正态分布原理

合集下载

正态分布及3σ原则

正态分布及3σ原则
可靠性工程
在可靠性工程中,3σ原则用于评估产品的可靠性。通过计 算产品的寿命分布和可靠性指标,可以预测产品在给定时 间内的失效概率。
3σ原则的局限性
01
假设限制
3σ原则基于正态分布的假设,而实际数据分布可能并不完全符合正态
分布。因此,在应用3σ原则时需要谨慎考虑数据的分布情况。
02 03
异常值处理
投资组合再平衡
基于正态分布的假设,投资者可以通过定期重新平衡投资组合来降低非系统风险,确保 投资组合与目标风险水平保持一致。
05
正态分布与其他统计学的关

与中心极限定理的关系
1
中心极限定理:在大量独立随机变量的平均值接 近正态分布,不论这些随机变量的分布形状如何, 这一结论都成立。
2
正态分布是中心极限定理的一种表现形式,当独 立随机变量的数量足够大时,它们的平均值的分 布趋近于正态分布。
正态分布及3σ原则
• 正态分布的介绍 • 正态分布的3σ原则 • 正态分布在质量管理中的应用 • 正态分布在金融领域的应用 • 正态分布与其他统计学的关系
目录
01
正态分布的介绍
正态分布的定义
01
正态分布是一种概率分布,描述 了许多自然现象的随机变量(或 一组随机变量)的概率分布形态 。
02
它具有钟形曲线,其中平均值(μ) 和标准差(σ)是两个关键参数, 决定了分布的形状和范围。
3
中心极限定理是概率论和统计学中的一个基本原 理,在许多领域都有广泛的应用,如金融、生物、 医学等。
与大数定律的关系
01
大数定律:在独立随机试验中 ,随着试验次数的增加,某一 事件发生的频率趋于该事件发 生的概率。
02
正态分布与大数定律密切相关 ,因为在大数定律的作用下, 大量独立随机变量的平均值会 呈现出正态分布的特征。

正态分布

正态分布

正态分布normal distribution正态分布一种概率分布。

正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。

服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。

正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。

它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。

当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。

C.F.高斯在研究测量误差时从另一个角度导出了它。

P.S.拉普拉斯和高斯研究了它的性质。

生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。

例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。

一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。

从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。

附:这种分布的概率密度函数为:(如右图)正态分布公式正态分布1.正态分布:若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号~。

第五章-正态分布、常用统计分布和极限定理

第五章-正态分布、常用统计分布和极限定理
解:首先将录取率200/1600 0.125作为正态分布上端
的面积, 然后根据1 0.125 0.875查附表4, 对应
Z 1.15,那么录取分数线
x X Z X 74 1.1511 86.65(分)
表5-2
例11:
0Z 图5-11
(1)求Z 1分数以上的概率是多少 ?
解:Z 1时, (Z) 0.34134, Z以上的概率为
(Z) Z
1
t2
e 2 dt
2
(Z 2 ) 图5-8 Z 2
(Z2 Z1)
图5-9Z1 Z 2
例4:已知服从标准正态分布 N(0,1), 求P( 1.3) ? 解:因为() 1,() P( 1.3) P( 1.3) 所以( 1.3) 1 P( 1.3) 1 (1.3) 1 - 0.9032 0.0968
2
如果把u 0, 1代入(x)
1
e
(
xu)2
2 2
2
(x)
1
x2
e2
2
标准正态分布其实是一般正态分布的一个特 例,记作N(0,1),一般正态分布记作N(μ,σ2)。
一般正态分布之所以能变成唯一的标准正态 分布,就是把原来坐标中的零点沿着X轴迁到μ点, 并且以σ为单位记分。
σ=1
0
图5-5
13.6%
13.6%
2.16% 0.11%
3 2 1 图05-6 1
2.16% 0.11%
23
三、标准分的实际意义
例1:甲、乙、丙3个同学《社会统计学》分数 都是80分,甲同学所在班平均成绩μ甲=80分, μ 乙=75分, μ丙=70分,标准差都是10,比较甲、乙、 丙3个同学在班上的成绩。

