高一数学必修1综合练习
高一数学必修一综合测试题(含答案)
高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
高一数学必修1练习题
高一数学必修1练习题高一数学是高中数学学习的基础阶段,对于学生来说,掌握好基础概念和解题技巧至关重要。
以下是一些高一数学必修1的练习题,涵盖了函数、导数、不等式等基础知识点。
一、函数的概念与性质1. 函数的定义:给定两个集合A和B,如果存在一个规则f,使得对于集合A中的每一个元素x,都有集合B中唯一确定的元素y与之对应,那么我们就称f为从集合A到集合B的一个函数,记作y=f(x)。
2. 求下列函数的定义域:- \( y = \sqrt{x} \)- \( y = \frac{1}{x^2 - 1} \)- \( y = \log_{2}(x) \)二、一次函数与二次函数1. 一次函数的一般形式为 \( y = ax + b \),其中a和b是常数,a≠0。
2. 二次函数的一般形式为 \( y = ax^2 + bx + c \),其中a、b、c是常数,a≠0。
3. 解下列方程:- \( 2x + 3 = 7 \)- \( x^2 - 4x + 4 = 0 \)三、不等式的解法1. 解一元一次不等式:- \( 3x - 5 > 10 \)- \( -2x + 4 \leq 0 \)2. 解一元二次不等式:- \( x^2 - 4x + 3 > 0 \)- \( 2x^2 + 5x - 3 \leq 0 \)四、函数的单调性1. 函数的单调性是指函数值随自变量的增加而增加或减少的性质。
如果对于任意的 \( x_1 < x_2 \),都有 \( f(x_1) \leq f(x_2) \),则称函数在该区间上单调递增。
2. 判断下列函数在定义域内的单调性:- \( y = x^2 \)- \( y = -x^2 + 4x - 1 \)五、导数的概念与应用1. 导数是研究函数局部变化率的工具,表示函数在某一点处的切线斜率。
2. 求下列函数的导数:- \( y = x^3 \)- \( y = 2x^2 + 3x - 5 \)3. 利用导数求函数的极值:- 求函数 \( y = x^2 - 4x + 4 \) 在其定义域内的极值。
高一数学必修一综合试卷及答案
高一数学必修一综合试卷及答案【导语】高一阶段是学习高中数学的关键时期.对于高一新生而言,在高一学好数学,不仅能为高考打好基础,同时也有助于物理、化学等学科的学习,这篇是由无忧考网—高一频道为大家整理的《高一数学必修一综合试卷及答案》希望对你有所帮助!一、选择题:(本大题共10题,每小题5分,共50分)1.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则(C)2.如果函数f(x)=x+2(a?1)x+2在区间(?∞,4]上是减函数,那么实数a的取值范围2A.U=A∪BB.U=(CUA)∪BCU=A∪(CUB)D.U=(CUA)∪(CUB)B、a≥?3C、a≤5是(A)A、a≤?3A.4x+2y=5D、a≥53.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是(B)B.4x?2y=5C.x+2y=5D.x?2y=54。
设f(x)是(?∞,+∞)上的奇函数,且f(x+2)=?f(x),当0≤x≤1时,f(x)=x,则f(7。
5)等于(B)A.0.5yB.?0。
5yC.1。
5D。
?1。
55。
下列图像表示函数图像的是(Cy)yxxxxABCD6.在棱长均为2的正四面体A?BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是(C).A.3C.2(B).A.m⊥α,m⊥β,则α//βC.m⊥α,m//β,则α⊥β22ADBC题中不正确的是...B.263D.227.设m、n表示直线,α、β表示平面,则下列命B.m//α,αIβ=n,则m//nD.m//n,m⊥α,则n⊥αD.2?28.圆:x+y?2x?2y?2=0上的点到直线x?y=2的距离最小值是(A).A.0B.1+2C.22?29.如果函数f(x)=ax2+ax+1的定义域为全体实数集R,那么实数a的取值范围是(A).A.[0,4]B.[0,4)C.[4,+∞)D.(0,4)10。
a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a—7平行且不重合的(。
高一数学必修一全册练习题(解析版)
第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∈a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∈c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∈c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0 B.2C.3 D.6解析:选D.∈z=xy,x∈A,y∈B,∈z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∈集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C=____________.解析:∈C={(x,y)|x∈A,y∈B},∈满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∈M B .a ∈M C .{a }∈M D .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个. 解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________. 解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∈1是集合A 中的一个元素,∈1是关于x 的方程ax 2+2x +1=0的一个根, ∈a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∈集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围. 解:∈a =0时,原方程为-3x +2=0,x =23,符合题意.∈a ≠0时,方程ax 2-3x +2=0为一元二次方程. 由Δ=9-8a ≤0,得a ≥98.∈当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合∈∈,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊 C .2010年考入清华大学的全体学生 D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ∈π∈R ;∈3∈Q ;∈0∈N *;∈|-4|∈N *. A .1 B .2 C .3 D .4 解析:选B.∈∈正确,∈∈错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∈AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()∈教2011届高一的年轻教师;∈你所在班中身高超过1.70米的同学;∈2010年广州亚运会的比赛项目;∈1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以∈不能构成集合;由于∈∈∈中的对象具备确定性、互异性,所以∈∈∈能构成集合.4.若集合M={a,b,c},M中元素是∈ABC的三边长,则∈ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()∈M={(3,2)},N={(2,3)};∈M={3,2},N={2,3};∈M={(1,2)},N={1,2}.A.∈ B.∈C.∈ D.以上都不对解析:选B.∈中M中表示点(3,2),N中表示点(2,3),∈中由元素的无序性知是相等集合,∈中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∈MC .x ∈M ,y ∈MD .x ∈M ,y ∈M 解析:选B.∈x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∈M .7.已知∈5∈R ;∈13∈Q ;∈0={0};∈0∈N ;∈π∈Q ;∈-3∈Z .其中正确的个数为________.解析:∈错误,0是元素,{0}是一个集合;∈0∈N ;∈π∈Q ,∈∈∈正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∈A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b =2;当a ·b <0时,|a |a +|b |b =0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∈-3∈A ,∈-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意. 综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∈12-3=2+3=2+3×1,而2,1∈Z ,∈2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b2b =2a, 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )∈{a ,b }={b ,a };∈{a ,b }∈{b ,a };∈∈={∈};∈{0}=∈;∈∈{0};∈0∈{0}.A .6个B .5个C .4个D .3个及3个以下 解析:选C.∈∈∈∈正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∈B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∈B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2 B.a≤1C.a≥1 D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∈Δ=9-4(2-a2)=1+4a2>0,∈M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0∈A B.{0}∈AC.∈∈A D.{0}∈A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A∈B解析:选C.利用数轴(图略)可看出x∈B∈x∈A,但x∈A∈x∈B不成立.3.定义A-B={x|x∈A且x∈B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2} D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∈,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ∈B },则A 与B 的关系是( ) A .A ∈B B .B ∈A C .A ∈B D .B ∈A解析:选D.∈B 的子集为{1},{2},{1,2},∈, ∈A ={x |x ∈B }={{1},{2},{1,2},∈},∈B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx =1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∈B ,故B A .答案:BA8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ∈B ,则a 的值为________. 解析:A ∈B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:∈若⎩⎪⎨⎪⎧a +b =ac a +2b =ac2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性, 故a ≠0,c 2-2c +1=0,即c =1; 当c =1时,集合B 中的三个元素也相同, ∈c =1舍去,即此时无解.∈若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∈a ≠0,∈2c 2-c -1=0,即(c -1)(2c +1)=0. 又∈c ≠1,∈c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若AB ,求a 的取值范围;(2)若B ∈A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ∈A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}. ∈BA ,∈mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时, 由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时, 由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0. 综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ∈N B .N ∈M C .M ∩N ={2,3} D .M ∈N ={1,4}解析:选C.∈M={1,2,3},N={2,3,4}.∈选项A、B显然不对.M∈N={1,2,3,4},∈选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)} B.{0,1}C.{y|y≥0} D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∈M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∈B=A,则实数m的取值范围是________.解析:A∈B=A,即B∈A,∈m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∈N=N;Q∈R=R∈Q;Q∩N=N中,正确的个数是() A.1B.2C.3 D.4解析:选C.只有Z∈N=N是错误的,应是Z∈N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∈A={3,5,6,8},B={4,5,7,8},∈A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∈B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∈a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∈P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3} B.{x|x≥1}C.{x|2≤x<3} D.{x|x>2}解析:选A.∈A={x|1≤x≤3},B={x|x>2},∈A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∈T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∈T =R ,∈⎩⎪⎨⎪⎧a +8>5,a <-1.∈-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∈A ∩B ={2,3},∈3∈B ,∈m =3. 答案:38.满足条件{1,3}∈M ={1,3,5}的集合M 的个数是________. 解析:∈{1,3}∈M ={1,3,5},∈M 中必须含有5, ∈M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∈; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∈B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∈A ∩B ={3},∈由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∈B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:∈当a -3≤5,即a ≤8时,A ∈B ={x |x <a -3或x >5}. ∈当a -3>5,即a >8时,A ∈B ={x |x >5}∈{x |x <a -3}={x |x ∈R }=R . 综上可知当a ≤8时,A ∈B ={x |x <a -3或x >5}; 当a >8时,A ∈B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∈,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∈,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∈U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∈U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∈R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∈B ={x |x <1},∈∈R B ={x |x ≥1}, ∈A ∩∈R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A={0,1},(∈U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∈U A={x|2≤x≤5},则a=________.解析:∈A∈∈U A=U,∈A={x|1≤x<2}.∈a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∈U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∈U B={3,4,5},∈A∩(∈U B)={3,4}.2.已知全集U={0,1,2},且∈U A={2},则A=()A.{0} B.{1}C.∈ D.{0,1}解析:选D.∈∈U A={2},∈2∈A,又U={0,1,2},∈A={0,1}.3.(2009年高考全国卷∈)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∈B,则集合∈U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∈B={3,4,5,7,8,9},A∩B={4,7,9},∈∈U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∈N=UC.(∈U N)∈M=U D.(∈U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∈U N)∈M ={3,4,5,7},(∈U M)∩N={2,6},M∈N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∈U(A∈B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∈A={1,2},∈B={2,4},∈A∈B={1,2,4},∈∈U(A∈B)={3,5}.6.已知全集U =A ∈B 中有m 个元素,(∈U A )∈(∈U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D.U =A ∈B 中有m 个元素,∈(∈U A )∈(∈U B )=∈U (A ∩B )中有n 个元素, ∈A ∩B 中有m -n 个元素,故选D.7.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∈B )∩(∈U C )=________. 解析:∈A ∈B ={2,3,4,5},∈U C ={1,2,5}, ∈(A ∈B )∩(∈U C )={2,3,4,5}∩{1,2,5}={2,5}. 答案:{2,5}8.已知全集U ={2,3,a 2-a -1},A ={2,3},若∈U A ={1},则实数a 的值是________. 解析:∈U ={2,3,a 2-a -1},A ={2,3},∈U A ={1}, ∈a 2-a -1=1,即a 2-a -2=0, 解得a =-1或a =2. 答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∈U A )∩B =∈,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∈∈U A ={x |x <-m },∈B ={x |-2<x <4},(∈U A )∩B =∈, ∈-m ≤-2,即m ≥2, ∈m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∈U B )∈P ,(A ∩B )∩(∈U P ).解:将集合A 、B 、P 表示在数轴上,如图.∈A ={x |-4≤x <2},B ={x |-1<x ≤3},∈A ∩B ={x |-1<x <2}. ∈∈U B ={x |x ≤-1或x >3}, ∈(∈U B )∈P ={x |x ≤0或x ≥52},(A ∩B )∩(∈U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∈U A )={2},A ∩(∈U B )={4},U =R ,求实数a ,b 的值.