人教版七年级数学上册第二章《整式的加减》 数学活动同步教案
人教版七年级上数学《整式的加减》教案
《整式的加减》教案【教学目标】1.掌握整式的加减运算。
2.学会运用整式的加减运算解决简单的实际问题。
3.培养学生的数学思维能力和解决问题的能力。
【教学重点】掌握整式的加减运算。
【教学难点】正确进行整式的加减运算,解决简单的实际问题。
【教具准备】小黑板、练习纸。
【教学过程】一、复习导入1.复习整式的概念及单项式、多项式的概念。
2.导入新课:我们学习了整式的有关概念,那么整式如何进行加减运算呢?今天我们就来学习整式的加减运算。
二、探索新知1.出示例1,并列出算式。
(1)例1:某学校为开展体育活动,购置了10个篮球,每个50元;购置了15个排球,每个40元。
请计算学校总共花费了多少钱?学生分组讨论,列出算式,并计算。
教师检查学生的计算结果,并引导学生得出结论:总花费=10×50+15×40=1000+600=1600(元)。
(2)学生分组讨论:如何用数学式子表示这一过程?并展示自己的想法。
教师引导学生理解:这里有两个算式,可以合并成一个算式。
教师板书:10×50+15×40=1600。
(3)出示练习:某学校为开展活动,购置了20个足球,每个35元;购置了25个皮球,每个25元。
请计算学校总共花费了多少钱?并列式计算。
学生独立完成,并展示自己的计算过程及结果。
教师引导学生观察两个算式:有什么相同?有什么不同?并让学生讨论它们的异同点。
通过讨论使学生明确:①它们都是两个整式的和;②它们的和都是一个具体的数值。
教师进一步引导学生得出结论:整式的加法是有意义的运算。
同时指出:在整式的加减运算中,同类项可以合并。
合并同类项时,把同类项的系数相加,字母和字母的指数不变。
并出示几个例题让学生练习合并同类项,进一步熟悉整式的加减运算。
人教版七年级数学上册第二章《整式的加减》教案
人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。
本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。
通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。
二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。
但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。
三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。
四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。
六. 教学准备教师准备教案、PPT、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。
2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。
例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。
同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。
3.操练(15分钟)教师布置一些练习题,让学生独立完成。
例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。
人教版七年级上册数学 第二章 整式的加减 教案
第二章 整式的加减2.1 整式第1课时 用字母表示数01 教学目标1.通过分析实际问题中的数量关系以及列式表示这些数量关系的活动过程,会用含有字母的式子表示数量关系. 2.通过例题学习和习题训练,会用字母表示几何图形的周长、面积和体积. 02 预习反馈阅读教材P54~56,完成下列内容.1.我们常用字母t 表示行驶的时间,在小学列方程解应用题时,用字母x 表示未知数. 2.用字母表示:(1)有理数减法法则:a -b =a +(-b); (2)有理数除法法则:a÷b =a·1b(b ≠0).3.客车每小时行v 千米,t 小时行的路程为vt 千米.4.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元. 03 名校讲坛例1 (1)苹果原价是每千克p 元,按8折优惠出售,用式子表示现价;(2)某产品前年产量是n 件,去年的产量是前年产量的m 倍,用式子表示去年的产量; (3)一个长方体包装盒的长和宽都是a cm ,高是h cm ,用式子表示它的体积; (4)用式子表示数n 的相反数.解:(1)现价是每千克0.8p 元. (2)去年的产量是mn 件.(3)由长方体的体积=长×宽×高,得这个长方体包装盒的体积是a·a·h cm 3,即a 2h cm 3. (4)数n 的相反数是-n.【点拨】 用字母表示数书写时“四注意”:(1)数和字母相乘或字母和字母相乘时,通常将乘号写作“·”或省略不写,数与数相乘时,乘号不能省略;数和字母相乘,在省略乘号时,要把数字写在字母的前面;带分数与字母相乘时,带分数要写成假分数的形式. (2)数和字母相除或字母和字母相除时,写成分数形式.(3)有单位时,若最后结果是积或商的形式,则式子后面直接写单位;若最后结果是和或差的形式,则把式子用括号括起来后再写单位名称.(4)±1乘字母时,1可以省略不写.【跟踪训练】1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)℃. 2.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2. 例2 (教材P55例2补充例题)求下列图形中阴影部分即房间的建筑面积.解:房间的建筑面积等于四个长方形面积的和.根据图中标出的尺寸,可得出这所住宅的建筑面积是6x +2y +18. 【点拨】 用字母表示图形的面积的要点:把图形的面积转化为规则图形面积的和或差.【跟踪训练】3.如图,将长和宽分别是a ,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a ,b ,x 的代数式表示纸片剩余部分的面积为ab -4x 2.04 巩固训练1.下列式子中,符合书写格式的是(C)A .x +12克B .117×m 2n C.xy3D .s÷t2.某省参加课改实验区初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有(B) A .(15+a)万人 B .(15-a)万人 C .15a 万人 D .(a -15)万人3.笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需(A) A .(mx +ny)元 B .(m +n)(x +y)元 C .(nx +my)元 D .mn(x +y)元 4.边长为x 的正方形的周长为4x .5.仓库里有一批水泥,运走5车,每车n 吨,还剩m 吨,这批水泥有(5n +m)吨. 6.用字母表示两个图形中阴影部分的面积.图1 图2解:(1)阴影部分的面积为ab -bx. (2)阴影部分的面积为R 2-14πR 2.05 课堂小结用字母表示数量关系:用一个(几个)字母表示问题中的某个(某些)量,然后用这个(这些)字母表示问题中的其他量.第2课时 单项式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解单项式的概念,能准确识别单项式.2.通过阅读教材,理解单项式的系数和次数的概念,能确定单项式的系数和次数. 02 预习反馈阅读教材P56~57,完成下列内容.1.由数与字母或字母与字母相乘组成的式子叫单项式.如:在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x .2.单项式中的数字因数叫单项式的系数.单项式中所有字母的指数的和叫单项式的次数. 如:(1)-a 的系数是-1,次数是1; (2)单项式-3x 2的系数是-3,次数是2; (3)2ab 3c 3的系数是23,次数是5.03 名校讲坛 知识点1 识别单项式例1 (教材补充例题)下列各式中,哪些是单项式? 25x ,-85a 3,3x 2y m ,a ,0.4x +3,a 2+b +7,x +y 2. 解:单项式有:25x ,-85a 3,a.【点拨】 识别单项式的要点:(1)单项式中不能含有加减运算,不能含有表示大小关系的符号,如=,≠,>等; (2)单项式的分母中不能含有字母.【跟踪训练1】 在式子3a ,x +1,-2,-b 3,0.72xy ,2π,3x -14中,单项式有(C)A .2个B .3个C .4个D .5个 知识点2 确定单项式的系数和次数 例2 写出下列各单项式的系数和次数:【点拨】 确定单项式的系数和次数的注意点:(1)单项式的系数:若一个单项式只含有字母因数,则它的系数是1或-1;若单项式是一个常数,则它的系数就是它本身.(2)单项式的次数是所有字母的指数的和,与系数的指数无关,如24x 2y 3的次数是5,而不是9. 【跟踪训练2】 若关于x ,y 的单项式23mx n y 2的系数是6,次数是5,则m =9,n =3.04 巩固训练1.下列代数式中,不是单项式的是(A)A .1xB .-12 C .t D .3a 2b 2.(《名校课堂》2.1第2课时习题)单项式2xy 3的次数是(D)A .1B .2C .3D .4 2.下列说法中,正确的是(D)A .0不是单项式B .-3abc 2的系数是-3C .-23x 2y 23的系数是-13 D.πab 2的次数是24.用单项式填空:(1)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为vt 千米; (2)王洁同学买2本练习本花了n 元,那么买m 本练习本要mn2元;(3)边长为a 的正方体的表面积为6a 2,正方体的体积为a 3. 5.说出下列单项式的系数和次数: (1)a; (2)-6m 3n; (3)-35πx 2y.解:(1)a 的系数是1,次数是1. (2)-6m 3n 的系数是-6,次数是4.(3)-35πx 2y 的系数是-35π,次数是3.6.列代数式,如果是单项式,请分别指出它们的系数和次数:(1)某中学组织七年级学生春游,有m 名师生租用45座的大客车若干辆,且刚好坐满,那么租用大客车的辆数是多少?(2)一个长方体的长和宽都是a ,高是h ,它的体积是多少? 解:(1)m 45,它是单项式,系数是145,次数是1.(2)a 2h ,它是单项式,系数是1,次数是3. 05 课堂小结 1.字母表示数. 2.单项式的概念.3.单项式的系数及次数的概念.第3课时 多项式及整式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解多项式、整式的概念,能准确识别多项式、整式. 2.通过阅读教材,交流讨论,理解多项式的项、常数项和次数. 02 预习反馈阅读教材P57~58,完成下列内容.1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.如:多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成,它是三次三项式,其中二次项是-4xy ,最高次项的系数为3,常数项是-1. 2.单项式和多项式统称为整式. 03 名校讲坛知识点1 识别整式、单项式及多项式例1 (教材补充例题)下列式子中,哪些是整式?哪些是单项式?哪些是多项式? a ,ax 2+bx +c ,-5,π,x -y 2,2xx -1.解:单项式:a ,-5,π. 多项式:ax 2+bx +c ,x -y2.整式:a ,ax 2+bx +c ,-5,π,x -y2.【点拨】 (1)单项式不含加减运算,多项式必含加减运算.(2)多项式是几个单项式的和,单项式和多项式都是整式.【跟踪训练】1.把下列各式填在相应的集合里.①0.②x 2;③-x 2-2x +5;④94;⑤xy.⑥8+b7;⑦-5;⑧x +y 5.整式:{①②③④⑤⑥⑦⑧,…} 多项式:{③⑥⑧,…} 单项式:{①②④⑤⑦,…} 知识点2 确定多项式的项和次数例2 (教材补充例题)指出下列多项式的次数与项: (1)23xy -14; (2)a 2+2a 2b +ab 2-b 2; (3)2m 3n 3-3m 2n 2+53mn.