正态分布及原理

正态分布及原理

7
3σ原理
若质量特性值X服从正态分布,那么,在 ±3σ 范 围内包含了99.73% 的质量特性值。
正态分布中心与规格中心重合时u±3σ u±6σ的
不合格率(未考虑偏移) 规格区域
0.001ppm 1350ppm
1350ppm 0.001ppm
±3σ ±6σ
8
3σ原理推理过程
pL P( X u 3 ) (3) 1 (3) 1 0.99865
解:经标准化变换后可得
P(8<x<14)=
(14 10) (8 10) (2) (1)
ቤተ መጻሕፍቲ ባይዱ
2
2
=0.9773-(1-0.8413)=0.8185
P(1.7<x<2.6)=( 2.06.3
2)

(1.7 2
2)

(2)

(1)
=0.9773-(1-0.8413)=0.8185
主要用于具有计件值特征的质量特性值 分布规律的研究.
泊松分布 (计点值)
P( X k) ke , k 0,1,2,...,
k!
主要用于计点值特征的质量特性值分布 规律的研究
14
二项分布的平均值和标准差
平均值x np
标准差 npq
其中:n 样本大小 p 总体的不合格率 q 总体的合格率
1>若x~ N(10, 22),通过标准化变换u=
x 10
2 ~N(0,1)
2>若x~ N(2, 0.32),通过标准化变换u=
x 2 ~N(0,1)
0.3
5
不合格品率的计算(实例1)
1>设 x~ N(10, 22) 和 x~ N(2, 0.32), 概率

概率论-第十五讲-正态分布

概率论-第十五讲-正态分布

零件旳平均利润最大.
二维正态分布
若r.v.( X ,Y ) 旳联合为
1
f (x, y)
21 2 1 2
e
1 2(1
2
)
(
x1 12
)
2
2
(
x
1 )( y 1 2
2
)
(
y2 22
)2
x , y
则称( X ,Y ) 服从参数为1,12,2,22, 旳 正态分布, 记作( X ,Y ) ~ N(1,12;2,22; )
当 y > 0 时,
[[
FY ( y) P( X 2 y)
y
[
P( y X y) y
y] y
FX ( y) FX ( y)
FY
(
y)
0, FX (
y ) FX (
y ),
y0 y0

fY
(
y)
0,
1 2y
fX (
y ) fX (
y) ,
y0
y0
fY
(
y)
0,
1
y
e 2,
平均利润最大?
解 P(T 1) P( X 10) (10 )
P(T 20) P(10 X 12)
(12 ) (10 )
P(T 5) P(X 12) 1 (12 ) E(T ) (1) (10 )
20( (12 ) (10 )) (5)(1 (12 ))
1
2 1
1
2 2
前者取
附近值旳概率更大. x = 1 所相应旳拐点 比x= 2 所相应旳拐点更接近直线 x=
Show[fn1,fn3]

