八年级数学上册《 轴对称图形 》教案
《轴对称图形》教案
《轴对称图形》教案《轴对称图形》教案(通用6篇)作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案是备课向课堂教学转化的关节点。
那么大家知道正规的教案是怎么写的吗?以下是店铺整理的《轴对称图形》教案,仅供参考,大家一起来看看吧。
《轴对称图形》教案篇1教材简析:《轴对称图形》是六年《数学》中继“认识圆的特征”,“计算圆的周长和面积”之后的一个学习内容。
在本章教材的编排顺序中起着承上启下的作用。
把它放在圆的后面,一方面可以更好地说明轴对称图形的特点,另一方面可以对所学的各种平面图形中轴对称的情况作全面的了解。
从而更好地发展学生的空间观念。
教学重点:掌握轴对称图形的概念。
教学难点:能找出轴对称图形的对称轴。
学生分析:学生已学过简单平面图形,对平面图形已有一定的认识,且初步了解研究平面图形的方式方法。
高年级的学生具有好胜,好强的特点,班级中已初步形成合作交流,敢于探索与实践的良好学风,学生间相互讨论的气氛较浓。
设计理念:根据基础教育课程改革的具体目标以及鼓励学生在具体、直观操作中发现知识是《数学课程标准》的一个特点。
改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
教学目标:1、通过教学向学生渗透事物的特殊性存在于普遍性之中,体会对称美。
2、通过操作活动培养学生观察能力,概括能力。
3、使学生直观的认识轴对称图形,在操作中理解掌握轴对称的概念,并能找出轴对称图形的对称轴。
教学流程:一、创设问题情境,导入课题。
1、(屏幕出示相关图片)观察下面的图形,(折一折,看一看)这些图形有什么特点?2、指出:像前三个这样的图形,我们把它叫轴对称图形。
3、引入课题:轴对称图形二、学生通过直观感知,操作确认等实践活动,加强对图形的认知和感受。
【实施动手操作,合作交流方式教学,让学生主动参与学习活动,经历和体验检验轴对称图形的方法。
《图形的运动(一) 轴对称图形》教案(七套)
《图形的运动(一)轴对称图形》教案(一)【教学目标】经过深入研读教材,并结合新课标三维目标的理念,设定了如下的教学目标:(1)通过观察、操作、想象初步认识轴对称现象,知道对称轴,能判断一个图形是否为轴对称图形;(2)经历操作、观察、想象、交流等活动,增强观察能力、想象能力和表达能力,发展空间观念。
(3)感知现实世界中普遍存在的轴对称现象,体验到生活中处处有数学,感受无提供或者图形的对称美,激发对数学学习的积极情感。
【学情分析】学生已经学习过一些平面图形的特征,形成一定空间观念,并且在生活中经历过图形的运动,对轴对称图形的概念虽然不清楚,但是学生生活中有大量的素材,教学中需要借助身边有趣的现象,帮助学生理解图形运动这样抽象的概念。
鉴于学生思维发展的规律,低年级学生的思维以具体形象思维为主,因此在学习抽象的图形知识时,需要借助直观的形象支持。
比如观察、折一折、比一比、画一画、拼一拼等,为学生提供丰富的机会,在观察与动手操作中进行思考和发现,直观的感受图形的运动特征。
【重点难点】认识对称现象和轴对称图形,识别轴对称图形。
【教学过程】活动1【导入】一、游戏引入、紧扣主题1、今天孙老师和大家一起研究图形的运动。
2、你们喜欢玩游戏吗?孙老师这里有一个游戏,想玩吗?学生热情回应。
3、听清游戏规则:只看物体的一部分,你能猜出它是什么吗?男女生比赛,看谁猜的又快又准。
女生一次就猜对,男生的答案却要尝试几次。
4、为什每次女生都能异口同声的猜对呢?5、女生的简单在哪儿?6、原来,女生看到的部分和遮住的部分完全一样,所以女生猜的快。
【设计意图】以游戏的形式,将猜测图形分为两类,在这个看似不公平的游戏中,激发学生对图形设置的思考。
紧扣主题。
活动2【活动】二(一)、合作探究轴对称特征1、出示实物照片;这是四个不同的物品,却有一个共同的特征,先思考,再和小组里的同学交流你的想法。
2、点名学生全班交流。
3、我们把它们画下来(课件),再剪一剪就成了这样的图形(示手中的道具);每人一个这样的图形,先折一折,再比一比,然后在小组了说一说你发现了什么。
《轴对称图形》教案设计
《轴对称图形》教案设计•相关推荐《轴对称图形》教案设计(通用10篇)作为一名教学工作者,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
写教案需要注意哪些格式呢?下面是小编为大家整理的《轴对称图形》教案设计,欢迎大家分享。
《轴对称图形》教案设计篇1学习目的:1.通过展示轴对称图形的图片,使学生初步认识轴对称图形;2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3.培养学生的动手试验能力、归纳能力和语言表述能力。
学习过程:一、探究活动1.动手做剪纸:(1)将一张长方形的纸对折;(2)在纸上画出一个你喜欢的图形;(3)沿线条剪下;(4)把纸展开;2.观察下面的图形,它们有什么共同特征?3.结论:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就是它的。
这时,我们也说这个图形关于这条直线(成轴)对称。
二:尝试应用1.先想后做:下面图形是轴对称图形吗?如果是,请画出它们的对称轴。
等腰三角形等腰梯形等边三角形平行四边形正方形圆2.想一想下列英文字母中,那些是轴对称图形?3.猜字游戏(抢答)在艺术字中,有些汉字是轴对称的,猜猜下列是哪些字的一半?三:探究活动(1).看下面两组图形,和刚才的蝴蝶,枫叶等比较,有什么不同?第一组第二组(2).思考:这两幅图有什么共同点?2.结论:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形这条直线叫做,折叠后重合的点是对应点,叫做。
四:尝试应用1.下面给出的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点。
2.说出图中点A、B、C、D、E的对称点。
3.思考:(1)成轴对称的两个图形全等吗?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?(3)把成轴对称的两个图形看成一个整体,它就是一个什么图形?4.比较归纳。
新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)
第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。
《轴对称图形》教案(最新5篇)
《轴对称图形》教案(最新5篇)《轴对称图形》教案篇一教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。
2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。
3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。
教学重点:理解轴对称图形的特征。
教学难点:掌握并能准确辨别较为复杂的轴对称图形。
教具准备:多媒体网络课件、钉子板、剪刀等教学过程:一、活动导入谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。
)提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?学生回答。
教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。
板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)二、识轴对称图形1、课件出示天安门、飞机、奖杯图片。
引导学生观察图片上的物体,说说它们有什么共同特征。
教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)引导学生用手摸一摸对折后的两边,说说有什么样的感觉。
得出结论:这些图形对折后“两部分完全重合”。
介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。
(板书轴对称图形定义)。
中间这条折痕就是轴对称图形的对称轴。
(板书:对称轴)谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)2、试一试谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。
3、判断轴对称图形谈话:下面我们一起到“轴对称图形博物馆”去看看。
八(上)数学第2章《轴对称图形》教案(含答案)
