π2,所以当d =555时,α-β最大.故所求的d 是55 5 m.[方法总结] (1)测量高度时,要准确理解仰、俯角的概念.(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形应用正、余弦定理.(3)注意竖直线垂直于地面构成的直角三角形.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A 的仰角为θ,求塔高AB.解在△BCD中,∠CBD=π-α-β,由正弦定理得BCsin∠BDC=CDsin∠CBD,所以BC=CD sin∠BDCsin∠CBD=s·sin βsin(α+β)在Rt△ABC中,AB=BC tan∠ACB=s tan θsin βsin(α+β).考向三运用正、余弦定理解决航海应用问题【例3】我国海军在东海举行大规模演习.在海岸A处,发现北偏东45°方向,距离A(3-1)km的B处有一艘“敌舰”.在A处北偏西75°的方向,距离A 2 km的C处的“大连号”驱逐舰奉命以10 3 km/h的速度追截“敌舰”.此时,“敌舰”正以10 km/h的速度从B处向北偏东30°方向逃窜,问“大连号”沿什么方向能最快追上“敌舰”?解设“大连号”用t h在D处追上“敌舰”,则有CD=103t,BD=10t,如图在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22.∴∠ABC=45°,∴BC与正北方向垂直.∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即“大连号”沿东偏北30°方向能最快追上“敌舰”.[方法总结] 用解三角形知识解决实际问题的步骤:第一步:将实际问题转化为解三角形问题;第二步:将有关条件和求解的结论归结到某一个或两个三角形中.第三步:用正弦定理和余弦定理解这个三角形.第四步:将所得结果转化为实际问题的结果.【训练3】(2013·广州二测)如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上,此时到达C处.(1)求渔船甲的速度;(2)求sin α的值.解(1)依题意知,∠BAC=120°,AB=12(海里),AC=10×2=20(海里),∠BCA=α,在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28(海里).所以渔船甲的速度为BC2=14海里/时.(2)在△ABC中,因为AB=12(海里),∠BAC=120°,BC=28(海里),∠BCA=α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC=12×3228=3314.高考经典题组训练1.(四川卷改编)如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连结EC、ED,则sin∠CED=________.解析在Rt△EAD和Rt△EBC中,易知ED=2,EC=5,在△DEC中,由余弦定理得cos∠CED=ED2+EC2-CD22ED·EC=2+5-12×2×5=31010.∴sin∠CED=1010.答案10 102.(2011·新课标卷)在△ABC中,B=60°,AC=3,则AB+2BC的最大值为________.解析由正弦定理知ABsin C=3sin 60°=BCsin A,∴AB=2sin C,BC=2sin A.又A+C=120°,∴AB+2BC=2sin C+4sin(120°-C)=2(sin C+2sin 120°cos C -2cos 120°sin C)=2(sin C+3cos C+sin C)=2(2sin C+3cos C)=27sin(C +α),其中tan α=32,α是第一象限角.由于0°<C <120°,且α是第一象限角,因此AB +2BC 有最大值27.答案 273.(湖北卷改编)若△ABC 的三边长为连续三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =________.解析 由A >B >C ,得a >b >c .设a =c +2,b =c +1,则由3b =20a cos A ,得3(c+1)=20(c +2)·(c +1)2+c 2-(c +2)22(c +1)c,即3(c +1)2c =10(c +1)(c +2)(c -3),解得c =4,所以a =6,b =5.答案 6∶5∶44.(2·陕西卷)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船达到D 点需要多长时间?解 由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,所以∠ADB =180°-(45°+30°)=105°,在△ADB 中,由正弦定理得DB sin ∠DAB =AB sin ∠ADB, 所以DB =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)·sin 45°sin 45°cos 60°+cos 45°sin 60°=103(海里), 又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(海里),在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,所以CD =30(海里),则需要的时间t =3030=1(小时).所以救援船到达D 点需要1小时.(江苏省2013届高三高考压轴数学试题)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =5,b =4,cos(A -B )=3231. (Ⅰ) 求sin B 的值;(Ⅱ) 求cos C 的值.分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)________.答案 13.5 km/h2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=33×30=10 3 (m),由余弦定理得,MN = 900+300-2×30×103×32=300=10 3 (m). 答案 10 33.某人向正东方向走x km 后,他向右转150°,然后朝新方向走3 km ,结果他离出发点恰好 3 km ,那么x 的值为________.解析 如图,在△ABC 中,AB =x ,BC =3,AC =3,∠ABC =30°,由余弦定理得(3)2=32+x 2-2×3x ×cos 30°,即x 2-33x +6=0,解得x 1=3,x 2=23,经检测均合题意.答案 3或2 34.如图所示,为了测量河对岸A ,B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC=105°,∠ADC =60°,则AB 的长为________.解析 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC=60°,所以AC =a .①在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .②在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .答案 22a5.(2010·新课标全国卷)在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2,若△ADC 的面积为3-3,则∠BAC =________.解析 由A 作垂线AH ⊥BC 于H .因为S △ADC =12DA ·DC ·sin 60°=12×2×DC ·32=3-3,所以DC =2(3-1),又因为AH ⊥BC ,∠ADH =60°,所以DH =AD cos 60°=1,∴HC =2(3-1)-DH =23-3.又BD =12CD ,∴BD =3-1,∴BH =BD +DH = 3.又AH =AD ·sin 60°=3,所以在Rt △ABH 中AH =BH ,∴∠BAH =45°.又在Rt △AHC 中tan ∠HAC =HC AH =23-33=2-3, 所以∠HAC =15°.又∠BAC =∠BAH +∠CAH =60°,故所求角为60°.答案 60°6.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中,CD =10(米),∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=102(米).在Rt △ABC 中,tan 60°=AB BC ,AB =BC tan 60°=106(米).答案 10 6二、解答题(每小题15分,共30分)7.(2011·常州七校联考)如图,在半径为3、圆心角为60°的扇形的弧上任取一点P ,作扇形的内接矩形PNMQ ,使点Q 在OA 上,点N 、M 在OB 上,设矩形PNMQ 的面积为y ,(1)按下列要求写出函数的关系式:①设PN =x ,将y 表示成x 的函数关系式;②设∠POB =θ,将y 表示成θ的函数关系式;(2)请你选用(1)中的一个函数关系式,求出y 的最大值.