全国高中青年数学教师优秀课 《椭圆的简单几何性质》(第一课时)教学设计 精品
椭圆的简单几何性质第一课时教学设计(第16组 )
椭圆的简单几何性质(第一课时)一、教材分析1、教材的地位和作用《椭圆的简单几何性质》是北师大版选修2-1的内容。
本课是在学生学习了椭圆的定义、标准方程的基础上,根据方程研究曲线的性质。
先引导学生观察椭圆(几何直观),了解应该关注椭圆的哪些方面的性质,然后再引导学生考虑方程的各种特征对应着椭圆的哪些几何特征,逐渐让学生掌握研究曲线的几何性质的方法。
这样由形到数,由数到形,通过对曲线的范围、対称性及特殊点的讨论,从整体上把握曲线形状、大小、和位置。
对于学生来说,利用曲线方程研究曲线性质这是第一次,为后续研究其它曲线性质作铺垫。
2.教学重、难点重点:椭圆的简单几何性质及其探究过程。
难点:用曲线方程研究曲线几何性质3.学情分析学生已学习了圆的相关性质,并掌握了椭圆的基本定义及其标准方程,亲历体验、发现和探究的意识,具备一定的图形分析能力和逻辑推理能力。
二.教学目标1.知识与技能:(1)探究椭圆的简单几何性质,初步学习利用方程研究曲线性质的方法。
(2)掌握椭圆的简单几何性质,理解椭圆方程与椭圆曲线间互逆推导的逻辑关系及利用数形结合解决实际问题。
2.过程与方法:(1)培养学生观察、分析、抽象、概括的逻辑思维能力;(2)运用数形结合思想解决实际问题的能力。
3.培养学科核心素养通过学生对椭圆几何性质的探究过程,发展直观想象、逻辑推理、数学运算的学科素养。
三.教法与学法分析1. 教学方法:(1)类比分析法;(2)辨析与研讨法;(3)启发式引导法;(4)反馈式评价法.2. 学法指导自主探究法、观察发现法、归纳总结法。
四.教学过程分析创设情景第一“环节”:导入新课,明确研究方向:(类比与辨析)设置问题1:根据所学的知识,如何画椭圆的大致图形?(描点,体验关键点;对称性)设置问题2:请同学们回忆圆C :x 2+y 2=a 2(a >0)的几何性质。
借鉴圆的几何性质,想一想椭圆12222=+by a x (a >b>0)会有哪些几何性质? 利用多媒体打出一个焦点在轴x 轴上的椭圆,引导学生从直观上观察椭圆,想一想我们应该关注椭圆哪些方面的性质,如何研究?引导学生回顾圆借助方程研究几何性质的方法类比研究椭圆的几何性质。
椭圆的简单几何性质(第一课时)教案
椭圆的简单几何性质(第一课时)教案(科目:数学 时间:2011年12月6日第二节 地点:昌宁二中高98班教室)【授课教师】李光俊【授课班级】昌宁二中高二年级98班 【教学目标】1、知识目标:⑴掌握椭圆的简单几何性质(范围、对称性、顶点、离心率)。
⑵能根据椭圆的几何性质解决一些简单问题。
2、能力目标:培养学生的解析几何观念,培养学生观察、概括能力,以及分析问题、解决问题的能力。
3、情感目标:培养学生对待知识的科学态度和主动探索精神,激发学生学习激情,提高学生数学素养,培养学生对立统一的辩证唯物主义思想。
【教学重点】椭圆的简单几何性质。
【教学难点】椭圆的简单几何性质的应用。
【教学方法】尝试教学法【教具准备】多媒体电脑课件【教学过程】一、思考并回答下列问题: 1.椭圆的定义在平面内,到两定点F 1、F 2的距离之和为常数(大于|F 1F 2 |)的动点的轨迹叫做椭圆。
2.椭圆的标准方程当焦点在X 轴上时当焦点在Y 轴上时3.椭圆中a,b,c 的关系: 22c b a +=4.平面解析几何研究的两个主要问题是什么? (1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