八(上)数学第2章《轴对称图形》教案(含答案)一.轴对称图形二.镜面对称三.轴对称的性质四.作图-轴对称变换五.翻折变换(折叠问题)六.利用轴对称设计图案七.角平分线的性质八.线段垂直平分线的性质九.等腰三角形的性质十.等腰三角形的判定十一.等腰三角形的判定与性质十二.等边三角形的性质十三.等边三角形的判定十四.等边三角形的判定与性质十五.含30度角的直角三角形十六.直角三角形斜边上的中线一.轴对称图形(共6小题)(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列银行的标识中,是轴对称图形的是()A.中国建设银行B.招商银行C.交通银行D.中国农业银行3.下列四个图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个4.线段、正三角形,平行四边形、菱形中,只是轴对称图形的是.5.平行四边形,长方形,等边三角形,半圆这几个几何图形中,对称轴最多的是.6.如图,3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形共有个.二.镜面对称(共4小题)1、镜面实质上是无数对对应点的对称,连接对应点的线段与镜面垂直并且被镜面平分,即镜面上有每一对对应点的对称轴.2、关于镜面问题动手实验是最好的办法:写在透明纸上,从反面看到的结果就是镜面反射的结果.1.如图,课间休息时,小新将镜子放在桌面上,无意间看到镜子中有一串数字,原来是桌旁墙面上张贴的同学手机号码中的几个数字,请问镜子中的数字对应的实际数字是.2.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.3.开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是.4.室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()A.3:20B.3:40C.4:40D.8:20三.轴对称的性质(共10小题)(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.1.下列说法错误的是()A.关于某直线成轴对称的两个图形一定能完全重合B.线段是轴对称图形C.全等的两个三角形一定关于某直线成轴对称D.轴对称图形的对称轴至少有一条2.如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G 在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.3.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°4.如图,△ABC和△ADE关于直线l对称,已知AB=15,DE=10,∠D=70°.求∠B的度数及BC、AD的长度.5.如图,△ABC与△DEF关于直线l对称,BE交l于点O,则下列说法不一定正确的是()A.AC=DF B.BO=EO C.AD⊥l D.AB∥EF第5题第6题第7题第8题6.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个7.如图,P为∠AOB内一点,分别画出点P关于OA,OB的对称点P1,P2,连接P1P2.交OA于点M,交OB于点N.若P1P2=5cm,则△PMN的周长为.8.如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.9.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.10.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA,有如下结论:①∠EAD=90°;②∠BOE=60°;③OA 平分∠BOC;其中正确的结论个数是()A.0个B.3个C.2个D.1个四.作图-轴对称变换(共6小题)几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.1.如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.2.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.3.如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)作出三角形ABC关于直线MN对称的三角形A1B1C1.(2)说明三角形A2B2C2可以由三角形A1B1C1经过怎样的变换而得到?(要说明变换过程)4.已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.5.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1.6.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A点除外)五.翻折变换(折叠问题)(共8小题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.1.将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于.2.如图,E是AB边上的中点,将△ABC沿过E的直线折叠,使点A落在BC上F处,折痕交边AC于点D,若△ABC的周长为8,则△DEF的周长等于()A.4+B.8C.4D.6第2题第3题第4题3.将一张长方形纸条折成如图所示的形状,BC为折痕,若∠DBA=80°,则∠ABC等于()A.40°B.50°C.60°D.70°4.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°5.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且ED′在∠A′EF内部,如图2,设∠A′ED'=n°,则∠FEG的度数为(用含n的代数式表示).32.如图,图①是一个四边形纸条ABCD,其中AB∥CD,E,F分别为边AB,CD上的两点,且∠BEF=27°,将纸条ABCD沿EF所在的直线折叠得到图②,再将图②中的四边形BCFM沿DF所在直线折叠得到图③,则图③中∠EFC的度数为.6.如图已知,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上.有下列结论:①EF平分∠MED;②∠2=2∠3;③∠1+∠3=90°;④∠1+2∠3=180°其中一定正确的结论有.(填序号)7.如图,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.六.利用轴对称设计图案(共6小题)利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.1.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.2.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同的涂法.3.如图所示,在4×4的正方形网格中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.△ABC是一个格点三角形,请你在图1,图2,图3中分别画出一个与△ABC成轴对称的格点三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)4.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.5.如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)6.如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个七.角平分线的性质(共11小题)角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE1.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是()A.P点B.Q点C.M点D.N点第1题第2题第3题第4题2.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC3.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=2.5,则两平行线AD与BC间的距离为()A.3B.4C.5D.64.已知:DA平分∠CAB,DB平分∠ABC,DE⊥AB于点E,△ABC的周长是12,面积是6,则DE的长是.5.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度向点C运动,设运动时间为t秒(t>0).(1)若点P恰好在∠ABC的角平分线上,求出此时t的值;(2)若点P使得PB+PC=AC时,求出此时t的值.6.已知:如图,BP、CP分别是△ABC的外角平分线,PM⊥AB于点M,PN⊥AC于点N.求证:P A平分∠MAN.7.如图,△ABC中,AB=2.5cm,AC=6cm,BC=6.5cm,∠ABC与∠ACB的角平分线相交于点P,过点P作PD ⊥BC,垂足为点D,则线段PD的长为cm.8.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个9.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=3,BC=4,则S△ABD:S△ACD为()A.5:4B.5:3C.4:3D.3:410.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A.8B.6C.5D.411.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC=α,则∠A=;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC外角∠MBC、∠NCB的角平分线交于点Q,试探究∠Q与∠BPC之间的数量关系,并说明理由;(3)如图③,延长线段CP、QB交于点E,△CQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.