201x版八年级数学上册第三章位置与坐标3.3轴对称与坐标变化学案新版北师大版

合集下载

北师大版八年级上册数学 3.3 轴对称与坐标变化 优秀教案

北师大版八年级上册数学 3.3 轴对称与坐标变化 优秀教案

北师大版八年级上册数学 3.3 轴对称与坐标变化优秀教案北师大版八年级上册数学3.3轴对称与坐标变化优秀教案3.3轴对称性和坐标变化写出对称点的坐标.1.探索图形坐标变化的过程;(要点)2。

理解并掌握图形坐标变化与图形轴对称性之间的关系。

(难点)分别作点a,b,c关于x轴、y解析:轴的对称点就足够了解:如图所示.点A1(1,4)、B1(3,1)、A2(-1,-4)、B2(-3,-1)和C相对于x轴和y轴对称点的坐标保持不变方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即可作图.探索点3:探索平面直角坐标系中的规律如图,已知a1(1,0),a2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),。

,那么点a2022的坐标是___一、情境导入在我们的生活中,对称是一种非常普遍的现象。

将图中所示轴对称的黄鹤楼图形置于平面直角坐标系中,其对称轴为坐标轴。

那么,图形上的对称坐标之间的关系是什么?试试看二、合作探究探测点1:关于x轴和y轴对称的点的坐标点a(2a-3,b)与点a′(4,a+2)关于X轴对称,找到a,B解析:此题应根据关于x轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a-3与4相等,b与a+2互为相反数.解决方案:从点a(2a-3,b)和点a'(4,a+2)关于x轴的对称性,我们知道2a-3=4,a+2=-b.711所以a=,b=-.22方法概述:在平面直角坐标系中,关于坐标轴对称的点的坐标关系:若a(x,y)与b(m,n)关于x轴对称,则有x=m,y=-n;若a(x,y)与b(m,n)关于y轴对称,则有x=-m,y=n.探索点2:绘图-轴对称变换如下图所示,△abc三个顶点的坐标签分别是a(-1,4)、B(-3,1)和C(0,0)。

使…对称△ ABC关于x轴和y轴解析:从各点的位置可以发现a1(1,0),a2(1,1),a3(-1,1),a4(-1,-1),a5(2,-1),a6(2,2),a7(-2,2),a8(-2,-2),a9(3,-2),a10(3,3),a11(-3,3),a12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2021=503×4+3,所以点a2021在第二象限,纵坐标和横坐标互为相反数,所以a2021的坐标为(-504,504).故填(-504,504).方法小结:解决这类问题的常用方法是通过对几个特例的研究总结出一般规律,然后根据一般规律探索特例三、板书设计。

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3

北师大版数学八年级上册3《轴对称与坐标变化》教学设计3一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。

本节课主要介绍了轴对称的性质以及坐标变化中的平移和旋转。

教材通过丰富的实例和图片,引导学生探索轴对称的性质,让学生在实际操作中感受坐标变化带来的几何图形的变换。

教材内容紧密联系实际,有助于激发学生的学习兴趣,提高学生的动手操作能力。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对图形的变换有一定的了解。

但轴对称和坐标变化的知识较为抽象,学生需要通过实际操作和观察来进一步理解和掌握。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与,提高学生的动手操作和观察能力。

三. 教学目标1.理解轴对称的性质,能够判断一个图形是否为轴对称图形。

2.掌握坐标变化中的平移和旋转,能够运用坐标变化解决实际问题。

3.培养学生的观察能力、动手操作能力和解决问题的能力。

四. 教学重难点1.轴对称的性质及判断。

2.坐标变化中的平移和旋转的性质及运用。

五. 教学方法1.情境教学法:通过实际例子和图片,引发学生的兴趣,激发学生的学习欲望。

2.动手操作法:让学生亲自动手,进行实际的轴对称和坐标变换操作,提高学生的动手能力。

3.小组合作法:引导学生分组讨论和合作,培养学生的团队意识和沟通能力。

六. 教学准备1.准备相关的图片和实例,用于导入和讲解。

2.准备坐标纸和绘图工具,供学生动手操作。

3.准备练习题和拓展题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过展示一些实际例子和图片,如剪纸、建筑物的设计等,引导学生思考这些实例中的共同特点。