解:∈B ∩(∈U A )={2}, ∈2∈B ,但2∈A .∈A ∩(∈U B )={4},∈4∈A ,但4∈B .∈⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∈a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∈R B ,求实数a 的取值范围.解:∈R B ={x |x ≤1或x ≥2}≠∈, ∈A∈R B ,∈分A =∈和A ≠∈两种情况讨论. ∈若A =∈,此时有2a -2≥a , ∈a ≥2.∈若A ≠∈,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2.∈a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( ) A .y =f (x )与y =f (t )表示同一个函数 B .y =f (x )与y =f (x +1)不可能是同一函数 C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∈ B .∈或{1} C .{1} D .∈或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∈或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________. 解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =x +103-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∈(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2, 故函数值域为{-1,-2,2}. 答案:{-1,-2,2} 10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值. 解:(1)∈f (x )=11+x ,∈f (2)=11+2=13, 又∈g (x )=x 2+2, ∈g (2)=22+2=6. (2)由(1)知g (2)=6, ∈f (g (2))=f (6)=11+6=17. 12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数). ∈ax +1≥0,a <0,∈x ≤-1a ,即函数的定义域为(-∞,-1a ].∈函数在区间(-∞,1]上有意义, ∈(-∞,1]∈(-∞,-1a ],∈-1a ≥1,而a <0,∈-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x=1x1+1x(x ≠0), ∈f (t )=t1+t (t ≠0且t ≠-1),∈f (x )=x1+x(x ≠0且x ≠-1). 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∈2f (2)-3f (1)=5,2f (0)-f (-1)=1,∈⎩⎪⎨⎪⎧ k -b =5k +b =1,∈⎩⎪⎨⎪⎧k =3b =-2,∈f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________. 解析:令2x =t ,则x =t 2,∈f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x2-1. 答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x非负数非正数y1 -1B.x 奇数 0 偶数 y1-1C.x 有理数 无理数 y1-1D.x 自然数 整数 有理数 y1-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∈f (t )=4t -12-1,∈f (12)=16-1=15. 法二:令1-2x =12,得x =14,∈f (12)=16-1=15. 3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∈g (x +2)=2x +3=2(x +2)-1, ∈g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∈f (0)=(0-1)2+c =0, ∈c =-1,∈f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( ) A .y =12x (x >0) B .y =24x (x >0)C .y =28x (x >0) D .y =216x (x >0) 解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x . 7.已知f (x )=2x +3,且f (m )=6,则m 等于________. 解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1, ∈f [1f 3]=f (1)=2. 答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1. 再令-b =x ,即得f (x )=x 2+x +1. 11.已知f (x +1x )=x 2+1x 2+1x ,求f (x ).解:∈x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∈f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x )+1.∈f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∈f (2+x )=f (2-x ),∈f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a , ∈f (x )=a (x -2)2+3-4a =ax 2-4ax +3. ∈ax 2-4ax +3=0的两实根的平方和为10, ∈10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a , ∈a =1.∈f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 x >10f f x +5 x ≤10,则f (5)的值是( )A .24B .21C .18D .16解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 x >0x -1 x <0,再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x , x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 20≤x ≤3x 2+6x-2≤x ≤0的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集. 4.已知f (x )=⎩⎪⎨⎪⎧x +2x ≤-1,x 2-1<x <22x x ≥2,若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∈f (x )=x 2=3,x =±3,而-1<x <2,∈x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧x +12 x ≤-1,2x +1 -1<x <1,1x -1 x ≥1,已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∈⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∈⎝⎛⎭⎫-12,1D.⎝⎛⎭⎫-12,12∈(1,+∞) 解析:选C.f (a )>1∈⎩⎪⎨⎪⎧ a ≤-1a +12>1或⎩⎪⎨⎪⎧-1<a <12a +1>1或⎩⎪⎨⎪⎧a ≥11a -1>1∈⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12∈a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∈⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f x -2, x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0. 答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组⎩⎪⎨⎪⎧x +2≥0x +x +2·1≤5或⎩⎪⎨⎪⎧x +2<0x +x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 -1≤x ≤11 x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知, 函数f (x )的定义域为R. 由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∈260÷52=5(小时),260÷65=4(小时),∈s =⎩⎪⎨⎪⎧52t 0≤t ≤5,260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ∈BC ,DH ∈BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ∈当点F 在BG 上时, 即x ∈[0,2]时,y =12x 2;∈当点F 在GH 上时, 即x ∈(2,5]时,y =x +x -22×2=2x -2; ∈当点F 在HC 上时,即x ∈(5,7]时, y =S 五边形ABFED =S 梯形ABCD -S Rt∈CEF=12(7+3)×2-12(7-x )2 =-12(x -7)2+10.综合∈∈∈,得函数解析式为y =⎩⎪⎨⎪⎧12x 2x ∈[0,2]2x -2 x ∈2,5].-12x -72+10 x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于( )A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8. 2.函数f (x )在R 上是增函数,若a +b ≤0,则有( ) A .f (a )+f (b )≤-f (a )-f (b ) B .f (a )+f (b )≥-f (a )-f (b ) C .f (a )+f (b )≤f (-a )+f (-b ) D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断. ∈a +b ≤0,∈a ≤-b ,b ≤-a . 又∈函数f (x )在R 上是增函数, ∈f (a )≤f (-b ),f (b )≤f (-a ). ∈f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:∈y =x x -1;∈y =x 2+x ;∈y =-(x +1)2;∈y =x1-x +2.其中在(-∞,0)上为减函数的是( )A .∈B .∈C .∈∈D .∈∈∈解析:选A.∈y =x x -1=x -1+1x -1=1+1x -1.其减区间为(-∞,1),(1,+∞).∈y =x 2+x =(x +12)2-14,减区间为(-∞,-12).∈y =-(x +1)2,其减区间为(-1,+∞), ∈与∈相比,可知为增函数.4.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是________. 解析:对称轴x =k 8,则k 8≤5,或k8≥8,得k ≤40,或k ≥64,即对称轴不能处于区间内.答案:(-∞,40]∈[64,+∞)1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞) 解析:选A.根据y =-x 2的图象可得.2.若函数f (x )定义在[-1,3]上,且满足f (0)<f (1),则函数f (x )在区间[-1,3]上的单调性是( )A .单调递增B .单调递减C .先减后增D .无法判断解析:选D.函数单调性强调x 1,x 2∈[-1,3],且x 1,x 2具有任意性,虽然f (0)<f (1),但不能保证其他值也能满足这样的不等关系.3.已知函数y =f (x ),x ∈A ,若对任意a ,b ∈A ,当a <b 时,都有f (a )<f (b ),则方程f (x )=0的根( )A .有且只有一个B .可能有两个C .至多有一个D .有两个以上解析:选C.由题意知f (x )在A 上是增函数.若y =f (x )与x 轴有交点,则有且只有一个交点,故方程f (x )=0至多有一个根.4.设函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)<f (a ) 解析:选D.∈a 2+1-a =(a -12)2+34>0,∈a 2+1>a ,∈f (a 2+1)<f (a ),故选D.5.下列四个函数在(-∞,0)上为增函数的是( ) ∈y =|x |;∈y =|x |x ;∈y =-x 2|x |;∈y =x +x|x |.A .∈∈B .∈∈C .∈∈D .∈∈解析:选C.∈y =|x |=-x (x <0)在(-∞,0)上为减函数; ∈y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;∈y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;∈y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有( )∈若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ∈函数y =x 2在R 上是增函数; ∈函数y =-1x在定义域上是增函数;∈y =1x 的单调递减区间是(-∞,0)∈(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而∈不对;∈y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;∈y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);∈y =1x 的单调递减区间不是(-∞,0)∈(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知 f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∈0<x 1<x 2,∈x 1-x 2<0,x 1x 2>0. ∈b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34 )的大小关系为________.解析:∈a 2-a +1=(a -12)2+34≥34,∈f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________. 解析: y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x x >0x 2-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数. 解:(1)∈f (1)=0,f (3)=0,∈⎩⎪⎨⎪⎧1+b +c =09+3b +c =0,解得b =-4,c =3. (2)证明:∈f (x )=x 2-4x +3, ∈设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3) =(x 21-x 22)-4(x 1-x 2) =(x 1-x 2)(x 1+x 2-4), ∈x 1-x 2<0,x 1>2,x 2>2, ∈x 1+x 2-4>0.∈f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∈函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.解:由题意可得⎩⎪⎨⎪⎧-1≤x -1≤1-1≤1-3x ≤1,x -1<1-3x即⎩⎪⎨⎪⎧0≤x ≤20≤x ≤23,x <12∈0≤x <12.12.设函数y =f (x )=ax +1x +2在区间(-2,+∞)上单调递增,求a 的取值范围.解:设任意的x 1,x 2∈(-2,+∞),且x 1<x 2, ∈f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2 =ax 1+1x 2+2-ax 2+1x 1+2x 1+2x 2+2=x 1-x 22a -1x 1+2x 2+2.∈f (x )在(-2,+∞)上单调递增, ∈f (x 1)-f (x 2)<0. ∈x 1-x 22a -1x 1+2x 2+2<0,∈x 1-x 2<0,x 1+2>0,x 2+2>0, ∈2a -1>0,∈a >12.1.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-aD .9-a 2解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9. 2.函数y =x +1-x -1的值域为( ) A .(-∞, 2 ] B .(0, 2 ] C .[2,+∞)D .[0,+∞)解析:选B.y =x +1-x -1,∈⎩⎪⎨⎪⎧x +1≥0x -1≥0,∈x ≥1.∈y =2x +1+x -1为[1,+∞)上的减函数,∈f (x )max =f (1)=2且y >0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( ) A .0或1 B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2, 对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1.则xy 的最大值为________.解析:y 4=1-x 3,∈0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是( ) A .1 B .0 C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知, f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6. 3.函数y =-x 2+2x 在[1,2]上的最大值为( ) A .1 B .2 C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.。
2023-2024学年高一上数学必修一综合测试卷(附答案解析)
解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx
在
1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )
高一数学必修一习题含答案
高一数学必修一习题含答案高一数学必修一习题含答案数学是一门需要不断练习和巩固的学科,而习题是巩固知识的重要途径之一。
在高一数学必修一中,有很多重要的习题需要我们掌握和理解。
本文将为大家提供一些高一数学必修一的习题,并附上详细的解答,希望能够帮助大家更好地学习和掌握这门学科。
一、函数与方程1. 已知函数 f(x) = 2x + 1,求 f(3) 的值。
解:将 x = 3 代入函数 f(x) = 2x + 1,得到 f(3) = 2(3) + 1 = 7。
2. 解方程 3x - 5 = 10。
解:将方程 3x - 5 = 10 移项得到 3x = 15,再除以 3 得到 x = 5。
二、平面几何1. 已知三角形 ABC,其中 AB = 3cm,BC = 4cm,AC = 5cm,判断该三角形是否为直角三角形。
解:根据勾股定理,若一个三角形的两边的平方和等于第三边的平方,则该三角形为直角三角形。
计算可得 3^2 + 4^2 = 9 + 16 = 25,而 5^2 = 25,所以该三角形为直角三角形。
2. 已知平行四边形 ABCD,其中 AB = 6cm,BC = 8cm,且∠B = 120°,求平行四边形的面积。
解:平行四边形的面积可以通过底边和高的乘积来计算。
由于底边 AB = 6cm,高为 BC 的长度,所以需要计算 BC 的长度。
根据余弦定理,可以得到 BC^2 = AB^2 + AC^2 - 2AB·AC·cos∠B = 6^2 + 8^2 - 2·6·8·cos120° = 36 + 64 + 96 =196,即BC = √196 = 14cm。
因此,平行四边形的面积为6cm × 14cm =84cm²。
三、概率与统计1. 一枚硬币抛掷三次,求出现两次正面的概率。
解:硬币抛掷三次,一共有 2^3 = 8 种可能的结果。
高一数学必修1综合测试题