解:(1)2次,23xy ,-14.(2)3次,a 2,2a 2b ,ab 2,-b 2. (3)6次,2m 3n 3,-3m 2n 2,53mn.【点拨】 确定多项式的项和次数“六注意”: (1)多项式的各项应包括它前面的符号;(2)多项式没有“系数”这一概念,但每一项均有系数,每一项的系数应包括它前面的符号; (3)次数最高项的次数就是多项式的次数; (4)一个多项式的最高次项可以不唯一;(5)区分多项式的次数与单项式的次数,不能误认为多项式的次数是各个单项式的次数之和;(6)多项式的“项”与“项数”是不同的概念,“项”是指组成多项式的单项式,包括它前面的符号,“项数”是指项的个数.例3 (教材补充例题)若多项式-72x 2y 2n +1z +34x 2y +4是八次三项式,则n =2.【思路点拨】 由题意可知,多项式的最高次项为-72x 2y 2n +1z ,所以2+2n +1+1=8.解得n =2.【跟踪训练】2.指出下列多项式的项和次数. (1)a 3-a 2b +ab 2-b 3; (2)3n 4-2n 2+1.解:(1)a 3,-a 2b ,ab 2,-b 3,3次.(2)3n 4,-2n 2,1,4次. 3.指出下列多项式是几次几项式: (1)x 3-x +1; (2)x 3-2x 2y 2+3y 2.解:(1)三次三项式.(2)四次三项式. 知识点3 多项式的应用例4 如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积(π取3.14).解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR 2-πr 2. 当R =15 cm ,r =10 cm 时,圆环的面积(单位:cm)是 πR 2-πr 2=3.14×152-3.14×102 =392.5.答:这个圆环的面积是392.5 cm 2. 【跟踪训练】4.a ,b 分别表示梯形的上底和下底,h 表示梯形的高,则梯形的面积S =12(a +b)h ,当a =2 cm ,b =4 cm ,h =5 cm时,S =15__cm 2. 04 巩固训练1.下列各式中,不属于整式的是(D)A .abB .x 3-2yC .-a 3 D.a b2.(《名校课堂》2.1第3课时习题)多项式3x 2-2x -1的各项分别是(D)A .3x 2,2x ,1B .3x 2,-2x ,1C .-3x 2,2x ,-1D .3x 2,-2x ,-1 3.多项式2a 2b -ab 2-ab 的项数及次数分别是(A)A .3,3B .3,2C .2,3D .2,2 4.如果x n +x 2-1是五次多项式,那么n 的值是(C)A .3B .4C .5D .65.多项式3x 4+5x 3y +8-2x 2y 4-10xy ,次数最高的项是-2x 2y 4;常数项是8;它的次数是6.6.一个关于x 的多项式,它的一次项系数是1,二次项系数和常数项都是-13,则这个多项式是-13x 2+x -13.7.如图,用式子表示图中阴影部分的面积.当x =4时,求阴影部分的面积(π取3.14).解:图中阴影部分的面积为x 2-π4x 2. 当x =4时,π取3.14,阴影部分的面积为3.44.05 课堂小结 1.多项式的概念.2.项、常数项、多项式的次数.2.2 整式的加减 第1课时 合并同类项01 教学目标1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项. 2.能先合并同类项化简后求值. 02 预习反馈阅读教材P62~65,完成下列内容.1.把多项式中的同类项合并成一项叫做合并同类项. 如:判断下列各题中的两个项是否是同类项. (1)4与-12;(是)(2)32与a 2;(不是) (3)2x 与2x ;(不是)(4)3mn 与3mnp ;(不是) (5)2πr 与-3x ;(不是) (6)3a 2b 与3ab 2.(不是)2.合并同类项的法则:系数相加,字母和字母指数不变. 如:合并同类项:-3a +2ab -4ab +2a =-a -2ab . 03 名校讲坛 知识点1 同类项的概念例1 (教材补充例题)下列各组中的两个单项式是同类型的是(C) A .3x 2y 与2xy 2 B .a 2b 与12a 2c C.13x 4y 与12yx 4 D .a 2与b 2【点拨】 识别同类项的方法:一看字母是否相同,二看相同字母的指数是否相同,只有这两者都相同时,它们才是同类项,特别是,几个常数也是同类项.【跟踪训练1】 若2x 2y n 与-3x m y 4是同类项,则m =2,n =4. 知识点2 合并同类项例2 合并同类项:(1)4a 2+3b 2+2ab -4a 2-3b 2; (2)3x -2x 2+5+3x 2-2x -5; (3)a 3+a 2b +ab 2-a 2b -ab 2-b 3; (4)6a 2-5b 2+2ab +5b 2-6a 2. 解:(1)2ab.(2)x 2+x.(3)a 3-b 3.(4)2ab. 【点拨】 合并同类项的“三注意”: (1)合并同类项时,不要漏掉系数的符号;(2)若一个多项式中含有若干个不同的同类项,则可用交换律、结合律和分配律将同类项进行合并; (3)不是同类项的不能合并,不能合并的项在运算的每一步中都要写上,直至化简的最后结果. 【跟踪训练2】 合并同类项: (1)3x 2-2xy +y 2-x 2+2xy ; (2)2a 2b -3a 2b +12a 2b ;(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3; (4)4x 2-8x +5-3x 2+6x -2.解:(1)2x 2+y 2.(2)-12a 2b.(3)a 3+b 3.(4)x 2-2x +3.知识点3 化简求值例3 求多项式5x 2+4x -6x 2-x +2x 2-3x -1的值,其中x =-3. 解:原式=x 2-1.当x =-3时,原式=8. 【点拨】 多项式化简求值的“三个步骤”:“一化、二代、三求值”,即(1)化简所给多项式,使其不再含有同类项;(2)将所给的值代入化简后的式子,若是负数,则需添加括号;(3)计算第(2)步所得的算式.【跟踪训练3】 求多项式3a +abc -13c 2-3a +13c 2的值,其中a =-16,b =2,c =-3.解:3a +abc -13c 2-3a +13c 2=(3-3)a +abc +(-13+13)c 2=abc.当a =-16,b =2,c =-3时,原式=(-16)×2×(-3)=1.知识点4 合并同类项的应用例4 (1)水库水位第一天连续下降了a h ,每小时平均下降2 cm ;第二天连续上升了a h ,每小时平均上升0.5 cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量是-2a cm ,第二天水位的变化量是0.5a cm.两天水位的总变化量(单位:cm)是 -2a +0.5a =(-2+0.5)a =-1.5a.这两天水位总的变化情况为下降了1.5a cm. (2)把进货的数量记为正,售出的数量记为负. 进货后这个商店共有大米(单位:kg) 5x -3x +4x =(5-3+4)x =6x.【跟踪训练4】 国家规定初中每班的标准人数为a 人,某中学七年级共有六个班,各班人数情况如下表用含a 的代数式表示该中学七年级学生总人数为(6a +5)人.04 巩固训练1.在下列单项式中,与2xy 是同类项的是(C)A .2x 2y 2B .3yC .xyD .4x 3.计算2m 2n -3m 2n 的结果为(C)A .-1B .-5m 2nC .-m 2nD .不能合并 3.下列各组中的两个单项式能合并的是(D) A .4和4x B .3x 2y 3和-y 2x 3 C .2ab 2和100ab 2c D .m 和m24.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为(B)A .29B .-6C .14D .24 5.已知3x 5y 2和-2x 3m y n 是同类项,则m =53,n =2.6.合并下列各式的同类项:(1)15x +4x -10x; (2)-p 2-p 2-p 2;(3)2a+6b-7a-b; (4)5x2-7xy+3x2+6xy-4x2.解:(1)原式=9x.(2)原式=-3p2.(3)原式=-5a+5b.(4)原式=4x2-xy.7.求多项式7a2b-4a2b+5ab2-4a2b+6ab2的值,其中a=-1,b=2.解:原式=-a2b+11ab2.当a=-1,b=2时,原式=-46.05课堂小结1.同类项:(1)所含字母相同;(2)相同字母的指数也相同.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项法则.第2课时去括号01教学目标1.探究去括号法则,并且利用去括号法则将整式化简.2.发现去括号时的符号变化的规律,归纳出去括号法则.02预习反馈阅读教材P65~67,完成下列内容.1.去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.下列去括号过程是否正确?若不正确,请改正.(1)a-(-b+c-d)=a+b+c-d;(不正确)a+b-c+d;(2)a+(b-c-d)=a+b+c+d;(不正确)a+b-c-d;(3)-(a-b)+(c-d)=-a-b+c-d.(不正确)-a+b+c-d.03名校讲坛知识点1先去括号,再合并同类项例1去括号,再合并同类项:(1)x-(3x-2)+(2x+3);(2)(3a2+a-5)-(4-a+7a2);(3)(2m-3)+m-(3m-2);(4)3(4x-2y)-3(-y+8x).解:(1) 5.(2)-4a2+2a-9.(3)-1.(4)-12x-3y.【点拨】去括号的三种不同情况:1.+():括号前是正号时,去掉括号及正号后,括号里面各项的符号均不变.(2)-():括号前面是负号时,去掉括号及负号后,括号里面各项的符号都要改变.注意:“都”即每一项的符号都要改变.(3)-n():括号前面有因数时,根据分配律去括号,即将括号前面的数与括号里面各项系数分别相乘.注意:每项系数都包括其前面的符号.【跟踪训练1】去括号,并合并同类项:(1)-(5m+n)-7(m-3n);(2)-2(xy-3y2)-[2y2-(5xy+x2)+2xy].解:(1)-12m+20n.(2)xy+4y2+x2.知识点2利用去括号解决实际问题例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?解:顺水航速=船速+水速=(50+a)km/h,逆水航速=船速-水速=(50-a)km/h.(1)2 h后两船相距(单位:km)2(50+a)+2(50-a)=100+2a+100-2a=200.(2)2 h后甲船比乙船多航行(单位:km)2(50+a)-2(50-a)=100+2a-100+2a=4a.【跟踪训练2】船在静水中的速度为a km/h,水速为10 km/h,船顺流航行5 h的行程比逆流航行3 h的行程多(80+2a)__km.04巩固训练1.-(x-2y+3z)去括号后的结果为(B)A.x-2y+3z B.-x+2y-3zC.x+2y-3z D.-x+2y+3z2.化简5(2x-3)+4(3-2x)的结果为(A)A.2x-3 B.2x+9 C.8x-3 D.18x-33.下列各式中,去括号正确的是(D)A.x2-(x-y+2z)=x2-x+y+2zB .x -(-2x +3y -1)=x +2x +3y +1C .3x +2(x -2y +1)=3x -2x -2y -2D .-(x -2)-2(x 2+2)=-x +2-2x 2-44.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树(4x +6)棵.5.化简:(1)5a -(2a -4b); (2)2x 2+3(2x -x 2);(3)6a 2-4ab -4(2a 2+12ab); (4)-3(2x 2-xy)+4(x 2+xy -6).解:(1)原式=3a +4b.(2)原式=-x 2+6x.(3)原式=-2a 2-6ab.(4)原式=-2x 2+7xy -24.6.先化简,再求值:(4a 2-3a)-(2a 2+a -1)+(2-a 2)+4a ,其中a =-2.解:原式=a 2+3.当a =-2时,原式=(-2)2+3=7.05 课堂小结去括号法则.第3课时 整式的加减01 教学目标1.