正态分布标准化的证明计量经济学-概述说明以及解释

正态分布标准化的证明计量经济学-概述说明以及解释

正态分布标准化的证明计量经济学-概述说明以及解释1.引言1.1 概述在计量经济学中,正态分布是一种非常重要的概率分布。

它具有许多良好的性质,例如对称性、稳定性和易于处理的特点,因此在经济学研究中得到了广泛的应用。

正态分布标准化是将原始的正态分布数据转化为具有均值为0,标准差为1的标准正态分布数据的过程。

通过标准化,我们可以更好地比较不同数据集之间的差异,也可以更方便地进行概率统计推断。

本文旨在探讨正态分布标准化的原理、计算方法以及在计量经济学中的重要性和实际意义。

我们将深入解析正态分布的基本概念,阐述在计量经济学中如何运用正态分布标准化进行数据分析和推断。

通过本文的学习,读者将更好地理解正态分布标准化的意义和应用,为其在经济学领域的研究提供更深入的思路和方法。

愿本文能为读者提供有益的启发和帮助。

1.2 文章结构文章结构部分内容:在本文中,我们将首先介绍正态分布的基本概念,包括其定义、性质和重要性。

接着,我们将详细讨论正态分布标准化的原理,探讨为何需要对正态分布进行标准化以及标准化的方法。

最后,我们将总结正态分布标准化的重要性,探讨其在实际应用中的意义,并展望在计量经济学领域中正态分布标准化的未来发展趋势。

通过本文的阐述,读者将深入了解正态分布标准化的理论基础和实际应用,为进一步的研究和应用提供有力的支持。

1.3 目的本文旨在深入探讨正态分布标准化在计量经济学中的重要性及应用。

具体目的包括:1. 探讨正态分布的基本概念,帮助读者更好地理解正态分布及其特点;2. 分析正态分布标准化的原理,揭示其实现标准化的过程及意义;3. 阐述正态分布标准化的计算方法,为读者提供实际操作的指导;4. 总结正态分布标准化在计量经济学中的重要性,强调其在数据处理和分析中的优势;5. 探讨正态分布标准化的实际意义,展示其在实践中的应用场景及效果;6. 展望正态分布标准化在计量经济学中的未来发展,指出其可能的应用领域和研究方向。

正态分布

正态分布

Z

1 e 2
f ( z)
为0,标准差为1,用N(0,1) 表示。这种变换常称作标准化变换,或Z变换。
μ-3σμ-2σμ-σ μ μ+σ μ+2σ 3σ
Z
x

-3 -2 -1 0 +1 +2 +3
μ- 3σ μ-2σμ-σ μ μ+σ μ+2σ μ+ 3σ
2、确定医学参考值范围的方法:
(1)根据研究目的确定同质的观察对象,并抽取一有代表性的样本 (随机化原则,足够数量的“正常人”)。 所谓的正常人并非指无任何疾病的健康人,而是指排除了影 响所研究指标的疾病和其它因素的人。
(2)根据专业知识确定参考值的范围是单侧还是双侧参考值范围。
若某指标过高过低均属异常(如RBC、WBC),则参考值范 围是双侧,须确定其下限和上限;若该指标只是过低属异常(如肺 活量等)或只是过高属异常(发/尿铅),则其参考值范围应为单 侧,即需分别确定其下限或上限。
位置参数:μ 决定曲线位置 变异度参数:σ 决定曲线形状
f ( x)

1 e 2
x 2 2
2
二、正态分布的特征
1、集中性:分布集中于均数处,曲线在横轴上方 均数处最高。
2、对称性:曲线关于x= 对称。 3、正态分布有两个参数:为位置参数,为形态 参数。 增大时曲线向右移, 减小时向左移; 越大,数据越分散,曲线越“矮胖”, 越小, 数据越集中,曲线越“瘦高”。
( z2 ) (1.04) 1 (1.04) 1 0.1492 0.8508 ,
( z1 ) ( z2 ) 0.8508 0.2643 0.5865 ,

正态分布[2-2]

正态分布[2-2]

(X − X) u=
S
3.曲线下对称于 的区间,面积相等。 曲线下对称于0的区间,面积相等。 曲线下对称于 的区间 4.曲线下横轴上的面积为 曲线下横轴上的面积为100%或1。 曲线下横轴上的面积为 或 。
正态分布是一种对称分布,其对称轴为直线 正态分布是一种对称分布,其对称轴为直线X=µ, , 即均数位置,理论上: 即均数位置,理论上: µ±1σ范围内曲线下的面积占总面积的 ± 范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的68.27% µ±1.96σ范围内曲线下的面积占总面积的 ± 范围内曲线下的面积占总面积的95% 范围内曲线下的面积占总面积的 µ±2.58σ范围内曲线下的面积占总面积的 ± 范围内曲线下的面积占总面积的99% 范围内曲线下的面积占总面积的 实际应用中: 实际应用中: 范围内曲线下的面积占总面积的68.27% ±1 S范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的95% ±1.96 S范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的99% ±2.58 S范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的
u=
X −µ
σ
二、正态分布的特征
1. 关于 心,左右对称。 左右对称。 2. 在 在 处取得概率密度函数的最大值, 处取得概率密度函数的最大值, 处有拐点,表现为钟形曲线。 处有拐点,表现为钟形曲线。即正 拐点 对称。 对称。即正态分布以均数为中
态曲线在横轴上方均数处最高。 态曲线在横轴上方均数处最高。
双侧---过高、 双侧 过高、过低均异常 过高
异常
正常
正常
异常
异常
正常
异常