学生通过观察和思考,发现这些实例都具有轴对称的性质。

教师总结轴对称的定义,并提出本节课的学习目标。

2.呈现(15分钟)教师通过讲解和演示,介绍轴对称的性质,如对称轴的定义、对称点的坐标关系等。

同时,教师引导学生进行实际的坐标变换操作,如平移和旋转,让学生感受坐标变化带来的图形变换。

新北师大版八年级上第三章位置与坐标教案

新北师大版八年级上第三章位置与坐标教案

教学目标:1.能够理解和使用位置和坐标的基本概念。

2.能够在二维空间中确定点的位置和坐标。

3.能够通过坐标计算和描述物体之间的相对位置关系。

教学重点:1.位置和坐标的概念。

2.在二维空间中确定点的位置和坐标。

3.通过坐标计算和描述物体之间的相对位置关系。

教学难点:通过坐标计算和描述物体之间的相对位置关系。

教学准备:教材、黑板、粉笔、尺子、直角、透明坐标纸、印有图形的卡片教学过程:一、导入(10分钟)1.师生问好,营造良好的学习氛围。

2.通过实际生活中常用的参照物来引出位置和坐标的概念。

3.通过提问和学生回答的方式,让学生了解和理解位置和坐标的意义。

二、概念解释与归纳(10分钟)1.教师在黑板上写出“位置”和“坐标”两个词,让学生分组讨论其含义。

2.学生上台依次解释位置和坐标,教师逐渐整理出位置和坐标的定义。

3.通过问答的方式,让学生归纳出位置和坐标的特点和关系,并记录在黑板上。

三、探究位置与坐标(20分钟)1.教师发放透明坐标纸和印有图形的卡片,要求学生按照卡片上图形的位置在坐标纸上标出相应的位置和坐标。

2.学生完成后,教师指导学生一起检查和讨论对错,纠正学生的错误。

3.教师针对学生常犯的错误情况,进行解释和讲解,澄清学生对位置和坐标的理解。

4.教师提出问题引导学生思考:通过坐标计算和描述物体之间的相对位置关系。

四、通过例题巩固知识(20分钟)1.教师出示一张地图,上面标有不同地点的坐标,让学生根据坐标确定地点,并描述其位置关系。

2.学生个别或小组完成练习后,教师随机组织学生上台解答,鼓励学生口头描述和简单计算。

五、拓展练习(15分钟)1.教师给学生出示一道应用题“小明现在在平面直角坐标系的原点(0,0)处,他向东走3个单位,再向北走4个单位,最后向西走2个单位。

请问,小明现在的位置是?”2.鼓励学生自己思考,利用所学知识解题,然后学生互相交流答案和解题方法。

六、巩固与总结(5分钟)1.教师对本节课的重点内容进行梳理和总结,引导学生进行回顾和思考。

八年级数学上册3.3轴对称与坐标变化教学设计 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化教学设计 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册3.3轴对称与坐标变化。

这部分内容是学生学习了平面直角坐标系、图形的轴对称变换等知识后进行的,是学生进一步学习函数、几何等知识的基础。

本节课主要让学生了解坐标与图形的轴对称变换之间的关系,学会如何运用坐标来表示图形的轴对称变换。

二. 学情分析学生在学习本节课之前,已经掌握了平面直角坐标系的知识,对图形的轴对称变换也有了一定的了解。

但是,学生可能对坐标与轴对称变换之间的关系理解不够深入,需要通过本节课的学习来进一步掌握。

三. 教学目标1.知识与技能:让学生掌握坐标与图形的轴对称变换之间的关系,能运用坐标来表示图形的轴对称变换。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生探索数学问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作交流的学习习惯。

四. 教学重难点1.重点:坐标与图形的轴对称变换之间的关系。

2.难点:如何运用坐标来表示图形的轴对称变换。

五. 教学方法采用问题驱动法、案例分析法、合作交流法等教学方法,引导学生通过自主学习、探究学习、合作学习,掌握坐标与图形的轴对称变换之间的关系。

六. 教学准备1.教师准备:教材、课件、教学素材等。

2.学生准备:课本、练习本、文具等。

七. 教学过程1.导入(5分钟)教师通过一个简单的轴对称变换案例,引导学生回顾轴对称变换的定义,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示坐标与轴对称变换之间的关系,让学生观察、思考,引导学生发现坐标与轴对称变换之间的规律。

3.操练(10分钟)教师给出一些具体的轴对称变换问题,让学生独立解决,进一步巩固坐标与轴对称变换之间的关系。

4.巩固(10分钟)教师学生进行小组讨论,分享各自解决问题的方法,互相学习,共同提高。

5.拓展(10分钟)教师引导学生运用所学知识解决一些实际问题,让学生感受数学与生活的紧密联系。

八年级数学北师大版上册 第3章《3.3 轴对称与坐标变化》教学设计 教案

八年级数学北师大版上册 第3章《3.3  轴对称与坐标变化》教学设计 教案

课题轴对称与坐标变化课型新课课时数 1 主备教师执教教师教学目标1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

教学重点难点教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

教学准备三角板、课件教学过程个性化修改一、引入新课1.什么叫轴对称图形?沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴2.如何在平面直角坐标系中确定点P的位置?二、自学导航8分钟,完成教材68----69页的内容,并回答以下问题。

1、认真阅读例题,你可以做出怎样的总结?2、关于坐标轴对称的点的坐标有什么特点?3、完成课本P69页第2题。

三、精讲1、△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:①△ABC与△A1B1C1有怎样的位置关系?△ABC 与△A 1B 1C 1关于x 轴对称②关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;2.如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.① 两面小旗之间有怎样的位置关系?关于y 轴成轴对称。

② 关于y 轴对称的两点,它们的横坐标 ,纵坐标 。

反过来,坐标具有这种关系的点有怎样的位置关系?四、课堂检测1.平面直角坐标系中,点P (2,3)关于x 轴对称的点的坐标为( ).2. 已知点A (a ,1)与点A 1(5,b )关于y 轴对称,则a= ,b= . 讨论:点P (2,-3)到x 轴、y 轴和坐标原点的距离分别多少? 点M (-3,4)到x 轴、y 轴和坐标原点的距离分别多少? 点P(a,b)与坐标原点的距离22b a3. 已知点M (m ,-5). ①点M 到x 轴的距离是____;②若点M 到y 轴的距离是4;那么 m 为____.4. 点P 到x 轴的距离是2.5;到y 轴的距离是4.5. 求点P 的坐标.五、拓展提升在x 轴上有一条河,现准备在河流边上建一个抽水站P ,使得抽。