经历列式、去括号、合并同类项,代入求值等解题过程,能熟练地进行整式的加减运算.2.经历用整式的加减解决简单实际问题的过程,掌握整式加减运算的应用.02 预习反馈阅读教材P67~69,完成下列内容.1.整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2.化简下列各题:(1)-3(2x -y)-2(4x +12y)+2 018; (2)-[2m -3(m -n +1)-2]-1.解:(1)-14x +2y +2 018.(2)m -3n +4.03 名校讲坛知识点1 整式的加减与化简求值例1 (教材补充例题)求多项式-x 3-2x 2+3x -1与-2x 2+3x -2的差.解:-x 3-2x 2+3x -1-(-2x 2+3x -2)=-x 3-2x 2+3x -1+2x 2-3x +2=-x 3+1.【点拨】 整式加减运算的注意点:(1)计算多项式的和与差是整个多项式参与和差运算,所以要用括号将多项式括起来,然后再去括号、合并同类项;(2)去括号时,若括号前面是“-”号,把括号和前面的“-”号去掉,括号里的各项要改变符号.例2 (教材补充例题)已知A =12x ,B =x -13y 2,C =-32x +13y 2,(x -2)2+|y -23|=0,求2A -B +C 的值. 解:2A -B +C =2·12x -(x -13y 2)-32x +13y 2=x -x +13y 2-32x +13y 2=-32x +23y 2. 因为(x -2)2+|y -23|=0, 所以x =2,y =23. 所以原式=-32×2+23×(23)2 =-3+827=-21927. 【点拨】 整式化简求值的“三个步骤”:一化:去括号,合并同类项;二代:将字母的值代入化简后的式子;三计算:按指定的运算顺序进行计算.【跟踪训练1】 在解“当x =-2,y =23时,求12x -2(x -13y 2)+(-32x +13y 2)的值”时,甲同学不小心把“y =23”写成“y =-23”,但计算结果也是正确的,这是为什么? 解:原式=12x -2x +23y 2-32x +13y 2=-3x +y 2. 因为数的平方的结果是相同的,所以代入互为相反数的结果值相等.知识点2 整式加减的应用【例3】 做大小两个长方体的纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?解:小纸盒的表面积是(2ab +2bc +2ca)cm 2,大纸盒的表面积是(6ab +8bc +6ca)cm 2.(1)做这两个纸盒共用料(单位:cm 2)(2ab+2bc+2ca)+(6ab+8bc+6ca)=2ab+2bc+2ca+6ab+8bc+6ca=8ab+10bc+8ca.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=6ab+8bc+6ca-2ab-2bc-2ca=4ab+6bc+4ca.【点拨】解决整式加减运算应用题的“三步法”:列式→根据实际问题的题意列出算式↓计算→运用整式的加减法则进行计算↓结论→计算出最后需要的结果【跟踪训练2】某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?解:B小组学生人数为3(x+2y)名,C小组学生人数为[(x+2y)+3]名.所以A,B,C三个课外活动小组人数共有(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3(名).答:A,B,C三个课外活动小组共有(5x+10y+3)名学生.04巩固训练1.设M=2a-3b,N=-2a-3b,则M-N等于(B)A.4a-6b B.4aC.-6b D.4a+6b2.当x=2时,(x2-x)-2(x2-x-1)的值等于(D)A.4 B.-4 C.1 D.03.减去-2x等于-3x2+2x+1的多项式是(C)A.-3x2+4x+1 B.3x2-4x-1C.-3x2+1 D.3x2-14.一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是(B)A.12a+16b B.6a+8b C.3a+8b D.6a+4b5.一个十位数字是a,个位数字是b的两位数可表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是9b-9a.6.计算:(1)3a+2-(-4a);(2)2(x2+3)-(5-x2);(3)(ab-3a2)-2b2-5ab-(a2-2ab);(4)2(3b2-a3b)-3(2b2-a2b-a3b)-4a2b.解:(1)原式=7a+2.(2)原式=3x2+1.(3)原式=-4a2-2b2-2ab.(4)原式=a3b-a2b. 05课堂小结通过本节课的学习,你有哪些收获?。
人教版数学七年级上册第二章:数学活动-教案+学案
第二章整式的加减-《数学活动》房县实验中学教学目标1.知识与技能会用代数式表示简单的问题中的数量关系,能用合并同类项,去括号等法则验证所探索的规律. 2.过程与方法经历探索数量关系,运用符号表示规律,通过运算验证规律的过程,培养学生观察、分析、推理的能力.3.情感态度与价值观培养学生不怕困难、勇于探索的学习态度,合作交流的意识和能力,感受符号运算的作用.体会从“特殊”—“一般”—“特殊”的研究问题的思想方法。
重、难点1.重点:探索数量关系、运用符号表示规律,并通过运算验证规律.2.难点:会用代数式表示问题中的数量关系.教具准备火柴棍、月历、投影仪.教学过程一、创设情境:1、用三根火柴摆一个比3大比4小的数;2、用4根火柴摆出最小的数是多少?最大的数是多少?二、自学探究:活动11.提出问题:如右图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中含有2,3或4个三角形,分别需要多少根火柴棒?如果图形中含有n个三角形,需要多少根火柴棍?2.分组探究:让学生亲自动手摆一摆,算一算.鼓励每个同学尽可能独立思考,并与同伴进行交流,教师关注学生在探索数量关系活动中的参与态度、思维水平和抽象能力:关注学生与他人进行合作与交流的意识.如3=2×1+1,5=2×2+1,7=2×3+1,9=2×4+1,从而得排n•个三角形需要火柴棍根数为2n+1.3.活动1小结:基本步骤:提出问题——动手实践——寻求规律——归纳总结探究规律:“特殊”——“一般”——“特殊”数学知识:用字母表示数,整式的加减活动21.提出问题:如图1是某月的月历:图1 图2 图3(1)带阴影的方框中的9个数之和与方框正中心的数有什么关系?(2)如果将带阴影的方框移至图3的位置,(1)中的关系还成立吗?(3)不改变带阴影的方框的大小,将方框移动几个位置试一试,你能得出什么结论?你能证明这个结论吗?月历中数的排列规律:行:从左向右,依次递增1. 列:从上向下,依次递增7对角线:从左上向右下,依次递增8(4)这个结论对于任何一个月的月历都成立吗?(5)如图2,如果带阴影的方框里的数是4个,你能得出什么结论?(6)如图3,对于带阴影的框中的4个数,又能得出什么结论?2.分组探究:组织学生按小组,进行探究,鼓励每个学生尽可能独立思考,并与同伴进行交流.教师思路点拨:对于问题(1)、(2)学生易得出结论.(1)中浅色方框中的9个数字之和为99,99=9×11.(2)中,浅色方框中9个数字之和为144,144=9×16.(3)教师可让学生再找几个方框试试,看自己的规律是否还成立.教师引导学生,如果用a表示中间的数,那么其余的8个数应如何用a表示?学生经过观察,可得:这9个数字之和=a-8+a-7+a-6+a-1+a+a+1+a+6+a+7+a+8=9a.(4)这个结论对于任何一个月的月历都成立,因为此浅色方框无论移至月历中的哪个位置,方框中的9个数字都可以用上述方法表示.(5)交叉两数的和相等.若设方框中第一行第一个数为a,则第二个数为a+1,第二行第一个数为a+7,第二个数为a+8,而a+(a+8)=2a+8,(a+1)+(a+7)=2a+8,所以a+(•a+8)=(a+1)+(a+7).(6)我们仍可以用字母a表示方框中的数.如a+7a+6a+1aa+(a+7)=2a+7,(a+6)+(a+1)=2a+7,因此有a+(a+7)=(a+1)+(a+6).教学时,也可以先开放,让学生发现月历中数与数之间的关系,•再讨论浅色方框中数字和与该方框正中间的关系课本.也可以鼓励学生发展多种关系,用代数式表示自己的发现.例如方框中第一行两数之和比第二行两数之和小14;第二列两数之和比第一行两数之和大2;第一行的第二个数字与第二行的第一个数字的乘积比第一行第一个数与第二行第二个数字的乘积大6等.3.活动2小结:(1)探究月历中数之间的关系,先考虑什么问题?(2)利用字母表示数,如何设字母更简便?(3)应用什么数学知识进行化简表示出一般规律? 三、课堂总结:通过本课的学习,我们学会了用整式和整式的加减运算表示实际问题中的数量关系,掌握了从特殊到一般再到特殊,从个体到整体再到个体,从不同角度来观察、分析问题。
新人教版七年级上册数学第二章《整式的加减》全章教案
第1课时:整式(1)教学内容:教科书第54—56页,2.1整式:1.单项式。
教学目标和要求:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:分层次教学,讲授、练习相结合。
教学过程:一、复习引入:1、 列代数式(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方形棱长,则正方形的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。
让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)2、 请学生说出所列代数式的意义。
3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a ,5。
2.练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
人教版数学七年级上册《整式的加减运算》教案
人教版数学七年级上册《整式的加减运算》教案一. 教材分析人教版数学七年级上册《整式的加减运算》是学生在掌握了有理数、实数、代数式等基础知识后,进一步学习整式运算的重要内容。
本节课的内容包括整式的加减法则、加减运算的步骤和注意事项等。
通过本节课的学习,学生能够掌握整式加减运算的方法,提高解决实际问题的能力。
二. 学情分析学生在六年级时已经学习了简单的代数运算,对于加减乘除等基本运算有一定的掌握。
但是,对于整式的加减运算,学生可能还存在以下问题:1. 对整式的概念理解不深,容易混淆;2. 运算顺序掌握不牢固,容易出错;3. 对于复杂的整式运算,缺乏解决方法。
三. 教学目标1.知识与技能:学生能够掌握整式的加减法则,正确进行整式加减运算。
2.过程与方法:通过实例分析,让学生学会将实际问题转化为整式加减运算,提高解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、探究的精神。
四. 教学重难点1.重点:整式的加减法则。
2.难点:复杂整式加减运算的解决方法。
五. 教学方法采用“问题驱动法”和“实例分析法”,以学生为主体,教师为指导,通过提问、讨论、实践等方式,引导学生主动探索、发现和解决问题。
六. 教学准备1.教学素材:教材、多媒体课件、黑板、粉笔。
2.教学工具:投影仪、计算机。
七. 教学过程1.导入(5分钟)通过一个实际问题引出整式加减运算的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解整式的加减法则,引导学生理解并掌握加减运算的步骤。
3.操练(10分钟)学生分组进行练习,教师巡回指导,及时发现并纠正错误。
4.巩固(5分钟)选取一些典型的题目进行讲解,加深学生对整式加减运算的理解。
5.拓展(5分钟)讲解一些复杂的整式运算,引导学生学会运用合适的方法解决问题。
6.小结(3分钟)对本节课的主要内容进行总结,强调重点知识点。
7.家庭作业(2分钟)布置适量的家庭作业,巩固所学知识。
8.板书(贯穿整个教学过程)在教学过程中,适时地进行板书,总结关键步骤和注意事项。
七年级数学上册第二章整式的加减《数学活动》
教学设计:2024秋季七年级数学上册第二章整式的加减《数学活动》教学目标(核心素养)1.知识与技能:通过数学活动,加深学生对整式加减运算的理解,提高解决实际问题的能力。