高一数学必修1综合测试题1.集合EMBED Equation.3 ,EMBED Equation.DSMT4 则EMBED Equation.DSMT4 为()A. EMBED Equation.3 B.{0,1} C.{1,2} D. EMBED Equation.32.已知集合 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 则 EMBED Equation.DSMT4 ()A.EMBED Equation.DSMT4 B.EMBED Equation.DSMT4 C. EMBED Equation.DSMT4 D. EMBED Equation.DSMT43.设EMBED Equation.DSMT4 ,EMBED Equation.DSMT4 ,EMBEDEquation.DSMT4 ,则().A EMBED Equation.DSMT4B EMBED Equation.DSMT4C EMBED Equation.DSMT4 D EMBED Equation.DSMT44.已知函数EMBED Equation.DSMT4 是定义在R上的奇函数,且当EMBED Equation.3 时, EMBED Equation.3 ,则 EMBED Equation.DSMT4 在R上的解析式为()A. EMBED Equation.3 B. EMBED Equation.3C. EMBED Equation.3 D. EMBED Equation.35.要使EMBED Equation.DSMT4 的图象不经过第二象限,则t的取值范围为()A. EMBED Equation.DSMT4B. EMBED Equation.DSMT4C. EMBED Equation.DSMT4D. EMBED Equation.DSMT46.已知函数 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4 上是EMBED Equation.DSMT4 的减函数,则 EMBED Equation.DSMT4 的取值范围是()A.EMBED Equation.DSMT4 B.EMBED Equation.DSMT4 C.EMBED Equation.DSMT4 D. EMBED Equation.DSMT47.已知 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 上的减函数,那么 EMBED Equation.DSMT4 的取值范围是()A EMBED Equation.DSMT4B EMBED Equation.DSMT4C EMBED Equation.DSMT4 D EMBED Equation.DSMT48.设EMBED Equation.DSMT4 ,函数EMBED Equation.DSMT4 在区间EMBED Equation.DSMT4 上的最大值与最小值之差为EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 ()A.EMBED Equation.DSMT4 B.2 C.EMBED Equation.DSMT4 D.49. 函数 EMBED Equation.3 与 EMBED Equation.3 在同一直角坐标系下的图象大致是(C)10.定义在R上的偶函数 EMBED Equation.3 满足 EMBED Equation.3 ,且当EMBED Equation.DSMT4 EMBED Equation.3 时EMBEDEquation.DSMT4 ,则 EMBED Equation.DSMT4 等于()A. EMBED Equation.DSMT4 B. EMBED Equation.DSMT4 C.EMBED Equation.DSMT4 D. EMBED Equation.DSMT411.根据表格中的数据,可以断定方程 EMBED Equation.3 的一个根所在的区间是(). EMBED Equation.3 -10123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)-10123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)0123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)123 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)23 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)3 EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 0.3712.727.3920.09 EMBED Equation.312345(-1,0)B.(0,1)C.(1,2)D.(2,3)0.3712.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)12.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)2.727.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)7.3920.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)20.09 EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)EMBED Equation.3 12345(-1,0)B.(0,1)C.(1,2)D.(2,3)12345(-1,0)B.(0,1)C.(1,2)D.(2,3)2345(-1,0)B.(0,1)C.(1,2)D.(2,3)345(-1,0)B.(0,1)C.(1,2)D.(2,3)45(-1,0)B.(0,1)C.(1,2)D.(2,3)5(-1,0)B.(0,1)C.(1,2)D.(2,3)(-1,0)B.(0,1)C.(1,2)D.(2,3)A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12.下表显示出函数值 EMBED Equation.3 随自变量 EMBED Equation.3 变化的一组数据,由此判断它最可能的函数模型是().x45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型5678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型78910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型8910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型1921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型21232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型2527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型27A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型13.若 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 .14. EMBED Equation.3 =15.已知函数 EMBED Equation.3 同时满足:(1)定义域为 EMBED Equation.DSMT4 且EMBED Equation.DSMT4 恒成立;(2)对任意正实数EMBED Equation.3 ,若 EMBED Equation.3 有 EMBED Equation.3 ,且 EMBED Equation.3 .试写出符合条件的函数 EMBED Equation.DSMT4 的一个解析式16.给出下面四个条件:① EMBED Equation.DSMT4 ,② EMBED Equation.DSMT4 ,③ EMBED Equation.DSMT4 ,④ EMBED Equation.DSMT4 ,能使函数 EMBED Equation.DSMT4 为单调减函数的是 .17. 已知函数 EMBED Equation.DSMT4 的定义域为 EMBED Equation.DSMT4,且同时满足下列条件:(1) EMBED Equation.DSMT4 是奇函数;(2) EMBED Equation.DSMT4在定义域上单调递减;(3) EMBED Equation.DSMT4求 EMBED Equation.DSMT4 的取值范围HYPERLINK"/"18.函数 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4 上有最大值 EMBED Equation.DSMT4 ,求实数 EMBED Equation.DSMT4 的值HYPERLINK "/"19.已知函数 EMBED Equation.3 ,求函数 EMBED Equation.3 的定义域与值域.20.集合A是由适合以下性质的函数f(x)组成的,对于任意的x≥0,f(x)∈ EMBED Equation.3 且f(x)在(0,+∞)上是增函数.(1)试判断 EMBED Equation.DSMT4 (x≥0)是否在集合A中,若不在集合A中,试说明理由;(2)对于(1)中你认为是集合A中的函数f(x),证明不等式f(x)+f(x+2)<2f(x+1)对于任意x≥0总成立.高一数学必修1综合测试题(一)参考答案:1----5 DCACA 6----10BCDCD 11.C 12.A13. 3 14. EMBED Equation.DSMT4 15. EMBED Equation.DSMT4等16. ①④17解: EMBED Equation.DSMT4EMBED Equation.DSMT4 , EMBED Equation.DSMT4 EMBED Equation.DSMT4 .18解:对称轴 EMBED Equation.DSMT4 ,当 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 的递减区间,EMBED Equation.DSMT4 ;6分当 EMBED Equation.DSMT4 是 EMBED Equation.DSMT4 的递增区间,EMBED Equation.DSMT4 ;9分当 EMBED Equation.DSMT4 时 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 矛盾;所以 EMBED Equation.DSMT4 或 EMBED Equation.DSMT4 HYPERLINK "/"19 解:由 EMBED Equation.3 ,得 EMBED Equation.3 . 解得 EMBED Equation.DSMT4 EMBED Equation.DSMT4 定义域为 EMBEDEquation.DSMT4令 EMBED Equation.3 ,则 EMBED Equation.3 .∵ EMBED Equation.3 ,∴ EMBED Equation.3 ∴值域为 EMBED Equation.3 .20.解:(1) EMBED Equation.3 EMBED Equation.3 EMBED Equation.3不在集合A中又 EMBED Equation.3 的值域 EMBED Equation.3 , EMBED Equation.3当 EMBED Equation.3 时 EMBED Equation.3 为增函数 EMBED Equation.3 在集合A中(2) EMBED Equation.3 EMBED Equation.3EMBED Equation.3EMBED Equation.3 对任意 EMBED Equation.3 ,不等式 EMBED Equation.3 总成.高一数学必修1综合测试题(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足C I (A∪B)={2}的A、B共有组数A.5B.7C.9D.112.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.A EMBED PBrush BB.B EMBED PBrush AC.A=BD.A∩B= EMBED Equation.33.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是A.5B.4C.3D.24.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q EMBED Equation.3 (P∩Q)成立的所有实数a的取值范围为A.(1,9)B.[1,9]C.[6,9 EMBED Equation.3D.(6,9]5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为A.18B.30C. eq \f(27,2)D.286.函数f(x)= eq \f(3x-1,2-x) (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元素是A.2B.-2C.-1D.-37.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为A.3x-2B.3x+2C.2x+3D.2x-38.下列各组函数中,表示同一函数的是A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)= eq \f(x2-4,x-2)C.f(x)=|x|,g(x)= eq \b\lc\{(\a\al(x x≥0,-x x<0))D.f(x)=x,g(x)=( eq \r(x) )29. f(x)= eq \b\lc\{(\a\al(x2x>0,πx=0,0 x<0)) ,则f{f[f(-3)]}等于A.0B.πC.π2D.910.已知2lg(x-2y)=lg x+lg y,则 eq \f(x,y) 的值为A.1B.4C.1或4D. eq \f(1,4) 或411.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则A.a≥1B.a>1C.0<a≤1D.a<112.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A.(0, eq \f(1,2) )B.(0, EMBED Equation.3C.( eq\f(1,2) ,+∞) D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x2+ax+a-2>0的解集为R,则a可取值的集合为__________.14.函数y= eq \r(x2+x+1) 的定义域是______,值域为__ ____.15.若不等式3 EMBED Equation.3 >( eq \f(1,3) )x+1对一切实数x恒成立,则实数a 的取值范围为___ ___.16. f(x)= EMBED Equation.3 ,则f(x)值域为_____ _.17.函数y= eq \f(1,2x+1) 的值域是__________.18.方程log2(2-2x)+x+99=0的两个解的和是______.三、解答题19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f(x)=log EMBED Equation.3 2x-log EMBED Equation.3 x+5,x∈[2,4],求f(x)的最大值及最小值.23.已知函数f(x)= eq \f(a,a2-2) (a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.高一数学必修1综合测试题(二)参考答案一、选择题题号123456789101112答案C B C D B D A C C B D A二、填空题123456789101112答案C B C D B D A C C B D A二、填空题23456789101112答案C B C D B D A C C B D A二、填空题3456789101112答案C B C D B D A C C B D A二、填空题456789101112答案C B C D B D A C C B D A二、填空题56789101112答案C B C D B D A C C B D A二、填空题6789101112答案C B C D B D A C C B D A二、填空题789101112答案C B C D B D A C C B D A二、填空题89101112答案C B C D B D A C C B D A二、填空题9101112答案C B C D B D A C C B D A二、填空题101112答案C B C D B D A C C B D A二、填空题1112答案C B C D B D A C C B D A二、填空题12答案C B C D B D A C C B D A二、填空题答案C B C D B D A C C B D A二、填空题答案C B C D B D A C C B D A二、填空题C B CD B D A C C B D A二、填空题B C D B D A C C B D A二、填空题C D B D A C C B D A二、填空题D B D A C C B D A二、填空题B D AC C BD A二、填空题D A C C B D A二、填空题A C CB D A二、填空题C C BD A二、填空题C BD A二、填空题B D A二、填空题D A二、填空题A二、填空题二、填空题二、填空题13. EMBED Equation.3 14. R [ eq \f(\r(3),2),+∞) 15. - eq \f(1,2) < a < eq \f(3,2)16. (-2,-1]17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).(C U A)∩(C U B)={x|-1<x<1}20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】由题意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1 ∴f(8)=3(2)【解】不等式化为f(x)>f(x-2)+3∵f(8)=3 ∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函数∴ EMBED Equation.3 解得2<x< eq \f(16,7)21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】(1)当每辆车月租金为3600元时,未租出的车辆数为 eq \f(3600-3000,50) =12,所以这时租出了88辆.(2)设每辆车的月租金定为x元,则公司月收益为f(x)=(100- eq \f(x-3000,50) )(x-150)- eq \f(x-3000,50) ×50整理得:f(x)=- eq \f(x2,50) +162x-2100=- eq \f(1,50) (x-4050)2+307050 ∴当x=4050时,f(x)最大,最大值为f(4050)=307050 元22.已知函数f(x)=log EMBED Equation.3 2x-log EMBED Equation.3 x+5,x∈[2,4],求f(x)的最大值及最小值.考查函数最值及对数函数性质.【解】令t=log EMBED Equation.3 x∵x∈[2,4],t=log EMBED Equation.3 x在定义域递减有log EMBED Equation.3 4<log EMBED Equation.3 x<log EMBED Equation.3 2,∴t∈[-1,- eq \f(1,2) ]∴f(t)=t2-t+5=(t- eq \f(1,2) )2+ eq \f(19,4) ,t∈[-1,- eq \f(1,2) ]∴当t=- eq \f(1,2) 时,f(x)取最小值 eq \f(23,4)当t=-1时,f(x)取最大值7.23.已知函数f(x)= eq \f(a,a2-2) (a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.考查指数函数性质.【解】f(x)的定义域为R,设x1、x2∈R,且x1<x2则f(x2)-f(x1)= eq \f(a,a2-2) (a EMBED Equation.3 -a EMBED Equation.3 -a EMBED Equation.3 +a EMBED Equation.3 )=eq \f(a,a2-2) (a EMBED Equation.3 -a EMBED Equation.3 )(1+ EMBED Equation.3 )由于a>0,且a≠1,∴1+ EMBED Equation.3 >0∵f(x)为增函数,则(a2-2)( a EMBED Equation.3 -a EMBED Equation.3 )>0 于是有 EMBED Equation.3 ,解得a> eq \r(2) 或0<a<1。
高中数学 本册综合测试题(B)新人教B版必修1-新人教B版高一必修1数学试题