解 (1)①∵ON =OP 2-PN 2=3-x 2,OM =33x ,∴MN =3-x 2-33x ,∴y =x ⎝⎛⎭⎪⎫3-x 2-33x ,x ∈⎝ ⎛⎭⎪⎫0,32. ②∵PN =3sin θ,ON =3cos θ,OM =33×3sin θ=sin θ,∴MN =ON -OM =3cos θ-sin θ,∴y =3sin θ(3cos θ-sin θ),即y =3sin θcos θ-3sin 2θ,θ∈⎝ ⎛⎭⎪⎫0,π3. (2)选择y =3sin θcos θ-3sin 2θ=3sin ⎝ ⎛⎭⎪⎫2θ+π6-32, ∵θ∈⎝ ⎛⎭⎪⎫0,π3,∴2θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴y max =32. 8.某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由. 解 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400= 900⎝ ⎛⎭⎪⎫t -132+300. 故当t =13时,S min =103(海里),此时v =10313=303(海里/时).即,小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t 2,∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30海里/时.故v=30海里/时时,t取得最小值,且最小值等于2 3.此时,在△OAB中,有OA=OB=AB=20海里,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/时,小艇能以最短时间与轮船相遇.。
正、余弦定理及应用举例
02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。
正、余弦定理的应用举例
正、余弦定理的应用举例2.2.2正、余弦定理的应用举例(2)知识梳理2.解斜三角形的应用问题,通常需根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出所要求的量,从而得到实际问题的解,其中建立数学模型的方法是我们的归宿,用数学手段来解决实际问题,是学习数学的根本目的。
3.解题应根据已知合理选择正余弦定理,要求算法简洁、算式工整、计算准确。
典例剖析题型一正、余弦定理在几何中的应用例1如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值解:设∠POB=θ,四边形面积为y,则在△POC中,由余弦定理得:PC2=OP2+OC2-2OP•OCcosθ=5-∴y=S△OPC+S△PCD=+(5-4cosθ)=2sin(θ-)+∴当θ-=即θ=时,ymax=2+评述:本题中余弦定理为表示△PCD的面积,从而为表示四边形OPDC面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性另外,在求三角函数最值时,涉及到两角和正弦公式sin(α+β)=sinαcosβ+cosαsinβ的构造及逆用,应予以重视题型二正、余弦定理在函数中的应用例2如图,有两条相交成角的直线、,交点是,甲、乙分别在、上,起初甲离点千米,乙离点千米,后来两人同时用每小时千米的速度,甲沿方向,乙沿方向步行,(1)起初,两人的距离是多少?(2)用包含的式子表示小时后两人的距离;(3)什么时候两人的距离最短?解:(1)设甲、乙两人起初的位置是、,则,∴起初,两人的距离是.(2)设甲、乙两人小时后的位置分别是,则,,当时,;当时,,所以,.(3),∴当时,即在第分钟末,最短。
答:在第分钟末,两人的距离最短。
评析:(2)中,分0t和t>两种情况进行讨论,但对两种情形的结果进行比较后发现,目标函数有统一的表达式,从而(3)中求最值是对这个统一的表达式进行运算的。
正余弦定理的应用举例
目录
CONTENTS
• 正弦定理的应用 • 余弦定理的应用 • 正余弦定理的综合应CHAPTER
正弦定理的应用
在三角形中的运用
01
02
03
确定三角形形状
通过正弦定理可以判断三 角形的形状,例如是否为 直角三角形、等腰三角形 或等边三角形。
计算角度
在航海中,利用正余弦定理可以计算船只的位置和航向。
建筑测量
在建筑测量中,利用正余弦定理可以计算建筑物的角度和距离。
地球科学
在地球科学中,利用正余弦定理可以计算地球的经纬度和地球自转 角速度等参数。
04
CHAPTER
特殊情况下的应用
直角三角形中的应用
01
直角三角形中,可以利用正弦定 理求出未知的边长。例如,已知 直角三角形的一个锐角和相邻的 直角边,可以求出斜边的长度。
在实际生活中的运用
测量距离
在无法直接测量距离的情 况下,可以利用正弦定理 计算出距离。
航海定位
在航海中,可以利用正弦 定理计算出船只的位置和 航向。
建筑设计
在建筑设计中,可以利用 正弦定理计算出建筑物的 角度和边长,以确保建筑 物的稳定性和美观性。
02
CHAPTER
余弦定理的应用
在三角形中的运用
特殊角度三角形中的应用
在特殊角度三角形中,如30-60-90或45-45-90等三角形中 ,可以利用正余弦定理来求解未知的边长或角度。例如,已 知30-60-90三角形的一个边长和锐角大小,可以求出另一个 边长和角度。
在特殊角度三角形中,也可以利用正弦定理来求解面积。例 如,已知30-60-90三角形的两个边长,可以求出该三角形的 面积。
数学-余弦定理正弦定理应用举例
余弦定理、正弦定理应用举例高中数学定理1.会用正弦定理、余弦定理解决生产实践中有关距离、高度、角度的测量问题.2.培养提出问题、正确分析问题、独立解决问题的能力.导语 在实践中,我们经常会遇到测量距离、高度、角度等实际问题,解决这类问题,通常需要借助经纬仪以及卷尺等测量角和距离的工具进行测量.具体测量时,我们常常遇到“不能到达”的困难,这就需要设计恰当的测量方案.一、距离问题例1 如图,为测量河对岸A ,B 两点间的距离,沿河岸选取相距40 m 的C ,D 两点,测得∠ACB =60°,∠BCD =45°,∠ADB =60°,∠ADC =30°,求A ,B 两点的距离.解 在△BCD 中,∠BDC =60°+30°=90°,∠BCD =45°,∴∠CBD =90°-45°=∠BCD ,∴BD =CD =40,BC ==40.BD 2+CD 22在△ACD 中,∠ADC =30°,∠ACD =60°+45°=105°,∴∠CAD =180°-(30°+105°)=45°.由正弦定理,得AC ==20.CD sin 30°sin 45°2在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ×BC ×cos ∠BCA=(20)2+(40)2-2×20×40cos 60°=2 400,2222∴AB =20,6故A ,B 两点之间的距离为20 m.6反思感悟 求两个不可到达的点之间的距离问题,一般是把问题转化为求三角形的边长问题,基本方法是(1)认真理解题意,正确作出图形,根据条件和图形特点寻找可解的三角形.(2)把实际问题里的条件和所求转换成三角形中的已知和未知的边和角,利用正、余弦定理求解.跟踪训练1 (1)A ,B 两地之间隔着一个山岗,如图,现选择另一点C ,测得CA =7 km ,CB =5 km ,C =60°,则A ,B 两点之间的距离为 km.答案 39解析 由余弦定理,得AB 2=CA 2+CB 2-2CA ·CB ·cos C=72+52-2×7×5×12=39.∴AB =.39(2)如图,为了测量河的宽度,在一岸边选定两点A ,B ,望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度是 m.答案 60解析 tan 30°=,tan 75°=,CD AD CDDB 又AD +DB =120,∴AD ·tan 30°=(120-AD )·tan 75°,∴AD =60,故CD =60.即河的宽度是60 m.3二、高度问题例2 如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是( )A .10 mB .10 m 2C .10 mD .10 m36答案 D 解析 在△BCD 中,CD =10 m ,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,由正弦定理,得=,BCsin ∠BDC CD sin ∠DBC 故BC ==10(m).10sin 45°sin 30°2在Rt △ABC 中,tan 60°=,ABBC 故AB =BC ×tan 60°=10(m).6反思感悟 测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解非直角三角形”结合,全面分析所有三角形,仔细规划解题思路.跟踪训练2 珠穆朗玛峰是印度洋板块和欧亚板块碰撞挤压形成的.这种挤压一直在进行,珠穆朗玛峰的高度也一直在变化.由于地势险峻,气候恶劣,通常采用人工攀登的方式为珠峰“量身高”.攀登者们肩负高精度测量仪器,采用了分段测量的方法,从山脚开始,直到到达山顶,再把所有的高度差累加,就会得到珠峰的高度.2020年5月,中国珠峰高程测量登山队8名队员开始新一轮的珠峰测量工作.在测量过程中,已知竖立在B 点处的测量觇标高10米,攀登者们在A 处测得到觇标底点B 和顶点C 的仰角分别为70°,80°,则A ,B 的高度差约为(sin 70°≈0.94)( )A .10米B .9.72米C .9.40米D .8.62米答案 C 解析 根据题意画出如图的模型,则CB =10,∠OAB =70°,∠OAC =80°,所以∠CAB =10°,∠ACB =10°,所以AB =10,所以在Rt △AOB 中,BO =10sin 70°≈9.4(米).