10种排序法(冒泡、选择、插入、希尔、归并、快速、堆、拓扑、基数、锦标赛排序)

合集下载

数据结构第八章_排序

数据结构第八章_排序

49 38 65 97 76
三趟排序:4 13 27 38 48 49 55 65 76 97
算法描述
#define T 3 int d[]={5,3,1};
例 13 48 97 55 76 4 13 49 27 38 65 49 27 38 65 48 97 55 76 4 j j j
j
j
i
例 初始: 49 38 65 97 76 13 27 48 55 4 取d1=5 49 38 65 97 76 13 27 48 55 4 一趟分组:
一趟排序:13 27 48 55 4 取d2=3 13 27 48 55 4 二趟分组:
49 38 65 97 76 49 38 65 97 76
二趟排序:13 4 48 38 27 49 55 65 97 76 取d3=1 13 27 48 55 4 三趟分组:
初始时令i=s,j=t
首先从j所指位置向前搜索第一个关键字小于x的记录,并和rp
交换 再从i所指位置起向后搜索,找到第一个关键字大于x的记录, 和rp交换 重复上述两步,直至i==j为止 再分别对两个子序列进行快速排序,直到每个子序列只含有 一个记录为止
快速排序演示
算法描述
算法评价

38 49 49 38 65 76 97 13 97 76 97 27 13 30 97 27 97 30 初 始 关 键 字
38 49 65 13 76 27 76 13 30 76 27 76 30 97 第 一 趟
38 49 13 65 27 65 13 30 65 27 65 30
38 13 49
时间复杂度
最好情况(每次总是选到中间值作枢轴)T(n)=O(nlog2n) 最坏情况(每次总是选到最小或最大元素作枢轴)

各种排序方法总结

各种排序方法总结

选择排序、‎快速排序、‎希尔排序、‎堆排序不是‎稳定的排序‎算法,冒‎泡排序、插‎入排序、归‎并排序和基‎数排序是稳‎定的排序算‎法。

‎冒泡法‎:这‎是最原始,‎也是众所周‎知的最慢的‎算法了。

他‎的名字的由‎来因为它的‎工作看来象‎是冒泡:‎复杂度为‎O(n*n‎)。

当数据‎为正序,将‎不会有交换‎。

复杂度为‎O(0)。

‎直接插‎入排序:O‎(n*n)‎选择排‎序:O(n‎*n)‎快速排序:‎平均时间复‎杂度log‎2(n)*‎n,所有内‎部排序方法‎中最高好的‎,大多数情‎况下总是最‎好的。

‎归并排序:‎l og2(‎n)*n‎堆排序:‎l og2(‎n)*n‎希尔排序‎:算法的复‎杂度为n的‎1.2次幂‎‎这里我没‎有给出行为‎的分析,因‎为这个很简‎单,我们直‎接来分析算‎法:首‎先我们考虑‎最理想的情‎况1.‎数组的大小‎是2的幂,‎这样分下去‎始终可以被‎2整除。

假‎设为2的k‎次方,即k‎=log2‎(n)。

‎2.每次‎我们选择的‎值刚好是中‎间值,这样‎,数组才可‎以被等分。

‎第一层‎递归,循环‎n次,第二‎层循环2*‎(n/2)‎.....‎.所以‎共有n+2‎(n/2)‎+4(n/‎4)+..‎.+n*(‎n/n) ‎= n+n‎+n+..‎.+n=k‎*n=lo‎g2(n)‎*n所‎以算法复杂‎度为O(l‎o g2(n‎)*n) ‎其他的情‎况只会比这‎种情况差,‎最差的情况‎是每次选择‎到的mid‎d le都是‎最小值或最‎大值,那么‎他将变成交‎换法(由于‎使用了递归‎,情况更糟‎)。

但是你‎认为这种情‎况发生的几‎率有多大?‎?呵呵,你‎完全不必担‎心这个问题‎。

实践证明‎,大多数的‎情况,快速‎排序总是最‎好的。

‎如果你担心‎这个问题,‎你可以使用‎堆排序,这‎是一种稳定‎的O(lo‎g2(n)‎*n)算法‎,但是通常‎情况下速度‎要慢于快‎速排序(因‎为要重组堆‎)。

排序算法十大经典方法

排序算法十大经典方法

排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。

以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。

2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。

3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。

4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。

5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。

6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。

7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。

8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。

9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。

10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。

以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。

链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)

链表排序(冒泡、选择、插入、快排、归并、希尔、堆排序)