本册综合测试题(B)(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014~2015学年度某某德阳五中高一上学期月考)若集合A ={x |1<x <2},B ={x |x >a },满足A ⊆B ,则实数a 的取值X 围是( )A .a ≤1B .a <1C .a ≥1D .a ≤2[答案] A[解析] 将集合A 、B 分别表示在数轴上,如图所示.∵A ⊆B ,∴a ≤1.2.(2014~2015学年度某某市第一中学高一上学期期中测试)函数g (x )=2x+5x 的零点所在的一个区间是( )A .(0,1)B .(-1,0)C .(1,2)D .(-2,-1)[答案] B[解析] g (-1)=12-5<0,g (0)=20=1>0,故选B .3.已知f (x 2)=ln x ,则f (3)的值是( ) A .ln3 B .ln8 C .12ln3 D .-3ln2[答案] C[解析] 设x 2=t ,∵x >0,x =t , ∴f (t )=ln t =12ln t ,∴f (x )=12ln x ,∴f (3)=12ln3.4.(2014~2015学年度某某某某中学高一上学期月考)设f (x )是定义在R 上的偶函数,且x >0时,f (x )=x 2+1,则f (-2)=( )A .-5B .5C .3D .-3[答案] B[解析] ∵x >0时,f (x )=x 2+1,∴f (2)=5. 又∵f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=5.5.若m =(2+3)-1,n =(2-3)-1,则(m +1)-2+(n +1)-2的值是( ) A .1 B .14 C .22D .23[答案] D[解析] ∵m =(2+3)-1=2-3,n =(2-3)-1=2+ 3.∴(m +1)-2+(n +1)-2=(3-3)-2+(3+3)-2=3+32+3-323-323+32=2436=23. 6.函数f (x )=x 2-5x +6x -2的定义域是( )A .{x |2<x <3}B .{x |x <2或x >3}C .{x |x ≤2或x ≥3}D .{x |x <2或x ≥3}[答案] D[解析] 解法一:验证排除法:x =3时,函数f (x )有意义,排除A 、B ;x =2时,函数f (x )无意义,排除C ,故选D .解法二:要使函数有意义,应满足⎩⎪⎨⎪⎧x 2-5x +6≥0x -2≠0,解得x <2或x ≥3,故选D .7.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y =x 2+bx +c 的图象经过(1,0),…,求证这个二次函数的图象关于直线x =2对称.根据已知信息,题中二次函数图象不具有的性质是( ) A .过点(3,0) B .顶点(2,-2) C .在x 轴上截线段长是2 D .与y 轴交点是(0,3) [答案] B[解析] ∵二次函数y =x 2+bx +c 的图象经过点(1,0), ∴1+b +c =0,又二次函数的图象关于直线x =2对称,∴b =-4,∴c =3.∴y =x 2-4x +3,其顶点坐标为(2,-1),故选B .8.(2015·某某文,3)设a =0.60.6,b =0.61.5,c =1.50.6,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C .b <a <c D .b <c <a[答案] C[解析] ∵c =1.50.6>1,0<b =0.61.5<0.60.6=a <1,∴b <a <c .9.(2014~2015学年度某某某某市金台区高一上学期期中测试)若lg a +lg b =0(a ≠1,b ≠1),则函数f (x )=a x 与g (x )=b x 的图象( )A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称[答案] C[解析] ∵lg a +lg b =0,∴lg ab =0,∴ab =1,∴b =1a.∴f (x )=a x 与g (x )=b x=⎝ ⎛⎭⎪⎫1ax 的图象关于y 轴对称.10.函数f (x )=log 2(-x 2+1)的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-1,0]D .[0,1)[答案] C[解析] 由-x 2+1>0,得-1<x <1.令u =-x 2+1(-1<x <1)的单调递增区间为(-1,0], 又y =log2u 为增函数,∴函数f (x )的单调递增区间为(-1,0].11.(2015·某某理,10)设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f (f (a ))=2f (a )的a 的取值X 围是( )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[答案] C[解析] 由f (f (a ))=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C . 12.已知某产品的总成本y (万元)与产量x (台)之间的函数关系是y =0.1x 2-11x +3 000,每台产品的售价为25万元,则生产者为获得最大利润,产量x 应定为( )A .55台B .120台C .150台D .180台[答案] D[解析] 设利润为S ,由题意得,S =25x -y =25x -0.1x 2+11x -3 000=-0.1x 2+36x -3 000=-0.1 (x -180)2+240, ∴当产量x =180台时,生产者获得最大利润,故选D .二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.(2014~2015学年度潍坊四县市高一上学期期中测试)已知f (x )=x 22-x+(3x +1)0,则函数f (x )的定义域为________________.[答案] ⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,2 [解析] 由题意,得⎩⎪⎨⎪⎧2-x >03x +1≠0,∴x <2,且x ≠-13,故函数f (x )的定义域为⎝⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫-13,2.14.(2014~2015学年度某某南开中学高一上学期期中测试)已知f (x )=⎩⎪⎨⎪⎧x 2+1x <1-2x +3x ≥1,则f [f (2)]=____.[答案] 2[解析] f (2)=-4+3=1,f (-1)=(-1)2+1=2, ∴f [f (2)]=f (-1)=2.15.(2014~2015学年度某某一中高一上学期期中测试)函数y =x 2+1,x ∈[-1,2]的值域为__________.[答案] [1,5][解析] ∵x ∈[-1,2],∴当x =0时,y min =1,当x =2时,y max =5. ∴函数y =x 2+1,x ∈[-1,2]的值域为[1,5].16.设M 、N 是非空集合,定义M ⊙N ={x |x ∈M ∪N 且x ∉M ∩N }.已知M ={x |y =2x -x 2},N ={y |y =2x ,x >0},则M ⊙N 等于________.[答案] {x |0≤x ≤1或x >2}[解析] ∵M ={x |2x -x 2≥0}={x |0≤x ≤2},N ={y |y >1},∴M ∩N ={x |1<y ≤2},M ∪N ={x |x ≥0}, ∴M ⊙N ={x |0≤x ≤1或x >2}.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(2014~2015学年度某某某某市十三校高一上学期期中测试)已知非空集合A ={x |2a -2<x <a },B ={x |x ≤1或x ≥2},且A ∩B =A ,某某数a 的取值X 围.[解析] ∵A ∩B =A ,∴A ⊆B . ∴当A =∅时,2a -2≥a ,∴a ≥2.当A ≠∅时,由题意得⎩⎪⎨⎪⎧2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a2a -2≥2,解得a ≤1.综上可知,实数a 的取值X 围是a ≤1或a ≥2.18.(本小题满分12分)(2014~2015学年度某某某某中学高一上学期期中测试)计算下列各式的值:(1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫33823 +(1.5)2+(2×43)4; (2)lg 25+lg2×lg500-12lg 125-log 29×log 32.[解析] (1)⎝ ⎛⎭⎪⎫21412 -(-9.6)0-⎝ ⎛⎭⎪⎫33823 +(1.5)2+(2×43)4=⎝ ⎛⎭⎪⎫9412 -(-9.6)0-⎝ ⎛⎭⎪⎫27823 +⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫212×3144=32-1-94+94+12=252. (2)lg 25+lg2×lg500-12lg 125-log 29×l og 32=lg 25+lg2(2+lg5)-lg 15-lg9lg2×lg2lg3=lg5(lg2+lg5)+lg4+lg5-2 =lg100-2=2-2=0.19.(本小题满分12分)(2014~2015学年度某某省实验中学高一月考)已知二次函数f (x )=2kx 2-2x -3k -2,x ∈[-5,5].(1)当k =1时,求函数f (x )的最大值和最小值;(2)某某数k 的取值X 围,使函数y =f (x )在区间[-5,5]上是单调函数. [解析] (1)当k =1时,f (x )=2x 2-2x -5=2⎝⎛⎭⎪⎫x -122-112,∵x ∈[-5,5],∴当x =12时,f (x )min =-112,当x =-5时,f (x )max =55.(2)当k =0时,f (x )=-2x -2在区间[-5,5]上是减函数,当k ≠0时,由题意得12k ≥5或12k≤-5, ∴0<k ≤110或-110≤k <0.综上可知,实数k 的取值X 围是⎣⎢⎡⎦⎥⎤-110,110.20.(本小题满分12分)某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收入最大?最大月收入是多少元? [解析] (1)当每辆车的月租金定为3 600元时,未租出的车辆数为3 600-3 00050=12,所以能租出100-12=88辆车.(2)设每辆车的月租金定为x (x 为50的整数倍)元时,租赁公司的月收入为y 元,则y =⎝⎛⎭⎪⎫100-x -3 00050·(x -150)-x -3 00050×50=-150x 2+162x -21 000=-150(x -4 050)2+307 050.所以当x =4 050时,y max =307 050.故当每辆车的月租金定为4 050元时,租赁公司的月收入最大,最大月收入为307 050元.21.(本小题满分12分)(2014~2015学年度某某省实验中学高一月考)已知函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).(1)求f (1)的值;(2)已知f (3)=1,且f (a )>f (a -1)+2,求a 的取值X 围; (3)证明:f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ).[解析] (1)令x =y =1, 则f (1)=f (1)+f (1)=2f (1), ∴f (1)=0.(2)∵f (xy )=f (x )+f (y ), f (3)=1, ∴f (9)=f (3)+f (3)=2.∴f (a )>f (a -1)+2化为f (a )>f (a -1)+f (9)=f (9a -9),由题意得⎩⎪⎨⎪⎧a >0a -1>0a >9a -9, 解得1<a <98.(3)∵f (x )=f ⎝ ⎛⎭⎪⎫x y·y =f ⎝ ⎛⎭⎪⎫x y +f (y ),∴f ⎝ ⎛⎭⎪⎫x y=f (x )-f (y ).22.(本小题满分14分)已知函数f (x )=lg(m x-2x)(0<m <1). (1)当m =12时,求f (x )的定义域;(2)试判断函数f (x )在区间(-∞,0)上的单调性并给出证明; (3)若f (x )在(-∞,-1]上恒取正值,求m 的取值X 围.[解析] (1)当m =12时,要使f (x )有意义,须(12)x -2x >0,即2-x >2x,可得:-x >x ,∴x <0∴函数f (x )的定义域为{x |x <0}.(2)设x 2<0,x 1<0,且x 2>x 1,则Δ=x 2-x 1>0 令g (x )=m x-2x,则g (x 2)-g (x 1)=m x2-2 x2-m x1+2 x1 =m x2-m x1+2 x1-2 x 2 ∵0<m <1,x 1<x 2<0, ∴m x2-m x1<0,2 x1-2 x2<0g (x 2)-g (x 1)<0,∴g (x 2)<g (x 1)∴lg[g (x 2)]<lg[g (x 1)], ∴Δy =lg(g (x 2))-lg(g (x 1))<0, ∴f (x )在(-∞,0)上是减函数.(3)由(2)知:f (x )在(-∞,0)上是减函数, ∴f (x )在(-∞,-1]上也为减函数,∴f (x )在(-∞,-1]上的最小值为f (-1)=lg(m -1-2-1) 所以要使f (x )在(-∞,-1]上恒取正值, 只需f (-1)=lg(m -1-2-1)>0,即m -1-2-1>1,∴1m >1+12=32,∵0<m <1,∴0<m <23.。
高一数学必修1综合试卷(带答案)
高一数学试卷时量:100分钟 总分:120分一、选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.下列四个集合中,空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A CC .()()AB BCD .()A B C4.若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或26.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,57.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A .1B .1或32C .1,32或 D 8.函数lg y x = ( )A .是偶函数,在区间(,0)-∞ 上单调递增; B.是偶函数,在区间(,0)-∞上单调递减 C.是奇函数,在区间(0,)+∞ 上单调递增; D.是奇函数,在区间(0,)+∞上单调递减9..函数12+=-x ay (0>a ,且1≠a )的图象必经过点( ) A.(0,1) B.(1,1) C. (2, 0) D. (2,2)10.已知不等式为27331<≤x ,则x 的取值范围( )A.321<≤-x B.321<≤x C. R D.3121<≤x 11.下列函数中值域为()∞+,0的是( ) A.xy -=215B.xy -⎪⎭⎫⎝⎛=131 C.121-⎪⎭⎫ ⎝⎛=xy D.xy 21-=12.甲乙二人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B 地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快若某人离开A 地的距离S 与所用时间t 的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各人的图象只可能是( )A.甲是图①,乙是图②B.甲是图①,乙是图④C.甲是图③,乙是图②D.甲是图③,乙是图④二、填空题(本大题共6小题,每小题4分,共24分。
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3。
已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C 。
5D .6 4。
下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D 。
187.函数1(0,1)x y a a a a=->≠的图象可能是( )8。
高一数学必修一全册练习题(解析版)
第一章集合与函数的概念1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是()A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,且k<5}C.{x|x=4t-3,t∈N,且t≤5}D.{x|x=4s-3,s∈N*,且s≤5}解析:选D.A中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B中k取负数,多了若干元素;C中t=0时多了-3这个元素,只有D是正确的.2.集合P={x|x=2k,k∈Z},M={x|x=2k+1,k∈Z},S={x|x=4k+1,k∈Z},a∈P,b∈M,设c=a+b,则有()A.c∈P B.c∈MC.c∈S D.以上都不对解析:选B.∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z,∴c∈M.3.定义集合运算:A*B={z|z=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A*B 的所有元素之和为()A.0B.2C.3D.6解析:选D.∵z=xy,x∈A,y∈B,∴z的取值有:1×0=0,1×2=2,2×0=0,2×2=4,故A*B={0,2,4},∴集合A*B的所有元素之和为:0+2+4=6.4.已知集合A={1,2,3},B={1,2},C={(x,y)|x∈A,y∈B},则用列举法表示集合C =____________.解析:∵C={(x,y)|x∈A,y∈B},∴满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示()A .方程y =2x -1B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合答案:D2.设集合M ={x ∈R |x ≤33},a =26,则()A .a ∉MB .a ∈MC .{a }∈MD .{a |a =26}∈M解析:选B.(26)2-(33)2=24-27<0,故26<3 3.所以a ∈M .3+y =1-y =9的解集是()A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.+y =1-y =9=5=-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有()(1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合;(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集.A .0个B .1个C .2个D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴.5.下列集合中,不同于另外三个集合的是()A .{0}B .{y |y 2=0}C .{x |x =0}D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为()A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个.答案:28.已知集合A ∈N |4x -3∈A =________.解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________.解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1.答案:m <110.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线);(3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根,∴a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A -1312.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围.解:①a =0时,原方程为-3x +2=0,x =23,符合题意.②a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合①②,知a =0或a ≥98.1.下列各组对象中不能构成集合的是()A .水浒书业的全体员工B .《优化方案》的所有书刊C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是()①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *.A .1B .2C .3D .4解析:选B.①②正确,③④错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素()A .2个B .3个C .4个D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x2-5x+6=0和方程x2-x-2=0的解为元素的集合中共有________个元素.解析:由x2-5x+6=0,解得x=2或x=3.由x2-x-2=0,解得x=2或x=-1.答案:31.若以正实数x,y,z,w四个元素构成集合A,以A中四个元素为边长构成的四边形可能是()A.梯形B.平行四边形C.菱形D.矩形答案:A2.设集合A只含一个元素a,则下列各式正确的是()A.0∈A B.a∉AC.a∈A D.a=A答案:C3.给出以下四个对象,其中能构成集合的有()①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学;③2010年广州亚运会的比赛项目;④1,3,5.A.1个B.2个C.3个D.4个解析:选C.因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.4.若集合M={a,b,c},M中元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:选D.根据元素的互异性可知,a≠b,a≠c,b≠c.5.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对解析:选B.①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.6.若所有形如a+2b(a∈Q、b∈Q)的数组成集合M,对于x=13-52,y=3+2π,则有()A.x∈M,y∈M B.x∈M,y∉MC.x∉M,y∈M D.x∉M,y∉M解析:选B.∅x=13-52=-341-5412,y=3+2π中π是无理数,而集合M中,b∈Q,得x∈M,y∉M.7.已知①5∈R;②13∈Q;③0={0};④0∉N;⑤π∈Q;⑥-3∈Z.其中正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N;⑤π∉Q,①②⑥正确.