正态分布

正态分布

正态分布正态分布(normal distribution)又名高斯分佈(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的概率分佈,在統計學的許多方面有著重大的影響力。

若隨機變量X服從一個數學期望為μ、標準方差為σ2的高斯分佈,記為:則其概率密度函數為常態分佈的期望值μ決定了其位置,其標準差σ決定了分佈的幅度。

因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。

我們通常所說的標準常態分佈是μ = 0,σ = 1的常態分佈(見右圖中綠色曲線)。

目录[隐藏]1 概要o 1.1 歷史2 正态分布的定義o 2.1 概率密度函數o 2.2 累積分佈函數o 2.3 生成函數▪ 2.3.1 動差生成函數▪ 2.3.2 特徵函數3 性質o 3.1 標準化正態隨機變量o 3.2 矩(英文:moment)o 3.3 生成正態隨機變量o 3.4 中心極限定理o 3.5 無限可分性o 3.6 穩定性o 3.7 標準偏差4 正態測試5 相關分佈6 參量估計o 6.1 參數的極大似然估計▪ 6.1.1 概念一般化o 6.2 參數的矩估計7 常見實例o7.1 光子計數o7.2 計量誤差o7.3 生物標本的物理特性o7.4 金融變量o7.5 壽命o7.6 測試和智力分佈[编辑]概要正態分布是自然科學與行為科學中的定量現象的一個方便模型。

各種各樣的心理學測試分數和物理現象比如光子計數都被發現近似地服從常態分佈。

儘管這些現象的根本原因經常是未知的,理論上可以證明如果把許多小作用加起來看做一個變量,那麼這個變量服從正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一種簡單的證明)。

正态分布出現在許多區域統計:例如, 採樣分佈均值是近似地正態的,既使被採樣的樣本總體並不服從正态分布。

另外,常態分布信息熵在所有的已知均值及方差的分佈中最大,這使得它作為一種均值以及方差已知的分佈的自然選擇。

正态分布讲解(含标准表)

正态分布讲解(含标准表)