北师大版-数学-八年级上册-3.3 轴对称与坐标变化 教学设计

北师大版-数学-八年级上册-3.3 轴对称与坐标变化 教学设计

轴对称与坐标变化教学目标:1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

3.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

教学难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

教学方法:引导发现法教学过程设计引入新课我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点。

如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题。

1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。

两面小旗之间有怎样的位置关系?对应点A与A 1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。

3.如果关于x轴对称呢?在这个坐标系里作出小旗ABCD关于x轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系?4.关于x轴对称的两点,它们的横坐标,纵坐标;关于y轴对称的两点,它们的横坐标,纵坐标。

5.已知点P(2a-3,3),点A(-1,3b+2),(1)如果点P与点A关于x轴对称,那么a+b=;(2)如果点P与点A关于y轴对称,那么a+b=。

探究新知例1 在坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解:先根据题意把变化前后的坐标作一对比。

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计

北师大版八年级数学上册:3.3《轴对称与坐标变化》教学设计一. 教材分析北师大版八年级数学上册3.3《轴对称与坐标变化》是学生在学习了平面直角坐标系、坐标与图形的性质等知识的基础上,进一步研究图形的轴对称性质以及坐标变化规律。

本节内容通过具体实例让学生体会坐标变化与图形轴对称之间的关系,提高学生的空间想象能力和抽象思维能力。

二. 学情分析学生在七年级已经学习了平面直角坐标系的相关知识,对坐标与图形的性质有了初步了解。

但轴对称与坐标变化的知识较为抽象,需要通过具体实例和操作活动,让学生逐步理解和掌握。

三. 教学目标1.理解轴对称的定义,掌握坐标变化与轴对称之间的关系。

2.能够运用坐标变化规律,解决实际问题。

3.培养学生的空间想象能力和抽象思维能力。

四. 教学重难点1.教学重点:坐标变化与轴对称之间的关系。

2.教学难点:如何运用坐标变化规律解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生通过观察、思考、操作、交流等活动,理解坐标变化与轴对称的内在联系。

六. 教学准备1.准备相关的多媒体教学课件和教学素材。

2.准备坐标纸、剪刀、胶水等实验材料。

3.设计好课堂练习题和课后作业。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如翻转一张纸片,让学生观察和描述其轴对称性质。

引导学生思考:如何用坐标来表示轴对称变换?2.呈现(10分钟)利用多媒体课件,展示一系列轴对称变换的图形,让学生观察和分析坐标变化规律。

引导学生发现:轴对称变换不改变图形的大小和形状,只改变图形的位置。

3.操练(10分钟)让学生分组进行实验,使用坐标纸、剪刀、胶水等材料,制作并观察轴对称变换的图形。

要求学生用自己的语言描述坐标变化规律。

4.巩固(10分钟)课堂练习:让学生独立完成教材中的相关练习题,巩固轴对称与坐标变化的知识。

教师巡回指导,解答学生的疑问。

5.拓展(10分钟)让学生思考:轴对称变换在实际生活中有哪些应用?引导学生举例说明,如建筑设计、艺术创作等。

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案

北师大版八年级数学上册:3.3《轴对称与坐标变化》教案一. 教材分析《轴对称与坐标变化》这一节的内容,主要让学生了解轴对称的概念,以及如何利用坐标来表示轴对称图形。

通过学习,学生能理解轴对称图形的性质,并能够运用坐标变化来解决一些实际问题。

二. 学情分析八年级的学生已经学习了平面几何的基础知识,对图形的性质和坐标系有一定的了解。

但是,对于轴对称的概念和坐标变化的应用,可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。

三. 教学目标1.了解轴对称的概念,理解轴对称图形的性质。

2.学会利用坐标来表示轴对称图形,并能够运用坐标变化解决实际问题。

3.培养学生的观察能力、操作能力和思维能力。

四. 教学重难点1.轴对称的概念和性质。

2.坐标变化的应用。

五. 教学方法采用问题驱动的教学方法,引导学生通过观察、操作、思考,自主探索轴对称的性质和坐标变化的应用。

同时,运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备一些轴对称的图形,如正方形、矩形、三角形等。

2.准备坐标纸,以便学生进行坐标操作。

3.准备一些实际问题,如寻找平面直角坐标系中的对称点等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些轴对称的图形,如剪刀、飞机等,引导学生观察这些图形的特点,引出轴对称的概念。