答案:38.对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的取值是________.解析:当a=2时,6-a=4∈A;当a=4时,6-a=2∈A;当a=6时,6-a=0∉A,所以a=2或a=4.答案:2或49.若a,b∈R,且a≠0,b≠0,则|a|a+|b|b的可能取值组成的集合中元素的个数为________.解析:当a>0,b>0时,|a|a+|b|b=2;当a·b<0时,|a|a+|b|b=0;当a<0且b<0时,|a|a+|b|b=-2.所以集合中的元素为2,0,-2.即元素的个数为3.答案:310.已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.解:∵-3∈A,∴-3=a-3或-3=2a-1.若-3=a-3,则a=0,此时集合A含有两个元素-3,-1,符合题意.若-3=2a-1,则a=-1,此时集合A含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∵12-3=2+3=2+3×1,而2,1∈Z ,∴2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值.解:根据集合中元素的互异性,有=2a =b2=b 2=2a,=0=1=0=0=14=12.再根据集合中元素的互异性,=0=1=14=12.1.下列六个关系式,其中正确的有()①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}.A .6个B .5个C .4个D .3个及3个以下解析:选C.①②⑤⑥正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是()A .对任意的a ∈A ,都有a ∉B B .对任意的b ∈B ,都有b ∈AC .存在a 0,满足a 0∈A ,a 0∉BD .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()A.a≥2B.a≤1C.a≥1D.a≤2解析:选A.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2.4.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________.解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.答案:41.如果A={x|x>-1},那么()A.0⊆A B.{0}∈AC.∅∈A D.{0}⊆A解析:选D.A、B、C的关系符号是错误的.2.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A BC.B A D.A⊆B解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.3.定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于() A.A B.BC.{2}D.{1,7,9}解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.4.以下共有6组集合.(1)A={(-5,3)},B={-5,3};(2)M={1,-3},N={3,-1};(3)M=∅,N={0};(4)M={π},N={3.1415};(5)M={x|x是小数},N={x|x是实数};(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.其中表示相等的集合有()A.2组B.3组C.4组D.5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A*B={ω|ω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是()A.4B.8C.16D.32解析:选B.在集合A和B中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A*B={0,6,12},因此其子集个数为23=8,选B.6.设B={1,2},A={x|x⊆B},则A与B的关系是()A.A⊆B B.B⊆AC.A∈B D.B∈A解析:选D.∵B的子集为{1},{2},{1,2},∅,∴A={x|x⊆B}={{1},{2},{1,2},∅},∴B∈A.7.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx=1},则A、B间的关系为________.解析:在A中,(0,0)∈A,而(0,0)∉B,故B A.答案:B A8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为________.解析:A⊇B,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.已知A={x|x<-1或x>5},B={x|a≤x<a+4},若A B,则实数a的取值范围是________.解析:作出数轴可得,要使A B,则必须a+4≤-1或a>5,解之得{a|a>5或a≤-5}.答案:{a|a>5或a≤-5}10.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.+b=ac+2b=ac2,消去b得a+ac2-2ac=0,即a(c2-2c+1)=0.当a=0时,集合B中的三个元素相同,不满足集合中元素的互异性,故a≠0,c2-2c+1=0,即c=1;当c=1时,集合B中的三个元素也相同,∴c=1舍去,即此时无解.+b=ac2+2b=ac,消去b得2ac2-ac-a=0,即a(2c2-c-1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若AB ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}.∵BA ,∴mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时,由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =()A .{x |-1<x <1}B .{x |-2<x <1}C .{x |-2<x <2}D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}.2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则()A .M ⊆NB .N ⊆MC .M ∩N ={2,3}D .M ∪N ={1,4}解析:选C.∵M={1,2,3},N={2,3,4}.∴选项A、B显然不对.M∪N={1,2,3,4},∴选项D错误.又M∩N={2,3},故选C.3.已知集合M={y|y=x2},N={y|x=y2},则M∩N=()A.{(0,0),(1,1)}B.{0,1}C.{y|y≥0}D.{y|0≤y≤1}解析:选C.M={y|y≥0},N=R,∴M∩N=M={y|y≥0}.4.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:A∪B=A,即B⊆A,∴m≥2.答案:m≥21.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是()A.1B.2C.3D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.(2010年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于() A.{3,4,5,6,7,8}B.{3,6}C.{4,7}D.{5,8}解析:选D.∵A={3,5,6,8},B={4,5,7,8},∴A∩B={5,8}.3.(2009年高考山东卷)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a 的值为()A.0B.1C.2D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∴a=4.4.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于() A.{2}B.{1,2}C.{2,3}D.{1,2,3}解析:选A.Q={x∈R|x2+x-6=0}={-3,2}.∴P∩Q={2}.5.(2010年高考福建卷)若集合A={x|1≤x≤3},B={x|x>2},则A∩B等于()A.{x|2<x≤3}B.{x|x≥1}C.{x|2≤x<3}D.{x|x>2}解析:选A.∵A={x|1≤x≤3},B={x|x>2},∴A∩B={x|2<x≤3}.6.设集合S={x|x>5或x<-1},T={x|a<x<a+8},S∪T=R,则a的取值范围是()A.-3<a<-1B.-3≤a≤-1C.a≤-3或a≥-1D.a<-3或a>-1解析:选A.S∪T=R,+8>5,<-1.∴-3<a<-1.7.(2010年高考湖南卷)已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________.解析:∵A∩B={2,3},∴3∈B,∴m=3.答案:38.满足条件{1,3}∪M={1,3,5}的集合M的个数是________.解析:∵{1,3}∪M={1,3,5},∴M中必须含有5,∴M可以是{5},{5,1},{5,3},{1,3,5},共4个.答案:49.若集合A={x|x≤2},B={x|x≥a},且满足A∩B={2},则实数a=________.解析:当a>2时,A∩B=∅;当a<2时,A∩B={x|a≤x≤2};当a=2时,A∩B={2}.综上:a=2.答案:210.已知A={x|x2+ax+b=0},B={x|x2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴由9+3c+15=0,解得c=-8.由x2-8x+15=0,解得B={3,5},故A={3}.又a2-4b=0,解得a=-6,b=9.综上知,a=-6,b=9,c=-8.11.已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B.解:A={x|x-2>3}={x|x>5},B={x|2x-3>3x-a}={x|x<a-3}.借助数轴如图:①当a-3≤5,即a≤8时,A∪B={x|x<a-3或x>5}.②当a-3>5,即a>8时,A∪B={x|x>5}∪{x|x<a-3}={x|x∈R}=R.综上可知当a≤8时,A∪B={x|x<a-3或x>5};当a>8时,A∪B=R.12.设集合A={(x,y)|2x+y=1,x,y∈R},B={(x,y)|a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.解:集合A、B的元素都是点,A∩B的元素是两直线的公共点.A∩B=∅,则两直线无交点,即方程组无解.x+y=12x+2y=a,解得(4-a2)x=2-a,-a2=0-a≠0,即a=-2.1.(2010年高考辽宁卷)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3}B.{3,7,9}C.{3,5,9}D.{3,9}解析:选D.∁U A={3,9},故选D.2.(2010年高考陕西卷)集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}解析:选D.∵B={x|x<1},∴∁R B={x|x≥1},∴A∩∁R B={x|1≤x≤2}.3.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}解析:选A.依题意知A={0,1},(∁U A)∩B表示全集U中不在集合A中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2}B.{5}C.{3,4}D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0}B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M ={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为()A.1B.2C.3D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5}.6.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围为________.解析:由已知A={x|x≥-m},∴∁U A={x|x<-m},∵B={x|-2<x<4},(∁U A)∩B=∅,∴-m≤-2,即m≥2,∴m的取值范围是m≥2.答案:{m|m≥2}10.已知全集U=R,A={x|-4≤x<2},B={x|-1<x≤3},P={x|x≤0或x≥5},求A∩B,2(∁U B)∪P,(A∩B)∩(∁U P).解:将集合A、B、P表示在数轴上,如图.∵A={x|-4≤x<2},B={x|-1<x≤3},∴A∩B={x|-1<x<2}.∵∁U B={x|x≤-1或x>3},∴(∁U B)∪P={x|x≤0或x≥52 },(A∩B)∩(∁U P)={x|-1<x<2}∩{x|0<x<52}={x|0<x<2}.11.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩(∁U A)={2},A∩(∁U B)={4},U=R,求实数a,b的值.解:∵B∩(∁U A)={2},∴2∈B,但2∉A.∵A∩(∁U B)={4},∴4∈A,但4∉B.2+4a+12b=02-2a+b=0=87=127.∴a,b的值为87,-127.12.已知集合A={x|2a-2<x<a},B={x|1<x<2},且A∁R B,求实数a的取值范围.解:∁R B={x|x≤1或x≥2}≠∅,∵A∁R B,∴分A=∅和A≠∅两种情况讨论.①若A=∅,此时有2a-2≥a,∴a≥2.②若A≠∅a-2<a≤1a-2<aa-2≥2.∴a≤1.综上所述,a≤1或a≥2.第二章基本初等函数1.下列说法中正确的为()A.y=f(x)与y=f(t)表示同一个函数B.y=f(x)与y=f(x+1)不可能是同一函数C.f(x)=1与f(x)=x0表示同一函数D.定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是()A.f(x)=|x|,g(x)=(x)2B.f(x)=|x|,g(x)=x2C.f(x)=|x|,g(x)=x2xD.f(x)=x2-9x-3,g(x)=x+3解析:选B.A、C、D的定义域均不同.3.函数y=1-x+x的定义域是()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}解析:选D.-x≥0≥0,得0≤x≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a<-1时,直线x=a与函数的图象没有交点.从而表示y是x的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x 的定义域是()A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x 的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是()A .x =y 2+1B .y =2x 2+1C .x -2y =6D .x =y解析:选A.一个x 对应的y 值不唯一.3.下列说法正确的是()A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是()A .A ={-1,0,1},B ={0,1},f :A 中的数平方B .A ={0,1},B ={-1,0,1},f :A 中的数开方C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是()A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z解析:选C.A、B与D对应法则都不同.6.设f:x→x2是集合A到集合B的函数,如果B={1,2},则A∩B一定是()A.∅B.∅或{1}C.{1}D.∅或{2}解析:选B.由f:x→x2是集合A到集合B的函数,如果B={1,2},则A={-1,1,-2,2}或A={-1,1,-2}或A={-1,1,2}或A={-1,2,-2}或A={1,-2,2}或A={-1,-2}或A={-1,2}或A={1,2}或A={1,-2}.所以A∩B=∅或{1}.7.若[a,3a-1]为一确定区间,则a的取值范围是________.解析:由题意3a-1>a,则a>1 2 .答案:(12,+∞)8.函数y=x+103-2x的定义域是________.解析:要使函数有意义,+1≠0-2x>0,即x<32且x≠-1.答案:(-∞,-1)∪(-1,32)9.函数y=x2-2的定义域是{-1,0,1,2},则其值域是________.解析:当x取-1,0,1,2时,y=-1,-2,-1,2,故函数值域为{-1,-2,2}.答案:{-1,-2,2}10.求下列函数的定义域:(1)y=-x2x2-3x-2;(2)y=34x+83x-2.解:(1)要使y=-x2x2-3x-2有意义,则必须x≥0,x2-3x-2≠0,解得x≤0且x≠-12,故所求函数的定义域为{x|x≤0,且x≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23,故所求函数的定义域为{x |x >23}.11.已知f (x )=11+x (x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值;(2)求f (g (2))的值.解:(1)∵f (x )=11+x ,∴f (2)=11+2=13,又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)由(1)知g (2)=6,∴f (g (2))=f (6)=11+6=17.12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数).∵ax +1≥0,a <0,∴x ≤-1a ,即函数的定义域为(-∞,-1a ].∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-1a ],∴-1a ≥1,而a <0,∴-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是()解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x ,则f (x )等于()A.11+x(x ≠-1) B.1+xx(x ≠0)C.x1+x(x ≠0且x ≠-1)D .1+x (x ≠-1)解析:选C.f (1x )=11+x =1x 1+1x (x ≠0),∴f (t )=t1+t(t ≠0且t ≠-1),∴f (x )=x1+x(x ≠0且x ≠-1).3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=()A .3x +2B .3x -2C .2x +3D .2x -3解析:选B.设f (x )=kx +b (k ≠0),∵2f (2)-3f (1)=5,2f (0)-f (-1)=1,-b =5+b =1=3=-2,∴f (x )=3x -2.4.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x2-11.下列表格中的x 与y 能构成函数的是()A.x非负数非正数y1-1B.x 奇数0偶数y10-1C.x 有理数无理数y1-1D.x 自然数整数有理数y10-1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于()A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4t -12-1,∴f (12)=16-1=15.法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是()A .2x +1B .2x -1C .2x -3D .2x +7解析:选B.∵g (x +2)=2x +3=2(x +2)-1,∴g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是()解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为()A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:选D.设f (x )=(x -1)2+c ,由于点(0,0)在函数图象上,∴f (0)=(0-1)2+c =0,∴c =-1,∴f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为()A .y =12x (x >0)B .y =24x (x >0)C .y =28x (x >0)D .y =216x (x >0)解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x .7.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:328.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f 3]的值等于________.解析:由题意,f (3)=1,∴f [1f 3]=f (1)=2.