链表排序(冒泡、选择、插⼊、快排、归并、希尔、堆排序)这篇⽂章分析⼀下链表的各种排序⽅法。

以下排序算法的正确性都可以在LeetCode的这⼀题检测。

本⽂⽤到的链表结构如下(排序算法都是传⼊链表头指针作为参数,返回排序后的头指针)struct ListNode {int val;ListNode *next;ListNode(int x) : val(x), next(NULL) {}};插⼊排序(算法中是直接交换节点,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *insertionSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.if(head == NULL || head->next == NULL)return head;ListNode *p = head->next, *pstart = new ListNode(0), *pend = head;pstart->next = head; //为了操作⽅便,添加⼀个头结点while(p != NULL){ListNode *tmp = pstart->next, *pre = pstart;while(tmp != p && p->val >= tmp->val) //找到插⼊位置{tmp = tmp->next; pre = pre->next;}if(tmp == p)pend = p;else{pend->next = p->next;p->next = tmp;pre->next = p;}p = pend->next;}head = pstart->next;delete pstart;return head;}};选择排序(算法中只是交换节点的val值,时间复杂度O(n^2),空间复杂度O(1))class Solution {public:ListNode *selectSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//选择排序if(head == NULL || head->next == NULL)return head;ListNode *pstart = new ListNode(0);pstart->next = head; //为了操作⽅便,添加⼀个头结点ListNode*sortedTail = pstart;//指向已排好序的部分的尾部while(sortedTail->next != NULL){ListNode*minNode = sortedTail->next, *p = sortedTail->next->next;//寻找未排序部分的最⼩节点while(p != NULL){if(p->val < minNode->val)minNode = p;p = p->next;}swap(minNode->val, sortedTail->next->val);sortedTail = sortedTail->next;}head = pstart->next;delete pstart;return head;}};快速排序1(算法只交换节点的val值,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition我们参考(选取第⼀个元素作为枢纽元的版本,因为链表选择最后⼀元素需要遍历⼀遍),具体可以参考这⾥我们还需要注意的⼀点是数组的partition两个参数分别代表数组的起始位置,两边都是闭区间,这样在排序的主函数中:void quicksort(vector<int>&arr, int low, int high){if(low < high){int middle = mypartition(arr, low, high);quicksort(arr, low, middle-1);quicksort(arr, middle+1, high);}}对左边⼦数组排序时,⼦数组右边界是middle-1,如果链表也按这种两边都是闭区间的话,找到分割后枢纽元middle,找到middle-1还得再次遍历数组,因此链表的partition采⽤前闭后开的区间(这样排序主函数也需要前闭后开区间),这样就可以避免上述问题class Solution {public:ListNode *quickSortList(ListNode *head) {// IMPORTANT: Please reset any member data you declared, as// the same Solution instance will be reused for each test case.//链表快速排序if(head == NULL || head->next == NULL)return head;qsortList(head, NULL);return head;}void qsortList(ListNode*head, ListNode*tail){//链表范围是[low, high)if(head != tail && head->next != tail){ListNode* mid = partitionList(head, tail);qsortList(head, mid);qsortList(mid->next, tail);}}ListNode* partitionList(ListNode*low, ListNode*high){//链表范围是[low, high)int key = low->val;ListNode* loc = low;for(ListNode*i = low->next; i != high; i = i->next)if(i->val < key){loc = loc->next;swap(i->val, loc->val);}swap(loc->val, low->val);return loc;}};快速排序2(算法交换链表节点,平均时间复杂度O(nlogn),不考虑递归栈空间的话空间复杂度是O(1))这⾥的partition,我们选取第⼀个节点作为枢纽元,然后把⼩于枢纽的节点放到⼀个链中,把不⼩于枢纽的及节点放到另⼀个链中,最后把两条链以及枢纽连接成⼀条链。