八.线段垂直平分线的性质(共12小题)(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.1.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线2.若P是△ABC所在平面内的点,且P A=PB=PC,则下列说法正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条角平分线的交点C.点P是△ABC三边上高的交点D.点P是△ABC三边中线的交点3.在正方形网格中,△ABC的位置如图所示,且顶点在格点上,在△ABC内部有E、F、G、H四个格点,到△ABC 三个顶点距离相等的点是()A.点E B.点F C.点G D.点H第3题第4题第5题4.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.105.如图,在△ABC中,DE是边AB的垂直平分线,垂足为E,交BC边于D点,若AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm6.如图,在△ABC中,∠BAC=80°,AB边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC 于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.15°B.20°C.25°D.30°7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BD于点E,连接CE,若∠A=60°,∠ACE=24°,则∠ABE的度数为()A.24°B.30°C.32°D.48°8.如图,在直角△ABC中,已知∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠BAD=15°,BD=18cm,则AC的长是cm.9.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.10.已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线l于C、D两点.分别以C、D 为圆心,AB长为半径作弧,两弧在l下方交于点E,连结AE.(1)根据题意,利用直尺和圆规补全图形;(2)证明:l垂直平分AE.11.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.12.如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=.九.等腰三角形的性质(共6小题)(1)等腰三角形的概念:有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.1.如果等腰三角形两边长是4cm和8cm,那么它的周长是()A.16 cm B.20cm C.21 cm D.16或20cm2.如图,为了让电线杆垂直于地面,工程人员的操作方法通常是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC,当固定点B,C到杆脚E的距离相等,且B,E,C在同一直线上时,电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.垂线段最短C.等腰三角形“三线合一”D.线段垂直平分线上的点到这条线段两端点的距离相等3.等腰三角形的两边长分别为a、b,且a、b满足|2a﹣3b﹣7|+(2a+3b﹣13)2=0,等腰三角形的周长为()A.7B.11或7C.11D.7或104.如图,△ABC是等腰三角形,点O是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE+OF的值为()A.5B.7.5C.9D.105.已知,等腰三角形的一边是3,另一边是方程+=1的解,则这个三角形的周长是()A.10B.11C.10或11D.7或86.如果等腰三角形的一个内角为50°,那么其它两个内角为()A.50°,80°B.65°,65°C.50°,65°D.50°,80°或65°,65°十.等腰三角形的判定(共11小题)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.1.如图所示的方格纸中,每个方格均为边长为1的小正方形,我们把每个小正方形的顶点称为格点,现已知A、B、C、D都是格点,则下列结论中正确的是()A.△ABC、△ABD都是等腰三角形B.△ABC、△ABD都不是等腰三角形C.△ABC是等腰三角形,△ABD不是等腰三角形D.△ABC不是等腰三角形,△ABD是等腰三角形2.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.3.如图,在△ABC中,AB=AC=8,AB的垂直平分线交AB于点D,交AC于点E.(1)若BE﹣EC=2,求CE的长;(2)若∠A=36o,求证:△BEC是等腰三角形.4.下面叙述不可能是等腰三角形的是()A.有两个内角分别为75°,75°的三角形B.有两个内角分别为110°和40°的三角形C.有一个外角为100°,一个内角为50°的三角形D.有一个外角为140°,一个内角为100°的三角形5.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数不可能为()A.120°B.75°C.60°D.30°35.在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有()①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点DA.1个B.2个C.3个D.4个36.Rt△ABC中,∠ACB=90°,∠A=60°,在直线BC上取一点P使得△P AB是等腰三角形,则符合条件的点P 有个.37.如图,在△ABC中,AB=AC,点D是BC边上的中点,G是AC边上一点,过G作EF⊥BC,交BC于点E,交BA的延长线于点F.(1)求证:AD∥EF;(2)求证:△AFG是等腰三角形.38.如图是5×5的正方形方格图,点A,B在小方格的顶点上,要在小方格的项点确定一点C,连接AC和BC,使△ABC是等腰三角形,则方格图中满足条件的点C的个数是()A.4B.5C.6D.739.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组40.如图,已知∠MON,在边ON上顺次取点P1,P3,P5…,在边OM上顺次取点P2,P4,P6…,使得OP1=P1P2=P2P3=P3P4=P4P5…,得到等腰△OP1P2,△P1P2P3,△P2P3P4,△P3P4P5…(1)若∠MON=30°,可以得到的最后一个等腰三角形是;(2)若按照上述方式操作,得到的最后一个等腰三角形是△P3P4P5,则∠MON的度数α的取值范围是.十一.等腰三角形的判定与性质(共15小题)1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线【“三线合一”】,3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.1.用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.2.在Rt△ABC中,∠ACB=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个B.7个C.6个D.5个3.如图,△ABC是等腰三角形,AB=AC,∠A=20°,BP平分∠ABC;点D是射线BP上一点,如果点D满足△BCD是等腰三角形,那么∠BDC的度数是.4.如图,点G在CA的延长线上,AF=AG,AD⊥BC,GE⊥BC.求证:AD平分∠BAC.证明:∵AF=AG(已知),∴∠AGF=∠AFG().∵AD⊥BC,GE⊥BC(已知),∴∠ADC=∠GEC=90°().∴AD∥GE().∴∠CAD=(两直线平行,同位角相等).∠BAD=∠AFG().∴∠CAD=∠BAD(等量代换).∴AD平分∠BAC().5.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.6.如图,在△ABC中,AB=AC,BO、CO分别平分∠ABC、∠ACB,DE经过点O,且DE∥BC,DE分别交AB、AC于D、E,则图中等腰三角形的个数为()A.2B.3C.4D.57.如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个8.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,BE⊥BD,DE∥BC,BE与DE交于点E,DE交AB于点F.(1)若∠A=56°,求∠E的度数;(2)求证:BF=EF.10.(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF 之间的关系.11.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.12.如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.13.