答案:29.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ).解:令a =0,则f (-b )=f (0)-b (-b +1)=1+b (b -1)=b 2-b +1.再令-b =x ,即得f (x )=x 2+x +1.11.已知f (x +1x =x 2+1x2+1x ,求f (x ).解:∵x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∴f (x +1x)=f (1+1x )=1+1x 2+1x =(1+1x )2-(1+1x )+1.∴f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称.于是,设f (x )=a (x -2)2+k (a ≠0),则由f (0)=3,可得k =3-4a ,∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3.∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a ,∴a =1.∴f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是()解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=+3x >10f x +5x ≤10,则f (5)的值是()A .24B .21C .18D .16解析:选A.f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24.3.函数y =x +|x |x的图象为()解析:选C.y =x +|x |x =+1x >0-1x <0,再作函数图象.4.函数f (x )-x +1,x <1x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x <1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为()A.2,0或2B .0,2C .0,0或2D .0,0或2答案:C2.某城市出租车起步价为10元,最长可租乘3km(含3km),以后每1km 为1.6元(不足1km ,按1km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为()解析:选C.由题意,当0<x ≤3时,y =10;当3<x ≤4时,y =11.6;当4<x≤5时,y=13.2;…当n-1<x≤n时,y=10+(n-3)×1.6,故选C.3.函数f(x)x-x20≤x≤32+6x-2≤x≤0的值域是()A.R B.[-9,+∞)C.[-8,1]D.[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.4.已知f(x)+2x≤-1,2-1<x<2x x≥2,若f(x)=3,则x的值是()A.1B.1或32C.1,32或±3 D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f(x)=x2=3,x=±3,而-1<x<2,∴x= 3.5.已知函数f(x),x为有理数,,x为无理数,g(x),x为有理数,,x为无理数,当x∈R时,f(g(x)),g(f(x))的值分别为()A.0,1B.0,0C.1,1D.1,0解析:选D.g(x)∈Q,f(x)∈Q,f(g(x))=1,g(f(x))=0.6.设f(x)x+12x≤-1,x+1-1<x<1,1x≥1,已知f(a)>1,则实数a的取值范围是()A.(-∞,-2)-1 2,+-1 2,C.(-∞,-2)-12,-12,(1,+∞)解析:选C.f(a)>1⇔≤-1a +12>11<a <1a +1>11>1≤-1<-2或a >01<a <1>-12≥1a <12⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)-12,7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j ,所以密文“nbuj ”破译后为“mati ”.答案:mati8.已知函数f (x )2,x ≤0,x -2,x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0.答案:09.已知f (x ),x ≥0,1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组+2≥0+x +2·1≤5+2<0+x +2·-1≤5,解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )2-1≤x ≤1x >1或x <-1,(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∵260÷52=5(小时),260÷65=4(小时),∴st 0≤t ≤5,<t+612<t 12.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7cm 腰长为22cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .因为ABCD 是等腰梯形,底角为45°,AB =22cm ,所以BG =AG =DH =HC =2cm.又BC =7cm ,所以AD =GH =3cm.①当点F 在BG 上时,即x ∈[0,2]时,y =12x 2;②当点F 在GH 上时,即x ∈(2,5]时,y =x +x -22×2=2x -2;③当点F 在HC 上时,即x ∈(5,7]时,y =S 五边形ABFED =S 梯形ABCD -S Rt △CEF =12(7+3)×2-12(7-x )2=-12(x -7)2+10.综合①②③,得函数解析式为y 2x ∈[0,2]-2x ∈2,5].-12x -72+10x ∈5,7]函数图象如图所示.1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )为增函数,当x ∈(-∞,-2]时,函数f (x )为减函数,则m 等于()A .-4B .-8C .8D .无法确定解析:选B.二次函数在对称轴的两侧的单调性相反.由题意得函数的对称轴为x =-2,则m4=-2,所以m =-8.2.函数f (x )在R 上是增函数,若a +b ≤0,则有()A .f (a )+f (b )≤-f (a )-f (b )B .f (a )+f (b )≥-f (a )-f (b )C .f (a )+f (b )≤f (-a )+f (-b )D .f (a )+f (b )≥f (-a )+f (-b )解析:选C.应用增函数的性质判断.∵a +b ≤0,∴a ≤-b ,b ≤-a .又∵函数f (x )在R 上是增函数,∴f (a )≤f (-b ),f (b )≤f (-a ).∴f (a )+f (b )≤f (-a )+f (-b ).3.下列四个函数:①y =x x -1;②y =x 2+x ;③y =-(x +1)2;④y =x1-x +2.其中在(-∞,0)上为减函数的是()A .①B .④C .①④D .①②④解析:选A.①y=xx-1=x-1+1x-1=1+1x-1.其减区间为(-∞,1),(1,+∞).②y=x2+x=(x+12)2-14,减区间为(-∞,-12).③y=-(x+1)2,其减区间为(-1,+∞),④与①相比,可知为增函数.4.若函数f(x)=4x2-kx-8在[5,8]上是单调函数,则k的取值范围是________.解析:对称轴x=k8,则k8≤5,或k8≥8,得k≤40,或k≥64,即对称轴不能处于区间内.答案:(-∞,40]∪[64,+∞)1.函数y=-x2的单调减区间是()A.[0,+∞)B.(-∞,0]C.(-∞,0)D.(-∞,+∞)解析:选A.根据y=-x2的图象可得.2.若函数f(x)定义在[-1,3]上,且满足f(0)<f(1),则函数f(x)在区间[-1,3]上的单调性是()A.单调递增B.单调递减C.先减后增D.无法判断解析:选D.函数单调性强调x1,x2∈[-1,3],且x1,x2具有任意性,虽然f(0)<f(1),但不能保证其他值也能满足这样的不等关系.3.已知函数y=f(x),x∈A,若对任意a,b∈A,当a<b时,都有f(a)<f(b),则方程f(x)=0的根()A.有且只有一个B.可能有两个C.至多有一个D.有两个以上解析:选C.由题意知f(x)在A上是增函数.若y=f(x)与x轴有交点,则有且只有一个交点,故方程f(x)=0至多有一个根.4.设函数f(x)在(-∞,+∞)上为减函数,则()A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a)解析:选D.∵a2+1-a=(a-12)2+34>0,∴a2+1>a,∴f(a2+1)<f(a),故选D.5.下列四个函数在(-∞,0)上为增函数的是()①y =|x |;②y =|x |x ;③y =-x 2|x |;④y =x +x|x |.A .①②B .②③C .③④D .①④解析:选C.①y =|x |=-x (x <0)在(-∞,0)上为减函数;②y =|x |x =-1(x <0)在(-∞,0)上既不是增函数,也不是减函数;③y =-x 2|x |=x (x <0)在(-∞,0)上是增函数;④y =x +x|x |=x -1(x <0)在(-∞,0)上也是增函数,故选C.6.下列说法中正确的有()①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x④y =1x 的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数单调性的定义是指定义在区间I 上的任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x ≤0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);④y =1x 的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法.7.若函数y =-bx 在(0,+∞)上是减函数,则b 的取值范围是________.解析:设0<x 1<x 2,由题意知f (x 1)-f (x 2)=-b x 1+b x 2=bx 1-x 2x 1·x 2>0,∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0.∴b <0.答案:(-∞,0)8.已知函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与f (34)的大小关系为________.解析:∵a 2-a +1=(a -12)2+34≥34,∴f (a 2-a +1)≤f (34).答案:f (a 2-a +1)≤f (34)9.y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=x 2+3x x >02-3x x ≤0,作出其图象如图,观察图象知递增区间为[0,32].答案:[0,32]10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0.(1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.解:(1)∵f (1)=0,f (3)=0,+b +c =0+3b +c =0,解得b =-4,c =3.(2)证明:∵f (x )=x 2-4x +3,∴设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3)=(x 21-x 22)-4(x 1-x 2)=(x 1-x 2)(x 1+x 2-4),∵x 1-x 2<0,x 1>2,x 2>2,∴x 1+x 2-4>0.∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴函数f (x )在区间(2,+∞)上为增函数.11.已知f (x )是定义在[-1,1]上的增函数,且f (x -1)<f (1-3x ),求x 的取值范围.1≤x -1≤11≤1-3x ≤1,-1<1-3xx≤2x≤23,<12∴0≤x<12.12.设函数y=f(x)=ax+1x+2在区间(-2,+∞)上单调递增,求a的取值范围.解:设任意的x1,x2∈(-2,+∞),且x1<x2,∵f(x1)-f(x2)=ax1+1x1+2-ax2+1x2+2=ax1+1x2+2-ax2+1x1+2x1+2x2+2=x1-x22a-1x1+2x2+2.∵f(x)在(-2,+∞)上单调递增,∴f(x1)-f(x2)<0.∴x1-x22a-1x1+2x2+2<0,∵x1-x2<0,x1+2>0,x2+2>0,∴2a-1>0,∴a>12.1.函数f(x)=9-ax2(a>0)在[0,3]上的最大值为()A.9B.9(1-a)C.9-a D.9-a2解析:选A.x∈[0,3]时f(x)为减函数,f(x)max=f(0)=9.2.函数y=x+1-x-1的值域为()A.(-∞,2]B.(0,2]C.[2,+∞)D.[0,+∞)解析:选B.y=x+1-x-1+1≥0-1≥0,∴x≥1.∵y=2x+1+x-1为[1,+∞)上的减函数,∴f(x)max=f(1)=2且y>0.3.函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为()A .0或1B .1C .2D .以上都不对解析:选B.因为函数f (x )=x 2-2ax +a +2=(x -a )2-a 2+a +2,对称轴为x =a ,开口方向向上,所以f (x )在[0,a ]上单调递减,其最大值、最小值分别在两个端点处取得,即f (x )max =f (0)=a +2=3,f (x )min =f (a )=-a 2+a +2=2.故a =1.4.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y4=1.则xy 的最大值为________.解析:y 4=1-x 3,∴0<1-x3<1,0<x <3.而xy =x ·4(1-x 3)=-43(x -32)2+3.当x =32,y =2时,xy 最大值为3.答案:31.函数f (x )=x 2在[0,1]上的最小值是()A .1B .0C.14D .不存在解析:选B.由函数f (x )=x 2在[0,1]上的图象(图略)知,f (x )=x 2在[0,1]上单调递增,故最小值为f (0)=0.2.函数f (x )x +6,x ∈[1,2]+7,x ∈[-1,1],则f (x )的最大值、最小值分别为()A .10,6B .10,8C .8,6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6.3.函数y =-x 2+2x 在[1,2]上的最大值为()A .1B .2C .-1D .不存在解析:选A.因为函数y =-x 2+2x =-(x -1)2+1.对称轴为x =1,开口向下,故在[1,2]上为单调递减函数,所以y max =-1+2=1.4.函数y =1x -1在[2,3]上的最小值为()A .2B.12C.1 3D.-12解析:选B.函数y=1x-1在[2,3]上为减函数,∴y min=13-1=12.5.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为() A.90万元B.60万元C.120万元D.120.25万元解析:选C.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润L=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,L最大为120万元,故选C.6.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为() A.-1B.0C.1D.2解析:选C.f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a.∴函数f(x)图象的对称轴为x=2,∴f(x)在[0,1]上单调递增.又∵f(x)min=-2,∴f(0)=-2,即a=-2.f(x)max=f(1)=-1+4-2=1.7.函数y=2x2+2,x∈N*的最小值是________.解析:∵x∈N*,∴x2≥1,∴y=2x2+2≥4,即y=2x2+2在x∈N*上的最小值为4,此时x=1.答案:48.已知函数f(x)=x2-6x+8,x∈[1,a],并且f(x)的最小值为f(a),则实数a的取值范围是________.解析:由题意知f(x)在[1,a]上是单调递减的,又∵f(x)的单调减区间为(-∞,3],∴1<a≤3.答案:(1,3]9.函数f(x)=xx+2在区间[2,4]上的最大值为________;最小值为________.。
高一必修1数学综合测试(周末作业)
顺德一中实验学校第十二周周末作业一、选择题1、设全集U =R ,A ={x |x >0},B ={x |x >1},则A ∩U B =( ).A .{x |0≤x <1}B .{x |0<x ≤1}C .{x |x <0}D .{x |x >1}2.下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ).A .a 2+a +2B .a 2+1C .a 2+2a +2D .a 2+2a +14.下列等式成立的是( ).A .log 2(8-4)=log 2 8-log 2 4B .4log 8log 22=48log 2 C .log 2 23=3log 2 2D .log 2(8+4)=log 2 8+log 2 45、方程2x =2-x 的根所在区间是( ).A .(-1,0)B .(2,3)C .(1,2)D .(0,1)6、国内快递重量在1 000克以内的包裹邮资标准如下表:如果某人从北京快递900克的包裹到距北京1 300 km 的某地,他应付的邮资是( ). A .5.00元B .6.00元C .7.00元D .8.00元7、若log 2 a <0,b⎪⎭⎫⎝⎛21>1,则( ).A .a >1,b >0B .a >1,b <0C .0<a <1,b >0D .0<a <1,b <08、已知x 0是函数f (x )=2x +x-11的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则有( ). A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0二、填空题9、若212a y a x-=⋅是幂函数,则该函数的值域是__________;10、若函数)(x f 的定义域是[)2,2-,则函数)1(+=x f y 的定义域是__________;11、函数8,0()(2)0x f x x x x x ⎧≥⎪=⎨⎪-<⎩, ,则)2(-f =_________,)]2([-f f =__ ______12、函数f(x)= a x+1-a 在区间[0,2]上的函数值恒大于0,则a 的取值范围是 .三、简答题13、(1)计算3log 15.222ln 01.0lg 25.6log ++++e ;(2)设,3log 2=x 求xx xx ----222233的值.。
高一数学必修1综合测试题(3)
高一数学必修1综合测试题(三)一、 选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.方程062=+-px x 的解集为M ,方程062=-+q x x 的解集为N ,且{},2=N M 那么=+q p ( )A .21B .8C .6D .72.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为( ).A .1B .2C .4D .53.、函数x x x f 3log 3)(+-= 的零点所在的区间是( ) A .(0,1) B .(1,3) C .(3,4) D .(4,+∞)4.设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射的是5.下列函数在其定义域内既是奇函数又是增函数的是( ) ∈(0,+∞)) B.y = 3x (x ∈R)∈R) D.y = lg|x| (x ≠0)6.函数12-=xy 的值域是( )A 、(),1-∞B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞7.已知二次函数),0()(2R x a c bx ax x f ∈≠++=的部分对应值如下表.则不等式0)(<x f 的解集为 ( ).A )0,(-∞ .B ),3()1,(+∞--∞ .C )1,(--∞ .D ),3(+∞8.若奇函数...()x f 在[]3,1上为增函数...,且有最小值7,则它在[]1,3--上( ) A.是减函数,有最小值-7 B.是增函数,有最小值-7 C.是减函数,有最大值-7 D.是增函数,有最大值-7二、填空题:本大题共6小题,每小题5分,共30分,9.已知幂函数αx x f =)(的图象经过点(9,3)10.设240.3log 3,log 4,0.3a b c -===, 则a ,b ,c 的大小关系是 (按从小到大的顺序).11.若函数2()2(1)2f x x a x =+-+在[4,)+∞上是增函数,则实数a 的取值范围是 . 12.已知定义在R 上的函数()y f x =是偶函数,且0x ≥时,()()2ln 22f x x x =-+,当0x <时,()f x 解析式是 .13.已知集合A ={x ∈R |ax 2-3x +2=0, a ∈R },若A 中元素至多有1个,则a 的取值范围是 .14.深圳市的一家报刊摊点,从报社买进《深圳特区报》的价格是每份0.60元,卖出的价格是每份1元,卖不掉的报纸可以以每份0.1元的价格退回报社。
高一数学必修1练习题
高一数学必修1练习题第一章:函数与导数1. 已知函数$y=2x^2+3x+1$,求以下各题:(1)当$x=2$时,求函数$y$的值。