2.呈现(10分钟)让学生拿出准备好的轴对称图形,观察并描述它们的特点。

引导学生发现轴对称图形的性质,如对称轴两侧的图形完全相同,对称轴是图形的中心线等。

3.操练(10分钟)让学生在坐标纸上画出一些轴对称图形,并标出对称轴。

然后,让学生将对称轴沿坐标轴移动,观察图形的变化。

通过操作,让学生理解坐标变化对轴对称图形的影响。

4.巩固(10分钟)让学生解决一些实际问题,如寻找平面直角坐标系中的对称点等。

通过解决问题,巩固学生对轴对称和坐标变化的理解。

5.拓展(10分钟)让学生思考:轴对称图形在现实生活中的应用。

北师大版八年级数学上册第三章位置与坐标单元优秀教学案例

北师大版八年级数学上册第三章位置与坐标单元优秀教学案例
2.设计具有针对性的练习题,让学生在练习过程中,巩固所学知识,提高运用坐标知识解决问题的能力。
3.教师对学生的学习成果进行评价,关注学生的进步,及时给予鼓励,增强学生的自信心。
4.利用学生的反馈信息,调整教学策略,使之更符合学生的实际需求,提高教学效果。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一张我国地图,引导学生观察地图上各个城市的分布情况。
2.提出问题:“如何用数学语言描述地图上各个城市的位置?”从而引出坐标系的概念。
3.教师简要介绍坐标系的起源和发展,激发学生对坐标系的兴趣。
4.提问:“坐标系在现实生活中有哪些应用?”引导学生思考坐标系在实际生活中的重要性。
(二)讲授新知
1.教师讲解坐标系的定义、分类和特点,让学生了解坐标系的基本知识。
b.一名学生在教室里的座位
c.一架飞机在空中的飞行轨迹
2.学生分组讨论,每组选择一个题目进行探究,运用所学知识解决问题。
3.各组汇报讨论成果,教师给予点评和指导,引导学生深入理解坐标知识。
(四)总结归纳
1.教师引导学生总结本节课所学内容,如坐标系的建立、点的坐标确定等。
2.学生分享自己在讨论过程中的收获,总结坐标知识在实际生活中的应用。
北师大版八年级数学上册第三章位置与坐标单元优秀教学案例
一、案例背景
本案例以北师大版八年级数学上册第三章“位置与坐标”单元为教学内容,旨在通过有效的教学策略,帮助学生掌握坐标系的建立、点的坐标确定以及坐标规律等知识。此章节是学生进一步学习函数、几何等数学知识的基础,对于培养学生的空间想象力、逻辑思维能力具有重要意义。
2.引导学生学习坐标系的建立方法,如直角坐标系、极坐标系等。
3.讲解点的坐标确定过具体例子,让学生掌握坐标系的转换方法,如直角坐标系与极坐标系的转换。

八年级数学上册第三章位置与坐标3.3轴对称与坐标变化说课稿北师大版

八年级数学上册第三章位置与坐标3.3轴对称与坐标变化说课稿北师大版

《轴对称与坐标变化》说课稿我说课的内容是北师大版八年级上册第三章第三节《轴对称与坐标变化》。

教材分析:教材的地位与作用:这节课的内容体现了轴对称在平面直角坐标系中的应用,从数量关系的角度刻画轴对称的内容。

教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。

二、学法指导1、教学方法:根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,这节课我主要采用了自主探究,发现式教学方法,体现教学方法的科学性和时效性.2、学法:根据学法指导自主性和差异性原则,让学生在“观察-—操作——概括——检验—-应用”的学习过程中,使学生掌握知识。

在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生的合作交流意识。

(2)注重学生动手能力的培养,在动手的过程中体会轴对称变换,并且对上一节课的知识作进一步理解.结合教材及学生的情况,我制订了如下的教学目标:【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称",让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