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.14.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.15.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?十二.等边三角形的性质(共7小题)(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.1.如图,在△ABC中,点D,E在边上,DE∥BC,若△ADE是等边三角形,AD=2,BD=3,则△ABC的周长为()A.6B.9C.15D.182.如图,已知等边△ABC的周长是12,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,则PD+PE+PF 的值是()A.12B.8C.4D.33.如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=°.第3题第4题第5题4.如图,在四边形ABCD中,AB=BC=CD,∠ABC=160°,∠BCD=80°,△PDC为等边三角形,则∠ADC的度数为()A.70°B.75°C.80°D.85°5.如图,在Rt△ABC中,∠ACB=90°,AB=4,以AC为边在△ABC外作等边三角形△ACD,连接BD.则BD 的最大值是.6.如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°7.如图,在等边△ABC中,BD=2DC,DE⊥BE,CE,AD相交于点P,则()A.AP>AE>EP B.AE>AP>EP C.AP>EP>AE D.EP>AE>AP十三.等边三角形的判定(共9小题)(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.说明:若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.1.如图,在△ABC中,∠A=120°,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.2.如图,△ABC中,∠A=60°,分别以A,B为圆心,大于AB长的一半为半径画弧交于两点,过两点的直线交AC于点D,连结BD,则△ABD是三角形.3.已知,在△ABC中,AB=AC,如图,(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.根据以上作图过程及所作图形,下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD•BC4.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有(填序号).5.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.6.如果三角形的三边a、b、c适合(a2﹣2ac)(b﹣a)=c2(a﹣b),则a、b、c之间满足的关系是;有同学分析后判断△ABC是等边三角形,你的判断是.7.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④8.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.9.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C顺时针旋转60°得△ADC,。
八年级上册数学轴对称标准教案
八年级上册数学轴对称标准教案一、教学目标知识与技能:1. 让学生理解轴对称的概念,识别轴对称图形。
2. 学会画轴对称图形,并找出对称轴。
3. 能够运用轴对称的性质解决实际问题。
过程与方法:1. 通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。
2. 学会用坐标表示对称点,理解对称点坐标之间的关系。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的观察力和创造力。
2. 让学生感受数学在生活中的应用,体会数学的乐趣。
二、教学重点与难点重点:1. 轴对称的概念及性质。
2. 轴对称图形的识别及其对称轴的确定。
难点:1. 对称点的坐标表示及对称点坐标之间的关系。
2. 运用轴对称性质解决实际问题。
三、教学准备教师准备:1. 教学课件或黑板。
2. 轴对称图形的相关图片或实物。
3. 练习题及答案。
学生准备:1. 笔记本用于记录。
2. 尺子、圆规等绘图工具。
四、教学过程1. 导入新课:通过展示一些生活中的轴对称图形,如剪刀、飞机模型等,引导学生观察并思考这些图形的特征。
2. 探究新知:1. 介绍轴对称的概念,让学生尝试解释轴对称的含义。
2. 引导学生通过观察和操作,发现轴对称图形的性质。
3. 讲解如何找出轴对称图形的对称轴,并让学生在纸上画出对称轴。
3. 巩固练习:设计一些练习题,让学生独立完成,检验学生对轴对称概念的理解和运用情况。
4. 课堂小结:对本节课的主要内容进行总结,强调轴对称的概念及其在实际中的应用。
五、课后作业1. 完成练习册上的相关题目。
2. 收集生活中的轴对称图形,下节课分享。
注意:教师在教学过程中要关注学生的学习情况,及时解答学生的疑问,引导学生主动参与课堂活动。
在设计练习题时,要考虑题目的难易程度,尽量让所有学生都能参与到课堂中来。
六、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习积极性、对轴对称概念的理解程度以及课堂互动情况。
针对反思结果,调整教学方法,以便更好地指导学生学习。
15.1.1轴对称图形的教案-沪科版八年级数学上册
15.1.1 轴对称图形的教案-沪科版八年级数学上册一、教学目标1.了解什么是轴对称图形。
2.能够判断一个图形是否具有轴对称性。
3.能够找到图形的对称轴。
4.能够根据对称轴绘制轴对称图形。
二、教学准备1.教师准备:–沪科版八年级数学上册课本。
–沪科版八年级数学上册教师用书。
–相应的课件和教学工具。
2.学生准备:–数学工具(尺子、直尺等)。
–笔记本和铅笔。
–沪科版八年级数学上册练习册。
三、教学过程导入新知1.让学生观察一些日常生活中的图形,让他们描述这些图形是否具有轴对称性。
引导学生思考什么是轴对称图形。
学习轴对称图形的定义1.教师给出轴对称图形的定义:“轴对称图形是指可以通过一个轴进行翻转,使图形重合的图形。
”2.教师通过示例和图示来解释和展示轴对称图形的特征。
判断图形是否具有轴对称性1.教师通过一些实例来让学生自己判断图形是否具有轴对称性。
2.教师提供一些简单的几何图形,让学生观察并试着找出图形的对称轴。
3.学生通过直观观察和推理来判断图形是否具有轴对称性,并找出对称轴。
绘制轴对称图形1.教师给出一个简单的图形,并指导学生根据对称轴绘制该图形的轴对称图形。
2.学生根据对称轴绘制图形的轴对称图形。
3.教师展示学生绘制的轴对称图形,并指导学生进行讨论和比较。
巩固练习1.学生进行练习册上相关的练习题,巩固所学知识。
拓展延伸1.提供更复杂的图形,让学生进行观察、判断和绘制轴对称图形。
四、教学总结通过本节课的学习,我们了解了轴对称图形的概念和特征,学会了判断图形是否具有轴对称性,并能够根据对称轴绘制轴对称图形。
五、课后作业1.完成课堂练习册上相关的练习题。
2.查找一些日常生活中的轴对称图形,并写下你的观察和思考。
注意:这是一个示例教案,教师根据具体情况可以适当调整教学内容和安排。
《轴对称图形》教案(优秀8篇)
《轴对称图形》教案(优秀8篇)轴对称图形教案篇一教学目标:1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
课前准备:小黑板、学具卡片。
教学活动:一、复习导入出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。
(把课题补书完整)二、教学例题1.谈话:首先我们研究长方形的对称轴。
请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。
(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?指名到黑板上量长方形的边,取中点。
初中数学《轴对称与轴对称图形》教案设计:轴对称图形的对称中心及性质
本教案旨在帮助初中学生掌握轴对称与轴对称图形的概念,并深入了解轴对称图形的对称中心及其性质,从而提高学生的数学素养和综合能力。
【教学目标】1.学习轴对称与轴对称图形的概念。
2.进一步了解轴对称图形的对称中心及其性质。
3.掌握轴对称图形的复合对称和单纯对称。
4.练习绘制轴对称图形和根据已知的轴对称图形画出其对称轴。
【教学重难点】1.轴对称与轴对称图形的概念。
2.理解对称中心的概念和作用。
3.绘制对称图形和找出其对称轴的能力。
【教学内容】一、轴对称与轴对称图形1.轴对称的定义:轴对称是指将一个图形绕着某一条直线对称,使得对称前后的图形重合的变换。
2.轴对称的特点:两侧的图形是完全对称的,且对称轴将图形分成两个完全相同的部分。
3.轴对称图形的定义:轴对称图形是指可以利用轴对称变换得到重合的图形。
4.轴对称图形的特点:轴对称图形的两侧是完全对称的,且轴对称图形在对称轴上的投影也是对称的。
二、对称中心及其性质1.对称中心的定义:对称中心是指轴对称变换中的对称轴上的一个点,通过将该点作为对称点,使得对称前后的图形重合。