2.4正态分布复习引入:总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线b 单位O 频率/组距a它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示:22()2,1(),(,)2x x e x μσμσϕπσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσϕ的图象为正态分布密度曲线,简称正态曲线.讲解新课:一般地,如果对于任何实数a b <,随机变量X 满足,()()b aP a X B x dx μσϕ<≤=⎰, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN .经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位.说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计.2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布.2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面均值与标准差对图形的影响,引导学生观察总结正态曲线的性质4.正态曲线的性质:(1)曲线在x 轴的上方,与x 轴不相交(2)曲线关于直线x=μ对称(3)当x=μ时,曲线位于最高点(4)当x <μ时,曲线上升(增函数);当x >μ时,曲线下降(减函数) 并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近(5)μ一定时,曲线的形状由σ确定σ越大,曲线越“矮胖”,总体分布越分散;σ越小.曲线越“瘦高”.总体分布越集中:五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学5.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其相应的函数表示式是2221)(x e x f -=π,(-∞<x <+∞)其相应的曲线称为标准正态曲线标准正态总体N (0,1)在正态总体的研究中占有重要的地位 任何正态分布的概率问题均可转化成标准正态分布的概率问题讲解范例:例1.给出下列三个正态总体的函数表达式,请找出其均值μ和标准差σ (1)),(,21)(22+∞-∞∈=-x e x f x π(2)),(,221)(8)1(2+∞-∞∈=--x e x f x π (3)22(1)2(),(,)2x f x e x π-+=∈-∞+∞ 答案:(1)0,1;(2)1,2;(3)-1,0.5例2求标准正态总体在(-1,2)内取值的概率.解:利用等式)()(12x x p Φ-Φ=有)([]}{11)2()1()2(--Φ--Φ=-Φ-Φ=p=1)1()2(-Φ+Φ=0.9772+0.8413-1=0.8151.1.标准正态总体的概率问题: xy对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5 2.标准正态分布表标准正态总体)1,0(N 在正态总体的研究中有非常重要的地位,为此专门制作了“标准正态分布表”.在这个表中,对应于0x 的值)(0x Φ是指总体取值小于0x 的概率,即)()(00x x P x <=Φ,)0(0≥x .若00<x ,则)(1)(00x x -Φ-=Φ.利用标准正态分布表,可以求出标准正态总体在任意区间),(21x x 内取值的概率,即直线1x x =,2x x =与正态曲线、x 轴所围成的曲边梯形的面积1221()()()P x x x x x <<=Φ-Φ. 3.非标准正态总体在某区间内取值的概率:可以通过)()(σμ-Φ=x x F 转化成标准正态总体,然后查标准正态分布表即可 在这里重点掌握如何转化 首先要掌握正态总体的均值和标准差,然后进行相应的转化4.小概率事件的含义发生概率一般不超过5%的事件,即事件在一次试验中几乎不可能发生假设检验方法的基本思想:首先,假设总体应是或近似为正态总体,然后,依照小概率事件几乎不可能在一次试验中发生的原理对试验结果进行分析假设检验方法的操作程序,即“三步曲”一是提出统计假设,教科书中的统计假设总体是正态总体;二是确定一次试验中的a 值是否落入(μ-3σ,μ+3σ);三是作出判断讲解范例:例1. 若x ~N (0,1),求(l)P (-2.32<x <1.2);(2)P (x >2).解:(1)P (-2.32<x <1.2)=Φ(1.2)-Φ(-2.32)=Φ(1.2)-[1-Φ(2.32)]=0.8849-(1-0.9898)=0.8747.(2)P (x >2)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228.例2.利用标准正态分布表,求标准正态总体在下面区间取值的概率:(1)在N(1,4)下,求)3(F(2)在N (μ,σ2)下,求F(μ-σ,μ+σ);F(μ-1.84σ,μ+1.84σ);F(μ-2σ,μ+2σ);F(μ-3σ,μ+3σ) 解:(1))3(F =)213(-Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σμσμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)(σμσμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826F(μ-1.84σ,μ+1.84σ)=F(μ+1.84σ)-F(μ-1.84σ)=0.9342F(μ-2σ,μ+2σ)=F(μ+2σ)-F(μ-2σ)=0.954F(μ-3σ,μ+3σ)=F(μ+3σ)-F(μ-3σ)=0.997对于正态总体),(2σμN 取值的概率:68.3%2σx 95.4%4σx 99.7%6σx在区间(μ-σ,μ+σ)、(μ-2σ,μ+2σ)、(μ-3σ,μ+3σ)内取值的概率分别为68.3%、95.4%、99.7% 因此我们时常只在区间(μ-3σ,μ+3σ)内研究正态总体分布情况,而忽略其中很小的一部分 例3.某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π21,求总体落入区间(-1.2,0.2)之间的概率解:正态分布的概率密度函数是),(,21)(222)(+∞-∞∈=--x e x f x σμσπ,它是偶函数,说明μ=0,)(x f 的最大值为)(μf =σπ21,所以σ=1,这个正态分布就是标准正态分布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 教学反思:1.在实际遇到的许多随机现象都服从或近似服从正态分布 在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布 但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口 正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 其密度函数可写成:22()21(),(,)2x f x e x μσπσ--=∈-∞+∞, (σ>0)由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的 常把它记为),(2σμN 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值 从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x 轴,但永不与x 轴相交,因此说曲线在正负两个方向都是以x 轴为渐近线的4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征。