十大经典排序法

十大经典排序法

十大经典排序法
1. 冒泡排序(Bubble Sort):通过不断比较相邻元素并交换位置来排序,每一轮将最大的元素冒泡到最后。

2. 选择排序(Selection Sort):通过找到当前未排序部分的最小元素,将其放置到已排序部分的末尾,逐步构建有序序列。

3. 插入排序(Insertion Sort):将未排序元素逐个插入到已排序部分的正确位置,从而逐步构建有序序列。

4. 希尔排序(Shell Sort):是插入排序的改进版本,通过比较相隔一定间隔的元素进行排序,逐渐缩小间隔直至为1。

5. 归并排序(Merge Sort):采用分治策略,将待排序序列不断拆分为子序列,然后将子序列排序并合并得到最终有序序列。

6. 快速排序(Quick Sort):也是采用分治策略,通过选择一个基准元素将序列划分为左右两部分,分别对两部分进行排序。

7. 堆排序(Heap Sort):利用二叉堆的性质来进行排序,将待排序元素构建成最大(最小)堆,然后依次取出堆顶元素并调整堆结构。

8. 计数排序(Counting Sort):适用于元素值范围较小的情况,通过统计元素出现的次数,然后根据统计结果得到有序序列。

9. 桶排序(Bucket Sort):将元素根据大小分配到不同的桶中,每个桶内部再分别进行排序,最后将各个桶中的元素合并得到有序序列。

10. 基数排序(Radix Sort):将待排序元素按照位数进行排序,先按个位排序,再按十位排序,依此类推,直到最高位排序完成。

十大排序算法

十大排序算法

⼗⼤排序算法算法之排序排序算法基本上是我们⽆论是在项⽬中还是在⾯试中都会遇到的问题,加上最近在看《算法》这本书,所以就准备好好的将排序算法整理⼀下。

所有排序算法都是基于 Java 实现,为了简单,只使⽤了int类型,从⼩到⼤排序基本排序⾼效的排序各⼤排序的时间测试如何选择排序排序之基本排序算法准备阶段:有⼀个交换位置的函数exc/*** 交换a数组中i和j的位置* @param a 需要交换的数组* @param i 位置* @param j 位置*/public static void exc(int a[],int i,int j){// 当他们相等的时候就没必要进⾏交换if(a[i] != a[j]){a[i] ^= a[j];a[j] ^= a[i];a[i] ^= a[j];}}基本排序算法主要是分为插⼊排序,选择排序,冒泡排序和梳排序。

选择排序原理:选择排序的原理很简单,就是从需要排序的数据中选择最⼩的(从⼩到⼤排序),然后放在第⼀个,选择第⼆⼩的放在第⼆个……代码:/*** 选择排序* @param a 进⾏排序的数组*/public static int[] selectionSort(int a[]){int min;for(int i=0;i<a.length;i++){min = i;// 这个for循环是为了找出最⼩的值for (int j = i+1; j < a.length; j++) {if(a[min]>a[j]){min = j;}}/** 如果第⼀个取出的元素不是最⼩值,就进⾏交换* 意思就是:如果取出的元素就是最⼩值,那么就没有必要进⾏交换了 */if(min != i){// 进⾏交换exc(a, i, min);}}return a;}选择排序的动画演⽰img假如数组的长度是N,则时间复杂度:进⾏⽐较的次数:(N-1)+(N-2)+……+1 = N(N-1)/2进⾏交换的次数:N特点:(稳定)1. 运⾏时间与输⼊⽆关。

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】 必学十大经典排序算法

【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。

不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。

时间复杂度:对排序数据的总的操作次数。

反映当n变化时,操作次数呈现什么规律。

空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。

1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。

它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。

走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述比较相邻的元素。

如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。

1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。

数据结构加强之排序算法讲解

数据结构加强之排序算法讲解
操作细节: 当插入第i(i≥1)个对象时, 前面的r[0], r[1], …, r[i-1]已 经排好序。 用r[i]的关键字与r[i-1], r[i-2], …的关键字顺序进行比 较(和顺序查找类似),如果小于,则将r[x]向后移动(插入 位置后的记录向后顺移);找到插入位置即将r[i]插入。
3.1 直接插入排序
for j=1 to n-1
for i=1 to n-j
真 a[i]>a[i+1]
a[i]a[i+1]
输出a[1] 到 a[n]
#include <stdio.h> main() { int a[11],i,j,t; printf("Input 10 numbers:\n"); for(i=1;i<11;i++) scanf("%d",&a[i]); printf("\n"); 假 for(j=1;j<=9;j++) for(i=1;i<=10-j;i++) if(a[i]>a[i+1]) {t=a[i]; a[i]=a[i+1]; a[i+1]=t;} printf("The sorted numbers:\n"); for(i=1;i<11;i++) printf("%d ",a[i]); }
排序算法
常见的经典排序算法
冒泡排序 选择排序 插入排序 希尔排序 快速排序 归并排序
1 冒泡排序
算法描述 设待排序记录序列中的记录个数为n
一般地,第i趟起泡排序从1到n-i+1
依次比较相邻两个记录的关键字,如果发生逆序, 则交换之。 其结果是这n-i+1个记录中,关键字最大的记录被 交换到第n-i+1的位置上,最多作n-1趟。