2.数学思维:培养学生的观察力、分析能力和逻辑推理能力,学会从实际问题中抽象出数学模型。
3.情感态度:激发学生对数学的兴趣,增强团队合作意识,体验数学学习的乐趣。
教学重点•引导学生将整式加减运算应用于解决实际问题。
•培养学生的数学建模能力和问题解决策略。
教学难点•如何将复杂的实际问题转化为整式加减的数学问题。
•在团队合作中有效沟通和协调,共同完成任务。
教学资源•多媒体课件(包含活动背景、问题设置、示例解析)•实物教具(如积木、卡片等,用于构建数学模型)•分组材料(每组一套,包括纸笔、计算器、活动指南)•教室布置(确保小组间有足够的空间进行活动和讨论)教学方法•问题驱动法:通过设计一系列实际问题,引导学生主动探索解决方案。
•合作学习法:学生分组进行活动,共同讨论、解决问题。
•实践操作法:利用实物教具或纸笔进行数学模型的构建和计算。
•反馈评价法:及时给予学生反馈,鼓励自我评价和同伴评价。
教学过程要点导入新课•情境引入:通过一个贴近学生生活的实际问题(如班级物品分配、花园面积计算等),激发学生兴趣,引出整式加减在解决实际问题中的应用。
•明确目标:介绍本次数学活动的目的、要求和预期成果。
新课教学•问题设置:给出几个与整式加减相关的实际问题,让学生分组选择或抽签决定研究的问题。
•模型构建:引导学生将实际问题转化为整式加减的数学模型,可以使用实物教具或纸笔进行构建。
•计算求解:小组合作,利用整式加减的运算法则进行计算,得出结果。
•结果验证:鼓励学生通过不同方式验证结果的正确性,如反向推理、实际测量等。
课堂小结•分享交流:各小组展示研究成果,分享解题思路和经验。
•总结归纳:教师总结整式加减在解决实际问题中的应用,强调数学建模的重要性。
•反思提升:引导学生反思活动过程中的得失,提出改进建议。
人教版数学七年级上册《 第二章 整式的加减 》教案
人教版数学七年级上册《第二章整式的加减》教案一. 教材分析人教版数学七年级上册《第二章整式的加减》是学生在学习了有理数、一元一次方程等知识后,进一步学习代数的基础。
这一章主要介绍整式的加减运算法则,通过学习,学生能够掌握整式的加减运算,并为后续的函数、方程等知识的学习打下基础。
本章内容贴近学生的生活实际,有利于激发学生的学习兴趣。
二. 学情分析七年级的学生已经掌握了有理数、一元一次方程等基础知识,具备了一定的逻辑思维能力。
但是,对于整式的加减运算,学生可能还存在着一定的困难,因此,在教学过程中,需要注重引导学生理解整式的加减运算法则,通过具体的例子,让学生能够熟练地进行整式的加减运算。
三. 教学目标1.知识与技能:理解整式的加减运算法则,能够进行简单的整式加减运算。
2.过程与方法:通过实例,培养学生的观察、分析、归纳能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作精神,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:整式的加减运算法则。
2.难点:整式加减运算的灵活应用。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究,培养学生的动手操作能力和独立思考能力。
六. 教学准备1.教学素材:教材、多媒体课件、练习题。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如购物时找零、制作标语等,引导学生发现这些问题都可以用整式的加减来解决,从而激发学生的学习兴趣。
2.呈现(10分钟)讲解整式的加减运算法则,通过具体的例子,让学生理解并掌握整式的加减运算。
3.操练(10分钟)让学生分组进行练习,互相讨论,教师巡回指导。
在此过程中,教师要注意发现学生的错误,并及时进行纠正。
4.巩固(10分钟)针对学生练习中出现的问题,进行讲解,让学生进一步巩固整式的加减运算。
5.拓展(10分钟)引导学生思考:如何将整式的加减运算应用到实际问题中?让学生举例说明。
人教版七年级数学上册2.2《整式的加减》教学设计
人教版七年级数学上册2.2《整式的加减》教学设计一. 教材分析人教版七年级数学上册2.2《整式的加减》是学生在掌握了整式的概念和运算法则的基础上进行学习的内容。
本节内容主要介绍了整式的加减法运算,包括同类项的定义、合并同类项的法则等。
通过本节内容的学习,学生能够熟练掌握整式的加减法运算,并能够解决实际问题。
二. 学情分析学生在进入七年级之前,已经学习了整数和分数的加减法运算,具备了一定的数学基础。
但是,对于整式的加减法运算,学生可能还存在着一些困惑,例如对同类项的理解和合并同类项的方法等。
因此,在教学过程中,需要注重对学生基础知识的巩固和拓展,通过实例讲解和练习,帮助学生理解和掌握整式的加减法运算。
三. 教学目标1.知识与技能:学生能够理解同类项的定义,掌握合并同类项的法则,能够进行整式的加减法运算。
2.过程与方法:通过实例讲解和练习,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣和热情,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.教学重点:同类项的定义,合并同类项的法则,整式的加减法运算。
2.教学难点:同类项的判断,合并同类项的技巧,解决实际问题。
五. 教学方法1.情境教学法:通过实例讲解和生活实际问题,引发学生的兴趣和思考,引导学生主动参与学习。
2.合作学习法:学生进行小组讨论和合作交流,培养学生的团队合作意识和沟通能力。
3.实践操作法:通过练习和操作,让学生动手动脑,巩固所学知识,提高解决问题的能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示教学内容和实例。
2.练习题:准备适量的练习题,用于学生的操练和巩固。
3.教学工具:准备黑板、粉笔、投影仪等教学工具。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如购物时找零、制作蛋糕等,引导学生思考如何运用整式的加减法来解决问题。
激发学生的兴趣和思考,为后续学习做好铺垫。
2.呈现(10分钟)通过PPT呈现同类项的定义和合并同类项的法则,结合实例进行讲解。
人教版七年级上(初一上)册数学教案:第二章 整式的加减
第二章 整式的加减2.1 整式 第1课时 用字母表示数学习内容:教科书第54—56页,2.1整式:1.单项式。
学习目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。
(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ; (3)若x 表示正方体棱长,则正方体的体积是 ; (4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。
4、练习:判断下列各代数式哪些是单项式?(1); (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
5、单项式系数和次数:21 x观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。
单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。
说说四个单项式a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。
2、判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②; ③πr 2; ④-a 2b 。
3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥πr 2h 的系数是。
2022年人教版七年级数学上册第二章整式的加减教案 整式的加减(第3课时)
第二章整式的加减2.2 整式的加减第3课时一、教学目标【知识与技能】能根据题意列出式子:会进行整式加减运算,并能说明其中的算理.【过程与方法】经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力.【情感态度与价值观】培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式的应用价值.二、课型新授课。
三、课时第3课时,共3课时。
四、教学重难点【教学重点】列式表示实际问题中的数量关系,会进行整式加减运算.【教学难点】列式表示问题中的数量关系,去掉括号前是负因数的括号.五、课前准备教师:课件、直尺、去括号图片等。
学生:三角尺、练习本、圆珠笔或钢笔、铅笔。
六、教学过程(一)导入新课教师:我们先来做一个数字游戏:我来说你来写(出示课件2)重复几次看看,谁能先发现这些和有什么规律?对于任意一个两位数都成立吗?(二)探索新知1.师生互动,探究整式加减运算法则教师问1:某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?学生答案:n+(n+1)+(n+2)+(n+3)教师问2:以上答案进一步化简吗?如何化简?我们进行了哪些运算?学生回答:可以,去括号,合并同类项.教师问3:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为:__________.(出示课件4)学生回答:10a+b教师问4:交换这个两位数的十位数字和个位数字,得到的数是:_____________,将这两个数相加:_____________.学生回答:10b+a,(10a+b)+ (10b+a)= 10a+b+10b+a=11a+11b=11(a+b)教师问5:结果有何特点?学生回答:是11的倍数.教师问6:任意写一个三位数,交换它的百位数字与个位数字,又得到一个数,两个数相减,你又发现什么了规律?(出示课件5)学生回答:举例:原三位数728,百位与个位交换后的数为827,由728 –827= – 99.结果也是11的倍数. (出示课件6)教师问7:你能看出什么规律并验证它吗?师生共同解答如下:任意一个三位数可以表示100a+10b+c验证:设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(出示课件7)(100a+10b+c) –( 100c+10b+a)= 100a+10b+c–100c–10b–a=99a–99c=99(a–c).教师问8:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?学生回答:去括号,合并同类项.总结点拨:整式加减的一般步骤可以总结为:(1)如果有括号,那么先去括号。
初中七年级数学《整式的加减》教案(3篇)
初中七年级数学《整式的加减》教案(3篇)初中七年级数学《整式的加减》教案大全一设计理念建立平等合作,互相尊重的师生关系,创设一种师生交流的互动、互学的学习氛围。
重视学生的学习进程,关注个体差异,让不同的人在数学学习中得到不同的发挥,利用课件,帮助学生理解和学习数学。
通过观察、分析、动手、动脑等活动,让学生在“做中学”、“学中做”进而达到“我要学”。
教学内容本节课是沪科版义务教育课程实验教科书七年级数学上册第二章第三节《2.3整式的加减——1.合并同类项》(第71~73页)。
学情分析七年级年龄段的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选取与呈现方式以及学习活动的安排上要设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。
学生主要通过对教学中生活情景的分析,感受数学与生活的密切联系,通过对几个问题的分析、探讨、相互交流,用类比、迁移的方法,提高对课本知识的运用能力,从而认识归纳合并同类项的法则,在练习中巩固和熟悉合并同类项的技能。
最后,通过回顾与反思以及谈感受谈收获,把所学知识升华成理性认识。
教材分析合并同类项是一堂探究活动课,是在结合学生已有的生活经验,引入字母表示数、继而介绍了代数式,以及代数式求值的基础上对同类项的定义,同类项如何进行合并的探索、研究。
合并同类项是本章的一个知识重点,其法则的应用,是以后学习解方程、整式的运算、解不等式的基础。
因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。