三、角度问题例3 甲船在A 点发现乙船在北偏东60°的B 处,乙船以每小时a 海里的速度向北行驶,已知甲船的速度是每小时a 海里,问甲船应沿着什么方向前进,才能最快与乙船相遇?3解 如图所示.设经过t 小时两船在C点相遇,则在△ABC 中,BC =at (海里),AC =at (海里),3B =180°-60°=120°,由=,得BC sin ∠CAB ACsin B sin ∠CAB ====,BC sin BAC at ×sin 120°3at 32312∵0°<∠CAB <60°,∴∠CAB =30°,∴∠DAC =60°-30°=30°,∴甲船应沿着北偏东30°的方向前进,才能最快与乙船相遇.反思感悟 测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.跟踪训练3 地图测绘人员在点A 测得某一目标参照物P 在他的北偏东30°的方向,且距离为40 m ,之后该测绘人员沿正北方向行走了40 m ,到达点B .试确定此时目标参照物P 在3他北偏东的度数以及他与目标参照物P 的距离.解 如图,在△PAB 中,∠PAB =30°,PA =40(m),AB =40(m).3由余弦定理,得PB =AB 2+PA 2-2·AB ·PA ·cos ∠PAB==40(m).402+(403)2-2×40×403×cos 30°因为AB =40 m ,所以AB =PB ,所以∠APB =∠PAB =30°,所以∠PBA =120°.因此测绘人员到达点B 时,目标参照物P 在他的北偏东60°方向上,且目标参照物P 与他的距离为40 m.1.知识清单:不可到达的距离、高度、角度等实际问题的测量方案.2.方法归纳:数形结合.3.常见误区:方位角是易错点.1.若点A 在点C 的北偏东30°方向上,点B 在点C 的南偏东60°方向上,且AC =BC ,则点A 在点B 的( )A .北偏东15°方向上B .北偏西15°方向上C .北偏东10°方向上D .北偏西10°方向上答案 B解析 如图所示,∠ACB =90°.又因为AC =BC ,所以∠CBA =45°.因为β=30°,所以α=90°-45°-30°=15°.所以点A 在点B 的北偏西15°方向上.2.如图所示,设A ,B 两点在河的两岸,一测量者与A 在河的同侧,在所在的河岸边先确定一点C ,测出A ,C 的距离为50 m ,∠ACB =45°,∠CAB =105°后,可以计算出A ,B 两点的距离为( )A .50 mB .50 m 23C .25 mD. m22522答案 A 解析 ∠ABC =180°-45°-105°=30°,在△ABC 中,由=,AB sin 45°50sin 30°得AB =100×=50(m).2223.如图,要测出山上一座天文台BC 的高,从山腰A 处测得AC =60 m ,天文台最高处B 的仰角为45°,天文台底部C 的仰角为15°,则天文台BC 的高为( )A .20 mB .30 m 22C .20 mD .30 m33答案 B 解析 由题图,可得B =45°,∠BAC =30°,故BC ===30(m).AC ·sin ∠BACsin B 60sin 30°sin 45°24.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A. B. C.-1 D.-1322232答案 C解析 在△ABC 中,由正弦定理,得=,ABsin 30°AC sin 135°∴AC =100(m).2在△ADC 中,=,AC sin (θ+90°)CD sin 15°∴cos θ=sin(θ+90°)==-1.AC ·sin 15°CD 3课时对点练1.已知海上A ,B 两个小岛相距10海里,C 岛临近陆地,若从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 岛与C 岛之间的距离是( )A .10 海里B.海里31063C .5 海里D .5 海里26答案 D解析 如图所示,C =180°-60°-75°=45°,AB =10(海里).由正弦定理,得=,10sin 45°BC sin 60°所以BC =5(海里).62.(多选)某人向正东方向走了x km 后向右转了150°,然后沿新方向走了3 km ,结果离出发点恰好 km ,则x 的值为( )3A. B .2 C .2 D .333答案 AB解析 如图所示,在△ABC 中,AB =x ,BC =3,AC =,∠ABC =30°,3由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC .即()2=x 2+32-2x ·3·cos 30°.3∴x 2-3x +6=0.3解得x =2或x =.333.一艘船向正北方向航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是( )A .5 海里/时B .5海里/时2C .10 海里/时D .10海里/时2答案 D解析 如图,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,由正弦定理,可得AB =5(海里),所以这艘船的速度是10海里/时.故选D.4.从高出海平面h 米的小岛上看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为( )A .2h 米 B.h 米 C.h 米 D .2h 米232答案 A解析 如图所示,BC =h ,AC =h ,3∴AB ==2h .3h 2+h 2即此时两船间的距离为2h 米.5.如图所示,为测量一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点测得建筑物顶端的仰角分别为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A .(30+30)mB .(30+15)m 33C .(15+30)mD .(15+15)m33答案 A 解析 在△PAB 中,∠PAB =30°,∠APB =15°,AB =60 m ,sin 15°=sin(45°-30°)=sin45°cos 30°-cos 45°sin 30°=,由正弦定理,得PB ==30(+)m ,所以6-24AB sin 30°sin 15°62建筑物的高度为PB sin 45°=30(+)×=(30+30)m.622236.甲骑电动车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是 ( )A .6 kmB .3 kmC .3 kmD .3 km32答案 C解析 由题意知,AB =24×=6(km),∠BAS =30°,∠ASB =75°-30°=45°.14由正弦定理,得BS ===3(km).AB sin ∠BAS sin ∠ASB 6sin 30°sin 45°27.一角槽的横断面如图所示,四边形ABED 是矩形,已知∠DAC =50°,∠CBE =70°,AC =90,BC =150,则DE = .答案 210解析 由题意知∠ACB =120°,在△ACB 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =902+1502-2×90×150×=44 100.(-12)∴AB =210,DE =210.8.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向上,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°方向上,这时船与灯塔间的距离为 km.答案 302解析 如图所示,在△ABC 中,∠BAC =30°,∠ACB =105°,则∠ABC =45°,AC =60(km),根据正弦定理,得BC ===30(km).AC sin ∠BAC sin ∠ABC 60sin 30°sin 45°29.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距6 n mile ,渔船乙以5 n mile/h 的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2 h 追上.(1)求渔船甲的速度;(2)求sin α.解 (1)依题意,知∠BAC =120°,AB =6,AC =5×2=10.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =62+102-2×6×10×cos 120°=196,解得BC =14,v 甲==7,BC 2所以渔船甲的速度为7 n mile/h.(2)在△ABC 中,AB =6,∠BAC =120°,BC =14,∠BCA =α.由正弦定理,得=,AB sin αBC sin 120°即sin α===.AB sin 120°BC 6×3214331410.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径:一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .山路AC 长为1 260 m ,经测量,cos A =,cos C =,求索道AB 的长.121335解 在△ABC 中,因为cos A =,cos C =,121335所以sin A =,sin C =.51345从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =×+×=.513351213456365由=,AB sin C ACsin B 得AB =·sin C =×=1 040(m).AC sin B 1 260636545所以索道AB 的长为1 040 m.11.(多选)如图所示,为了测量某湖泊两侧A ,B 间的距离,李宁同学首先选定了与A ,B 不共线的一点C ,然后给出了三种测量方案(△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ),则一定能确定A ,B 间距离的所有方案为( )A .测量A ,B ,bB .测量a ,b ,C C .测量A ,B ,aD .测量A ,B ,C答案 ABC 解析 对于A ,利用内角和定理先求出C =π-A -B ,再利用正弦定理=解出c ;b sin B csin C 对于B ,直接利用余弦定理c 2=a 2+b 2-2ab cos C 即可解出c ;对于C ,先利用内角和定理求出C =π-A -B ,再利用正弦定理=解出c ;对于D ,不知道长度,显然不能求asin A c sin C c .12.如图所示,D ,C ,B 在地平面同一直线上,DC =10 m ,从D ,C 两地测得A 点的仰角分别为30°和45°,则A 点离地面的高AB 等于( )A .10 mB .5 m 3C .5(-1) mD .5(+1) m 33答案 D解析 方法一 设AB =x ,则BC =x .∴BD =10+x .∴tan ∠ADB ===.ABDB x 10+x 33解得x =5(+1)(m).3∴A 点离地面的高AB 等于5(+1) m.3方法二 ∵∠ACB =45°,∠ADC =30°,∴∠CAD =45°-30°=15°.由正弦定理,得AC =·sin ∠ADCCDsin ∠CAD =·sin 30°=5(+)(m).10sin 15°62∴AB =AC sin 45°=5(+1)(m).3即A 点离地面的高AB 等于5(+1)(m).313.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°答案 B解析 依题意,可得AD =20,AC =30,105又CD =50,所以在△ACD 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD ===,(305)2+(2010)2-5022×305×2010 6 0006 000222又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.14.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m答案 A解析 如图,设水柱的高度是h m ,水柱底端为C ,则在△ABC 中,∠BAC =60°,AC =h ,AB =100,BC = h ,根据余弦定理得,(h )2=h 2+1002-2×h ×100×cos 60°,33即h 2+50h -5 000=0,即(h -50)(h +100)=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.15.在某次地震时,震中A (产生震动的中心位置)的南面有三座东西方向的城市B ,C ,D .已知B ,C 两市相距20 km ,C ,D 两市相距34 km ,C 市在B ,D 两市之间,如图所示,某时刻C 市感到地表震动,8 s 后B 市感到地表震动,20 s 后D 市感到地表震动,已知震波在地表传播的速度为每秒1.5km ,则震中A 到B ,C ,D 三市的距离分别为.答案 km , km , km132********解析 由题意得,在△ABC 中,AB -AC =1.5×8=12(km).在△ACD 中,AD -AC =1.5×20=30(km).设AC =x (km),则AB =(12+x )(km),AD =(30+x )(km).在△ABC 中,cos ∠ACB =x 2+400-(12+x )22×20×x==,256-24x40x 32-3x 5x 在△ACD 中,cos ∠ACD =x 2+1 156-(30+x )268x ==.256-60x68x 64-15x 17x ∵B ,C ,D 在一条直线上,∴=-,64-15x17x 32-3x 5x 即=,64-15x 173x -325解得x =.即AC =(km).487487∴AB =(km),AD =(km).1327258716.如图,在海岸A 处发现北偏东45°方向,距A 处(-1)海里的B 处有一艘走私船.在A 3处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以10 海里/时的速度追截走私3船,此时走私船正以10海里/时的速度,从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =10t ,BD =10t ,3在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC=(-1)2+22-2(-1)·2·cos 120°=6.33∴BC =.又∵=,6BC sin ∠BAC ACsin ∠ABC ∴sin ∠ABC ===,AC ·sin ∠BAC BC 2·sin 120°622又0°<∠ABC <60°,∴∠ABC =45°,∴B 点在C 点的正东方向上,∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得=,BDsin ∠BCD CD sin ∠CBD ∴sin ∠BCD ===.BD ·sin ∠CBDCD 10t ·sin 120°103t 12又∵0°<∠BCD <60°,∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°,∴∠CDB =30°,∴BD =BC ,即10t =.6∴t =(小时)≈15(分钟).610∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.。
正弦定理余弦定理应用举例
正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。
(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。
(完整版)正弦定理、余弦定理综合应用典型例题
正弦定理、余弦定理综合应用例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭. 3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,.例2.已知ABC △1,且sin sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=,两式相减,得1AB =.(II )由ABC △的面积11sin sin 26BC AC C C =,得13BC AC =,由余弦定理,得222cos 2AC BC AB C AC BC +-= 22()2122AC BC AC BC AB AC BC +--==, 所以60C =.例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π.例4.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,c =3b.求ac的值;解:由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-= 故3a c =例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===,则cos cos cos bc A ca B ab C ++的值为 . 612例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos _________________.3例7.(2009年广东卷文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=,则b =【解析】0000000sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=由62a c ==+可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得sin 2sin a b B A =⋅=, 例8.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 2 ,AC 的取值范围为 (2,3) .解: 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2cos (2,3).AC θ∴=∈例9.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠。
正余弦定理和应用举例