经典十大排序算法

经典十大排序算法

经典⼗⼤排序算法前⾔排序种类繁多,⼤致可以分为两⼤类:⽐较类排序:属于⾮线性时间排序,时间复杂度不能突破下界O(nlogn);⾮⽐较类排序:能达到线性时间O(n),不是通过⽐较来排序,有基数排序、计数排序、桶排序。

了解⼀个概念:排序的稳定性稳定是指相同⼤⼩的元素多次排序能保证其先后顺序保持不变。

假设有⼀些学⽣的信息,我们先根据他们的姓名进⾏排序,然后我们还想根据班级再进⾏排序,如果这时使⽤的时不稳定的排序算法,那么第⼀次的排序结果可能会被打乱,这样的场景需要使⽤稳定的算法。

堆排序、快速排序、希尔排序、选择排序是不稳定的排序算法,⽽冒泡排序、插⼊排序、归并排序、基数排序是稳定的排序算法。

1、冒泡排序⼤多数⼈学编程接触的第⼀种排序,名称很形象。

每次遍历排出⼀个最⼤的元素,将⼀个最⼤的⽓泡冒出⽔⾯。

时间复杂度:平均:O(n2);最好:O(n);最坏:O(n2)空间复杂度:O(1)public static void bubbleSort(int[] arr) {/*** 总共⾛len-1趟即可,每趟排出⼀个最⼤值放在最后*/for (int i = 0; i < arr.length - 1; i++) {for (int j = 0; j < arr.length - i - 1; j++) {if (arr[j] > arr[j + 1]) {int tp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tp;}}}}2、选择排序最直观易理解的排序算法,每次排出⼀个最⼩的元素。

也是最稳定的算法,时间复杂度稳定为O(n^2)。

需要⼀个变量记录每次遍历最⼩元素的位置。

时间复杂度:O(n2)空间复杂度:O(1)public static void selectSort(int[] arr){int n = arr.length;for (int i = 0; i < n; i++) {int maxIdx = 0;for(int j = 1; j < n - i; j++){if(arr[maxIdx] < arr[j]){maxIdx = j;}}int tp = arr[maxIdx];arr[maxIdx] = arr[n - 1 - i];arr[n - 1 - i] = tp;}}3、插⼊排序⼀种直观的排序算法,从第⼆个元素开始,每次往前⾯遍历找到⾃⼰该在的位置。

C语言常见排序算法

C语言常见排序算法
Gap的取法有多种。 shell 提出取 gap = n/2,gap = gap/2, 直到gap = 1。
6.1.5 选择排序
排序过程:
首先通过n-1次比较,从n个数中找出最小的, 将它与第一个数 交换—第一趟选择排序,结果最小的数被安置在第一个元素位 置上 再通过n-2次比较,从剩余的n-1个数中找出关键字次小的记录, 将它与第二个数交换—第二趟选择排序 重复上述过程,共经过n-1趟排序后,排序结束
6.1.3 直接插入排序
实用例子:
已知待序的一组记录的初始排列为:21, 25, 49, 25*, 16, 08
21 25 49 25* 16 08 012345
6.1.3 直接插入排序
实用例子:
i=1
21 25 49 25* 16 08 25 012345 temp
i=2 i=3
21 25 49 25* 16 08 49 012345 temp
6.1.1Leabharlann 冒泡排序算法实例21
21
21
21
16
08
25
25
25
16
08
16
49
25
16
08
21
21
25
16
08
25
25
25
16
08
25
25
25
25
08
49
49
49
49
49
6.1.1 冒泡排序
算法实现
输入n 个数给a[1] 到 a[n] for j=1 to n-1
for i=1 to n-j

if ( temp < r[j-1] ) r[j] = r[j-1];

基本排序算法(11种)

基本排序算法(11种)

排序算法有很多,所以在特定情景中使用哪一种算法很重要。

为了选择合适的算法,可以按照建议的顺序考虑以下标准:(1)执行时间(2)存储空间(3)编程工作对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:一、冒泡(Bubble)排序——相邻交换二、选择排序——每次最小/大排在相应的位置三、插入排序——将下一个插入已排好的序列中四、壳(Shell)排序——缩小增量五、归并排序六、快速排序七、堆排序八、拓扑排序九、锦标赛排序十、基数排序十一、英雄排序一、冒泡(Bubble)排序----------------------------------Code 从小到大排序n个数------------------------------------void BubbleSortArray(){for(int i=1;i<n;i++){for(int j=0;i<n-i;j++){if(a[j]>a[j+1])//比较交换相邻元素{int temp;temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;}}}}-------------------------------------------------Code------------------------------------------------效率 O(n²),适用于排序小列表。