2.对称中心的性质:(1)在轴对称图形中,轴对称图形上的每个点都和对称中心对称。
(2)对称中心在线段的中垂线上。
(3)图形中一个对称中心可以对应多个对称轴,但一个对称轴只能对应一个对称中心。
三、轴对称图形的复合对称和单纯对称1.复合对称:指将轴对称图形绕两条不同的轴对称。
2.单纯对称:指将轴对称图形绕同一条轴对称。
四、绘制轴对称图形和找出其对称轴1.绘制轴对称图形的步骤:(1)构造一条直线作为对称轴。
(2)在对称轴上选择一个点作为对称中心。
(3)以对称轴为中心,对称中心为半径,绘制出对称图形的一半。
(4)将所画部分沿对称轴对称得到完整的图形。
2.找出轴对称图形的对称轴的步骤:(1)选择图形中的一个点作为对称中心。
(2)连接这个点和它的副本所在位置上的点,所连接的线段即为对称轴。
【教学过程】一、简单的轴对称图形展示1.教师展示几个简单的轴对称图形,并让学生讨论对称中心和对称轴的位置。
《轴对称图形》的教案优秀3篇
《轴对称图形》的教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《轴对称图形》的教案优秀3篇在教学工作者实际的教学活动中,通常需要准备好一份教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。
八年级数学上册轴对称教案
八年级数学上册轴对称教案八年级数学上册轴对称教案作为一名教师,常常需要准备教案,借助教案可以更好地组织教学活动。
快来参考教案是怎么写的吧!下面是小编收集整理的八年级数学上册轴对称教案,欢迎大家借鉴与参考,希望对大家有所帮助。
八年级数学上册轴对称教案1教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:理解对称图形的概念,能正确找、画对称轴。
教学难点:准确找对称轴。
教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。
]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。
生2:我发现年年有鱼的纸花的左右两边是不一样的。
生3:我发现京剧脸谱的左右两边是一样的。
让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。
[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。
人教初中数学八上《轴对称》教案 (公开课获奖) (3)
《轴对称》【教学目标】1.知识与能力(1)理解轴对称图形,两个图形关于某直线对称的概念。
(2)了解轴对称图形与两个图形关于某直线对称的区别和联系。
(3)了解轴对称的性质。
2.过程与方法通过轴对称图形和两个图形成轴对称的学习以及动手操作,让学生关注生活,学会观察,增强交流。
3.情感、态度与价值观通过轴对称图形和两个图形成轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
【教学重点】轴对称图形和两个图形关于某直线对称的概念以及区别和联系。
【教学难点】轴对称的性质。
【教学方法】创设情境-主体探究-合作交流-应用提高.【教学用具】多媒体课件、直尺、剪刀和彩纸等【教学过程】一、创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物.问题:观察下列几幅图片,大家观察后回答下列问题:(出示世博建筑物、奥运会开幕式鸟巢烟火、飞机、蝴蝶、窗花等图片).(1)这些图形有什么共同的特征?对称给人以平衡与和谐的美感,我们生活在一个充满对称的世界里,你平时有注意到吗?(2)你能举出几个生活中具有对称特征的物体,并与同伴进行交流吗?(3)你能利用手中的彩纸,剪出具有对称特征的图案吗?二、动手操作,教师组织,合作交流,归纳轴对称和轴对称图形的概念师生互动操作设计:教师走到学生中去,与学生一起观察图形,讨论其具有的共同特征,并利用“对折”的方法剪出各种美丽对称的图案,展示出来,可以发现这些图形沿一条直线对折(我们把这条直线看作轴),直线两旁的部分可以互相重合,比如在生活中具有这种特征的物体有:飞机、风筝、汽车等.1.经过学生讨论,找到特征后,引导学生归纳轴对称图形的概念.归纳:如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,这个图形就是轴对称图形,这条直线叫做这个图形的对称轴.2.出示教材图片,下面的每对图形有什么共同特点?你能概括这些特点吗?学生观察图片,在独立思考的基础上进行交流,共同总结每对图形所具有的特征,学生可能发现:沿某条直线对折,两个图形能够完全重合.在学生交流的基础上,引导学生对轴对称的概念进行归纳.把一个图形沿着某条直线对折,如果能够和另一个图形完全重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.3.观察,类比轴对称图形和成轴对称的两个图形的特点,教师引导学生对轴对称和轴对称图形的区别和联系进行讨论交流,加深理解:轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.三、主体探索、教师引导,探究轴对称图形的性质和线段垂直平分线的概念1. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是A、B、C 的对称点,线段AA′、BB′、CC′和直线MN有什么关系?学生自行分析操作过程,从操作过程中发现数量关系,点A和A′是对称点,可以设AA′与对称轴的交点为P,将△ABC沿MN对折后A与A′重合于是有AP=PA′、∠MPA=∠MPA′=90°对于其他的点也有类似的情况,于是可以发现,对称轴所在直线经过对称点所连线段的中点并且垂直于这条线段.2. 鼓励学生经过独立思考,发现数量关系并进行交流,同时给出线段垂直平分线的定义:“经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线”3. 进而引导学生进行归纳:轴对称的性质:“如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线”.类似的“轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线”.四、师生合作,应用提高,拓展创新1.出示生活中各种美丽的标志,如汽车标志,交通标志,数字,字母等等先判断哪些是轴对称图形,你能找出每个轴对称图形中的对称点吗?你还能找出它们的对称轴吗?学生交流动手操作,标出一组对称点,找出每一个轴对称图形的对称轴.并将学生交流的结果展示在黑板上,师生交流心得和方法.对称轴是任何一对对应点所连线段的垂直平分线。
初中数学轴对称教案
初中数学轴对称教案初中数学轴对称教案(精选10篇)作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。
那么大家知道正规的教案是怎么写的吗?下面是小编整理的初中数学轴对称教案,欢迎阅读与收藏。
初中数学轴对称教案篇1教学目的1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。
2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。
重点、难点判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。
教学过程一、知识回顾问题1:轴对称图形的定义是什么?它是判断图形是否是轴对称图形的依据。
问题2:是否会画轴对称图形的对称轴?找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。
问题3:轴对称图形对称点的连线与对称轴有什么关系?轴对称图形对称点的连线被对称轴垂直平分。
问题4:线段垂直平分线、角平分线具有什么性质?线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。
问题5:等腰三角形有什么性质?等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。
问题6:如何判断三角形是等腰三角形?等边三角形?如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。
二、例题1.书本中下列是轴对称图形的有( )A.1个 D.2个 C.3个 D.4个2.所示,已知,OC平分AOB,D是OC上一点,DEOA,DFOB,垂足为E、F点,那么(1)DEF与DFE相等吗?为什么?(2)OE与OF相等吗?为什么?三、巩固练习所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,A=491454.求△BCD的周长和DBC度数。
轴对称图形 初中八年级上册数学教案教学设计课后反思 人教版
轴对称图形微课教案
学校林芝市八一中学教师田果清
科目数学教材版本人教版年级八年级
一、教学目标
1.知识与技能目标:知道什么是轴对称图形,会判断一个图形是否为轴对称图形,会找一个轴对称图形的对称轴。
2.过程与方法目标:在丰富的现实情境中,经历观察、操作、欣赏、分析、想象、创造等数学活动过称,逐步发展学生的空间知觉与空间观念,培养其抽象思维和空间想象能力并体会数学的价值与数学的对称美。
3.情感态度与价值观目标:通过观赏图片赏析图片,激发学生爱生活爱祖国的美好情感。
二、学情分析