1.基础知识目标:(1)在具体的情景中理解同类项的定义,并能识别同类项。
(2)在具体情景中探索合并同类项的法则,并能熟练进行合并同类项的运算。
【人教版】七年级数学上册:第二章《整式的加减》全章教学设计
: 2.1 整式(第 1 )一、教课目1. 列式表示数目关系的程,展符号感.2. 知道式及其系数、次数的意,会正确确立一个式的系数和次数.二、教课要点和点1. 要点:列式表示数目关系,式及其系数、次数的意.2.点:列式表示数目关系 . 三、教课程(一)基本,稳固旧知1. 填空:x3的指数是,底数是;a2的指数是,底数是; n 的指数是,底数是.(二)情境,入新:前方我学了第一章有理数,从今日开始,我要学第二章整式的加减. (板:第二章整式的加减)同学自然会:什么是整式?我将在本和下学什么是整式 . (板: 2.1 整式)我第一学整式的一种,叫式 . (板:(式))(三)指,授新:什么的式子是式呢?大家看一个例子. (出示下边的板)一种笔本售价是每本 2 元,那么 2 本所需是元,5本所需是元, 10 本所需是元,100本所需是元,x 本所需是元.:(指板)一种笔本售价是每本 2 元,那么 2 本所需是多少元?生: 4 元 . (板: 4):(指板)那么 5 本所需是多少元?生: 10 元. (板: 10):(指板)那么10 本所需是多少元?100 本所需是多少元?生: 20 元,200 元 . (板: 20,200 ):(指板)一种笔本售价是每本 2 元,那么 x 本所需是多少元?生:⋯⋯(多几位同学表见解):(指板)一种笔本售价是每本2 元,那么 x 本所需是 2×x 元 . (板:2×x)了写方便,(指乘号)往常将乘号写成“·”,(将“2×x”改“ 2·x”)或许将乘号省略不写 .(用彩笔将“ 2·x ”改“ 2x”) 2x 就表示 2×x.:(板: 2x 并指 2x)2x 就是一个式 . 式自然不仅2x 么一个,在生活中,存在大批的其余的式,同学通把下边的列成式子,就能找到大批的式 .(四)探,回授2.填空:(1)一支笔的售价是 x 元,一支珠笔的售价是笔的 2.5 倍,一支珠笔的售价是元;(2) a 的正方形面;(3) a 正方体的体;(4)一汽的速度是每小v 千米,它 t 小行的行程千米;( 5)数 n 的相反数是.(生做,巡指,达成后,生答案,假如必需,酌情解,并将2.5x ,a2,a3, vt ,- n 板出来)(五)指,授新:(指准板) 2x 是式, 2.5x , a2,a3,vt ,-n 些式子也是式 . 在:什么的式子叫做式?生:⋯⋯(多几名学生表见解,要必定学生回答中合理的部分):些式子有一个共同的特色,什么特色呢?它都是数字与字母的. (指准式子) 2x 是数2 与字母 x 的, 2.5x 是数 2.5 与字母 x 的 . a 2是数 1 与字母 a2的, a3是数 1 与字母 a3的, vt 是数 1 与字母 v、t 的,- n 是数- 1 与字母 n 的 .:通上边的剖析,哪位同学知道:什么叫做式?生:⋯⋯:数字与字母的,的式子叫做式. (板:数字与字母的,的式子叫做式):需要指出的是,唯一个数或一个字母也是式. (板:唯一个数或一5,-1,2008 等都是式;又比如,个字母也是式)比如,唯一个数2独的一个字母x 也是式 .(六)探,回授3.判断以下式子是否是式:(1)4x;(2)- 4x2 y;(3)3a2bc;(4)7.2 ;(5)a;(6)2+x.(七)指,授新:(板:- 4x2y)我都知道,- 4x2y 是式,(指准式子)它是数字- 4 与字母 x2、y 的,一种法,- 4 是数字因数, x2、y 是字母因数,我把数字因数- 4 叫做个式的系数 . (板:的系数是- 4):(指已板的式2x)哪位同学知道2x 个式的系数?生: 2.(以下生回答已板的其余式的系数):明确了式系数的观点,下边我再来看式的次数的观点. (板:次数):(指准- 4x2y)个式含有两个字母,字母 x 指数是 2,字母 y 的指数是 1,全部字母的指数和是 3,我把式- 4x2y 全部字母指数的和 3 叫做个式的次数 . (板:是 3):一个式的次数是几次,我就把个式叫做几次式. (指- 4x2y)个式的次数是3,就叫做三次式 . (板:是三次式):(指已板的式2x)个式的次数是几次?生:⋯⋯:(指 2x)个式只含有一个字母,x 的指数是 1,所以全部字母指数的和也是 1,所以个式的次数是 1,个式是一次式 .(以下生回答已板的其余式的次数)(八)探,回授4.填空:( 1)式 2a2的系数是,次数是,是次式;( 2)式- 1.2h 的系数是,次数是,是次式;( 3)式 x2y 的系数是,次数是,是次式;( 4)式- t 2的系数是,次数是,是次式;( 5)式 5a4b 的系数是,次数是,是次式;( 6)式 x 的系数是,次数是,是次式;( 7)式3xyz 的系数是,次数是,是次式;5( 8)式2vt,次数是,是次式 .的系数是35.用式填空:( 1)每包有 12 册, n 包有册;( 2)一个方形的是0.9 ,是 a,个方形的面是;(3)全校学生数是x,此中女生占数48%,女生人数是,男生人数是;(4)量由 m千克增 10%,就达到千克.(九)小,部署作:本我学了什么?学了本你有什么收?生:⋯⋯(多几位同学归纳)(作: P59 1. )四、板第二章整式的加减2.1 整式(式)232.5x , a,a , vt ,- n一种笔本售价是每本 2 元⋯⋯叫做式那么⋯⋯唯一个数或一个字母也是式- 4x2y 的系数是- 4,次数是 3,是三次式: 2.1 整式(第 2 )一、教课目1. 知道多式及其、常数、次数的意,会指出多式的各与多式次数.2.知道整式的意.二、教课要点和点1.要点:多式及其、常数、次数的观点 .2.点:指出多式的各 . 三、教课程(一)基本,稳固旧知1.判断正:的画“√” ,的画“×” .(1)5y 是式;()(2)5y+1 是式;()(3)1是式;()3(4)单项式 ab 的系数是 0;()(5)单项式2ab()的系数是 2;3(6)单项式 xy2次数是 2;()(7)单项式 4xy2是三次单项式 .()2. 填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段行驶速度是每小时100 千米,它 2 小时行驶的行程是千米,3小时行驶的行程是千米, t 小时行驶的行程是千米.3.用单项式填空:( 1)底边长为 a,高为 h 的三角形面积是;(2)一辆汽车从拉萨出发, 3 小时后抵达相距 s 千米的尼木县城,这辆长途汽车的均匀速度是;(3)一台电视机原价 a 元,现按原价的9 折(9 折就是 90%)销售,这台电视机此刻的售价为元 .(二)创建情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式 . (板书课题:整式(多项式))(三)试试指导,解说新课(师出示下边的板书)4x- 56x2-2x+ 7师:这两个式子是单项式吗?生:不是 .师:这两个式了有什么共同的特色?(稍停)它们都是几个单项式的和. 它们怎么都是几个单项式的和呢?师:(指 4x-5)4x-5 能够转变为 4x+ ( - 5) ,(板书:(4x+( -5) )),所以, 4x -5 能够当作是单项式4x 与- 5 的和 .师:(指 6x2- 2x+7)6x2-2x+7 能够转变为 6x2+ ( - 2x) +7, (板书:( 6x2+( -2x) +7))所以, 6x2-2x+7 能够当作是 6x2,- 2x,7 的和 .师:(指两个式子)所以这两个式子的共同特色都是几个单项式的和.师:几个单项式的和叫做多项式. 所以 4x-5 是多项式,(板书:多项式)6x2-2x +7 也是多项式 .(板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项. 所以,多项式4x- 52的项是 4x,- 5. (板书:的项是 4x,- 5)多项式 6x -2x+ 7 的项有哪些?22生: 6x ,- 2x,7. (师板书:的项是 6x ,- 2x,7)师:不含字母的项,叫做常数项. 所以,(指准式子)多项式4x-5 的常数项是-5.(板书:常数项是-5)多项式 6x2-2x+7 的常数项是什么?生:7. (板书:常数项是7)(四)尝试练习,回授调理4.填空:( 1)多项式 x2+3x+ 4 是单项式,,常数项是2(2)多项式- x -3+x 是单项式,,的和,它的项是;,,的和,它的项是,,,2,常数项是;,的和,它的项是,,(3)多项式 m-1 是单项式常数项是;(4)多项式 2x+3y2-3xy2是单项式,,的和,它的项是,,.(五)试试指导,解说新课师:(指准 4x- 5)这个多项式有两项, 4x 这一项的次数是一次,常数项的次数是0 次. 次数最高项的次数是一次,我们就说多项式4x-5 的次数是一次 . (板书:次数是 1 次)师:(指准 6x2-2x+ 7)这个多项式有三项,6x2这一项的次数是二次,-2x 这一项的次数是一次,常数项的次数是 0 次. 次数最高项的次数是二次,我们就说多项式 6x2-2x+ 7 的次数是二次 . (板书:次数是 2 次)(六)尝试练习,回授调理5. 填空:(1)多项式 3+2x2-4x 次数最高项是,次数最高项的次数是,这个多项式的次数是;3,次数最高项的次数是,这个多(2)多项式 m-1 次数最高项是项式的次数是;(3)多项式 2x- 3xy2+1 次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式 3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是.(七)归纳小结,部署作业师:本节课我们学习了整式的另一种,叫做多项式 . (指准板书)几个单项式的和叫做多项式 . 在多项式中,每个单项式叫做多项式的项 . 此中,不含字母的项叫做常数项 . 多项式中,次数最高项的次数,就是这个多项式的次数 . 单项式和多项式统称整式 . (板书:单项式和多项式统称整式)(作业: P76复习题 2. )四、板书设计2.1 整式(多项式)多项式 4x- 5(4x + ( - 5)) 的项是 4x, - 5,常数项是- 5,次数是 1 次多项式 6x 222,常数项是7,次数是 2 次- 2x+ 7(6x+ ( - 2x)+ 7) 的项是 6x , - 2x,7单项式和多项式统称整式课题: 2.1 整式(第 3 课时)一、教课目的1.稳固单项式、多项式的相关观点 .2.会列较简单的多项式表示数目关系,发展符号感 .二、教课要点和难点1.要点:列多项式表示数目关系 .2.难点:列多项式表示数目关系 .三、教课过程(一)基本训练,稳固旧知1. 填空:(1)单项式 3x 的系数是,次数是,是次单项式;(2)单项式πr 2的系数是,次数是,是次单项式;(3)单项式- x2y 的系数是,次数是,是次单项式;(4)单项式 a2b2的系数是,次数是,是次单项式 .22. 填空:( 1)多项式― x 2― 3x +4 的项是,最高次项是,常数项是,次数是;2,最高次项是,常数项是( 2)多项式 3- m 的项是,次数是;( 3)多项式 a3+ a2 b+ ab2的项是,最高次项是,次数是.3.判断正误:对的画 " √ " ,错的画 " ×".(1)多项式 3a- 5 的项是 3a,5;()(2)多项式 x3+x2y2的次数是 3 次;()(3)几个多项式的和还是多项式;()(4)单项式和多项式统称整式 .()(二)创建情境,导入新课师:上节课,我们学习了多项式的观点,本节课我们要学惯用多项式表示数目关系. 请看例 1.(三)试试指导,解说新课例 1 用多项式填空:(1)温度由 t 度降落 5 度后是度;( 2)甲数 x 的1与乙数 y 的1的和能够表示为;32( 3)如图,圆环的面积为.r(四)尝试练习,回授调理4. 用多项式填空:R( 1)温度由- 3 度降落 t度后是度;(2)温度由- 3 度上涨 t 度后是度;(3)一个数比 x 的 2 倍小 3,这个数为;(4)a 与 b 两数平方的和为;a(5)如图,三角尺的面积为.r5. 用整式填空:b( 1)体重由 x 千克增添 2 千克后是千克;( 2) 1 千克大米售价 1.2元, x 千克大米售价元;( 3) a, b 分别表示长方形的长与宽,则长方形的周长为;(4)a, b 分别表示梯形的上底和下底, h 表示梯形的高,则梯形的面积为;(5)买一个篮球需要 x 元,买一个排球需要y 元,买一个足球需要z 元,买 3个篮球、 5 个排球、 2 个足球共需元.