正态分布原理

正态分布原理

正态分布(一)正态分布正态分布的概率密度如果连续型随机变量的概率密度为,(4.29)其中,,则称随机变量服从参数为,的正态分布,记作。

正态分布的数学期望和方差正态分布的图形有如下性质:1.它是一条以直线为对称轴的钟形曲线;2.它以横轴为渐近线,并且在处有拐点;3.它在处取得最大值,最大值为:由此可见,标准差越大,的图形就越平缓,标准差越小,的图形就越陡峭。

正态分布的分布函数,(4.30)(二)标准正态分布标准正态分布的概率密度参数,的正态分布,称为标准正态分布,记为。

标准正态分布的概率密度通常用表示,,(4.31)的图形如图4.12所示,它是一条以纵轴为对称轴的钟形曲线。

图4.12 标准正态分布概率密度函数标准正态分布的分布函数标准正态分布的分布函数通常用表示,,(4.32)图4.13 标准正态分布函数标准正态分布函数表对于非负的实数,可由标准正态分布函数表,直接查出的数值。

对于负的实数,根据标准正态分布的对称性,可由下式(4.33)计算出数值。

标准正态分布分位数设随机变量服从标准正态分布,对于给定的概率水平,满足等式(4.34)的正数,称为标准正态分布的水平的双侧分位数;满足等式(4.35)的正数,称为标准正态分布的水平的上侧分位数。

图4.14 正态分布双侧分位数例4.21假设,求下列概率:1.;2.;3.;4.。

解1.2.3.4.(三)正态分布与标准正态分布的关系如果,则于是,在正态分布与标准正态分布的概率密度和、分布函数和之间存在下列关系式:1.(4.36)2.(4.37)3.(4.38)这就是说,计算任一正态分布随机变量的概率都能通过标准正态分布来实现。

例4.22设,求下列概率:1.2.解因为,所以。

1.2.例4.23设,求下列概率:1.2.3.解1.2.3.从上面的结果可以看出,事件的概率很小,因此的取值几乎全部落在区间内,超出这个范围的可能性还不到。

这就是在产品质量控制中有重要应用的准则。

正态分布及3Sigma原理

正态分布及3Sigma原理
k!
主要用于计点值特征的质量特性值分布规 律的研究
14
二项分布的平均值和标准差
平均值x np
标准差 npq
其中:n 样本大小 p 总体的不合格率 q 总体的合格率
当N≥10n,p≤0.1或np ≥4-5时,就可以用 正态分布代替二项分布进行近似计算。
15
最常见
u1 u2
a> σ不同, u不同
3
标准正态分布
当μ=0,σ=1时正态分布称为标准正态分布
x
F(X)
1
x 便,可以借助标准正
态分布表
4
不合格品率的计算
若需计算分布的不合格品率, 则首先需要 利用分布的标准化变量, 即用正态变量减去自 己的均值后再除以自己的标准差
0.00135 1350ppm
9
3σ 原理
未考虑偏移的正态分布
99.9999998% 99.99943% 99.9937% 99.73% 95.45% 68.27%
6 5σ 4 3 2 1 1 2 3 4 5 6
10
为何6σ相当于3.4PPM?
考虑偏移1.5 σ的正态分布
规格中心 分布中心
正态分布中心与规格中心重合时u±3σ u±6σ的
不合格率(未考虑偏移) 规格区域
0.001ppm 1350ppm
1350ppm 0.001ppm
±3σ ±6σ
8
3σ原理推理过程
pL P( X u 3 ) (3) 1 (3) 1 0.99865
0.00135 1350 ppm
pU P(X u 3 ) 1 (3) 1 0.99865
1>若x~ N(10, 22),通过标准化变换u=
x 10