根据对教材内容的分析,根据八年级学生的认知规律和心理特点,我设计如下的教学过程。

1。

3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案

3.3《轴对称与坐标变化》北师大版八年级数学上册精品教案

第三章位置与坐标3 轴对称与坐标变化一、教学目标1.在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2.经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.3.通过“坐标与轴对称”,让学生体验数学活动充满着探索与创造.4.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动.二、教学重难点重点:在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.难点:经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合思想.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【复习回顾】问题1:什么叫轴对称?教师活动:教师演示对应的课件,学生观看思考后回答.预设:如果两个平面图形沿一直线折叠后能够完全重合,那么称这两个图形成轴对称,这条直线叫做这两个图形的对称轴.问题2:如何在平面直角坐标系中确定点P的位置?预设:a称为点P的横坐标,b称为点P的纵学生回忆并积极回答.通过回忆已学知识,一方面加深记忆,另一方面为后面学习新知识坐标.做铺垫.环节二探究新知【探究】教师活动:通过问题1、2,引导学生探究两个点关于x、y轴对称的规律.探究过程由浅到深,循序渐进,符合学生的认知过程.情境1:问题1 如右图所示的平面直角坐标系中,第一、二象限内各有一面小旗.(1)两面小旗之间有怎样的位置关系?预设:关于y轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表、画图:对应点的横坐标互为相反数,对应点的纵观察两面小旗,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两面关于y轴对称的小旗,问题1引领学生思考关于y轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).情境2:△ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:(1)△ABC与△A1B1C1有怎样的位置关系?预设:关于x轴成轴对称(2)请在下表中填入点A与A1、点B与B1、点C与C1的坐标,并思考:这些对应点的坐标之间有什么关系?预设:找到对应点,列表:对应点的横坐标相同,对应点的纵坐标互观察两个图形,尝试找到对应点的坐标,并交流、讨论对应坐标之间的特征.通过呈现两个关于x轴对称的三角形问题2,进一步研究关于x轴对称的点的坐标的特征.(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是_______ .预设:P与P1横坐标互为相反数,纵坐标相同,则P1(-m,n).【议一议】通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?关于y轴对称的两个点的坐标之间的关系呢?预设:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.友情提醒:关于横轴对称的点,横坐标相同;关于纵轴对称的点,纵坐标相同.交流讨论,与教师一起归纳目的是引导学生讨论关于坐标轴对称的点的坐标之间的关系,也可以更全面地认识轴对称与坐标变化之间的关系.环节三应用新知【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0) ,(4,-2),(0,0),你得到了一个怎样的图案?(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘-1,依次连接这些点,那么图形会怎么变化?分析:(1)坐标轴上依次描出各点,顺次连接即可;(2)找出变化后的对应顶点的坐标,再顺次连接所的图形与原图形进行对比.解:(1)它像一条鱼.(2)顶点坐标的变化两个图案关于y轴对称.教师动画演示两个图案关于y轴对称,达到强化巩固的目的.【做一做】明确例题的做法,尝试独立解答,并交流讨论通过解决例题与做一做,明确图形的变化实际上是图形上点的坐标变化.(1)在平面直角坐标系中依次连接下列各点:(5,2),(4,4),(6,3),(7,6),(8,3),(10,2),(7,1) ,(5,2),你又能得到了一个怎样的图案?(2)将所得图案的各个顶点的横坐标保持不变,纵坐标分别乘-1,依次连接这些点,那么图形会怎么变化?解:(1)它像一片树叶.(2)顶点坐标的变化两个图案关于x轴对称.教师动画演示两个图案关于x轴对称,达到强化巩固的目的.【归纳】仿照例题的做法,尝试独立解答,并交流讨论(1)关于y轴对称的两个图形上点的坐标特征:横坐标互为相反数,纵坐标相同;(2)关于x轴对称的两个图形上点的坐标特征:横坐标相同,纵坐标互为相反数.与教师一起归纳总结总结归纳两个图形上点的坐标特征.环节四巩固新知教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.平面直角坐标系中,点P(4,5)关于x轴对称的点的坐标为__________.2. 已知点A(a,2)与点A1(3,b)关于y轴对称,则a=__________,b=__________.3.如图,利用关于坐标轴对称的点的坐标的特点,请你试着分别作出△ABC关于x轴和y轴对称的图形.答案:1. (4,-5)2.-3,23.如下图:自主完成练习,然后进行集体交流、评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养独立完成练习的习惯.红色图形是关于x轴对称的,绿色图形是关于y轴对称的.环节五课堂小结思维导图的形式呈现本节课的主要内容:学生尝试回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第70页习题3.5 第1、3题.学生课后自主完成.通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。

北师大版数学八年级上册3.3轴对称与坐标变化优秀教学案例

北师大版数学八年级上册3.3轴对称与坐标变化优秀教学案例
在教学过程中,教师将结合教材内容,以生活实例引出轴对称的概念,引导学生通过观察、分析、归纳,发现轴对称图形在坐标平面内的变化规律。本案例注重培养学生的动手操作能力和合作交流意识,鼓励他们在探索中提出问题、解决问题,从而更好地理解数学知识在实际生活中的应用。
二、教学目标
(一)知识与技能
1.理解轴对称的概念,掌握轴对称图形的基本性质,如对称轴、对称点等。
(二)问题导向
在教学过程中,教师将采用问题导向法,引导学生提出问题、分析问题、解决问题。例如,在学习轴对称图形的坐标变化规律时,教师可以提出以下问题:“轴对称图形的坐标是如何变化的?”“你能找出轴对称变换中坐标的规律吗?”通过这些问题,激发学生的思考,促使他们在探究中掌握知识。
(三)小组合作
小组合作是本章节教学的重要环节。教师将根据学生的实际情况,合理分组,确保每个学生都能在小组中发挥自己的优势。在合作学习过程中,教师引导学生相互讨论、交流,共同完成学习任务。例如,在学习轴对称图形的坐标变化规律时,小组成员可以共同分析、总结规律,然后向全班同学分享他们的发现。
2.学生分小组讨论,共同探讨解决问题的方法。
3.各小组分享讨论成果,教师进行点评和指导。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结轴对称与坐标变化的知识点。
2.学生用自己的话复述轴对称图形的坐标变化规律,加深对知识的理解。
3.教师强调本节课的重点和难点,提醒学生注意在实际应用中灵活运用。
三、教学策略
(一)情景创设
为了让学生更好地理解轴对称与坐标变化的概念,教师将从生活实际出发,创设丰富多样的教学情景。例如,引入一些具有轴对称特点的建筑物、图案等,让学生在观察中感知轴对称的美。同时,通过多媒体展示一些动态的轴对称变换过程,激发学生的学习兴趣。此外,还可以设计一些实际操作活动,如让学生制作轴对称的剪纸作品,使他们在动手操作中加深对轴对称的理解。

八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化说课稿 (新版北师大版)

八年级数学上册3.3轴对称与坐标变化说课稿(新版北师大版)一. 教材分析《八年级数学上册3.3轴对称与坐标变化》这一节的内容,主要介绍了轴对称的概念,以及如何利用坐标来表示轴对称的变换。