二、选择排序----------------------------------Code 从小到大排序n个数--------------------------------void SelectSortArray(){int min_index;for(int i=0;i<n-1;i++){min_index=i;for(int j=i+1;j<n;j++)//每次扫描选择最小项if(arr[j]<arr[min_index]) min_index=j;if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置{int temp;temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;}}}-------------------------------------------------Code-----------------------------------------效率O(n²),适用于排序小的列表。

信息学奥赛数据结构知识点归纳最新背诵版

信息学奥赛数据结构知识点归纳最新背诵版
3
40],[34,58],[20,90],[18,98]}
e.快速排序,被认为是在所有同数量级 O(nlogn)
的排序方法中,其平均性能是最好的。f. 堆排
序,g.基数排序
排序方法
比较次数
移动次数
最好 最差 最好
最差
稳 附加存储

最好
பைடு நூலகம்最差
直接插入排序 n
n2
0
n2

1
折半插入排序 冒泡排序 快速排序 简单选择排序 锦标赛排序 堆排序 归并排序
信息学奥赛数据结构知识点归纳
数据结构知识点归纳 数据结构的定义:数据在计算机中的组织。包 括逻辑结构( 数据之间的逻辑关系),存储结 构(数据之间关系的计算机表示),数据运算。 注意逻辑结构与具体的计算机无关。 算法基本特性:1.有穷性(有限时间)2.确定 性(算法确切)3.可行性(存在基本操作)4.有输 入(0++)5.有输出(1++) 一、顺序表: 线性表(a1,a2…,an)有唯一的第一个和最后一 个元素(n≥0)。其余的有唯一的前驱和后继。 在顺序表的第 i 个位置前插入一个数据元素, 需要向后移动 n - i +1 个元素,删除第 i 个 位置的元素需要向前移动 n- i 个元素。双链 表:例如在 q 所指结点的后面插入一个值为 x 的 新 结 点 方 法 (1) p->rlink=q->rlink; (2) p->llink=q; (3) q->rlink->llink=p; (4) q->rlink=p; 例 如 删 除 q 所 指 结 点 后 的 结 点 方 法 (1) q->llink->rlink=q->rlink;(2) q->rlink->llink=q->llink; 二、栈和队列 1、栈:允许在表的一端插入和删除的线性表。 栈底,不允许操作,栈顶,允许操作。原则: LIFO 后进先出。【例】设进栈顺序是(a,b,c,d), 不可能的出栈序列是:( C ) A. (a,b,c,d) B.(a,c,b,d) C. (a,d,b,c) D. (d,c,b,a) 2、队列:允许在表的一端插入,另一端删除 的线性表,队尾:插入端 队首:删除端;原 则:FIFO 先进先出,顺序队列空: front= rear, 队满:rear=MAX,循环队列空:rear=front, 队满为:(rear + 1)%MAX = front 三、数组: 四、树和二叉树 1.树的定义和术语 定义:是由 n (n≥0)个结点构成的有限集合,n=0 的树称为空树;当 n≠0 时,树中的结点应该满 足以下两个条件:(1) 有且仅有一个特定的结 点称之为根;(2) 其余结点分成 m(m≥0)个互不 相交的有限集合 T1, T2,……Tm,其中每一个集合 又都是一棵树,称 T1, T2,……Tm 为根结点的子 树。 结点:数据元素 + 若干指向子树的分支 结点的度:分支的个数