学生在小学学过轴对称图形,能够识别简单的轴对称图形及其对称轴,因此本节课的知识点是着重让学生认识轴对称图形在生活当中的作用。
三、授课类型
讲授课
四、教学过程
五、课后反思
1.为学生的数学学习构筑起点。
2.为学生提供了生活中有趣的、富有挑战性的学习素材。
3.为学生提供了探索、交流与合作的时间与空间,帮助学生通过思考与交流,理顺所学的知识,形成适应个性认知特点的知识结构。
4.重视数学知识的形成与应用过程,满足不同学生发展的需求。
5.让学生体会到学数学是有价值的,数学来源于生活又作用于生活,让学生带着一双发现的眼睛去发现生活中的数学,并用自己所学的数学去解决生活中的问题。
八年级数学上册《 轴对称》教案
13.1 轴对称13.1.1 轴对称1.在生活实例中认识轴对称图形.(重点)2.分析轴对称图形,理解轴对称的概念.(重点)3.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.(难点)一、情境导入请同学们认真观看动画片,听故事,思考最后的问题.(配合动画讲故事)故事:在小河边的花丛中,有一只美丽的蝴蝶正在采花蜜.忽然,来了一只蜻蜓在它面前飞来飞去,蝴蝶生气地说:“谁在跟我捣乱?”蜻蜓笑嘻嘻地说:“你怎么连一家人都不认识了,我是来找你玩的.”这时蝴蝶更生气了,说道:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家呢?”于是,蜻蜓就落在了旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶,还有我们身边的很多物体都和我们是一家呢.”(播放动画)思考问题:为什么蜻蜓、蝴蝶、树叶是一家?二、合作探究探究点一:轴对称图形【类型一】轴对称图形的识别下列体育运动标志中,从图案看不是轴对称图形的有( )A .4个B .3个C .2个D .1个解析:根据轴对称图形的概念可得(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选B.方法总结:要确定一个图形是否是轴对称图形要根据定义进行判断,关键是寻找对称轴,图形两部分折叠后可重合.【类型二】判断对称轴的条数下列轴对称图形中,恰好有两条对称轴的是( ) A .正方形 B .等腰三角形 C .长方形 D .圆解析:A.正方形有四条对称轴;B.等腰三角形有一条对称轴;C.长方形有两条对称轴;D.圆有无数条对称轴.故选C.方法总结:判断对称轴的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:轴对称及轴对称图形的性质 【类型一】应用轴对称的性质求角度如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,则∠BCD 的度数是( )A .130°B .150°C .40°D .65°解析:∵这种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,∴∠D =40°,∴∠BCD =360°-150°-40°-40°=130°.故选A.方法总结:轴对称其实就是一种全等变换,所以轴对称往往和三角形的内角和、外角的性质综合考查.【类型二】利用轴对称的性质求阴影部分的面积如图,正方形ABCD 的边长为4cm,则图中阴影部分的面积为( )A .4cm 2B .8cm 2C .12cm 2D .16cm 2解析:根据正方形的轴对称性可得,阴影部分的面积等于正方形ABCD 面积的一半,∵正方形ABCD 的边长为4cm ,∴S 阴影=12×42=8(cm)2.故选B.方法总结:正方形是轴对称图形,根据图形判断出阴影部分的面积等于正方形面积的一半是解题的关键.【类型三】用轴对称的性质证明线段之间的关系如图,O 为△ABC 内部一点,OB =72,P 、R 为O 分别以直线AB 、BC 为对称轴的对称点.(1)请指出当∠ABC 是什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度小于7还是大于7?并完整说明你判断的理由.解析:(1)连接PB 、RB ,根据轴对称的性质可得PB =OB ,RB =OB ,然后判断出点P 、B 、R 三点共线时PR =7,再根据平角的定义求解;(2)根据三角形的任意两边之和大于第三边解答.解:(1)如图,∠ABC =90°时,PR =7.证明如下:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、BC 为对称轴的对称点,∴PB =OB =72,RB =OB =72.∵∠ABC =90°,∴∠ABP +∠CBR=∠ABO +∠CBO =∠ABC =90°,∴点P 、B 、R 三点共线,∴PR =2×72=7;(2)PR 的长度小于7,理由如下:∠ABC ≠90°,则点P 、B 、R 三点不在同一直线上,∴PB +BR >PR ,∵PB +BR =2OB =2×72=7,∴PR <7.方法总结:利用轴对称的性质可以将线段进行转化,然后结合三角形的任意两边之和大于第三边的性质予以解答,总之熟记各性质是解题的关键.【类型四】轴对称在折叠问题中的应用如图,将长方形纸片先沿虚线AB 向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( )解析:∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A.∵再展开可知两个短边正对着,∴选择答案D ,排除B 与C.故选D.方法总结:对于此类问题,要充分发挥空间想象能力,或亲自动手操作答案即可呈现.三、板书设计轴对称图形1.轴对称图形的定义; 2.对称轴;3.轴对称图形的设计方法.这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能.另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,有利于学生主体性的发挥和创新能力的培养.。
轴对称的教案八年级
八年级数学《轴对称》教案本教案旨在帮助八年级学生掌握轴对称的概念、性质和应用,培养学生的几何直观能力和解题能力。
下面是本店铺为大家精心编写的5篇《八年级数学《轴对称》教案》,供大家借鉴与参考,希望对大家有所帮助。
《八年级数学《轴对称》教案》篇1一、教学目标1. 知识与技能目标:理解轴对称的概念,掌握轴对称的性质和应用,能运用轴对称解决简单的几何问题。
2. 过程与方法目标:通过观察、操作、讨论等方式,培养学生的几何直观能力和解题能力。
3. 情感态度和价值观目标:培养学生对数学的兴趣,提高学生的审美观念和学习兴趣。
二、教学重点和难点1. 教学重点:理解轴对称的概念和性质,掌握轴对称的应用。
2. 教学难点:运用轴对称解决简单的几何问题。
三、教学准备1. 教师准备:课件、方格纸、彩色笔。
2. 学生准备:笔记本、笔。
四、教学过程1. 导入新课 (5 分钟)教师通过图片或视频的形式,向学生展示一些具有轴对称性的事物,如飞机、鸟巢、雪花等,引导学生观察并思考这些事物的共同特点。
2. 学习新知 (30 分钟)(1) 教师通过课件向学生介绍轴对称的概念,引导学生理解轴对称的定义和特点。
(2) 教师通过实例讲解轴对称的性质,如对称轴、对称点、对称线等,引导学生掌握轴对称的性质。
(3) 教师通过例题讲解轴对称的应用,如求解线段中点、求解面积等,引导学生掌握轴对称的应用。
3. 巩固练习 (20 分钟)教师通过课件出示一些练习题,让学生运用轴对称的概念和性质解决实际问题。
4. 小组讨论 (15 分钟)教师将学生分成小组,让他们讨论轴对称的一些应用问题,如“如果一个长方形有一条对称轴,那么它是否一定是矩形?”、“如果一个正方形有一条对称轴,那么它是否一定是菱形?”等。
5. 总结反思 (5 分钟)教师引导学生总结本节课所学的知识点,反思自己的学习过程,检查是否达到教学目标。
五、教学评价1. 课堂练习:学生能熟练运用轴对称的概念和性质解决实际问题。
初中八年级初二数学《作轴对称图形》参考教案
作轴对称图形作轴对称图形(一)教学目标(一)教学知识点1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.(二)能力训练要求经历实际操作、认真体验的过程,发展学生的思维空间,并从实践中体会轴对称变换在实际生活中的应用.(三)情感与价值观要求1.鼓励学生积极参与数学活动,培养学生的数学兴趣.2.初步认识数学和人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的应用意识.3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.教学方法讲练结合法.教具准备多媒体课件.教学过程Ⅰ.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.[生甲]将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.[生乙]准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.[师]大家回答得太好了,•这节课我们就是来作简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]刚才同学们说出了几种得到轴对称图形的方法,•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(电脑演示下面图案的变化过程)大家看大屏幕.