第5章正态分布

第5章正态分布

32
常用的标准值
Z ≥1.65,概率P为0.05;
Z ≥1.96,概率P为0.025; Z ≥2.58,概率P为0.005;
33
4. 二项分布的正态近似法
通过前面的讨论,我们已经知道二项分布受成功事件概率 p和重复次数n两个参数的影响,只要确定了p和n,二项 分布也随之确定了。 但是,二项分布的应用价值实际上 受到了n的很大限制。也就是说,只有当n较小时,我们 才能比较方便地计算二项分布。所幸的是,二项分布是以 正态分布为极限的。所以当n很大时,只要p或q不近于零, 我们就可以用正态近似来解决二项分布的计算问题。即以 n p=μ、n p q=σ2,将B(x;n,p)视为N(n p,n p q)进行 计算。在社会统计 中,当n ≥30,n p、n q均不小于5时,对二项分布作正态
42
F 分布
F 分布是连续性随机变量的另一种重要的小样本分布, 可用来检验两个总体的方差是否相等,多个总体的均值是 否相等。还是方差分析和正交设计的理论基础。 1.数学形式 设 和 相互独立,那么随机变量
服从自由度为(k1,k2)的F分布。其中,分子上的自由 度k1叫做第一自由度,分母上的自由度k2叫做第二自由度。
24
四、标准正态分布表的使用
4.1 标准正态分布表的介绍
25
Xi:大写Ξ, 小写ξ 4.2标准正态分布的计算 读作:克西
【例5】已知ξ服从标准正态分布N(0,1), 求P( ξ ≤1.3)=? 解:因为ξ 服从标准正态分布N(0,1), 可直接查附表4,根据z=1.3,有 P( ξ ≤1.3)= 1.3=0.9032
20
3.3 标准分(Standard scores)

公式:
Z
X

道尔顿板正态分布原理

道尔顿板正态分布原理

道尔顿板正态分布原理道尔顿板正态分布原理道尔顿板是一种用于实验室中研究颗粒运动的仪器,也被称为布朗运动仪器。

它由英国化学家约翰·道尔顿于1827年发明,用于证明气体分子的存在和运动。

在实验中,道尔顿板被放置在一个密闭的容器中,容器内充满了气体或液体。

当容器受到外力作用时,道尔顿板会随着气体或液体分子的碰撞而做出微小的振动。

这些振动可以通过显微镜观察到,并且可以用来研究颗粒运动的性质。

正态分布是一种常见的概率分布模型,也被称为高斯分布或钟形曲线。

它描述了许多自然现象和统计数据集中在平均值周围,并且随着距离平均值的增加而逐渐减小的情况。

道尔顿板实验中观察到的振动现象与正态分布之间存在一定的联系。

下面将详细介绍这种联系及其原理。

1. 道尔顿板实验观察到的振动现象道尔顿板实验中,当气体或液体分子与道尔顿板碰撞时,会产生微小的振动。

这些振动可以通过显微镜观察到,并且可以用来研究颗粒运动的性质。

实验中观察到的振动现象具有以下特点:(1)振幅大小不同:不同分子与道尔顿板碰撞时,产生的振幅大小不同。

有些分子会使道尔顿板产生较大的振幅,而有些分子则只会使道尔顿板产生微小的振幅。

(2)方向随机:由于气体或液体中分子的运动方向是随机的,因此道尔顿板受到的碰撞力也是随机的。

这导致了道尔顿板上产生的振动方向也是随机的。

(3)频率相同:在一个给定温度下,所有气体或液体分子具有相同的平均速度。

因此,它们与道尔顿板碰撞时产生的频率也是相同的。

2. 正态分布模型正态分布模型是一种常见的概率分布模型。

它描述了许多自然现象和统计数据集中在平均值周围,并且随着距离平均值的增加而逐渐减小的情况。

正态分布模型可以用以下公式表示:$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$其中,$x$是变量,$\mu$是平均值,$\sigma$是标准差。