(2)求函数$y$的导数,并求当$x=1$时的导数值。
(3)求函数$y$的图像的对称轴。
2. 设函数$y=3x^3+4x^2-2x+5$,求以下各题:(1)求函数$y$的极值点,并判断其为极大值点还是极小值点。
(2)求函数$y$的增减区间。
(3)求函数$y$的图像所在的象限。
第二章:三角函数与三角恒等变换1. 已知$\sin A=\frac{3}{5}$,求以下各题:(1)求$\cos A$和$\tan A$的值。
(2)求$\sin (A+30^\circ)$的值。
2. 若$\cos\theta=-\frac{1}{2}$,求以下各题:(1)求$\sin\theta$的值。
(2)求$\sin (2\theta)$的值。
第三章:平面向量1. 设$\vec{a}=\begin{pmatrix} 3\\ -2\\ 1\end{pmatrix}$,$\vec{b}=\begin{pmatrix} 1\\ 4\\ -2\end{pmatrix}$,求以下各题:(1)求$\vec{a}+\vec{b}$和$\vec{a}-\vec{b}$的值。
(2)求$\vec{a}\cdot\vec{b}$的值。
(3)求$\vec{a}$和$\vec{b}$的夹角。
2. 已知平面向量$\vec{m}=\begin{pmatrix} 1\\ -2\\ 3\end{pmatrix}$,$\vec{n}=\begin{pmatrix} 2\\ 1\\ -1\end{pmatrix}$,求以下各题:(1)求$\vec{m}\times\vec{n}$的值。
(2)判断$\vec{m}$和$\vec{n}$是否相互垂直。
第四章:不等式与绝对值1. 求不等式$2x+3>5$的解集。
2. 解方程$|x-2|=3$。
(高一)高一数学必修1习题及答案5篇
高一数学必修1习题及答案5篇进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习稳固集合内容,那么,高一数学必修1习题及答案怎么写以下是我精心收集整理的高一数学必修1习题及答案,下面我就和大家分享,来欣赏一下吧。
高一数学必修1习题及答案1一、选择题:(在每题给出的四个选项中,只有一项为哪一项符合题目要求的.)1.假设集合,那么m∩p= ( )a. b. c. d.2.以下函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在以下各图中,能表示从集合a 到集合b的映射的是( )4设,,,那么,,的大小关系为( ). . . . .5.定义为与中值的较小者,那么函数的值是( )6.假设,那么的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8假设那么的值为( )a.8b.c.2d.9假设函数在区间上的图象为连续不断的一条曲线,那么以下说法正确的选项是( )a.假设,不存在实数使得;b.假设,存在且只存在一个实数使得;c.假设,有可能存在实数使得;d.假设,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么以下式子一定成立的是( )a.f(-1)f(9)f(13) p=b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=d.f(13)f(-1)f(9)12.某学生离家去,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,假设以纵轴表示离家的距离,横轴表示离家后的时间,那么以下四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每题4分,共24分.把答案直接填在题中横线上.13、,那么的取值范围是14.实数满足等式,以下五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购置这种商品千克(不考虑运输费等其他费用).三、解答题:.解容许写出文字说明、证明过程或演算步骤.17.(本小题总分值12分)全集u=r,集合,,求,,。
高一数学必修一必修二综合测试卷(有答案)
高一数学试题四(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列说法正确的是( )A . 经过三点确定一个平面B . 经过一条直线和一个点确定一个平面C . 四边形确定一个平面D . 两两相交且不共点的三条直线确定一个平面2. 下列哪个函数的定义域与函数()15xf x ⎛⎫= ⎪⎝⎭的值域相同( )A . 2y x x =+B . ln 2y x x =-C . 1y x =D . 1y x x=+3. 已知集合12|log 1A x x ⎧⎫=>-⎨⎬⎩⎭,{}|22xB x =>,则A B =( )A . 1,22⎛⎫ ⎪⎝⎭B . 1,2⎛⎫+∞⎪⎝⎭C . ()0,+∞D . ()0,24. 已知圆锥的侧面展开图是一个半圆,则其母线与底面半径之比为( ) A . 1B .2C .3D . 25. 已知函数()2f x x x a =++在区间()0,1上有零点,则实数a 的取值范围是( ) A . 1,4⎛⎤-∞ ⎥⎝⎦B . 1,4⎛⎫-∞ ⎪⎝⎭C . ()2,0-D . []2,0-6. 函数()()10,1x f x a a a -=>≠的图象恒过点A ,则下列函数中图象不经过点A 的是( )A . 1y x =-B . 2y x =-C . 21xy =-D . ()2log 2y x =7. 正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与CD 所成的角为( ) A .6π B .4π C . 3π D . 2π8. 已知函数()212log 3y x ax a =-+在[)2,+∞上为减函数,则实数a 的取值范围是( )A . 4a ≤B . 4a ≥C . 4a <-或4a ≥D . 44a -<≤9. 某几何体的三视图如图所示,该几何体表面上的点P 与点Q 在正视图与侧视图上的对应点分别为A ,B ,则在该几何体表面上,从点P 到点Q 的路径中,最短路径的长度为( ) A .5B .6 C . 22D .1010. 已知函数()ln 1f x x =-,()223g x x x =-++,用{}min ,m n 表示m ,n 中最小值,设()()(){}min ,h x f x g x =,则函数()h x 的零点个数为( )A . 1B . 2C . 3D . 411. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2x g x h x -=.若存在[]1,1x ∈-,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为( )A .315-B . 35-C . 1D . -1 12. 无论x ,y ,z 同为三条不同的直线还是同为三个不同的平面,给出下列说法:①若//x y ,//x z ,则//y z ;②若x y ⊥,x z ⊥,则y z ⊥;③若x y ⊥,//y z ,则x z ⊥;④若x 与y 无公共点,y 与z 无公共点,则x 与z 无公共点; ⑤若x ,y ,z 两两相交,则交点可以有一个,三个或无数个.其中说法正确的序号为( ) A . ①③B . ①③⑤C . ①③④⑤D . ①④⑤二、填空题(本大题共4小题,每小题5分,共20分) 13. 设函数()()xxf x e aea R -=+∈,若()f x 为奇函数,则a =______.14. 一个正四棱锥的侧棱长与底面边长相等,体积为423,则它的侧面积为______. 15. 已知函数()f x 为定义在[]2,3a -上的偶函数,在[]0,3上单调递减,并且()22522a f m m f m ⎛⎫-- ⎪⎝⎭>-+-,则m 的取值范围是______.16. 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 如图所示,在正方体1111ABCD A B C D -中,E 、F 分别是AB 和1AA 的中点.求证:CE ,1D F ,DA 交于一点.18. 已知函数()21x ax b f x x +=++是定义域为R 的奇函数. (1)求实数a 和b 的值,判断并证明函数()f x 在()1,+∞上的单调性;(2)已知0k <,且不等式()()22310f t t f k -++-<对任意的t R ∈恒成立,求实数k 的取值范围.19. 食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足8042P a =+,11204Q a =+.设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为()f x (单位:万元). (1)求()50f 的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益()f x 最大?20. 已知幂函数()()3*p N x x f p -=∈的图象关于y 轴对称,且在()0,+∞上为增函数. (1)求不等式()()22132pp x x +<-的解集;(2)设()()()log 0,1a f x ax g x a a =->≠⎡⎤⎣⎦,是否存在实数a ,使()g x 在区间[]2,3上的最大值为2,若存在,求出a 的值,若不存在,请说明理由.21. 已知函数()11439x xm f x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.(1)当2m =-时,求函数()f x 在(),0-∞上的值域;(2)若对任意[)0,x ∈+∞,总有()6f x ≤成立,求实数m 的取值范围.22. 在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1-5:DBCDC6-10:ABDCC11-12:AB1.【解析】A 选项考查公理2,即三点必须不在同一条直线上,才能确定一个平面;B 选项如果点在直线上,则该直线和这个点不能确定一个平面;C 选项中的四边形有可能是空间四边形,故选D .2.【解析】函数()15xf x ⎛⎫= ⎪⎝⎭的值域为()0,+∞,函数2y x x =+的定义域为R ,函数ln 2y x x =-的定义域为()0,+∞;函数1y x x=+的定义域为()(),00,-∞+∞,函数1y x=的定义域为()(),00,-∞+∞,故选B .3.【解析】由{}12|log 1|02A x x x x ⎧⎫=>-=<<⎨⎬⎩⎭,{}1|22|2xx x x B =⎧⎫>=>⎨⎬⎩⎭,则()0,A B =+∞,故选C .4.【解析】由已知可得2r l ππ=,所以2l r =,故2lr=.故选D . 5.【解析】函数()2f x x x a =++的图象的对称轴为12x =-,故函数在区间()0,1上单调递增,再根据函数()f x 在()0,1上有零点,可得()()00120f a f a =<⎧⎪⎨=+>⎪⎩,解20a -<<,故选C .6.【解析】函数()()10,1x f y ax a a -=>≠=的图象恒过点A ,即10x -=,可得1x =,那么1y =.∴恒过点()1,1A .把1x =,1y =带入各选项,只有A 没有经过A 点.故选A . 7.【解析】略8.【解析】()23g x x ax a =-+,则()230x a a g x x =-+>在[)2,+∞恒成立,且()23g x x ax a =-+在[)2,+∞上为增函数,所以22a≤且()240g a =+>,所以44a -<≤.故选D .9.【解析】由题,几何体如图所示(1)前面和右面组成一面此时222222PQ =+=.(2)前面和上面在一个平面此时223110PQ =+=,2210<,故选C . 10.【解析】作出函数()f x 和()g x 的图象如图,两个图象的下面部分图象,由()2230g x x x =-++=,得1x =-,或3x =,由()ln 10f x x =-=,得x e =或1x e=,∵()0g e >,∴当0x >时,函数()h x 的零点个数为3个,故选C .11.【解析】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()222x xg x -+=,()222x x h x --=.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ----≤==-+++,∵2141x y =-+为增函数,∴max 231415x ⎛⎫+= ⎪+⎝⎭,故选A . 12.【解析】由平行于同一直线的两直线平行,平行于同一平面的两平面平行,可得①正确;由垂直于同一直线的两直线平行、相交或异面;垂直于同一平面的两平面相交或平行,可得②错误;由垂直于两平行直线中的一条,也垂直于另一条;垂直于两平行平面中的一个,也垂直于另一个,可得③正确;若一条直线与另两条直线无公共点,可得另两条直线可以相交;若一个平面与另两个平面无公共点,可得另两个平面无公共点;可得④错误.若三条直线两两相交,则交点可以有一个或三个,若三个平面两两相交,则交点有无数个.故选B . 二、填空题(本大题共4小题,每小题5分,共20分)13. -1 14. 43 15. 1122m -≤< 16. 4π13.【解析】若函数()x x f x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-. 14.【解析】设正四棱锥的侧棱长与底面边长相等为2a ,则24ABCD S a =,2222422h PB BO a a a =-=-=,则31442233V a =⨯=,则1a =,则 22142242BC PF a a a S ⎛⎫=⨯⨯⨯=⨯⨯- ⎪⎝⎭侧24343a ==.15.【解析】由题设可得230a -+=,即5a =,故()()22122f m f m m -->-+-可化()()22122f m f m m +>-+,又2113m ≤+≤,21223m m ≤-+≤,故2211222m m m m +<-+⇒<,且12m ≥-.故应填答案1122m -≤<.16.【解析】将四面体ABCD 放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD 的外接球,∵正四面体ABCD 的棱长为4,∴正方体的棱长为22, 可得外接球半径R 满足()22322R =⨯,解得6R =.E 为棱BC 的中点,过E 作其外接球的截面,当截面到球心O 的距离最大时,截面圆的面积达最小值,此时球心O 到截面的距离等于正方体棱长的一半,可得截面圆的半径为222r R =-=,得到截面圆的面积最小值为24S r ππ==.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【解析】证明:如图所示,连接1CD 、EF 、1A B ,因为E 、F 分别是AB 和1AA 的中点, 所以1//EF A B 且112EF A B =.即:1//EF CD ,且112EF CD =, 所以四边形1CD FE 是梯形,所以CE 与1D F 必相交,设交点为P ,则P CE ∈,且1P D F ∈,又CE ⊂平面ABCD , 且1D F ⊂平面11A ADD ,所以P ∈平面ABCD ,且P ∈平面11A ADD , 又平面ABCD平面11A ADD AD =,所以P AD ∈,所以CE 、1D F 、DA 三线交于一点.18.【解析】(1)因为()()f x f x -=-,所以2211x a x ax bx x bx -+--=-+++, ∴0a b ==,()21xf x x =+, 任取()12,1,x x ∈+∞,且12x x <,()()1212221211x xf x f x x x -=-++()()()()21122212111x x x x x x --=++, ∵210x x ->,1210x x ->,()()2212110x x ++>,∴()f x 在()1,+∞单调递减.(2)()()2231f t t f k -+<--,()()2231f t t f k -+<-, ∵2232t t -+≥,11k ->,∴2231t t k -+>-, 即()211k t >---, ∵t R ∈≤,∴()1,0k ∈-. 19.【解析】(1)由题可知:甲大棚投入50万元,则乙大棚投入150万元, 所以()1804250150120277.5450f =+⨯+⨯+=. (2)依题意得202018020020x x x ≥⎧⇒≤≤⎨-≥⎩.故()()142250201804x x f x x =-++≤≤. 令25,65t x ⎡⎤=∈⎣⎦,则()()2211422508228244f x t t t =-++=--+,当82t =,即128x =时,()max 282f x =,所以投入甲大棚128万元,乙大棚72万元时,总收益最大, 且最大收益为282万元. 20.【解析】(1)由已知得30p ->且*p N ∈,所以1p =或2p =, 当2p =时,()3p f x x -=为奇函数,不合题意, 当1p =时,()2f x x =.所以不等式()()22132pp x x +<-变为()()1122132x x +<-, 则0132x x ≤+<-,解得213x -≤<. 所以不等式()()22132p p x x +<-的解集为21,3⎡⎫-⎪⎢⎣⎭.(2)()()2log a a g x x x =-,令()2h x x ax =-,由()0h x >得()(),0,x a ∈-∞+∞,因为()g x 在[]2,3上有定义,所以02a <<且1a ≠, 所以()2h x x ax =-在[]2,3上为增函数,当12a <<时,()()()max 3log 932a g x g a ==-=, 即2390a a +-=,∴3352a -±=,又12a <<, ∴3352a -+=. 当01a <<时,()()()max 2log 422a g x g a ==-=,即2240a a +-=,∴15a =-±,此时解不成立.综上:3352a -+=. 21.【解析】(1)当2m =-时,设13xt ⎛⎫= ⎪⎝⎭,∵(),0x ∈-∞,∴()1,t ∈+∞,∴()()222413t t t y g t -+=-=+=,对称轴1t =,图像开口向上,∴()g t 在()1,t ∈+∞为增函数, ∴()3g t >,∴()f x 的值域为()3,+∞.(2)由题意知,()6f x ≤在[)0,+∞上恒成立,即11239xxm ⎛⎫⎛⎫⋅≤- ⎪ ⎪⎝⎭⎝⎭,∴1233xx m ≤⋅-在[)0,x ∈+∞恒成立,则只需当[)0,x ∈+∞时,min 1233x x m ⎛⎫≤⋅- ⎪⎝⎭,设3xt =,()12h t t t=-,由[)0,x ∈+∞得1t ≥,设121t t ≤<,则()()()()12121212210t t t t h t h t t t -+-=<,所以()h t 在[)1,+∞上递增,()h t 在[)1,+∞上的最小值为()11h =,所以实数m 的取值范围为(],1-∞. 22.【解析】(1)取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, ∴//PR EF ,//QR BD ,又∵//EF AC ,∴//PR 平面ABCD ,//QR 平面ABCD ,又∵PR QR R =,∴平面//PQR 平面ABCD ,又∵PQ ⊂平面PQR , ∴//PQ 平面ABCD .(2)连接AC ,设AC ,BD 交于点O , ∴BD AC ⊥,又∵平面AFEC ⊥平面ABCD , 平面AFEC平面ABCD AC =,∴BD ⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -, 菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,23BD =,12ACEF ==, 设梯形EFAC 的面积为()133244EFAC BD EF AC S =+⋅=, 1332ABCDFE EFAC V S BD =⋅⋅=.。
高一数学必修一必修二综合测试题(有答案)