各种排序方法的比较与讨论

各种排序方法的比较与讨论

各种排序方法的比较与讨论现在流行的排序有:选择排序、直接插入排序、冒泡排序、希尔排序、快速排序、堆排序、归并排序、基数排序。

一、选择排序1.基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

2. 排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一趟排序后13 [38 65 97 76 49 27 49]第二趟排序后13 27 [65 97 76 49 38 49]第三趟排序后13 27 38 [97 76 49 65 49]第四趟排序后13 27 38 49 [49 97 65 76]第五趟排序后13 27 38 49 49 [97 97 76]第六趟排序后13 27 38 49 49 76 [76 97]第七趟排序后13 27 38 49 49 76 76 [ 97]最后排序结果13 27 38 49 49 76 76 973.void selectionSort(Type* arr,long len){long i=0,j=0;/*iterator value*/long maxPos;assertF(arr!=NULL,"In InsertSort sort,arr is NULL\n");for(i=len-1;i>=1;i--){maxPos=i;for(j=0;jif(arr[maxPos]if(maxPos!=i)swapArrData(arr,maxPos,i);}}选择排序法的第一层循环从起始元素开始选到倒数第二个元素,主要是在每次进入的第二层循环之前,将外层循环的下标赋值给临时变量,接下来的第二层循环中,如果发现有比这个最小位置处的元素更小的元素,则将那个更小的元素的下标赋给临时变量,最后,在二层循环退出后,如果临时变量改变,则说明,有比当前外层循环位置更小的元素,需要将这两个元素交换.二.直接插入排序插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子文件中的适当位置,直到全部记录插入完成为止。