这部分内容是学生在学习了平面几何和坐标系的基础上,进一步深化对几何变换的理解,为后续学习函数、解析几何等内容打下基础。

教材通过具体的实例,引导学生认识轴对称,并学会用坐标来表示对称变换。

同时,通过练习题的设置,让学生在实际操作中掌握坐标变换的规律,提高解决问题的能力。

二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,对平面几何的概念和性质有所了解。

同时,学生也学习了坐标系,能够熟练地用坐标表示点的位置。

但是,学生对于轴对称的概念可能还比较陌生,对于如何利用坐标来表示轴对称的变换,可能还存在一定的困难。

三. 说教学目标1.知识与技能目标:学生能够理解轴对称的概念,掌握坐标变换的规律,能够用坐标来表示轴对称的变换。

2.过程与方法目标:通过实例的讲解和练习,培养学生解决问题的能力,提高学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:轴对称的概念,坐标变换的规律。

2.教学难点:如何用坐标来表示轴对称的变换。

五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法等教学方法,引导学生通过观察、思考、操作等活动,掌握轴对称的概念和坐标变换的规律。

2.教学手段:利用多媒体课件,直观地展示轴对称的变换过程,帮助学生理解和掌握。

六. 说教学过程1.导入:通过一个具体的实例,引导学生认识轴对称,激发学生的兴趣。

2.新课讲解:讲解轴对称的概念,引导学生通过观察、思考,发现坐标变换的规律。

3.练习:让学生通过实际操作,运用坐标变换的规律解决问题。

4.总结:对本节课的内容进行总结,强调轴对称的概念和坐标变换的规律。

5.作业布置:布置一些有关轴对称和坐标变换的练习题,巩固所学内容。

3.3《轴对称与坐标变化》北师大版八年级数学上册教案

3.3《轴对称与坐标变化》北师大版八年级数学上册教案

第三章位置与坐标3.3轴对称与坐标变化一、教学目标1.经历轴对称变化与点的坐标的变化之间关系的探索过程,发展数形结合意识,初步建立几何直观.2.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系.二、教学重点及难点重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系.难点:由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识.三、教学用具多媒体课件,直尺,三角板.四、相关资《复习平面直角坐标系》动画五、教学过程【复习导入】在前几节课中我们学习了平面直角坐标系的有关知识,会画平面直角坐标系;能在方格纸上建立适当的直角坐标系,描述物体的位置;在给定的直角坐标系下,会根据坐标描出点的位置,由点的位置写出它的坐标.我们知道点的位置不同写出的坐标就不同,反过来,不同的坐标确定不同的点.如果坐标中的横(纵)坐标不变,纵(横)坐标按一定的规律变化,或者横纵坐标都按一定的规律变化,那么图形是否会变化,变化的规律是怎样的,这将是本节课中我们要研究的问题.【探究新知】探索两个关于坐标轴对称的图形的坐标关系1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗.两面小旗之间有怎样的位置关系?对应点A与A1的坐标又有什么特点?其它对应的点也有这个特点吗?2.在右边的坐标系内,任取一点,做出这个点关于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理.答:(1)关于y轴对称.对应点A与A1的横坐标互为相反数,纵坐标相同,其它对应的点也有这个特点.(2)做出的两个点的横坐标互为相反数,纵坐标相同.【典例精讲】例1 在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)你得到了一个怎样的图案?做以下变化:(1)纵坐标保持不变,横坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?(2)横坐标保持不变,纵坐标分别乘以-1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解析:先根据题意写出变化后的坐标,然后根据变化后的坐标,把变化后的图形在自己准备的方格纸上画出来.你们画出的图形与下面的图形相同吗?这个图形与原来的图形相比有什么变化呢?(1)所得的图案与原图案关于纵轴成轴对称.(2)所得的图案与原图案关于横轴成轴对称.议一议关于x轴对称的两个点的坐标之间有什么关系?关于y轴呢?学生思考,讨论,归纳得出结论:关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数.关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数.【课堂练习】1.将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.无法确定2.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A’,则点A与点A’的关系是( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得A3.点(4,3)与点(4,-3)的关系是().A.关于原点对称B.关于x轴对称C.关于y轴对称D.不能构成对称关系4.在平面直角坐标系中,点A(2,3)与点B关于x轴对称,则点B的坐标为()A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3)5.点M(1,2)关于y轴对称的点坐标为( )A.(-1,2) B.(1,-2) C.(2,-1) D.(-1,-2).6.点(m,-1)和点(2,n)关于x轴对称,则mn等于( )A.-2 B.2 C.1 D.-17.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④A、B之间的距离为4,其中正确的有( )A.1个B.2个C.3个D.4个8.若P(a,3-b),Q(5,2)关于x轴对称,则a= ,b= .9.点A(2,-3)关于x轴对称的点的坐标是.10.点B(-2,1)关于y轴对称的点的坐标是.答案:1.A;2.B;3.B;4.D;5.A;6.B;7.B;8.5,5;9.(2,3);10.(2,1).六、课堂小结对称:1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称;2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称;七、板书设计3.3轴对称与坐标变化1.纵坐标不变,横坐标分别乘-1,所得图形与原图形关于y轴对称2.横坐标不变,纵坐标分别乘-1,所得图形与原图形关于x轴对称。