第六节 正余弦定理和应用举例1、正弦定理:R Cc B A 2sin sin sin ===.(其中R 为ABC ∆外接圆的半径) 2sin ,2sin ,2sin ;a R A b R B c R C ⇔===sin ,sin ,sin ;222a b c A B C R R R⇔=== ::sin :sin :sin .a b c A B C ⇔=用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。
2、余弦定理: 2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos ,2cos ,2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩ 用途:⑴已知三角形两边及其夹角,求其它元素;⑵已知三角形三边,求其它元素。
做题中两个定理经常结合使用.3、三角形面积公式:B ac A bcC ab S ABC sin 21sin 2sin 2===∆ 4、三角形内角和定理:()C C A B ππ+=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5、一个常用结论:sin sin ;b A B A B ⇔>⇔>若sin 2sin 2,.2A B A B A B π==+=则或特别注意,在三角函数中,sin sin A B A B >⇔>不成立。
1、已知锐角ABC ∆的面积为,3,4,33==CA BC 则.______=∠C2、已知ABC ∆,内角A,B,C 的对边分别是a,b,c, ,60,3,20===B b a则.__________=∠A3、已知ABC ∆,内角A,B,C 的对边分别是a,b,c, ,1,3,3===∠b a A π则.______=c 4、在锐角ABC ∆中,角A,B,C 的对边分别是a,b,c, ,sin 4A b a =则.______cos =B5、已知ABC ∆的三个内角A 、B 、C 成等差数列,且AB=1,BC=4,则边BC 上的中线AD 的长为_________.1、如图,在ABC ∆中,已知,45o =∠B D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.2、在ABC ∆中,内角A,B,C 的对边分别是a,b,c.若,sin 32sin ,322B C bc b a ==-则A=_________.3、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,且).sin 2(sin )2(sin 2c b c B c b A a +++= (1)求A 的大小;(2)若,1sin sin =+C B 试判断ABC ∆的形状.1、设ABC ∆的内角A,B,C 的对边分别是a,b,c,且.24333222bc a c b =-+(1)求A sin 的值;(2)求A C B A 2cos 1)4sin()4sin(2-+++ππ的值.2、在ABC ∆中,.sin sin sin sin 2)sin(sin sin B A C A B A B A +-=+- B(1)求角B ;(2)若,53sin =A 求C cos 的值.3、在ABC ∆中,,tan tan 22A b B a =则角A 与角B 的关系是( )B A A =. 90.=+B A B B AC =.或 90=+B A B AD =.且 90=+B A 4、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,若bc a c b 3222=-+且,3a b =则ABC ∆不可能是( )A.等腰三角形B.钝角三角形C.直角三角形D.锐角三角形5、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,且,22cos 2cc b A +=则ABC ∆一定是( )A.等边三角形B.直角三角形C.等腰直角三角形D.无法确定6、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,如果c b a ,,成等差数列,,30 =∠B ABC ∆的面积为,23则b=_________. 7、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,且满足:.cos cos cos 2C b B c B a +=(1)求角B;(2)若,32,5==∆ABC S b 求c a +的值.8、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,.3,54cos ,3===b A B π (1)求C sin 的值;(2)求ABC ∆的面积.9、已知锐角ABC ∆的三个内角分别为A ,B ,C ,向量),sin 22,sin (cos A A A p -+=向量),sin 1,sin (cos A A A q +-=且.q p ⊥(1)求角A ;(2)设,sin sin sin ,3222C B A AC =+=求ABC ∆的面积.10、在ABC ∆中,c b a ,,分别为内角A,B,C 的对边,设S 为ABC ∆的面积,满足).(43222c b a S -+=(1)求角C 的大小;(2)求B A sin sin +的最大值.11、在平面直角坐标系xoy 中,点)cos ,21(2θP 在角α的终边上,点)1,(si 2-θn Q 在角β的终边上,且.21-=⋅OQ OP(1)求θ2cos 的值;(2)求)sin(βα+的值.。
数学(正、余弦定理的应用举例)
A
a sin a sin b h = H - A D = H - A C sin b = H sin( b - a )
D
A
问题探究
5.一辆汽车在一条水平的公路上向正西方 向行驶,到A处时测得公路北侧远处一山顶D 在西偏北15°方向上,行驶5km后到达B处, 测得此山顶在西偏北25°方向上,仰角为8° 求此山的高度CD.
D
1047m
C 西 B A 东
课堂小结
1.在测量上,根据测量需要适当确 定的线段叫做基线.
课堂小结
问题探求
4 .如图,在山顶上有一座铁塔BC, 塔顶和塔底都可到达,A为地面上一点, 通过测量哪些数据,可以计算出山顶 的高度?
B
C
A
问题解决
设在点A处测得点B、C的仰角分别为 α 、β ,铁塔的高BC=a,测角仪的高 度忽略不计,试求山顶高度 CD . B
C
a cos sin CD AC sin sin( )
C
A
2 如图,有大小两座塔AB和CD,小 塔的高为h,在小塔的底部A和顶部B测得 另一塔顶D的仰角分别为α 、β ,求塔CD 的高度. D
h cos sin CD AD sin sin( )
B
A
C
如图,设飞机在飞临山顶前,在B、C两 处测得山顶A的俯角分别是α 、β,B、C 两点的飞行距离为a,飞机的海拔飞行高 度是H,试求山顶的海拔高度h .
4.计算物体的高度时,一般先根据测量 数据,利用正弦定理或余弦定理计算出 物体顶部或底部到一个可到达点的距离, 再解直角三角形求高度.
补充练习
1 如图,在高出地面30m的小山顶上 建有一座电视塔AB,在地面上取一点C, 测得点A的仰角的正切值为0.5,且∠ACB =45°,求该电视塔的高度.
正、余弦定理应用举例
正、余弦定理应用举例正弦定理、余弦定理沟通了三角形中边与角的关系,用这两个定理可以实现边与角的互化,从而简化过程,指明解题方向.下面举例说明正、余弦定理在解题中的具体应用.(以下例题中角A B C ,,所对应的边分别为a b c ,,)1.判断三角形的形状对于同时含有边角关系的条件式,可用余弦定理化角为边,通过熟知的代数式变形来求解;也可用正弦定理化边为角,再用相应的三角公式求解.例1 在ABC △中,已知22(cos cos )()cos a b B c C b c A -=- ,试判断ABC △的形状. 解:根据余弦定理,得22222222222()222a c b a b c b c a a b c b c ac ab bc ⎛⎫+-+-+--=- ⎪⎝⎭, 整理得22222()()0b c b c a -+-=,因此b c =或222b c a +=,所以三角形为等腰三角形或直角三角形.例2 在ABC △中,如果cos cos a B a C b c +=+,试判断ABC △的形状. 解:根据正弦定理,得sin (cos cos )sin sin A B C B C +=+, 即2sincos 2cos cos 2sin cos 222222A ABC B C B C B C +-+-= , 在ABC △中,∵cos sin 22A B C +=,sin cos 22A B C +=, 上式可化简为22sin 12A =,∴2cos 12sin 1102A A =-=-=. 又0πA <<,∴π2A =. 故ABC △为直角三角形. 2.求三角函数的值对于三角形中的求值问题,通常将各三角函数式化为正弦、余弦的形式,为运用正弦定理和余弦定理创造条件.例3 在ABC △中,如果222225a b c +=,求cot cot cot C A B+的值. 解:cos cot sin cos cos cot cot sin sin CC C A B A B A B=++ 2sin sin cos sin sin cos sin cos cos sin sin sin A B C A B C B A B A C C==+ , 由正弦定理和余弦定理可知22222222cot cot cot 22C ab a b c a b c A B c ab c +-+-==+ ,将已知条件222225a b c +=代入上式得2225cot 32cot cot 24c c C A B c -==+. 