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.[师]下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.(学生动手做)结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.[师]我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.动手做一做.(课件演示)取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E 挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.投影仪演示学生的作品.[生甲]相邻两个图案成轴对称图形,相间的两个图案之间大小和方向完全一样.[生乙]都成轴对称关系.[生丙]得到与上面类似的两层花边,它仍然是轴对称图形.[师]下面我们做练习.Ⅲ.随堂练习(课件演示)(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?(2)这个图形有几条对称轴?(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?答案:(1)轴对称图形.(2)这个图形至少有3条对称轴.(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.(二)回顾本节课内容,然后小结.Ⅳ.课时小结本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.Ⅴ.课后作业(课件演示)(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.(1)你会得怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?答案:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.(二)自己设计并制作一个花边.(三)收集并欣赏1~2个对称的中国民间剪纸图案,你能找出它的对称轴吗?Ⅵ.活动与探究如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.“十字”可以折叠两次,剪出它的四分之一即可.板书设计备课资料艺术作品中的对称许多著名画家在作品中运用简单的图形创造出了奇妙的韵意.•法国著名画家V.瓦萨雷利于1969年创作了名画《委加.派尔》,画中仅仅用了“圆”形图案,就形成了一幅动态的轴对称图形!在从古至今的艺术创作中,不仅画家大量运用了对称,许多别的艺术家也经常运用对称的手法.如雕刻家威廉斯.多佛1971年在加蓬《非洲人的设计》中创作的“木制卫兵雕像”就是典型的雕刻艺术中的对称.带状装饰图案的做法油漆工只需要不断移动镂花模板(可以直接移动,也可以将翻转与移动相结合),就可以完全一条美丽的镶边图案.感兴趣的话自己试一试.§12.2.1作轴对称图形(二)教学目标(一)教学知识点1.能够按要求作出简单平面图形经过轴对称后的图形.2.轴对称的简单应用.(二)能力训练要求1.能够按要求作出简单平面图形经过轴对称后的图形.2.培养学生运用轴对称解决实际问题的基本能力.3.使学生掌握数学知识的衔接与各部分知识间的相互联系.(三)情感与价值观要求1.积极参与数学学习活动,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点能够按要求作出简单平面图形经过轴对称后的图形.教学难点应用轴对称解决实际问题.教学方法讲练结合法.教具准备多媒体课件,方格纸数张.教学过程Ⅰ.提出问题,创设情境[师]上节课我们学习了轴对称变换的概念,•知道了一个图形经过轴对称变换可以得到它的轴对称图形,那么具体过程如何操作呢?这就是我们这节课要学习的.•下面同学们来仔细观察一个图案.(课件演示)以虚线为对称轴画出图的另一半:[生甲]这个图案(1)左右两边应该完全相同,画出的整个图案的形状应该是个脸.[生乙]图案(2)画出另一半后应该是一座小房子.[师]大家能把这两个图案的另一半画出来吗?[师]我们利用方格纸来试着画一画(教师发给每人一张方格纸,且纸上画有图).……[师]画好了吧?我们今天就来学习作出简单平面图形经过轴对称后的图形.Ⅱ.导入新课[师]如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:•对应点的连线被对称轴垂直平分.所以,已知对称轴L和一个点A,要画出点A关于L•的对应点A′,可采取如下方法:(1)过点A作对称轴L的垂线,垂足为B;(2)在垂线上截取BA′,使BA′=AB.点A′就是点A关于直线L的对应点.好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性.……[师]画好了没有?[生]画好了.[师]好,现在我们会画一点关于已知直线的对称点,那么一个图形呢?•大家请看大屏幕.(演示课件)[例1]如图(1),已知△ABC和直线L,作出与△ABC关于直线L对称的图形.[师]同学们讨论一下.……[生甲]可以在已知图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点.这样就可以作出这个图形关于直线L的对称图形了.[师]说说看,找几个什么样的点就行呢?[生乙]△ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了. [师]好,下面大家一起动手做.作法:如图(2).(1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A关于直线L的对称点;(2)类似地,作出点B、C关于直线L的对称点B′、C′;(3)连结A′B′、B′C′、C′A′,得到△A′B′C′即为所求.[师]大家做完后,•我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、•线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形.[师]看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键.下图中,要作出图形的另一半,哪些点可以作为特殊点?并画出图形的另一半.[师]大家作个简单讨论,共同来完成这个题.[生]在图形(1)上找三个点,在图形(2)中找一个点就可以,如下图:[师]现在我们来做练习.Ⅲ.随堂练习课本P41练习 1、2.1.如图,把下列图形补成关于直线L对称的图形.提示:找特殊点.答案:图(略)2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,•看看哪些部分能够重合,哪些部分不能重合.答案:本题答案不唯一,要求学生尽可能用准确的数学语言将自己剪出的三角形的情况进行表述.Ⅳ.课时小结本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形.在按要求作图时要注意作图的准确性.求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点.对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点)的对称点,连结这些对称点,就可以得到原图形的轴对称图形.Ⅴ.课后作业(一)课本P45习题─1、5、8、9题.(二)预习内容P43~P46.Ⅵ.活动与探究[探究1]如图(1).要在燃气管道L上修建一个泵站,分别向A、B两镇供气.•泵站修在管道的什么地方,可使所用的输气管线最短?你可以在L上找几个点试一试,能发现什么规律吗?过程:把管道L近似地看成一条直线如图(2),设B′是B的对称点,•将问题转化为在L上找一点C使AC与CB′的和最小,由于在连结AB′的线中,线段AB′最短.因此,线结AB′与直线L的交点C的位置即为所求.结果:作B关于直线L的对称点B′,连结AB′,交直线L于点C,C为所求.[探究2]为什么在点C的位置修建泵站,就能使所用的输管道最短?过程:将实际问题转化为数学问题,该问题就是证明AC+CB最小.结果:如上图,在直线L上取不同于点C的任意一点C′.由于B′点是B点关于L的对称点,所以BC′=B′C′,故AC′+BC′=AC′+B′C′,在△A′B′C′中AC′+BC′>AB′,•而AB′=AC+CB′=AC+CB,则有AC+CB<AC′+C′B.由于C′点的任意性,所以C点的位置修建泵站,可以使所用输气管线最短.板书设计§12.2.1作轴对称图形(二)一、已知对称轴L和一个点A,要画出点A关于L的对称点A′,方法如下:(1)过点A作对称轴L的垂线,垂足为B.(2)在垂线上截取BA′=AB.则点A′就是点A关于直线L的对应点,二、例1三、随堂练习四、课时小结五、课后作业备课资料参考练习1.已知△ABC,过点A作直线L.求作:△A′B′C′使它与△ABC关于L对称.作法:(1)作点C关于直线L的对称点C′;(2)作点B关于直线L的对称点B′;(3)点A在L上,故点A的对称点A′与A重合;(4)连结A′B′、B′C′、C′A′.则△A′B′C′就是所求作的三角形.2.已知a⊥b,a、b相交于点O,点P为a、b外一点.求作:点P关于a、b的对称点M、N,并证明OM=ON(不许用全等).作法:(1)过点P作PC⊥a,并延长PC到M,使CM=PC.(2)过点P作PD⊥b,并延长PD到N,使得DN=PD.则点M、N就是点P关于a、b的对称点.证明:∵点P与点M关于直线a对称,∴直线a是线段PM的中垂线.∴OP=OM.同理可证:OP=ON.∴OM=ON.3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,•要求设计的图案由圆、三角形、矩形组成(三种几何图案的个数不限),并且使整个圆形场地成轴对称图形,请你画出你的设计方案.答案:略。