北师大版数学八年级上册3《轴对称与坐标变化》教案1

北师大版数学八年级上册3《轴对称与坐标变化》教案1

北师大版数学八年级上册3《轴对称与坐标变化》教案1一. 教材分析《轴对称与坐标变化》是北师大版数学八年级上册第三章的内容。

本节课主要介绍轴对称的概念,以及如何在坐标系中进行对称变换。

教材通过丰富的实例,让学生体会轴对称的性质,培养学生的空间想象能力。

同时,本节课还引导学生利用坐标系解决实际问题,提高学生的数学应用能力。

二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的性质有一定的了解。

但是,对于轴对称的概念,以及如何在坐标系中进行对称变换,可能还比较陌生。

因此,在教学过程中,需要注重引导学生理解轴对称的性质,以及如何利用坐标系进行对称变换。

三. 教学目标1.理解轴对称的概念,掌握轴对称的性质。

2.学会在坐标系中进行对称变换,解决实际问题。

3.培养学生的空间想象能力,提高数学应用能力。

四. 教学重难点1.轴对称的概念及其性质。

2.在坐标系中进行对称变换的方法。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究轴对称的性质。

2.利用直观教具,如图形、模型等,帮助学生理解轴对称的概念。

3.通过实例分析,让学生掌握在坐标系中进行对称变换的方法。

4.注重启发式教学,引导学生运用坐标系解决实际问题。

六. 教学准备1.准备相关的图形、模型等直观教具。

2.准备一些实际问题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、建筑等,引导学生关注轴对称的概念。

提问:什么是轴对称?学生在思考和讨论中初步理解轴对称的概念。

2.呈现(10分钟)教师展示一些轴对称的图形,如正方形、矩形等,引导学生观察和分析这些图形的性质。

提问:轴对称图形的性质有哪些?学生在思考和回答中进一步理解轴对称的性质。

3.操练(10分钟)教师引导学生利用坐标系进行对称变换。

示例:已知点A(2,3),求点A关于x 轴的对称点B的坐标。

学生独立完成,教师点评和讲解。

4.巩固(10分钟)教师给出一些实际问题,让学生运用坐标系进行解决。

北师大版八年级上册第三章第三节平面直角坐标系轴对称与坐标变化教案

北师大版八年级上册第三章第三节平面直角坐标系轴对称与坐标变化教案

第三章第三节平面直角坐标系轴对称与坐标变化教案一、教学目标1. 理解轴对称及其相关概念,掌握轴对称图形的性质和判定方法。

2. 理解坐标系的基本概念和运用,能够描述和操作平面直角坐标系中的对称。

3. 能够理解和应用坐标变换的概念和方法,掌握坐标变换的规律。

4. 培养学生的观察、归纳和抽象思维能力,发展学生的空间观念和数学思考能力。

二、教学重点和难点1. 教学重点:轴对称的概念和性质,坐标系的基本概念和运用,轴对称图形的判定方法,坐标变换的方法和规律。

2. 教学难点:理解轴对称的性质,掌握坐标变换的方法,理解平面图形绕轴旋转、翻折的变化规律。

三、教学过程1. 引入新知:通过展示一些轴对称图形和坐标变化的现象,引导学生进入本节课的主题,激发他们的学习兴趣。

2. 讲解新知:* 轴对称:通过图像和例子,帮助学生理解轴对称的概念和性质,掌握轴对称图形的判定方法。

* 坐标系:介绍坐标系的基本概念和运用,描述平面直角坐标系中的对称现象。

* 坐标变换:通过实例分析,帮助学生理解坐标变换的概念和方法,掌握坐标变换的规律。

3. 举例分析:举出一些实际生活中的例子,让学生运用所学知识进行分析和解释,加深学生对轴对称和坐标变化的理解。

4. 练习环节:让学生在教师指导下完成有一定难度的轴对称和坐标变化的题目,巩固所学知识。

5. 总结回顾:回顾本节课的重点和难点,对学生的学习成果进行展示和评价,同时对下节课的内容进行预告。

四、教学方法和手段1. 讲解法:通过讲解轴对称、坐标系和坐标变换的概念和性质,使学生理解和掌握相关知识。

2. 演示法:通过演示图像和动画,帮助学生理解轴对称和坐标变化的过程和规律。

3. 探究法:通过引导学生探究实例,培养他们的观察、归纳和抽象思维能力,发展他们的空间观念和数学思考能力。

4. 互动讨论法:组织学生进行小组讨论,促进相互交流和学习,加深学生对知识的理解和应用。

五、课堂练习、作业与评价方式1. 课堂练习:选择具有代表性的轴对称和坐标变化的题目,让学生在课堂上完成,检验学生对所学知识的掌握情况。

北师大版数学八年级上册第3章位置与坐标学案

北师大版数学八年级上册第3章位置与坐标学案

3.1确定位置一、问题引入:1、在课室里你能用第几列第几行来确定你的座位吗?2、在电影票上,“3排6座”与“6排3座”中的“6”含义有什么不同?3、如果将“8排3号”简记作(8,3),那么“3排8号”记为,(5,6)表示。