(6)如,是一所住所的建筑平面,所住x米6米所的建筑面是x 米平方米 .4米6. 思虑:如,搭 1 个正方形需要 4 根小棒,搭 2 个正方形需要根小棒,搭 3 个正方形需要根小棒,搭x 个正方形需要根小棒,搭2008 个正方形需要根小棒.(教课建:许多学生而言,些可能有必定度. 要学生充足思虑,要学生安下心来做,快者快做,慢者慢做,不要催学生,不要求全部学生达成全部,差生能真实独立思虑达成二三小就不了,中下生能达成 4 就很好了 . 老要加巡指,各学生以适合鼓舞)(五)小,部署作:今日我学了什么?通本学,你有什么收?生:⋯⋯(多几位同学回答)(作: P60 2. )四、板例 1: 2.2 整式的加减(第 1 )一、教课目1. 同观点的形成程,知道什么是同.2. 归并同法的形成程,会集并同.二、教课要点和点1.要点:同的观点,归并同 .2.点:同观点的形成 . 三、教课程(一)情境,入新:前方我学了整式的观点,从本开始,我学整式的加减. (板:2.2 整式的加减)整式的加减上就是归并同,本我先来学归并同 . (板:(归并同))(二)指,授新:要归并同,我第一要弄清什么是同 . 我一同来看下边的例子 . : 5 个 x 加上 2个 x 等于什么?(板: 5x+2x=)生: 7 个 x. (板: 7x)2222:- 5ab 加上 3ab 等于什么?(板:-5ab +3ab =):依据分派律,- 5ab2+3ab2= ( - 5+ 3)ab 2(板: ( - 5+ 3)ab 2)等于-2ab2 .(板:=- 2ab2):(指准 5x+ 2x=7x)个式子的左是5x 与 2x 两,右只有 7x 一,就是,左的两能够归并成右的一.:(指准- 5ab2+ 3ab2=- 2ab2)个式子的左也有两-5ab2,3ab2,右只有一- 2ab2,就是,左的两也能够归并成一.:(指式子)察、剖析两个式子,大家分么一个:怎么的两能够归并成一?(出示板:怎么的两能够归并成一?)(生疏,巡指):哪位同学知道怎么的两能够归并成一?生:⋯⋯(多几位同学表见解):(在- 5ab2,3ab2下边划,并指准)两所含字母相同,-5ab2一所含字母是 a,b,3ab2一所含字母也是 a, b. (板:所含字母相同) 2 2一字母 a 的指数也是 1;一字母 b 的指数是 2,一字母 b 的指数也是 2. (板:并且相同的字母的指数也相同):(指- 5ab2,3ab2)像所含字母相同,相同字母的指数也相同的,叫做同 . (板:的,叫做同):在,我再回到本来的:怎么的两能够归并成一?生:⋯⋯:同能够归并成一,并且只有同才能够归并成一,不是同不能归并成一 .(三)探,回授1.判断以下各的两是否是同:( 1) 12x 与 2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy 与 5yx;(5)4abc与4ab;(6)7xy2与7x2y;33(7)a 与 5 ;(8)-25与12.(因为- 25 与 12 能够归并成一- 13,所以,常数与常数也是同)2.找出多式 4x2-8x+ 5-3x2+6x-2 中的同:( 1) 4x2与是同;( 2)- 8x 与是同;(3)5 与是同.(四)指,授新:我已知道,同是能够归并在一同的归并成一,叫做归并同.. (指板的)把几个同:(指板的两个式子)从两个式子,哪位同学知道怎么归并同?生:⋯⋯(多几位同学表见解):系数相加,字母部分不. (板:系数相加,字母部分不)例 1归并以下各式的同:(1)xy2-1xy2;( 2)- 3ab+ba-2ab. 5(先生,再板演解,解要扣法)3. 填空:( 1) 6x-4x=()x=;( 2)- 7ab+6ab= ()ab=;( 3) 10y2+y2= ()y 2 =;( 4)- 0.5a +2a- 3.5a =()a=.4. 归并以下各式的同:( 1)- 8x2-7x2=(2)1xy- xy=3(3)- 4a2 b+ 4a2b=(4)1y-1y+2y=425.判断正:的画 " √" ,的画 " ×".( 1) 3a2- 2a2= 1;()( 2)3y-y=3;()( 3) 5a+2b=7ab;()( 4) 7ab-7ba=0;()( 5)4x2y-2xy2= 2x2y;()( 6)3x2+2x3=5x5.()6. 思虑:如,大的半径是 R,小的面是大面的4,暗影部分的面9.R(五)小,部署作. (指准- 5ab2+3ab2:本,我学了什么是同及怎么归并同个式子)所含字母相同,并且相同字母的指数也相同的叫做同. 归并同的方法是系数相加,字母部分不. 归并同的个方法是依据什么获得的?生:⋯⋯(依据分派律)(作: P661.2. )四、板2.2 整式的加减(归并同)5x+2x=7x例 1-5ab2+ 3ab2=( -5+3)ab 2=- 2ab2怎的两能够归并成一?⋯⋯叫做同 .系数相加,字母部分不.: 2.2 整式的加减(第 2 )一、教课目1.会集并多式中的同 .2.会先归并同,再求多式的 .二、教课要点和难点1.要点:归并多项式中的同类项 .2.难点:把多项式中的同类项写在一同 .三、教课过程(一)基本训练,稳固旧知1.判断以下各组中的两项是否是同类项:(1)0.2x 2y 与 0.2xy 2;(3)mn与- nm;( 2)4abc 与 4ac;( 4)- 125 与 20.2.归并以下各式的同类项:(1) 4x2- 8x2=(2)- 3x2 y+ 2x2y=(3) 3xy2-2xy2=(4) 2x2+ x2-3x2=3.判断正误:对的画“√” ,错的画“×” .( 1)a+b=b+a;()(2)a- b= b- a;()(3)a- b=- b+a;()(4)x2+2-x=x2+x-2;()(5)x2+ 2- x= x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=- x+2+x2.()(重申:互换多项式的项,要连同符号一同互换)(二)创建情境,导入新课师:上节课我们学习了什么是同类项及怎么归并同类项,本节课我们将学习怎样归并多项式中的同类项 . 请看例 1.(三)试试指导,解说新课例 1 归并多项式 4x2+2x+7+ 3x-8x2-2 的同类项 .解: 4x2+2x+7+3x- 8x2-2第一步:划线,找出同类项;=4x2-8x2+2x+ 3x+7-2第二步:把找出的同类项写在一同;=- 4x2+5x+5第三步:归并同类项 .(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)尝试练习,回授调理4.归并以下各式的同类项:(1) a2-3a+ 8- 3a2+ 5a-7==(2)- 3x2 y- 2xy2+3xy2+2x2y==(3) 4a2+ 3b2+ 2ab-4a2-4b2==(五)试试指导,解说新课例 2求多式 3a+abc-1c2-3a+1c2的,此中,a=-1, b= 2,c =- 3. 336(先归并多式的同,再代入数,最后获得果,解格式要与教材相同)(六)探,回授5.求多式 2x2- 5x+x2+ 4x-3x2-2 的,此中 x=1 .2(五)小,部署作:本我学了归并多式的同,归并多式的同有三步,是哪三步?生:⋯⋯(作: P71 1.P 76复 2. )四、板例1例2: 2.2 整式的加减(第 3 )一、教课目1.去括号法的形成程,知道去括号法 .2.会去括号 .二、教课要点和点1.要点:去括号 .2.点:去括号法的形成程 . 三、教课程(一)基本,稳固旧知1.归并以下多式的同:(1) 8a+2b-5a- b=(2) 8x-3y+z-4x- 3y+2z=2.求多式 3x2- 8x+2x3-13x2+ 2x-2x3+3 的,此中 x=- 4.3. 填空:分派律是a(b +c) =,利用分派律可得:6(x - 3) =,- 6(x - 3) =.(二)情境,入新:(板: 8a+ 2b-(5a -b) )个式子归并同的果是什么?生: 3a+b.:个果是的!什么呢?因个式子中含有括号,(用彩笔括号)要归并含有括号的式子的同,先要去括号 . 怎样去括号呢?就是我要学的内容 . (板: 2.2 整式的加减(去括号))(三)指,授新:怎样去括号呢?先看两个去括号的例子.:(板: 6(x -3) =)利用分派律, 6(x -3) 等于什么?生: 6x-18. (板: 6x-18):(板:- 6(x - 3) =)利用分派律,- 6(x -3) 等于什么?生:- 6x+18. (板:- 6x+ 18):从两个例子,我能够看到,(指准-6(x-3)=-6x+18)去括号上就是运用分派律,把括号外的因数分乘括号内的各 .(板:+ (x -3) =-(x-3)=):运用分派律,我又怎么去掉(指式子)两个式子中的括号呢?大家自己笔先一 . (生,巡):(指+ (x -3) )个式子不好用分派律,我能够把+(x -3) 写成 1× (x -3) ,(板:1×(x -3) )就能够用分派律了,运用分派律获得的果是什么?生: x-3. (板:= x-3):(指- (x - 3) )个式子也不好用分派律,我能够把-(x - 3) 写成 ( -1) ×(x - 3) ,(板: ( -1) × (x -3) )就能够用分派律了,运用分派律获得的果是什么?生:- x+ 3. (板:=- x+3):从上边的四个例子明,去括号的程上就是运用分派律的程. 前两个式子(指 6(x -3) ,- 6(x -3) )是直接用分派律去括号,尔后两个式子(指+ (x - 3) ,- (x -3) )用分派律去括号比麻,就有必需找去括号的律 .:去掉中程,(擦掉中程,板成+(x - 3) =x -3,- (x -3) =- x +3)获得+ (x -3) = x-3,- (x -3) =- x+3. 从两个式子,同学去括号有什么律?(生疏,巡指):哪位同学了去括号的律?生:⋯⋯(多几位同学表见解):从两个式子,我能够,(指准+ (x -3) =x-3)假如括号前是“+”号,去括号后括号里的各都不符号;(板上边句)(指准- (x - 3) =-x+3)假如括号前是“-”号,去括号后括号里各都改符号 . (板上边的句)大家把两句一遍 . (生)例 1 去括号:( 1) a+ (b +c-d) ;(2)a+(-b+c-d);( 3) a- (b +c-d) ;(4)a-(-b+c-d).(四)探,回授4. 去括号:( 1) a+ (b -c) ;(2)a-(b-c);( 3) a- ( - b+ c) ;(4)a+(-b+c);( 5) (a +b) -c;(6)-(a+b)-c.(五)指,授新例 2 先去括号,再归并同:( 1) 8a+2b- (5a -b) ;( 2) (5a -3b) -3(a 2- 2b).(生先,再板演解;(2)除教材中的解法,也能够用分派律直接去掉括号)(六)探,回授5.化:(1)12(x -0.5) =(2)- 5(1 -1x) =5(3)- 5a+(3a -2) -(3a -7) =(4)1(9y - 3) +2(y +1) =3(七)归纳小结,部署作业师:本节课我们学习了怎样去括号. (指准+(x -3) =x-3)假如括号前是“+”号,去括号后括号里各项都不变符号;(指准-(x -3) =-x+3)假如括号前是“-”号,去括号后括号里各项都改变符号;(指准- 6(x - 3) =- 6x+18)假如括号前是其余因数,那么用分派律能够直接去掉括号 .(作业: P71习题 2. )四、板书设计2.2 整式的加减(去括号)6(x - 3) = 6x- 18例 1例 2- 6(x -3)=- 6x+ 18+ (x -3)= x-3假如括号前是“+”号⋯⋯-(x -3) =- x+ 3假如括号前是“-”号⋯⋯课题: 2.2 整式的加减(第 4 课时)一、教课目的1.会进行整式加减运算 .2.会先进行整式的加减,再求值 .二、教课要点和难点1.要点:进行整式加减运算 .2.难点:求值 .三、教课过程(一)基本训练,稳固旧知1.判断正误:对的画“√” ,错的画“×” .( 1) a- (b -c+d) =a-b- c+ d;()( 2) a- (b +c) -d=a-b- c- d;()( 3) (a +b) - ( - c+ d) =a+b-c-d;()( 4)a+( -b+c-d) = a- b+ c- d;()( 5)- (a - b) +(c -d) =- a+ b- c+ d.()2. 