高一数学《必修1》《必修2》综合测试题一、选择题(共12小题;每小题5分,共60分)1. 已知全集R U =,集合}32{≤≤-=x x A ,}41{>-<=x x x B 或,则()B C A U ⋃( )A.{}42≤≤-x xB.}43{≥≤x x x 或C.}12{-<≤-x xD.}31{≤≤-x x2. 过点(1,0)且与直线x -2y -2=0垂直的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .74. 已知圆C :x 2:y 2:4y :0,直线l 过点P (0,1),则 ( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D. 以上三个选项均有可能5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA.π2B.38πC.π3D. 310π6. 已知,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若直线2x y -=被圆22()4x a y -+=所截得的弦长为22,则实数a 的值为( ) A. 0或4 B. 1或3 C. 2-或6 D. 1-或3 8. 在三棱柱ABCA 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 9. 若幂函数)(x f y =是经过点)33,3(,则此函数在定义域上是 ( ) A .偶函数 B .奇函数 C .增函数 D .减函数 10. 一个多面体的三视图如图所示,则该多面体的表面积为 A.321+ B.318+ C.18 D.21 11.若定义在R 上的偶函数()x f 满足)()2(x f x f =+,且当[]1,0∈x 时,x x f y x x f 3log )(,)(-==则函数的零点个数是( ) A .6个 B .4个 C .3个 D .2个 12. 已知A(3,1),B(-1,2),若:ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( ) A .y =2x +4 B .y =12x -3 C .x -2y -1=0 D .3x +y +1=001,1a b <<<-x y a b =+二、填空题(共4小题,每小题5分,共20分)13. 若直线1x y +=与圆222(0)x y r r +=>相切,则实数r 的值等于________.14. 在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为________.15. 函数ax x y 22--=()10≤≤x 的最大值是2a ,则实数a 的取值范围是________ .16.若圆C :x 2+y 2−2ax +b =0上存在两个不同的点A ,B 关于直线x −3y −2=0对称,其中b ∈N ,则圆C 的面积最大时,b = .三、解答题(共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式.18. (12分)如图,在三棱锥P ABC 中,PC ⊥底面ABC ,AB ⊥BC ,D ,E 分别是AB ,PB 的中点.(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB .19.(12分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程. 20.(12分)已知圆22:2240C x y mx ny ++++=,直线:10l x my -+=相交于A :B 两点. :1)若交点为(1,2)A ,求m 及n 的值. :2)若直线l 过点(2,3):60ACB ∠=︒,求22m n +的值. 21.(12分)已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=. (1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程; (2)若坐标原点O 到直线m 的距离为5,判断m 与n 的位置关系. 22.(12分)(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程. (2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.高一数学答案一、选择题(共12小题;每小题5分,共60分). 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D A B A A C D A B C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.22 14.0 15.[-1,0] 16.0三、解答题(本大题共6小题,共70分)17.解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6. .................4分(2)设x <0,则-x >0,∴f (-x )=2-x -1,∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1,.................8分∴f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥0,-2-x +1,x <0. ........................10分18. 解 (1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥PA.又因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE ∥平面PAC. .................6分(2)证明:因为PC ⊥底面ABC ,AB ⊂底面ABC ,所以PC ⊥AB.又因为AB ⊥BC ,PC ∩BC =C ,所以AB ⊥平面PBC ,又因为PB ⊂平面PBC ,所以AB ⊥PB. .................6分19.解: 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l 1,l 2之间距离为5,符合题意;.................3分若l 1,l 2的斜率均存在,设直线的斜率为k ,由斜截式方程得直线l 1的方程为y =kx +1,即kx -y +1=0,.................6分由点斜式可得直线l 2的方程为y =k (x -5),即kx -y -5k =0,在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0. .................10分 综上知,满足条件的直线方程为l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0. .......12分20.【解析】试题分析:(1)将点()1,2A 代入直线和圆方程,可解得1m =,114n =-. (2)将点()2,3代入直线方程得1m =.又由已知可判断ACB V 是等边三角形.所以有圆心到直线10x y -+=的距离233322d r n ==-,代入解得29n =,从而2210m n +=. 试题解析::1)将点()1,2A 代入直线10x my -+=:∴1210m -+=,解出1m =:再将()1,2A 代入圆2221240x y x ny ++⨯++=: ∴22122440n ++++=,解得114n =-: ∴1m =:114n =-: :2)将点()2,3代入直线10x my -+=:∴2310m -+=,解出1m =:又∵在ACB V 中,CA CB =且60ACB ∠=︒:∴ACB V 是等边三角形.∵圆()()222221230x x y ny nn ++++++-=: 即()()22213x y n n +++=-:圆心()1,n --,半径23r n =-:其中圆心到直线10x y -+=的距离222113332211n d r n -++===-+: 代入解出29n =:∴2210m n +=:21.(12分)【详解】试题分析:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得m 与n 的交点为(-21,-9),当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-,解得所求直线方程(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-,分情况根据斜率关系判断两直线的位置关系;试题解析:解:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得21,9,x y =-⎧⎨=-⎩即m 与n 的交点为(-21,-9). 当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-, 所以直线l 的方程为120x y -+=,故满足条件的直线l 方程为370x y -=或120x y -+=.(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-, 当14a =-时,直线m 的方程为250x y --=,此时//m n ; 当73a =-时,直线m 的方程为250x y +-=,此时m n ⊥.22.解: (1)设圆C 的方程为(x -a )2+(y -b )2=r 2.∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25, ∴|2a +b +15|22+1=r =25,即|2a +b +15|=10①|2a +b -5|22+1=r =25,即|2a +b -5|=10② 又∵过圆心和切点的直线与过切点的切线垂直,∴b -1a -2=12③ 由①②③解得⎩⎨⎧ a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20.(2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。
高一数学必修一综合测试题(含标准答案)
高一数学必修一综合测试题(含标准答案) 高一数学期中考试试卷满分:120分考试时间:90分钟一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={x=2a,a∈M},则集合MN=()A、{ }B、{0,1}C、{1,2}D、{0,2}2、若f(lgx)=x,则f(3)=()A、lg3B、3C、D、3103、函数f(x)=(x-1)/(x-2)的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)4.设a=log3,b=1/2,c=2/3,则()A a<b<cB c<b<aC c<a<bD b<a<c5、若(1+x)/(1-x)=5,则x^2+1/x^2=()A、1B、5C、6D、256、已知函数f(x+1)=x^2-x+3,那么f(x-1)/f(x+5)的表达式是()A、(x-2)/(x+6)B、(x^2-x-3)/(x^2-11x+30)C、(x+6)/(x-2)D、x(x-2)/(x^2-5x+9)7、函数y=-|x-2|的图像为()见图片8、函数y=f(x)在R上为增函数,且f(2m)>f(-m+9),则实数m的取值范围是().A.(-∞,-3) B.(0,+∞) C.(3,+∞) D.(-∞,-3)∪(3,+∞)9、若loga(a+1)<loga(2a),则a的取值范围是()A、0110.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,0]时f(x)=2,则f(log28)等于()A.3 B.-2 C.2 D.8二、填空题(每题4分,共20分)11.当a>0且a≠1时,函数f(x)=a^x-2x-3必过定点(2,1/a)。
12.函数y=-|x-3|x的递减区间为(-∞,3)。
13、在f(x)=x+2(a-1)x+2在(-∞,4]上单调递减,则a的取值的集合为(0,2)。
新教材高一数学必修第一册第一二章综合卷(含答案)
高一数学第一次月考模拟试卷一、选择题(本大题共13 小题,每小题 4 分,共 52 分)1、已知集合M x x 2x 0 , N x x1,则M N ()A、 x x 1 B 、 x x 1 C 、 D 、 x x1或 x 0 2.下列元素与集合的关系表示正确的是( )①N*;②?Z;③∈Q;④π∈QA.①②B.②③C.①③D.③④3.命题“n N * , f (n) N *且f (n)n ”的否定形式是()A.n N * , f (n) N *且 f (n) n B.n N * , f (n) N *或 f (n)n C.n0N * , f ( n0 ) N *且 f (n0 ) n0 D n0N * , f ( n0 ) N *或 f (n0 )n04.若a, b为实数,则“0<ab<1m”是a<1或b>1的b aA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.若a,b, c R 且a b ,则下列不等式成立的是( ) A.a2b2B.11a bC.a c b c D.a b22c 1 c 16.已知实数0 a1,则()A.a21a a B.aC.1a a2a D.aa a21aa1a2a aa7.已知集合 A= { x| y,x∈ Z},则集合A的真子集个数为()A.32 B.4C.5D.318. 已知正数x, y满足x y 114的最小值为(),则x 1 yA.5B.14C.9D.2 32.已知命题11q :x R ,2,则p成立是q成立的p :,命题ax ax 109a4()A .充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件10.已知二次函数f x的二次项系数为 a ,且不等式f x 2 x 的解集为1,3,若方程 f x6a0 ,有两个相等的根,则实数a( )A.-1B.1C.1或-1D. 1或-1 55511.下列各式中,正确的选项是:A.;B;C;D;12.有下列命题,其中正确命题的是()A“若,则”;B“矩形的对角线相等”;C“若,则的解集是”;D“若是无理数,则是无理数”.13.若关于 x 的一元二次方程x 2 x 3 m 有实数根x1, x2,且x1x2,则下列结论中正确的是.当 m0 时, x12, x231B.mA4C.当m0 时, 2 x1x23D.二次函数 y x x1x x2m 的图象与x轴交点的坐标为( 2, 0)和( 3,0)二、填空题(总分16 分,每题 4 分 )14.已知集合,则 A 中元素的个数为_____. 15.已知实数 a 、b,满足0 a b 2 ,则ab的取值范围是 _____________. 16.不等式 ax 2ax 2 0 对一切实数x 都成立,则实数 a 的取值范围是_________.17.不等式ax25x c 0的解集为11{ x |x}32,则 a_______,c_______.三、解答题(总分82 分, 18 题 12 分,其余每题14 分.)18.已知集合,.(1)当时,求,;( 2)若,求实数 a 的取值范围.19.(12分)已知p:1x 1 2 ,q:x22x 1 m 20 m 0 ,若q3是 p 的必要不充分条件,求实数m的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修1综合练习
一、选择题
(1)若集合A={1,3,x},B={1,2
x },A ∪B={1,3,x},则满足条件的实数x 的个数有( )
(A ) 1个 (B ) 2个 (C )3个 (D ) 4个
(2)集合M={(x ,y )| x >0,y >0},N={(x ,y )| x+y >0,xy >0}则( )
(A )M=N (B )M N (C )M N (D )M ⋂N=∅ 表示函数的图象的是 ( )
(A )(4)若函数y=f (x )的定义域是[2,4],则y=f (12log x )的定义域是( )
(A ) [12,1] (B ) [4,16] (C )[116,14
] (D )[2,4 ] (5)函数201()()
2f x x =-的定义域为( ) (A )1(2,)2- (B )(-2,+∞) (C )11(2,)(,)22-⋃+∞ (D )1(,)2
+∞ (6)设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π--的大小关系是( )
(A )()f π>(3)f ->(2)f - (B )()f π>(2)f ->(3)f -
(C )()f π<(3)f -<(2)f - (D )()f π<(2)f -<(3)f -
(7)0.7log 0.8a =, 1.1log 0.9b =,0.91.1c =,那么( )
(A )a <b <c (B )a <c <b (C )b <a <c (D )c <a <b
(8)已知函数3(10)()[(5)](10)n n f n f f n n -≥⎧=⎨+<⎩
,其中n ∈N ,则f (8)=( ) (A )6 (B )7 (C ) 2 (D )4
(9)某工厂今年前五个月每月生产某种产品的数量C (件)关于时间t (月)的函数图象如图所示,则这个工厂对这种产品来说( )
(A
(B )一至三月每月生产数量逐月增加,四、五月每月生产数量与三月持平
(C )一至三月每月生产数量逐月增加,四、五两月均停止生产
(D )一至三月每月生产数量不变,四、五两月均停止生产
(10)若函数f (x )和g (x )都为奇函数,函数F (x )=af (x )+bg (x )+3在(0,+∞)上有最大值10,则F (x )在(-∞,0)上有( )
(11)若函数1()log (
)(011
a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) (A )12 (B
(C
(D )2 (12)如果二次函数f (x )=3x 2+bx+1在(-∞,]13-上是减函数,在[13-,+∞)上是增函数,则f (x )的最小值为( )
(A )1112
- (B )23- (C )1112 (D )23 二、填空题
(13)函数213
log log y x
=()的定义域为 . (14)若集合M={x| x 2
+x-6=0},N={x| kx+1=0},且N ⊆M ,则k 的可能值组成的集合为 . (15)设函数2211222x x f x x x x x +≤-⎧⎪=-⎨⎪≥⎩(
)(
)(〈〈)()
,若f (x )=3,则x= . (16)有以下4个命题:
①函数f (x )= a x (a >0且a ≠1)与函数g (x )=log a a x (a >0且a ≠1)的定义域相同;
②函数f (x )=x 3与函数g (x )=3 x 的值域相同;
③函数f (x )=(x-1)2与g (x )=2 x -1
在(0,+∞)上都是增函数;
④如果函数f (x )有反函数f -1(x ),则f (x+1)的反函数是f -1(x+1).
其中∙∙∙
不正确的题号为 .
三、解答题
(17)计算下列各式
(Ⅰ)2lg 2lg5lg 201+- ()
(Ⅱ)
41
60.2503
21648200549-+---()()
(18)定义在实数R 上的函数y= f (x )是偶函数,当x ≥0时,2
483f x x x =-+-().
(Ⅰ)求f (x )在R 上的表达式;
(Ⅱ)求y=f (x )的最大值,并写出f (x )在R 上的单调区间(不必证明).
(19)已知二次函数f (x )图象过点(0,3),它的图象的对称轴为x = 2,
且f (x )的两个零点的平方和为10,求f (x )的解析式.
(20) 已知函数21log 1x f x x
+=-() ,(x ∈(- 1,1). (Ⅰ)判断f (x )的奇偶性,并证明;
(Ⅱ)判断f (x )在(- 1,1)上的单调性,并证明.
(21) 商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少。
把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元。
现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问:
(Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元?
(Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?
一、选择题 CADCC ACBBC AD
二、填空题
(13) (0,1) (14){0,12-,1
3}
(15)(16) ②③④
三、解答题
(17)解:(Ⅰ)原式=lg 22+(1- lg2)(1+lg2)—1
=lg 22+1- lg 22- 1=0
(Ⅱ)原式=141111
3
63322444
7(23)(22)42214⨯+⨯-⨯-⨯-
=22×33+2 — 7— 2— 1 =100
(18)解:(Ⅰ)设x <0,则- x >0, 22()4()8()3483f x x x x x -=--+--=--- ∵
f (x )是偶函数,
∴f (-x )=f (x ) ∴x <0时, 2()483f x x x =---
所以22
224834(1)1(0)()4834(1)1(0)
x x x x f x x x x x ⎧⎧-+---+≥⎪⎪==⎨⎨----++<⎪⎪⎩⎩ (Ⅱ)y=f (x )开口向下,所以y=f (x )有最大值f (1)=f (-1)=1 函数y=f (x )的单调递增区间是(-∞,-1]和[0,1]
单调递减区间是 [-1,0]和[1,+∞)
(19)解:设f (x )= ax 2+bx+c (a ≠0)
因为f (x )图象过点(0,3),所以c =3
又f (x )对称轴为x=2, ∴ 2b
a -=2即b= - 4a
所以2()43(0)f x ax ax a =-+≠
设方程2430(0)ax ax a -+=≠的两个实根为 x 1,x 2, 则2
2
1212123
4,,10x x x x x x a +==+= ∴2221212126()216x x x x x x a +=+-=- ,所以6
1610a -=
得a=1,b= - 4 所以2()43f x x x =-+
(20)证明:(Ⅰ)
122221()1
11()log log log ()log ()1()111x x x
x
f x f x x x x x -+--++-====-=---+--
又x ∈(-1,1),所以函数f (x )是奇函数
(Ⅱ)设 -1<x <1,△x=x - x >0
211221222211211(1)(1)()()log log log 11(1)(1)
x x x x y f x f x x x x x ++-+=-=-=--+- 因为1- x 1>1- x 2>0;1+x 2>1+x 1>0 所以
1212(1)(1)1(1)(1)
x x x x -+>+- 所以12212(1)(1)log 0(1)(1)
x x y x x -+=>+- 所以函数21()log 1x f x x +=-在(- 1,1)上是增函数 (21)(Ⅰ)设购买人数为n 人,羊毛衫的标价为每件x 元,利润为y 元, 则(0),0300,300300n kx b k k b b k n k x =+<=+=-∴=- 即,()
210030020010000100300]y x k x k x k x =--=--∈()()(),(,
∵k <0,∴x=200时,y max = - 10000k ,
即商场要获取最大利润,羊毛衫的标价应定为每件200元. (Ⅱ)由题意得,k (x- 100)(x- 300)= - 10000k 〃75%
22400300007500400375000
x x x x ∴-+=-∴-+=12250)(150)0250,150x x x x ∴--=∴==(
所以,商场要获取最大利润的75%,每件标价为250元或150元.。