3.证明三角恒等式对于三角形中边角关系的证明问题,可以用正弦定理、余弦定理,实现边的关系与角的关系的相互转化,从而达到证明的目的.例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:∵2222cos 2222a c b bc c b c a B ac ac a b+-++====, ∴22222222222cos 22cos 1214222a a b b bc b c b B B b b b b -+--=-=⨯-===. 又222222()cos 222b c a b c bc b c b A bc bc b+-+-+-===, ∴cos cos 2A B =,而A B ,是三角形的内角,∴2A B =.4.在解析几何中的应用例5 已知点P 到两定点(10)M -,、(10)N ,点N 到直线PM 的距离为1,求直线PN 的方程.分析:如右图,求出直线PN 的斜率即可,问题转化为在PMN △中求PNM ∠,由正弦定理易求得sin PNM ∠. 解:因为2MN =,点N 到直线PM 的距离为1,∴30PMN ∠=. 由正弦定理,得sin sin PM PN PNM PMN =∠∠,又PMPN =sin PNM ∠=, ∴45PNM ∠= 或135 ,∴直线PN 的倾斜角为45 或135 ,∴1PN k =±,∴直线PN 的方程为1y x =-或1y x =-+.。
正、余弦定理在实际生活中的应用
正、余弦定理在实际生活中的应用正、余弦定理是解决三角形中各种角和边的关系的数学定理,在实际生活中有着广泛的应用。
无论是建筑设计、地理测量、航海航空还是工程建设中,都需要利用正、余弦定理来解决问题。
首先,正、余弦定理在建筑设计中有着重要的应用。
在设计建筑物的过程中,设计师需要考虑到各个角度和边的关系,确保建筑物的结构稳固。
正、余弦定理可以帮助设计师计算出各个角的大小,以及边的长度,从而确保建筑物的各个部分都符合设计要求。
其次,正、余弦定理在地理测量中也有着重要的应用。
地理测量需要测量地表上各种地理现象的位置和距离,这就需要考虑到三角形的各个角和边的关系。
利用正、余弦定理,地理测量员可以计算出地表上各种地理现象之间的距离和方向,从而为地理学研究提供数据支持。
此外,正、余弦定理在航海航空中也有着重要的应用。
航海员和飞行员需要根据地图上的各种地理现象和飞行路径来确定航行方向和
距离。
利用正、余弦定理,航海员和飞行员可以计算出航行方向和距离,确保航行的安全和准确。
最后,正、余弦定理在工程建设中也有着重要的应用。
工程建设需要考虑到各种地形和地貌的情况,从而确定工程设计方案和施工路径。
利用正、余弦定理,工程师可以计算出各种地形和地貌之间的距离和角度,从而确保工程建设的顺利进行。
综上所述,正、余弦定理在实际生活中有着广泛的应用。
无论是建筑设计、地理测量、航海航空还是工程建设中,都需要利用正、余弦定理来解决各种问题。
正、余弦定理的应用不仅帮助我们解决各种实际问题,还为我们的生活和工作提供了便利和支持。
因此,正、余弦定理在实际生活中的应用是非常重要的。
余弦定理的应用举例
余弦定理的应用举例一、余弦定理的应用实例1、三角形中,两个内角的余弦值的乘积等于另外一个角的余弦的平方:如果,在三角形ABC中,有cosA∙cosC=cosB^2,则称这个余弦定理为“半珠定理”。
这是余弦定理的一个特殊情况。
2、求立体角的大小:如果有两个线段,AB和CD的长度,以及两个线段之间的夹角的余弦值是已知的,那么就可以利用余弦定理来求出两个线段之间的夹角的大小,即:cosα=(b^2+c^2-a^2)÷2bc。
3、利用角等式求直线交点:若已知有两个直线AD,BE,它们的斜率是已知的,利用余弦定理,可以求出两条直线的夹角θ,即:cosθ=(k1^2+k2^2-1)÷2k1k2,然后可以利用角等式求出两线段的交点坐标。
4、利用余弦定理解决抛物线问题:抛物线是一类特殊的曲线,它有着特定的飞行轨迹,当物体经过垂点的时候,它的速度大小为零,受力也会变化,那么要想计算出抛物线的轨迹,就可以利用余弦定理来进行计算,即计算出受力大小以及受力角度,从而得出抛物线的轨迹。
5、求平面角的大小:要计算出平面角的大小,需要通过计算正多边形的内角的余弦和,以及计算正多边形内顶点的凸度来计算出平面角的大小,即:cosλ=(x1*x2+y1*y2)÷(|x1|*|x2|+|y1|*|y2|),其中,x1、y1、x2、y2分别表示两个顶点的横纵坐标。
二、总结从上面可以看出,余弦定理在几何和三角学中有着多种应用,可以用来计算和求解三角形中角、立体角、全平面角的大小,可以用来利用角等式求出两条直线交点的坐标,甚至可以用来求解抛物线的轨迹。
因此,余弦定理在几何和三角学中非常重要,学习时要认真学习,熟练掌握,深入理解,才能运用起来方便、准确。
正弦定理和余弦定理的应用举例
正弦定理和余弦定理的应用举例1.实际测量中的常见问题判断正误(正确的打“√”,错误的打“×”) (1)东北方向就是北偏东45°的方向.()(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为⎣⎡⎦⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( ) (5)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( )答案:(1)√ (2)× (3)× (4)√ (5)√若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B.如图所示,∠ACB =90°,又AC =BC ,所以∠CBA =45°,而β=30°,所以α=90°-45°-30°=15°. 所以点A 在点B 的北偏西15°.(教材习题改编)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h. 解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点间的距离为________.解析:由正弦定理得 AB =AC ·sin ∠ACB sin B =50×2212=502(m).答案:50 2 m如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析:因为∠D =30°,∠ACB =60°, 则∠CAD =30°,所以CA =CD =a , 所以AB =a sin 60°=32a . 答案:32a测量距离[典例引领]如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B 点出发到达C 点)【解】 在△ABD 中,由题意知,∠ADB =∠BAD =30°,所以AB =BD =1,因为∠ABD =120°,由正弦定理得AB sin ∠ADB =AD sin ∠ABD ,解得AD =3,在△ACD 中,由AC 2=AD 2+CD 2-2AD ·CD ·cos 150°, 得9=3+CD 2+23×32CD , 即CD 2+3CD -6=0,解得CD =33-32, BC =BD +CD =33-12, 2个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在2个小时内徒步登上山峰.若本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,则这条索道AC 长为________.解析:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD,所以200sin 30°=AD sin 120°.所以AD =200×sin 120°sin 30°=200 3(m).在△ADC 中,DC =300 m ,∠ADC =150°, 所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(200 3)2+3002-2×2003×300×cos 150° =390 000,所以AC =10039. 故这条索道AC 长为10039 m. 答案:10039 m距离问题的类型及解法(1)测量距离问题分为三种类型:两点间不可达又不可视、两点间可视但不可达、两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.如图,隔河看两目标A 与B ,但不能到达,在岸边先选取相距 3 km 的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°, 所以AC =CD = 3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°. 所以BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos 75° =3+2+3-3=5,所以AB = 5 km ,测量高度[典例引领]如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.【解析】 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 【答案】 1006求解高度问题的注意事项(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.