信奥赛 排序算法选择题

信奥赛 排序算法选择题

信奥赛排序算法选择题一、排序算法的选择是信息学竞赛中的重要内容,以下是一些常见的排序算法,请选出最适合解决特定问题的算法。

1.冒泡排序vs快速排序:当数据规模较大且需要较高效率的排序算法时,应选择________。

A.冒泡排序B.快速排序C.插入排序D.归并排序2.桶排序vs计数排序:对于非负整数的排序,应选择________。

A.桶排序B.计数排序C.冒泡排序D.归并排序3.选择排序vs插入排序:当数据量较小且需要稳定排序时,应选择________。

A.选择排序B.插入排序C.快速排序D.归并排序4.希尔排序vs堆排序:当数据量较大且需要更高效的排序算法时,应选择________。

A.希尔排序B.堆排序C.二分查找D.分治策略二、答案与解析:对于每一个问题,下面我会给出相应的答案和解析,帮助你理解每个算法的特点和适用场景。

1.答案:B。

快速排序通常在处理大规模数据时表现优异,因为它是一种高效的分治策略,可以在O(nlogn)的时间复杂度内完成排序。

而冒泡排序在大数据量下效率较低。

2.答案:B。

对于非负整数,我们可以将每个数放入一个桶中,再根据桶内的元素个数进行排序,这就是桶排序。

而计数排序则是专门针对非负整数的线性时间复杂度排序算法。

3.答案:B。

选择排序和插入排序都是稳定排序算法,它们都试图保持相等元素之间的相对顺序。

然而,在数据量较小且需要稳定排序的情况下,插入排序通常更快,因为它不需要像选择排序那样一次选择整个序列。

4.答案:B。

希尔排序是一种改进的插入排序,它在数据分布较散乱的情况下进行多次插入操作,以达到加速的目的。

但是,当数据量较大时,希尔排序可能会陷入O(n^2)的时间复杂度。

堆排序则是一种利用堆这种数据结构所设计的比较高效的算法,可以在O(nlogn)的时间复杂度内完成有序序列的构建和比较。

三、练习与挑战:现在你可以尝试一些实际的排序算法选择题,并思考如何根据具体情况选择合适的算法。

头歌数据结构十大经典排序算法

头歌数据结构十大经典排序算法

头歌数据结构十大经典排序算法导言在计算机科学中,排序算法是一类常见且重要的算法。

通过对一组元素进行排序,我们可以提高数据的组织性和检索效率。

本文将介绍头歌数据结构十大经典排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序和基数排序。

冒泡排序冒泡排序是一种简单直观的排序算法。

它通过多次比较和交换相邻元素的方式,将较大(或较小)的元素逐渐交换至数组的一端,从而达到排序的目的。

选择排序选择排序是一种简单且高效的排序算法。

它通过每次选择未排序部分的最小元素,并将其交换至已排序部分的末尾,从而逐步构建有序序列。

插入排序插入排序是一种自然而然的排序算法。

它通过将待排序元素逐个插入已排序序列的正确位置,不断扩大已排序部分的范围,从而完成排序。

希尔排序希尔排序是一种高效的插入式排序算法。

它通过将待排序元素分组,分组内进行插入排序,然后逐步减小分组的大小,以达到整体有序的目的。

归并排序归并排序是一种高效且稳定的排序算法。

它将已排序的子序列合并,不断递归地执行该操作,直到合并整个序列,从而实现排序。

快速排序快速排序是一种高效的分治排序算法。

它通过选择一个基准元素,将序列分割成两部分,并分别对这两部分进行排序,最终将序列有序地整合起来。

堆排序堆排序是一种高效且稳定的排序算法。

它利用堆这种特殊的数据结构,在每次构建堆过程中,获取最大(或最小)元素,并将其放入已排序部分的末尾,从而完成排序。

计数排序计数排序是一种非比较性的排序算法。

它通过统计每个元素出现的次数,计算每个元素应该在有序序列中的位置,从而完成排序。

桶排序桶排序是一种高效的排序算法。

它通过将元素分配到不同的桶中,并对每个桶进行排序,从而得到排序结果。

基数排序基数排序是一种高效的排序算法。

它通过将待排序元素按照个位、十位、百位等进行排序,最终得到有序序列。

结语头歌数据结构十大经典排序算法是计算机科学中不可或缺的内容。

数据结构-排序PPT课件

数据结构-排序PPT课件
平均情况时间复杂度
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。

Java常用排序算法程序员必须掌握的8大排序算法

Java常用排序算法程序员必须掌握的8大排序算法

分类:1)插入排序(直接插入排序、希尔排序)2)交换排序(冒泡排序、快速排序)3)选择排序(直接选择排序、堆排序)4)归并排序5)分配排序(基数排序)所需辅助空间最多:归并排序所需辅助空间最少:堆排序平均速度最快:快速排序不稳定:快速排序,希尔排序,堆排序。

先来看看8种排序之间的关系:1.直接插入排序(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。

如此反复循环,直到全部排好顺序。

(2)实例(3)用java实现12345678911121314151617181920package com.njue;publicclass insertSort {public insertSort(){inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,2 5,53,51};int temp=0;for(int i=1;i<a.length;i++){int j=i-1;temp=a[i];for(;j>=0&&temp<a[j];j--){a[j+1]=a[j]; //将大于temp的值整体后移一个单位}a[j+1]=temp;}for(int i=0;i<a.length;i++){System.out.println(a[i]);}2. 希尔排序(最小增量排序)(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差 d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。

当增量减到1时,进行直接插入排序后,排序完成。

(2)实例:(3)用java实现123456789101112131415161718192122232425262728293031publicclass shellSort { publicshellSort(){int a[]={1,54,6,3,78,34,12,45,56,100}; double d1=a.length;int temp=0;while(true){d1= Math.ceil(d1/2);int d=(int) d1;for(int x=0;x<d;x++){for(int i=x+d;i<a.length;i+=d){int j=i-d;temp=a[i];for(;j>=0&&temp<a[j];j-=d){a[j+d]=a[j];}a[j+d]=temp;}}if(d==1){break;}for(int i=0;i<a.length;i++){System.out.println(a[i]);}}3.简单选择排序(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

常用的内部排序方法

常用的内部排序方法

常用的内部排序方法有:交换排序(冒泡排序、快速排序)、选择排序(简单选择排序、堆排序)、插入排序(直接插入排序、希尔排序)、归并排序、基数排序(一关键字、多关键字)。

一、冒泡排序:1.基本思想:两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。

2.排序过程:设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。

【示例】:49 13 13 13 13 13 13 1338 49 27 27 27 27 27 2765 38 49 38 38 38 38 3897 65 38 49 49 49 49 4976 97 65 49 49 49 49 4913 76 97 65 65 65 65 6527 27 76 97 76 76 76 7649 49 49 76 97 97 97 97二、快速排序(Quick Sort)1.基本思想:在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X 则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。

2.排序过程:【示例】:初始关键字[49 38 65 97 76 13 27 49]第一次交换后[27 38 65 97 76 13 49 49]第二次交换后[27 38 49 97 76 13 65 49]J向左扫描,位置不变,第三次交换后[27 38 13 97 76 49 65 49]I向右扫描,位置不变,第四次交换后[27 38 13 49 76 97 65 49]J向左扫描[27 38 13 49 76 97 65 49](一次划分过程)初始关键字[49 38 65 97 76 13 27 49]一趟排序之后[27 38 13]49 [76 97 65 49]二趟排序之后[13]27 [38]49 [49 65]76 [97]三趟排序之后13 27 38 49 49 [65]76 97最后的排序结果13 27 38 49 49 65 76 97三、简单选择排序1.基本思想:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种排序算法总结排序算法有很多,所以在特定情景中使用哪一种算法很重要。