去括号:( 1) (a +b) +(c - d) =( 2) (a +b) -(c - d) =( 3)- (a + b) -( -c-d) =( 4) (a -b) -( -c+d) =( 5)- (a - b) +( -c-d) =(6) a- ( - b+ c) -d=(二)情境,入新:前方我学了归并同、去括号,本我学整式的加减. (板: 2.2 整式的加减)行整式的加减运算,上就是做两件事,第一件事是去括号,第二件事是归并同 . 看例 1.(三)指,授新例1 算:( 1) (2x -3y) +(5x +4y) ;(2)(8a-7b)-(4a-5b).(按去括号、归并同两步先生)例 2 算:(2a - 3b) +[4a -(3a -b)].(先去小括号)(四)探,回授3.算:(1) ( - x+ 2x2+ 5) +(4x 2- 3- 6x) ;(2) (3a 2-ab+7) - ( - 4a2+2ab+ 7) ;(3) (2a -3b) -[4a + (3a - b)].4. 填空:整式 x+y 与整式 x-y 的和,差.(五)指,授新例 3 求1x- 2(x -1y2) +( -3x+1y2) ,此中 x=- 2,y=2. 23233(按教材格式板演)(六)探,回授5.先化,再求:5(3a 2b-ab2) - (ab 2+3a2b) ,此中 a=1,b=1.23(七)小,部署作:本我学了整式的加减,行整式的加减运算有两步,是哪两步?生:⋯⋯(作: P3.4. )71四、板2.2整式的加减例 1例 2例 3: 2.2 整式的加减(第 5 )一、教课目1.会列式算整式加减的文字 .2.会列的整式加减式子表示中的数目关系,展符号感.二、教课要点和点1.要点:列的整式加减式子表示数目关系 .2.点:列的整式加减式子表示数目关系 . 三、教课程(一)创建情境,导入新课师:前方我们学习了怎样进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用 .(板书课题: 2.2 整式的加减(应用))请看例 1.(二)试试指导,解说新课例 1 列式表示比 x 的 7 倍大 3 的数与比 x 的-2 倍小 5 的数,计算这两个数的差 . 解:比 x 的 7 倍大 3 的数为 7x+3,比 x 的- 2 倍小 5 的数为- 2x-5,这两个数的差为 (7x + 3) -( -2x-5) = 7x+3+2x+5= 9x+8(每一步都让学生试试)(三)尝试练习,回授调理1.求整式 8xy- x2+y2与 x2-y2+8xy 的差 .2.列式表示比 a 的 5 倍大 4 的数与比 a 的 2 倍小 3 的数,计算这两个数的和 .(四)试试指导,解说新课例2一种笔录本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔录本3个,买圆珠笔 2 支;扎西买这种笔录本 4 个,买圆珠笔 3 支 . 买这些笔录本和圆珠笔,卓玛和扎西一共花销多少钱?(教课建议:按教材P69解法一解比较自然,要让学生充足熟习题意,充足试试的基础上再解说,熟习题意的时间要下足,这是需要耐心的,能够经过读题、说题、画题、列表、实物展现等方式让学生熟习题意)(五)尝试练习,回授调理3. 某村土豆栽种面积是 a 亩,白菜栽种面积比土豆栽种面积少8 亩,青稞栽种面积是白菜栽种面积的10 倍,问该村土豆、白菜、青稞一共栽种多少亩.(六)试试指导,解说新课例 3 两船从同一港口同时出发反向而行,甲船顺流,速度为每小时 (50 + a) 千米,乙船逆水,速度为每小时 (50 - a) 千米 .(1) 2 小时后两船相距多远?(2) 2 小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)尝试练习,回授调理4.填空:已知某轮船顺流航行速度为每小时 (a + y) 千米,逆水航行速度为每小时(a - y) 千米,(1)轮船顺流航行 3 小时,航行了千米;(2)轮船逆水航行 1.5 小时,航行了千米;(3)轮船顺流航行 3 小时,逆水航行 1.5 小时,一共航行了千米.(八)归纳小结,部署作业师:本节课我们学习了几个例题,例 2 例 3 都是和实质问题相关的 . 做这种应用题,要点是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思 . 做应用题还需来有信心和毅力,不要被题目吓倒!假如你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了 .(作业: P68练习 2.P 71习题 7. )四、板书设计2.2 整式的加减(应用)例1例2例3:第二章整式的加减复(第1、 2 )一、教课目1.知道第二章整式的加减知构 .2.通基本,稳固第二章所学的基本内容 .3.通典型例和合运用,加深理解第二章所学的基本内容,展能力 . 二、教课要点和点1.要点:知构和基本 .2.点:典型例和合运用 . 三、教课程(一),完美知单项式归并同类项用字母列含字母整式a(b + c) = ab+ ac整式的加减表示数的式子多项式去括号(上边的知构,要合下边的解逐渐板出来):我已学完了第二章整式的加减,今日我就来复第二章. (板:第二章整式的加减复):第二章的内容不像第一章那么多,哪位同学能用几个字来归纳第二章的内容?生:⋯⋯(多几位学生):!整式的加减 . 因要学整式的加减,我学了归并同和去括号;因要学整式的加减,我学了什么是整式,以及式和多式 . 整式的加减是本章学的点,其余内容都是了学整式的加减做准的 . 那么,本章的内容是从什么地方开始,又是怎样一步一步走向“整式的加减”的呢?(出示下边的目)一本笔本售价 2 元, n 本需元.:本章的内容是从“用字母表示数”开始的. (板:用字母表示数)用字母表示数是什么意思?大家看个例子,(指板的目)一本笔本售价 2 元, n 本需多少元?里 n 本中的 n 就是用字母表示数, n 详细表示是什么数?可能是 0,可能是 1,2 , 3,4 等等 .就是用字母表示数的意思 .:有了表示数的字母,我就能够列出含字母的式子. (板:列含字母的式子)比如,在才的个例子中,(指板的目)一本笔本售价 2 元, n 本需2n 元. (板: 2n)里 2n 就是列出的含字母的式子.:在中,可能列出含各样各字母的式子,此中比的一种叫式 . (板:式)数字与字母的,的式子叫做式. (指板)2n 是一个式 . 学式需掌握式的系数、次数的观点.:在学式的基上,我又学了多式的观点. (板:多式)什么是多式呢?几个式的和叫做多式. 学多式需掌握多式的、常数、次数的观点 .:式是整式,多式也是整式,式和多式称整式. (板:整式):接着,我又学了归并同(板:归并同)和去括号.(板:去括号)归并同、去括号从表面上看,它干的是两件不相同的事,但出人不测的是,它都是依照分派律a(b +c) = ab+ac. (板: a(b + c) =ab+ac)分派律这个式子,从左到右看是去括号,(加箭头)从右到左看是归并同类项 .(加箭头)师:学习了归并同类项和去括号,实质上也就学了整式的加减. (板书:整式的加减)为何这样说呢?因为做整式的加减只有两个步骤,第一步是去括号,第二步是归并同类项 .师:(指板书出的知识构造图)这就是本章知识的线索,从字母表示数出发,终点是整式的加减 .(二)基本训练,掌握双基1.填空:(以下空你最好直接填,实在想不起来,你能够在教材中找,这些内容是需要你仔细理解的;先用铅笔填,校正时用其余笔填)(1)数字与字母的积,像这样的式子叫;单项式中的数字因数叫做单项式的;一个单项式中,全部字母的指数和叫做这个单项式的.(2)几个单项式的和叫做;此中,每个单项式叫做多项式的,不含字母的项叫做;多项式里次数最高项的次数,叫做这个多项式的.(3)与统称整式.(4)所含字母相同,并且相同字母的指数也相同的项叫做;归并同类项的方法是:系数,字母部分.(5)去括号的方法是:假如括号前方是“+”号,去括号后括号里各项都符号;假如括号前是“-”号,去括号后括号里各项都符号 .(6)几个整式相加减,假如有括号就先去括号,而后再2. 填空:( 1)单项式- 15ab 的系数是,次数是;22( 2)单项式 4a b 的系数是,次数是;.( 3)单项式3x2y的系数是,次数是. 53. 填空:2(2)多项式 a3-2a2b2+b3的项是,次数是4. 填空:( 1)全班学生总数是x,此中男生占总数的52%,则女生人数是;( 2)底边长为 6,高为 h 的三角形面积是;( 3)一台 a 元的电视机,降价30%后售价是元;( 4)一台 a 元的电视机,打七折销售,售价是元;( 5)温度由 t 度降落 8 度后是度;( 6)今年扎西 m岁,昨年扎西岁,5年后扎西岁;;.(7)某商铺上月收入为 a 元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(8)西藏某景点的门票价钱是:成人10 元,学生 5 元 . 一个旅行团有成人学生 y 人,那么该旅行团对付元门票费;x 人,5.归并同类项:。
人教版七年级数学上册第二章数学活动课(教案)
3.练习题:针对本章知识点,设计不同难度的练习题,巩固所学知识;
4.竞赛环节:组织学生进行整式加减运算竞赛,提高学生的运算速度和准确性。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑思维能力:通过整式加减的运算,使学生能够理解数学概念之间的内在联系,提高逻辑推理能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式的加减的基本概念。整式是由数字、变量和运算符组成的代数表达式,它是数学中的基础工具,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设我们要计算购物时买了几件物品的总价,我们可以用整式的加减来表示这个问题,并找到解决办法。
三、教学难点与重点
1.教学重点
(1)单项式和多项式的定义:理解并掌握单项式和多项式的概念,能够识别不同类型的单项式和多项式。
举例:讲解单项式的系数、变量和次数的概念,如3x²y、-5a等;介绍多项式的组成,如2x³+5x²-3x+1。
(2)整式的加减运算:熟练掌握整式的加减法则,能够正确进行整式的加减运算。
然而,我也意识到,在教学的最后阶段,总结回顾的环节可能需要改进。感觉时间有些紧张,可能没有给学生们足够的时间去消化和反思今天学到的内容。在未来的教学中,我需要更加注意时间的分配,确保学生们能够在课程结束时,有一个清晰的思路去回顾和巩固所学知识。
(3)整式加减运算顺序:在解决整式加减问题时,部分学生可能对运算顺序感到困惑,导致计算错误。
突破方法:强调整式加减的运算顺序,通过典型例题和练习题,让学生熟练掌握运算顺序。
(4)整式加减的应用:将整式加减知识应用于实际问题,部分学生可能不知如何入手。
人教版数学七年级上册第二章《整式的加减》教学设计
人教版数学七年级上册第二章《整式的加减》教学设计一. 教材分析人教版数学七年级上册第二章《整式的加减》是学生进入初中阶段后接触到的第一个较为复杂的数学章节。
本章主要内容包括整式的加减运算,重点是让学生掌握整式加减的法则,并能够熟练进行整式的加减运算。
二. 学情分析学生在进入七年级之前,已经学习了实数、代数式等基础知识,对于整数和分数的加减运算已经有一定的掌握。
但是,对于整式的加减运算,学生可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解和掌握整式加减的法则,并通过大量的练习来提高学生的运算能力。
三. 教学目标1.让学生掌握整式加减的法则,并能够熟练进行整式的加减运算。
2.培养学生的逻辑思维能力和运算能力。
3.培养学生独立思考和合作交流的能力。
四. 教学重难点1.整式加减的法则的理解和掌握。
2.整式加减运算的技巧和方法。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握整式加减的法则。
2.使用多媒体教学,通过动画和图形的方式,让学生更直观地理解整式加减的过程。
3.采用小组合作学习的方式,让学生在合作交流中提高自己的运算能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出整式加减的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过多媒体课件,呈现整式加减的法则,引导学生理解和掌握。
3.操练(10分钟)让学生进行整式加减的运算练习,巩固所学知识。
4.巩固(10分钟)通过一些典型的例题,让学生进一步理解和掌握整式加减的法则。
5.拓展(10分钟)引导学生思考整式加减的运算规律,提高学生的逻辑思维能力。