(2018·湖北省七市(州)协作体联考)如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.解析:由题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,所以由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝⎛⎭⎫-12,解得h =1039,故塔的高度为1039 m. 答案:1039测量角度[典例引领]一艘海轮从A 出发,沿北偏东75°的方向航行(23-2)n mile 到达海岛B ,然后从B 出发,沿北偏东15°的方向航行4 n mile 到达海岛C .(1)求AC 的长;(2)如果下次航行直接从A 出发到达C ,求∠CAB 的大小. 【解】 (1)由题意,在△ABC 中,∠ABC =180°-75°+15°=120°,AB =23-2,BC =4, 根据余弦定理得AC 2=AB 2+BC 2-2AB ×BC ×cos ∠ABC =(23-2)2+42+(23-2)×4=24, 所以AC =2 6.(2)根据正弦定理得,sin ∠BAC =4×3226=22,所以∠CAB =45°.解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.[通关练习]1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北的方向前进.解析:设两船在C 处相遇,则由题意∠ABC =180°-60°=120°,且ACBC =3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进. 答案:30°2.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型; (2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.易错防范(1)易混淆方位角与方向角概念:方位角是指正北方向与目标方向线(按顺时针)之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.(2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D.由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 km D .60 2 km解析:选B.如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°, 所以∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BM sin 30°,解得BM =302,故选B.3.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h解析:选B.设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°解析:选B.依题意可得AD =2010(m),AC =305(m),又CD =50(m), 所以在△ACD 中,由余弦定理得 cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°. 5.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .5 km B .10 km C .5 3 kmD .5 2 km解析:选C.作出示意图(如图),全国名校高考数学复习优质学案汇编(理科,附详解)点A 为该船开始的位置,点B 为灯塔的位置,点C 为该船后来的位置,所以在△ABC 中,有∠BAC =60°-30°=30°,B =120°,AC =15,由正弦定理,得15sin 120°=BC sin 30°, 即BC =15×1232=53,即这时船与灯塔的距离是5 3 km. 6.海上有A ,B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛间的距离是________ n mile.解析:如图,在△ABC 中,AB =10,A =60°,B =75°,C =45°,由正弦定理,得AB sin C =BC sin A , 所以BC =AB ·sin A sin C =10×sin 60°sin 45°=56(n mile).答案:5 67.如图,为了测量河的宽度,在一岸边选定两点A 、B 望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则这条河的宽度为________.解析:如图,在△ABC 中,过C 作CD ⊥AB 于D 点,则CD 为所求河的宽度.在△ABC 中,因为∠CAB =30°,∠CBA =75°,所以∠ACB =75°,所以AC =AB =120 m.在Rt △ACD 中,CD =AC sin ∠CAD。
解三角形在现实生活中的应用——正,余弦定理
解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
正、余弦定理应用1例
正、余弦定理应用1例正、余弦定理,也称正弦余弦定理,是数学中的三角函数中的一个重要定理,它定义了三角形的各边之间的关系。
正、余弦定理可以用于求解多边形的周长、内角大小,以及特定的多边形的面积等。
下面通过一个实例,来讲解正、余弦定理的应用。
在这个实例中,我们要求解一个三角形的面积。
设三角形ABC有如下边长:AB= 8 cm,BC= 5 cm,CA=6 cm,角A、B、C的大小分别为α、β、γ。
为了求解三角形ABC的面积,我们可以使用正、余弦定理。
正、余弦定理表示为:a^2 = b^2 + c^2 2bc*cosα其中a、b、c分别为α、β、γ三个内角所对应的边长,α、β、γ分别为三角形ABC的三个内角。
根据正、余弦定理,我们可以求得角α的余弦值为:cosα = (b^2 + c^2 a^2 )/2bc知道α的余弦值后,再根据求余弦函数的逆函数,我们可以求得α的大小,即为α = arccos((b^2 + c^2 a^2 )/2bc)在计算α之后,只需要使用三角形面积公式,即可求出三角形ABC的面积:面积 = 1/2a*b*sinα这里,a、b、α分别为AB、BC、α的值。
根据上面的分析,可以得出三角形ABC的面积为:面积 = 1/2 * 8 * 5 * sin(arccos((5^2 + 6^2 8^2 )/2*5*6)) = 10 * sin(arccos(-3/60))最终可以得出,三角形ABC的面积为10 * sin(105°) 7.86 cm。
通过本文的实例,我们可以看出,正、余弦定理可以用来求解三角形的一些其它量。
而求解三角形的面积时,我们还需要结合三角形面积公式。
此外,这个定理不但可以用于求解三角形的量,它还可以用来求解任意多边形的量,这是它比较特殊的一个地方。
以上就是正、余弦定理应用1例的介绍。
正、余弦定理是数学中应用比较广泛的一个定理,其应用范围不仅仅局限于求解三角形的量,它还可以用于求解任意多边形的量。
高一数学中如何运用正弦定理和余弦定理
高一数学中如何运用正弦定理和余弦定理在高一数学的学习中,正弦定理和余弦定理是解决三角形问题的重要工具。
它们不仅在数学领域有着广泛的应用,在实际生活中的测量、建筑、导航等方面也具有重要意义。
接下来,让我们一起深入探讨如何巧妙地运用这两个定理。
首先,我们来了解一下正弦定理。
正弦定理的表达式为:$\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的三条边,$A$、$B$、$C$分别为它们所对应的角。
正弦定理主要用于以下几种情况:一是已知三角形的两角和一边,求其他两边和一角。
例如,已知角$A$、$B$和边$a$,我们可以先通过三角形内角和为$180^{\circ}$求出角$C$,然后利用正弦定理$\frac{a}{\sin A} =\frac{b}{\sin B}$求出边$b$,再用$\frac{a}{\sin A} =\frac{c}{\sin C}$求出边$c$。
二是已知两边和其中一边的对角,求另一边的对角。
假设已知边$a$、$b$和角$A$,通过正弦定理$\frac{a}{\sin A} =\frac{b}{\sin B}$,可以求出角$B$。
但需要注意的是,这种情况下可能会出现一解、两解或无解的情况。
当角$A$为锐角时,若$a < b\sin A$,则无解;若$a = b\sin A$,则有一解;若$b\sin A < a < b$,则有两解;若$a \geq b$,则有一解。
当角$A$为钝角或直角时,若$a > b$,则有一解;若$a \leq b$,则无解。
接下来,我们再看看余弦定理。
余弦定理的表达式有两个:$a^2= b^2 + c^2 2bc\cos A$,$b^2 = a^2 + c^2 2ac\cos B$,$c^2 =a^2 + b^2 2ab\cos C$。
余弦定理常用于以下几种情形:一是已知三角形的三边,求三个角。
正余弦定理应用举例一
求出BC的长; 第三步:在△ABC中,由余弦定理
求得AB的长。
AB2 CA2 CB2 2CA CB cos C
练习1、一艘船以32n mile / h的速度向正北 航行。在A处看灯塔S在船的北偏东30o的方 向,30min后航行到B处,在B处看灯塔在 船的北偏东75o的方向,已知距离此灯塔 6.5n mile 以外的海区为航行安全区域,这 艘船可以继续沿正北方向航行吗?