为了选择合适的算法,可以按照建议的顺序考虑以下标准:(1)执行时间(2)存储空间(3)编程工作对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:一、冒泡(Bubble)排序——相邻交换二、选择排序——每次最小/大排在相应的位置三、插入排序——将下一个插入已排好的序列中四、壳(Shell)排序——缩小增量五、归并排序六、快速排序七、堆排序八、拓扑排序九、锦标赛排序十、基数排序(插入排序,希尔排序) (选择排序,堆排序) (冒泡排序,快速排序) (归并排序) (基数排序)一、冒泡(Bubble)排序----------------------------------Code 从小到大排序n个数------------------------------------void BubbleSortArray(){for(int i=1;i<n;i++){for(int j=0;i<n-i;j++){if(a[j]>a[j+1])//比较交换相邻元素{int temp;temp=a[i]; a[j]=a[j+1]; a[j+1]=temp;}}}}-------------------------------------------------Code------------------------------------------------效率O(n²),适用于排序小列表。

二、选择排序----------------------------------Code 从小到大排序n个数--------------------------------void SelectSortArray(){int min_index;for(int i=0;i<n-1;i++){min_index=i;for(int j=i+1;j<n;j++)//每次扫描选择最小项if(arr[j]<arr[min_index]) min_index=j;if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置{int temp;temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;}}}-------------------------------------------------Code------------------------------------------------------效率O(n²),适用于排序小的列表。

三、插入排序--------------------------------------------Code 从小到大排序n个数-------------------------------------void InsertSortArray(){for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分{int temp=arr[i];//temp标记为未排序第一个元素int j=i-1;while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/{arr[j+1]=arr[j];j--;}arr[j+1]=temp;}}------------------------------Code--------------------------------------------------------------------------最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳(Shell)排序——缩小增量排序-------------------------------------Code 从小到大排序n个数-------------------------------------void ShellSortArray(){for(int incr=3;incr<0;incr--)//增量递减{for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表{for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序{int temp=arr[i];int j=i-incr;while(j>=0&&arr[j]>temp){arr[j+incr]=arr[j];j-=incr;}arr[j+incr]=temp;}}}}--------------------------------------Code-------------------------------------------适用于排序小列表。

效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。

建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。

壳(Shell)排序改进了插入排序,减少了比较的次数。

是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序----------------------------------------------Code 从小到大排序---------------------------------------void MergeSort(int low,int high){if(low>=high) return;//每个子列表中剩下一个元素时停止else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/MergeSort(low,mid);//子列表进一步划分MergeSort(mid+1,high);int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/{if (arr[i]<=arr[j];){B[k]=arr[i];I++;}else{ B[k]=arr[j]; j++; }}for( ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表B[k]=arr[j];for( ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中B[k]=arr[i];for(int z=0;z<high-low+1;z++)//将排序的数组B的所有元素复制到原始数组arr中arr[z]=B[z];}-----------------------------------------------------Code---------------------------------------------------效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。

适用于排序大列表,基于分治法。

六、快速排序-----------------------------------------------Code------------------------------------------------------------/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。

*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}int Partition(int [] arr,int low,int high){int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素while (low < high){//从后往前栽后半部分中寻找第一个小于枢纽元素的元素while (low < high && arr[high] >= pivot){--high;}//将这个比枢纽元素小的元素交换到前半部分swap(arr[low], arr[high]);//从前往后在前半部分中寻找第一个大于枢纽元素的元素while (low <high &&arr [low ]<=pivot ){++low ;}swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分 }return low ;//返回枢纽元素所在的位置}void QuickSort(int [] a,int low,int high){if (low <high ){int n=Partition (a ,low ,high );QuickSort (a ,low ,n );QuickSort (a ,n +1,high );}}-----------------------------------------------------Code---------------------------------------------------------平均效率O(nlogn),适用于排序大列表。

此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。

若数基本有序,效率反而最差。

选项中间值作为枢纽,效率是O(nlogn)。

基于分治法。

七、堆排序最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。

思想:(1)令i=l,并令temp=k l;(2)计算i的左孩子j=2i+1;(3)若j<=n-1,则转(4),否则转(6);(4)比较k j和k j+1,若k j+1>k j,则令j=j+1,否则j不变;(5)比较temp和k j,若k j>temp,则令k i等于k j,并令i=j,j=2i+1,并转(3),否则转(6)(6)令k i等于temp,结束。

-------------------------------------------------Code------------------------------------------void HeapSort(SeqIAst R){ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元int I;BuildHeap(R);//将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。

相关文档
最新文档