6.小结(5分钟)对本节课的内容进行小结,让学生明确学习目标。
7.家庭作业(5分钟)布置一些整式加减的练习题,让学生巩固所学知识。
8.板书(5分钟)板书本节课的主要内容和重点知识点。
人教版七年级数学上册:2.2整式的加减-合并同类项(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与合并同类项相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的合并同类项的练习。这个操作将演示如何识别和合并同类项。
-难点二:在合并同类项时,学生可能会忘记只对系数进行运算,而错误地改变字母的指数或字母本身。
-难点三:将合并同类项的法则应用到复杂的整式中,特别是当整式中含有多个字母和多项式时,学生可能会感到困惑。
举例解释:
对于难点一,教师可以通过对比练习,强调同类项的辨识关键点,如提供3x^2和3x^3这样容易混淆的例子,让学生通过对比加深理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母且相同字母指数的项进行相加或相减。它在数学运算中非常重要,可以帮助我们简化整式,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何将3x^2 + 5x^2这样的同类项合并为8x^2,以及它在实际中的应用。
五、教学反思
今天我们在课堂上学习了整式的加减-合并同类项,回顾整个教学过程,我觉得有几个方面值得反思。首先,我注意到在导入新课环节,通过提问方式引导学生思考日常生活中的合并同类项现象,大部分学生能够积极参与,但仍有部分学生显得不够活跃。这可能是因为他们对这个概念还不够熟悉,或者是对数学与生活联系的认识不够深入。在今后的教学中,我需要更多地设计贴近生活的例子,帮助学生建立起数学与实际的联系。
4.培养学生的合作交流能力,通过小组讨论和互动,让学生在交流中深化理解,共同提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学活动长湖学校薛望平一、内容和内容解析1.内容活动1 用火柴棍摆放图形,探究火柴棍的根数与图形的个数之间的对应关系;活动2 探究月历中数之间所蕴含的关系和变化规律.2.内容解析本节课的数学活动将第二章“整式的加减”所学知识应用于实际,进一步用整式表示数量关系,用整式的加减运算进行化简,是整式与整式加减的应用.两个数学活动综合运用整式和整式的加减运算,表示具体情境中的数量关系和变化规律.活动1中的核心问题是寻求三角形的个数与火柴棍根数之间的对应关系,问题的本质是变化与对应.由于观察图形时入视的角度不同,规律的显现方式不同,得到的表达形式不同,但经过整式的加减运算后得到的结论是唯一确定的.活动1先从图形的特殊情况入手,体现由特殊到一般地观察、分析、判断、归纳的思维活动过程.在探究的过程中体现借助于图形的变化规律进行思考和推理的过程,体现借助于图形的变化规律来解决实际问题的优越性.活动2应用整式的加减探究月历中数之间的规律:(1)月历中数的排列规律;(2)由数的排列规律引出运算规律,应用整式的加减进行化简,表示出一般规律;(3)如何设字母可以简化表示方法和运算.基于以上分析,可以确定本节课的教学重点:用整式表示实际问题中的数量关系,掌握数学活动中由特殊到一般的探究方法.二、教材解析本套教科书专门设计了“数学活动”专栏,旨在为学生提供探索的空间,发展学生的思维能力.本节课安排了两个有趣的数学活动.其中活动1从一个开放性的问题入手“如图1所示,用火柴棍拼成一排由三角形组成的图形.如果图形中含有n个三角形,需要多少根火柴棍?”引发学生的思索和探究.问题中并没有先问“图形中含有2,3,4个三角形,分别需要多少根火柴棍?”而是直接问“如果图形中含有n个三角形,需要多少根火柴棍?”目的在于让学生自己发现要解决一般性问题应先从特殊值入手,给学生充分的时间思考和探究,让学生自己寻求解决问题的策略,最终掌握从特殊到一般,从个体到整体地观察、分析问题的方法.之后又设计了一个问题“当图形中含有2012个三角形时,需要多少根火柴棍?”目的在于让学生体会由特殊一般特殊的分析问题的方法,体会一般性规律的实际意义.活动2设计了一个问题串,6个问题循序渐进地引导学生发现月历中数的排列规律,引导学生应用本章所学的整式的加减探究方框里数之间的关系.这两个活动有一定的趣味性,也有较强的探索性.两个活动的侧重点不同,活动1的重点是让学生能够用整式准确地表示数量关系;活动2的重点是让学生能够应用整式的加减探究月历中的数量关系.通过这两个数学活动检验学生对于第二章内容的掌握情况.本节数学活动课教师要注意改进教学方式,充分相信学生,尽可能为学生留出探索的空间,发挥学生的主动性和积极性,力求使得数学结论的获得是通过学生思考、探究活动而得出的.三、教学目标和目标解析1.教学目标(1)用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意识和创新意识;(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心.2.目标解析达成目标(1)的标志:学生用整式表示出火柴棍的根数与三角形的个数之间的对应关系,用整式表示出月历中不同位置上的数字的一般表达式并探寻规律;目标(2)是内容所蕴含的思想方法,学生需要体会在较为复杂的图形中寻找一般规律的方法,先把复杂图形分解,从其中的特殊图形入手,先就个体观察特征,再扩展到一般,最后由整体总结规律,感受由特殊到一般的探究模式.在活动2中,分析月历中数字之间的数量关系时,经常先将月历分解,分别从横、纵、对角线等不同的方向入手观察特征,再推广到一般,用整式表示出数的一般规律;学生体验解决问题策略的多样性;让学生尝试评价不同方法之间的差异,从而得出最优方案.学生体会进行数学活动的基本方法:提出问题动手实践寻求规律归纳总结.学生经历发现问题、独立思考、猜想验证,归纳总结这些数学活动,提高应用意识和创新意识;达成目标(3)的标志:学生对数学有好奇心和求知欲,在小组合作活动中积极思考,勇于质疑,敢于发表自己的想法.在自主探究两个数学活动的过程中,小组成员合作克服困难,解决数学问题,感受成功的快乐,建立学好数学的信心.四、教学问题诊断分析本章学生已经学习用整式表示实际问题中的数量关系及整式的加减运算.但是正确理解字母的真正含义,熟悉用符号表示具体情境中的数量关系,对学生而言有一定难度.在拼图的过程中,学生比较容易发现火柴棍根数的变化情况,但要借助观察图形的变化寻找火柴棍的根数与三角形的个数n之间的对应关系,还是有一定困难,在总结变化量与n的对应关系时学生也容易出错.所以用整式准确地表示出这种对应关系是本节课的一个难点.在活动2中,探索月历中数字的排列规律比较容易,但要从不同角度,运用不同方法探究月历中隐含的数量关系及其规律,对学生来说具有一定的挑战性.本节课的教学难点:利用整式和整式的加减运算准确表示出具体情境中的数量关系.五、教学支持条件分析根据活动课的特点,学生准备一盒火柴棍、若干张大小相等的正方形纸片、一张月历.教师准备几何画板软件供学生使用,同时采用多媒体课件辅助教学.六、教学过程设计1.数学活动1问题1如图1所示,用火柴棍拼成一排由三角形组成的图形.图1(1)如果图形中含有n个三角形,需要多少根火柴棍?(2)当图形中含有2012个三角形时,需要多少根火柴棍?师生活动:学生分成小组,利用已准备好的火柴棍动手摆放图形进行自主探究.学生代表(利用几何画板软件)展示小组讨论的过程与结果.教师重点关注学生自主探究的步骤和方法.学生在探究的过程中会从不同角度观察图形,会用不同的表达形式呈现规律,会从数和形两个方面进行探究.教师引导学生借助于“形”进行思考和推理,加强对图形变化的感受.在活动的过程中,整理数据,观察火柴棍的根数与n之间的对应关系,有助于突破难点.问题1的解决方法很多,下面列出几种常见方法仅供参考.①从第二个图形起,与前一图形比,每增加一个三角形,增加两根火柴棍,可得表达式:3+2(n-1)=2n+1.②每个三角形由三根火柴棍组成,从第一个图形起,火柴棍根数等于所含三角形个数乘3,再减去重复的火柴棍根数,可得表达式:3n-(n-1)=2n+1.③从第一个图形起,以一根火柴棍为基础,每增加一个三角形,增加两根火柴棍,可得表达式:1+2n.④从火柴棍的根数与三角形的个数的对应关系观察可得表达式:2n+1.⑤将组成图形的火柴棍分为“横”放和“斜”放两类统计计数,可得表达式:n+(n+1)=2n+1.【设计意图】应用列表法得到用整式准确表示出三角形的个数和所用火柴棍的根数的对应关系.给学生充裕的时间进行活动,体会数学活动常用的策略:由特殊到一般,由个体到整体地观察、分析问题.说明:通过这个活动发现如下关系是关键,第一个三角形需要3根火柴棍,以后每增加一个三角形,火柴棍根数增加2.接下来,就可以运用这种方法和策略解决问题.2.数学活动2图2是某月的月历.图2 图3问题2(1)带阴影的方框中的9个数之和与方框正中心的数有什么关系?(2)如果将带阴影的方框移至图3的位置,(1)中的关系还成立吗?(3)不改变带阴影的方框的大小,将方框移动几个位置试一试,你能得出什么结论?你能证明这个结论吗?(4)这个结论对于任何一个月的月历都成立吗?(5)如图4,如果带阴影的方框里的数是4个,你能得出什么结论?图4 图5(6)如图5,对于带阴影的框中的4个数,又能得出什么结论?前3个问题表面上看,要求计算特殊位置上的9个数的和,而实质需要寻求这9个数的排列规律,用整式表示出月历中任意位置上的数.学生从三个层次进行探究:①月历中数的排列规律:“横”看,从左到右,数依次递增1;“纵”看,从上到下,数依次递增7;从对角线左上到右下看,数依次递增8.②由数的排列规律引出运算规律,利用整式的加减进行化简,表示出一般的规律.③如何设字母可以简化表示方法和简化运算.此时学生选择用字母表示数,但设哪个数为字母a情况各不相同,让学生体验解决问题策略的多样性,让学生尝试评价不同方法之间的差异,从而得出最优方案:用字母a表示正中间的数.【设计意图】活动2借助生活中常见的月历,体会用字母表示数,用整式的加减探究月历中数之间的关系和变化规律.让学生在认识了月历中所蕴涵的数的规律后,发现不仅阴影方框大小、形状可以改变,并且脱离开月历背景,活动中所蕴含的方法和策略仍可适用于解决其他类似的问题.在数学活动合作交流的过程中学生体会从不同的角度分析问题,解决问题策略的多样性.积累数学活动经验,进一步发展学生的创新意识,增强学生应用数学知识解决实际问题的能力.说明:问题(5)和问题(6)大部分学生会从几个数的和差之间的关系入手讨论,得到结论a+(a+8)=(a+1)+(a+7),a+(a+7)=(a+1)+(a+6)等.但也有一些学生会从几个数的乘除之间的关系找规律,例如,(a+1)·(a+7)-a(a+8)=7,(a+1)·(a+6)-a(a+7)=6,如果结论正确,教师给予肯定.但由于学生还未学习整式的乘除,教师应及时引导学生利用本章所学知识——整式的加减运算寻求规律.3.课堂小结,布置作业课堂小结:教师与学生一起回顾本节课内容,并请学生回答以下问题:(1)解决本节课中的问题,用到了什么知识?(2)解决本节课中的问题,用到了什么思想方法?【设计意图】通过小结,使学生认识本节课内容与本章内容的联系,体会从特殊到一般地探究规律的思想方法.布置作业:(1)如图所示,以一根火柴棍为一边,用火柴棍拼成一排由正方形组成的图形,如果图形中含有2012个正方形,需要多少根火柴棍?(2)若干个偶数排列如图所示,探究方框中数之间的关系:【设计意图】课后思考环节让学生延续课堂上的探究气氛,让学生应用本节课所学习的方法和策略解决同类问题.七、目标检测设计1.观察下列一组数31,52,73,94,115… 第n 个数是________.【设计意图】检测学生对数的个数与其所在位置的对应关系的观察、分析、归纳的能力.2.礼堂第1排有a 个座位,后面每一排都比前一排多1个座位,第2排有多少个座位?第3排呢?用m 表示第n 排的座位数,m 是多少?当a =20,n =19时,计算m 的值.【设计意图】检测学生用整式表示实际问题中的数量关系的能力,特别是考查学生准确找到m 与n 的对应关系的能力.3.如下图(1)是一个三角形,分别连接这个三角形三边中点得到图(2);再分别连接图(2)中小三角形三边的中点,得到图(3).(1)图(1)、图(2)、图(3)中分别有多少个三角形?(2)按上面的方法继续下去,第n 个图形中有多少个三角形?(1) (2) (3)【设计意图】检测学生用整式表示数量关系的能力和从不同角度探究问题的能力.。