八年级上册人教版轴对称说课稿
八年级上册人教版轴对称说课稿(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作资料、合同协议、条据文书、方案大全、职场资料、个人写作、教学资料、经典美文、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays for everyone, such as work materials, contracts and agreements, clauses, documents, plans, workplace materials, personal writing, teaching materials, classic American essays, essays, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!八年级上册人教版轴对称说课稿八年级上册人教版轴对称说课稿9篇说课稿需要具有良好的表达能力和授课技能,语言流畅、合理地安排时间和节奏,并维持适当的情绪和氛围。
八年级上册数学轴对称教案
八年级上册数学轴对称教案数学教案的设计思路直接影响数学课程的教学效果,教师的思想素养和业务素养也可以通过教案质量反映出来。
下面是为大家细心整理的〔八年级〕上册数学轴对称教案,仅供参考。
八年级上册数学轴对称教案(一)课题:第十三章轴对称教学目标(一)教学学问点1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.(二)能力训练要求1.通过丰富的生活实例认识轴对称,能够识别简洁的轴对称图形及其对称轴.2.经受观看、分析的过程,训练学生观看、分析的能力.(三)情感与价值观要求通过对丰富的轴对称现象的认识,进一步培育学生主动的情感、看法,促进观看、分析、归纳、概括等一般能力和审美能力的提高.教学重点:轴对称图形的概念.教学难点:能够识别轴对称图形并找出它的对称轴.〔教学〔方法〕〕:启发诱导法.学情分析:通过丰富的生活实例认识轴对称,经受观看、分析,学生能理解轴对称的概念。
八年级上册数学轴对称教案(二)教学过程一.创设情境,引入新课[师]我们生活在一个充满对称的世界中,很多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的很多动植物也按对称形生长,ZG的方块字中些也具有对称性对称给我们带来多少美的感受!初步把握对称的奥秒,不仅可以关怀我们发觉一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探究它的隐秘吧! 从这节课开始,我们来学习第十三章:轴对称.今日我们来讨论第一节,认识什么是轴对称图形,什么是对称轴.二.导入新课1、提问:我们先来看几幅图片(书58页图13.1-1),观看它们都有些什么共同特征.2、依据学生的回答,观看如图13.1-2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了秀丽的窗花. 观看得到的窗花和图13.1-1中的图形,你能发觉它们有什么共同的特点吗? 学生商量、探究、分组回答,教师小结:假如一个图形沿始终线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.3、做一做.取一张质地较硬的纸,将纸对折,并用小刀在纸的ZY随便刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行沟通.(学生操作、商量,教师指导)4、接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有很多条,大家请看小黑板: 你能找出它们的对称轴吗?分小组商量学生商量得出结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有很多条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.(1) (2) (3) (4) (5)5、接下来,大家想一想,你发觉了什么?(书59页图13.1-3)像这样,把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三.随堂练习:课本P60练习1,2四.课时小结这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.八年级上册数学轴对称教案(三)课后作业(一)必作题课本习题13.1 第1题.选作题:课本P64面第2题板书设计:第十二章轴对称一,定义:二,小黑板:三、小结四,作业教学〔反思〕:八年级上册数学轴对称教案相关〔文章〕:1.八年级上册全册数学教案2.八年级上册第十三章数学教案3.八年级上册数学教案人教版全册4.人教版八年级数学上册轴对称精选练习题5.XX教版八年级上册数学教案八年级上册数学轴对称教案数学教案的设计思路直接影响数学课程的教学效果,教师的思想素养和业务素养也可以通过教案质量反映出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册《轴对称图形》教案
课
题
轴对称图形课型新授课任课教师
学习目标1.初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。
2.通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3.引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
重点(1)认识轴对称图形的特点,建立轴对
称图形的概念;
(2)准确判断生活中哪些物体是轴对称
图形。
难点本节课教学的难点是找轴对称图形的对
称轴。
教
法
三环五步教具课件、展台教学过程设计
程序时
间
教师活动学生活动
激情导入5分
钟
1.根据下图中一半的图形,你能猜出图中画的是什么?
(1)你们觉得这些图形美不美,它们有什么共同点?
(2)这些图形从哪儿可以分为左边和右边?请再图中指出。
(3)你是怎么知道这些图形左边和右边完全相同的?
(板书:对折电脑演示对折过程)
1.学生认真
听,思考问
题。
2.学生回答
问题,谈自
己的启发。
自主环节10
分
钟
实验。
(1)如下图,先把一张长方形纸对折,在折好的一侧沿折痕画图,用剪刀把
图形剪下,再打开。
(2)学生动手操作。
(3)把你们剪的图形在沿折痕对折,你发现了什么?
动手操作,理解新知
1.揭示概念。
(1)象刚才剪下来的图形就是轴对称图形。
(板书课题:轴对称图形)
谁来说说什么是轴对称图形?(板书:一个图形沿一条直线对折,直线两侧的
图形能够完全重合。
)
1.学生认真
阅读课本,
拿出笔画出
重点内容。
2.不明白的
地方可询问
老师。
3.先增加学
生对知识点
的认识,注
重培养学生
的自主探究
能力,生通
(2)折痕所在的这条直线叫做对称轴。
(板书:折痕所在的这条直线叫做对称轴。
)
画出你所剪的图形的对称轴。
(3)这些图形叫做什么图形?为什么?过动脑思考形成本节课的知识网络。
互动环节10
分
钟
1、小组合作分析问题
2、小组合作答疑解惑
3、师生合作解决问题
巩固概念。
A、把下面的图形剪下来折一折,看看哪些是轴对称图形?哪些不是轴对称图
形?
(1)同桌合作完成并交流。
(2)全班交流。
B、把上面的轴对称图形在折一折,画出它们的对称轴,数一数各有几条对称
轴。
(1)同桌合作完成并交流。
(2)全班交流。
强调圆为什么有无数条对称轴。
1、学生
自主学习,
生成问题。
2、学生在组
内交流讨
论、解决问
题。
3、学生
在组间交流
解决问题。
4、汇总问
题。
5、学生在老
师的帮助下
解决问题。
拓展环节10
分
钟
师出示拓展延伸题,让生去完成:
智力抢答。
1.(1)轴对称图形沿对称轴对折()。
A.能完全重合B.不能完全
重合
(2)平行四边形()是轴对称图形。
A.一定 B.不一定C.一
定不
(3)数字0.3 、8都()轴对称图形。
A.是 B.不是
(4)圆有()条对称轴。
A.2条B.4条C.无数条
(5)正方形有()条对称轴。
A.1条B.2条C.4条
(6)长方形有()条对称轴。
A.1条B.2条 C.4条
1、学生借助
教师出示的
拓展题进行
练习、巩固
本节所学的
重点知识。
2、在老师的
引领下对所
做的问题进
行评价
(7)等腰三角形有()条对称轴。
A.1条 B.2条C.3条(8)等边三角形有()条对称轴。
A.1条B.2条C.3条(9)三角形有()条对称轴。
A.1条B.2条C.不一定,根据三角形类别定
(10)等腰梯形有()条对称轴。
A.1条B.2条 C.4条2..推理游戏:下面应该是什么图形?
3.看看哪位同学最聪明?一张方格纸,怎样剪一剪刀,得到一个十字形。
(如图)3、通过练习让学生了解本节课的重点知识.
课堂小结5分
钟
1这节课学习的主要内容是什么?
2:在学习时应注意哪些问题?
1、生总结知
识点。
2、谈体会
(如何分析
问题、解决
问题)
板书设计
课题
一:目标二:自主三:拓展
课后反思。