4、在只有一层的电影院内,确定一个座位一般需要几个数据?如果电影院不止一层呢?5、①在直线上,确定一个点的位置一般需要__________数据;②在平面内,确定一个点的位置一般需要__________数据;③在空间内,确定一个点的位置一般需要__________数据。

二、基础训练:1、根据下列表述,能确定位置的是()A.北偏东40° B.某电影院5排C.东经92°,北纬45° D.距学校700米的某建筑物2、八年级(10)班的座位有7排8列,小强的座位在第2排第4列,简记(2,4),小明坐在第5排第3列的位置上,则小明的位置可记为()A.5 B.3 C.(5,3) D.(3,5)3、海事救灾船前去救援某海域失火轮船,需要确定()A.方位角 B.距离 C.失火轮船的国籍D.方位角和距离4、剧院的6排4号可以记作(6,4),那么10排5号可以记作__________,(3,5)表示的意义是____________________。

5、如果用(7,2)表示七(2)班,那么八(4)班可以表示成__________。

三、例题展示:例1、下图是某次海战中敌我双方舰艇对峙示意图(图中1厘米表示20海里),对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?想要确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌舰有几艘?(3)要确定每艘敌舰的位置,各需要几个数据?例2:如果用(0,0)表示点A的位置,用(2,1)表示点B的位置,(这里的数据有两个,一个表示水平方向与A点距离,另一个表示竖直方向上到A点的距离)那么(1)图①中五角星五个顶点的位置如何表示?(2)图②中五枚黑棋子的位置如何表示?(3)图②中(6,1),(10,8)位置上的棋子分别是哪一枚?标记出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019版八年级数学上册第三章位置与坐标3.3轴对称与坐
标变化学案新版北师大版
象限内各有一面小旗。

A与A1的坐
标又有什么特点?其它对应的点
也有这个特点吗?
2019版八年级数学上册第三章位置与坐标3.3轴对称与坐标变化学案新版
北师大版
课题内容 3.3轴对称与坐标变化
学习目标1、经历轴对称变化与点的坐标的变化之间的关系的探索过程,发展数形结合意识,初步建立几何直观。

2、在直角坐标系中,以坐标轴为对称轴,能写出一
个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的
关系。

学习重点经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

学习难点由坐标的变化探索新旧图形之间的变化探索过程,发展形象思维能力和数形结合意识。

学法指导
象限内各有一面小旗。

两面小旗之间有怎样的位置关系?对应点
A与A1的坐标又有什么特点?其它对应的点
也有这个特点吗?
2.在右边的坐标系内,任取一点,做出这个点关
于y轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。

3.如果关于x轴对称呢?
在这个坐标系里作出小旗ABCD关于x轴的对
称图形,它的各个顶点的坐标与原来的点的坐
标有什么关系?
4.关于x轴对称的两点,它们的横坐标,纵坐标

关于y轴对称的两点,它们的横坐标,纵坐标。

二、探究案
(1)在直角坐标系中描出以下各点:(0,0) (5,4) (3,0) (5,1) (5,-1) (3,0) (4,-2) (0,0)并用线段依次连接,看一看是什么图案.
(2)将图案各点纵坐标保持不变横坐标分别乘-1,顺次连接各点,你会得到什么样的图案?这两个图案有什么位置关系?
(3)将图案各点横坐标保持不变纵坐标分别乘-1,顺次连接各点,你会得到什么样的图案?这两个图案有什么位置关系?
(4)将图案各点的横纵坐标分别乘-1,顺次连接各点,你会得到什么样的图案?这两个图案有什么位置关系?
列出我的疑惑
总结:
1、关于y轴对称的两个图形上点的坐标特征:(x , y)——(- x , y)
2、关于x轴对称的两个图形上点的坐标特征:(x , y)——(x , - y)
3、关于原点对称的两个图形上点的坐标特征:(x , y)——(- x , -y)
我的知识网络图
三、训练案
1、(1).点P(a,b)关于x轴对称的点的坐标是;即关于x轴对称的点,其横坐标,纵坐标.
(2).点P(a,b)关于y轴对称的点的坐标是;即关于y轴对称的点,其纵坐标,横坐标.
(3).横坐标不变,纵坐标分别乘以-1,则所得图形与原图形关于对称.
纵坐标不变,横坐标分别乘以-1,则所得图形与原图形关于对称.
2、点 A(-3 ,2)关于 y 轴对称点的坐标是( )
A (-3 ,-2)
B (3 ,2)
C (-3 ,2)
D (2 ,-3)
3、点P 关于 x 轴对称点P'的坐标为(4,-5),那么点P 关于 y 轴对称点P" 的坐标为:
A (-4,5)
B (4,-5)
C (-4,-5)
D (-5,-4)
4、如图,△DEG与△ABC具有怎样的位置关系?它们相应顶点的坐标又有怎样的关系?△PMN与△ABC呢?
5、已知点A的坐标为(2x+y-3,x-2y)。

它关于x轴对称的点A'的坐标为(x+3,y-4),求点A 关于y轴对称的点的坐标。

6、 (xx.湖南永州)在如右图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A.C的坐标分别为(-4,5),(-1,3)。

(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出三角形ABC关于y轴对称的三角形A1B1C1;
A
(3)写出点B1的坐标。

C
B。

相关文档
最新文档