C
BC 3 1.73( m )
答:顶杆BC约长1.73m。 A B
课堂小结
解应用题的基本思路
实际问题
抽象概括 示意图
数学模型 推 理 演 算
实际问题的解
还原说明
数学模型的解
作业
课本第19页2,5
∴∠BCD=30°.即缉私船北偏东60°方向能最快追上走
60 20
练习2.自动卸货汽车的车厢采用液 压机构。设计时需要计算油泵顶杆 BC的长度.已知车厢的最大仰角是 55°,油泵顶点B与车厢支点A之间 的距离为2m,AB与水平线之间的夹 角为5°,AC长为1m,.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是55°,油泵顶点B 与车厢支点A之间的距离为2m,AB与水平线之间的夹角为5°, AC长为1m ,计算BC的长(精确到0.01m). 60 20 【分析】例题中涉及一个怎样的三角形? 在△ABC中已知什么,要求什么? C
A B
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是55°,油泵顶点B 与车厢支点A之间的距离为2m,AB与水平线之间的夹角为5°, AC长为1m,计算BC的长.(精确到0.01)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题探究
3 .设AB是一个底部不可到达的竖直 建筑物,A为建筑物的最高点,如何测 量和计算建筑物AB的高度.
A
D G
C H
E
B
问题探究
设在点C、D处测得A的仰角分别为α 、 β ,CD=a,测角仪器的高度为h,试求 A 建筑物高度AB.
D G
C
H B
E
AB AC sin h a sin sin h sin( )
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
问题探究
在点A所在河岸边选定一点C, 1.如图,设A、B两点在河的两岸,测 若测出A、C的距离是55m, 量者在点A的同侧,如何求出A、B两点 ∠BAC=51°,∠ACB=75°, 的距离? 求AB的长.
问题探求
4 .如图,在山顶上有一座铁塔BC, 塔顶和塔底都可到达,A为地面上一点, 通过测量哪些数据,可以计算出山顶 的高度?
B
C
A
问题解决
设在点A处测得点B、C的仰角分别为 α 、β ,铁塔的高BC=a,测角仪的高 度忽略不计,试求山顶高度CD . B
C
a cos sin CD AC sin sin( )
(2)sinC+sin(B-A)=2sin2A,求△ABC的面 积.
飞机与山顶的海拔差
A
如图,设飞机在飞临山顶前,在B、C两 处测得山顶A的俯角分别是α 、β,B、C 两点的飞行距离为a,飞机的海拔飞行高 度是H,试求山顶的海拔高度h .
B C D
A
a sin a sin b h = H - A D = H - A C sin b = H sin( b - a )
2.距离测量问题包括一个不可到达 点和两个不可到达点两种,设计测 量方案的基本原则是:能够根据测 量所得的数据计算所求两点间的距 离,其中测量数据与基线的选取有 关,计算时需要利用正、余弦定理.
课堂小结
3.解决物体高度测量问题时,一般先 从一个或两个可到达点,测量出物体 顶部或底部的仰角、俯角或方位角, 再解三角形求相关数据.具体测量哪 个类型的角,应根据实际情况而定. 通常在地面测仰角,在空中测俯角, 在行进中测方位角.
→利用余弦定理求AB.
形成结论
在测量上,根据测量需要适当确 定的线段叫做基线,如例1中的AC, 例2中的CD.基线的选取不唯一, 一般基线越长,测量的精确度越 高.
解斜三角形应用题的一般步骤:
(1)分析:理解题意,分清已知与未知, 画出示意图
(2)建模:根据已知条件与求解目标,把 已知量与求解量尽量集中在有关的三角形中, 建立一个解斜三角形的数学模型 (3)求解:利用正弦定理或余弦定理有序地 解出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际 意义,从而得出实际问题的解
A B
C
D
问题解决
若测得∠BCD=∠ADB=45°, ∠ACB=75°,∠ADC=30°, 且CD= 3 ,试求A、B两点间 B 的距离. 5
A
75° 45° 45°
30°
C
D
3
形成规律
测量两个不可到达点之间的距离方案: 选定两个可到达点C、D;
→测量C、D间的距离及∠ACB、∠ACD、 ∠BDC、∠ADB的大小; →利用正弦定理求AC和BC;
4.计算物体的高度时,一般先根据测量 数据,利用正弦定理或余弦定理计算出 物体顶部或底部到一个可到达点的距离, 再解直角三角形求高度.
补充练习
1 如图,在高出地面30m的小山顶上 建有一座电视塔AB,在地面上取一点C, 测得点A的仰角的正切值为0.5,且∠ACB =45°,求该电视塔的高度.
B
150m
D
A
问题探究
5.一辆汽车在一条水平的公路上向正西方 向行驶,到A处时测得公路北侧远处一山顶D 在西偏北15°方向上,行驶5km后到达B处, 测得此山顶在西偏北25°方向上,仰角为8° 求此山的高度CD.
D
1047m
C 西 B A 东
课堂小结
1.在测量上,根据测量需要适当确 定的线段叫做基线.
课堂小结
2
2
2
复习巩固
2.正弦定理和余弦定理分别适合解哪 些类型的三角形? 正弦定理:一边两角或两边与对角;
余弦定理:两边与一角或三边.
创设情境
“遥不可及的月亮离我们地球究竟有多远呢?” 在 古代,天文学家没有先进的仪器就已经估算出了两 者的距离,是什么神奇的方法探索到这个奥秘的呢? 我们知道,对于未知的距离、高度等,存在着许多 可供选择的测量方案,比如可以应用全等三角形、 相似三角形的方法,或借助解直角三角形等等不同 的方法,但由于在实际测量问题的真实背景下,某 些方法会不能实施。如因为没有足够的空间,不能 用全等三角形的方法来测量,所以,有些方法会有 局限性。于是上面介绍的问题是用以前的方法所不 能解决的。今天我们开始学习正弦定理、余弦定理 在科学实践中的重要应用,首先研究如何测量距离。
作业:学海第4课时
例题讲解
例5 设锐角△ABC中, 已知 a = 2b sin A . (1)求角B的大小;
(2)求 cos A + sin C 的取值范围.
作业
练1
在△ABC中,内角A,B,C对边的
p 边长分别是a,b,c.已知 c = 2, C = 3 (1)若△ABC的面积等于 3,求a,b.
B B
A
A C C
问题探究
若A为可到达点,B为不可到达点, 设计测量方案计算A、B两点的距离:
B
A C
选定一个可到达点C;
→测量AC的距离及∠BAC,∠ACB的大小. →利用正弦定理求AB的距离.
问题探究
2.设A、B两点都在河的对岸(不可 到达),你能设计一个测量方案计 算A、B两点间的距离吗?
C
A
2 如图,有大小两座塔AB和CD,小 塔的高为h,在小塔的底部A和顶部B测得 另一塔顶D的仰角分别为α 、β ,求塔CD 的高度. D
h cos sin CD AD sin sin( )
B
A
C
问题探究
3 .飞机的海拔飞行高度是可知的,若 飞机的航线和山顶在同一个铅垂平面内, 飞机在水平飞行中测量山顶的高度,关 键是求出哪个数据?
高一数学必修五第一章 解三角形
1.正弦定理和余弦定理的基本公式 是什么?
a b c = = = 2R sin A sin B sin C
c = a + b - 2ab cosC 2 2 2 a = b + c - 2bc cos A 2 2 2 b = a + c - 2ac cos B