生成正态分布-概述说明以及解释

生成正态分布-概述说明以及解释

生成正态分布-概述说明以及解释1.引言1.1 概述概述部分的内容如下:正态分布,也被称为高斯分布或钟形曲线,是统计学和概率论中最重要的分布之一。

它在自然界、社会科学和经济学等领域都有广泛应用。

正态分布的形状呈现出对称的钟形曲线,其特点是均值处有最大密度,随着离均值的距离增加,密度逐渐减小。

其概率密度函数是通过一个简单的数学公式来描述的。

生成正态分布的方法有多种,其中一种常用的方法是使用随机数生成器。

通过使用特定的算法和随机种子,可以生成服从正态分布的随机数。

另一种常用的方法是利用中心极限定理,当多个独立同分布的随机变量相加时,其分布趋近于正态分布。

这种方法在模拟实验和推断统计中经常被使用。

本文将详细介绍正态分布的概念和性质,并探讨生成正态分布的方法。

在正文部分,我们将从数学和统计的角度解释正态分布的含义,并介绍其重要的特性,如均值和标准差。

然后,我们将详细介绍生成正态分布的方法,包括随机数生成器和中心极限定理的原理和应用。

总结部分将对文章进行总结,并探讨正态分布的应用前景。

正态分布在各个领域都有广泛的应用,如自然科学中的测量误差分析、社会科学中的人口统计和经济学中的金融市场分析等。

正态分布的生成方法对于模拟实验、数据分析和统计推断都具有重要的意义。

通过深入了解正态分布的生成方法,我们可以更好地理解和应用这一重要的概率分布。

综上所述,本文旨在介绍正态分布及其生成方法,并探讨其应用前景。

通过阅读本文,读者将对正态分布有更深入的理解,并能够灵活运用生成正态分布的方法进行数据分析和模拟实验。

1.2文章结构文章结构是指文章整体的布局和组织方式。

一个良好的文章结构可以使读者更好地理解文章内容,并且有助于文章的逻辑性和连贯性。

本文的结构如下:1. 引言1.1 概述引言部分将简要介绍正态分布的基本概念和重要性,引起读者的兴趣,并提出本文的研究目的。

1.2 文章结构本文将主要分为引言、正文和结论三个部分。

其中,引言部分将介绍本文的研究背景和目的;正文部分将详细探讨正态分布的定义、性质以及生成正态分布的方法;结论部分将总结文章的主要内容并展望正态分布的未来应用前景。

正态分布定理

正态分布定理

正态分布定理正态分布(也被称为高斯分布或钟形曲线)是统计学中最重要的概率分布之一。

它在各个领域中都有广泛的应用,包括物理学、工程学、社会科学和自然科学等。

正态分布以其对大规模数据的适应性和复杂性而闻名,其基本形式由二项分布引导,并且由于中心极限定理的支持而得以证明。

正态分布定理最早是由17世纪的德国数学家和天文学家卡尔·费迪南德·高斯提出的。

他发现在统计一个连续性的数据集时,他们往往呈现出一个钟形曲线的模式,因此引入了为普遍法则的概念。

正态分布定理表明,当随机变量服从正态分布时,其概率密度函数(pdf)可以由以下公式表示:\[f(x)=\frac{1}{\sqrt{2\pi\sigma^{2}}}\exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right)\]其中,x是随机变量的值,μ是期望值(分布的中心点),σ是标准差(分布的扩展度)。

这个公式还有一个关键的特征,即求得的数据总和与正态分布的曲线下面积之和是1。

正态分布的重要性在于它可以用于描述和分析多种类型的现象。

根据中心极限定理,当许多独立的随机变量加在一起时,它们的总和将更接近于正态分布。

这使得正态分布成为了许多统计推断方法的基础,包括假设检验、置信区间估计和回归分析等。

正态分布的特点之一是它的均值和中位数是相等的,并且它的对称性使得较小和较大的值的频率较低,而均值周围的值的频率较高。

这导致正态分布具有一个尾巴,尾巴越长,数据集越分散,标准差越大。

相反,尾巴越短,数据集越集中,标准差越小。

正态分布在许多实际问题中都有实际应用。

例如,在财务领域中,它可以用来描述股票价格的变动,货币汇率的波动,以及基金收益的分布。

在医学和生物学中,正态分布可以帮助我们理解身高、体重和血压的分布。

此外,正态分布还可以用于制定政策和决策。

政府和企业经常使用正态分布来预测人口增长、投资回报率和销售额等。

正态分布的参数可以提供对未来潜在状态的预测,进而有助于制定合理的决策方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档