|)|2(2||||2121F F a a PF PF >=+)0(12222>>=+b a by a x )0(12222>>=+b a b x a y二、椭圆的简单几何性质(以 )0(12222>>=+b a by a x 为例)1.椭圆的范围:由12222=+b y a x-a ≤x ≤a, -b ≤y ≤b 知椭圆落在x=±a, y= ± b 组成的矩形巩固练习题1.椭圆14922=+y x 的范围是22,33≤≤-≤≤-y x 巩固练习题2. 椭圆)0,0(12222>>=+n m y n x m 的范围是ny n m x m 11,11≤≤-≤≤-2.椭圆的对称性:从图形上看,椭圆关于x 轴、y 轴、原点对称。
椭圆的简单几何性质优秀教学设计
椭圆的简单几何性质第三课时(一)教学目标1.能利用椭圆中的基本量、、、熟练地求椭圆的标准方程.a b c e 2.掌握椭圆的参数方程,会用参数方程解一些简单的问题.(二)教学过程【复习引入】由一位学生回答,教师板书列表或用投影仪给出.问题1.椭圆有哪些几何性质?问题2.确定椭圆的标准方程需要几个条件?通过对椭圆标准方程的讨论,研究了椭圆的几何性质,必须掌握标准方程中、和a b 、的几何意义以及、、、之间的相互关系,这样就可以由椭圆的几何性质确定c e a b c e 它的标准方程.【例题分析】例1 求中心在原点,过点,一条准线方程为的椭圆方程.⎪⎪⎭⎫ ⎝⎛231,P 043=-x 分析:根据准线方程可知椭圆的焦点在轴上,由于思路不同有两种不同的解法,可x 让学生练习后,教师再归纳小结,解法如下:解法一:设椭圆方程为.()0222222>>=+b a b a y a x b ∵点在椭圆上⎪⎪⎭⎫ ⎝⎛231,P ∴ 即 ①222243b a a b =+()143222-=a a b 又∵一条准线方程是043=-x ∴ ②342=c a 243a c =将①、②代入,得222c b a += 整理得()4222163143a a a a +-=02819324=+-a a 解得或.42=a 372=a 分别代入①得或.12=b 16212=b故所求椭圆方程为或.1422=+y x 121167322=+y x 解法二:设椭圆的右焦点为,点到椭圆右准线的距离为,由椭圆的第二定()0,c F Pd 义得,即a c d PF=. ①()a c c =-⎪⎪⎭⎫ ⎝⎛+-13423122又由准线方程为342==c a x . ②c a c 4322=将②代入①,整理得021319122=+-c c 解得或.3=c 347=c 代入②及得222c b a += 或 ⎪⎩⎪⎨⎧==1422b a ⎪⎪⎩⎪⎪⎨⎧==16213722b a 故所求椭圆的方程为 或 .1422=+y x 121167322=+y x 例2 如图,以原点心圆心,分别以、a b为半径作两个圆,点是大圆半径与()0>>b a B OA 小圆的交点,过点作,垂足为,过点A Ox AN ⊥N 作,垂足为,求当半径绕点B AN BM ⊥M OA O旋转时点的轨迹的参数方程.M 解:设点的坐标为,是以为始M ()y x ,ϕOx 边,为终边的正角.OA取为参数,那么ϕ⎪⎩⎪⎨⎧====ϕϕsin cos OB NM y OA ON x 即⎩⎨⎧==ϕϕsin cos b y a x 这就是所求点的轨迹的参数方程.M 消去参数后得到,由此可知,点的轨迹是椭圆.ϕ12222=+by a x M 点评:这道题还给出了椭圆的一种画法,按照这种方法,在已知椭圆的长、短轴长的情况下,给出离心角的一个值,就可以画出椭圆上的一个对应点,利用几何画板画椭圆ϕ都用此法.例3 已知椭圆,(,,为参数)上的点,求:⎩⎨⎧==ϕϕsin cos b y a x 0>a 0>b ϕ()y x P ,(1)、的取值范围;x y (2)的取值范围.y x 43+解:(1)∵,,1cos 1≤≤-ϕ1sin 1≤≤-ϕ∴,.a a a ≤≤-ϕcosb b b ≤≤-ϕsin ∴,为所求范围.a x a ≤≤-b x b ≤≤-(2)∴ϕϕsin 4cos 343b a y x +=+ .()θϕ++sin 16922b x (其中为第一象限角,且).θb a 43tan =θ而.()1sin 1≤+≤-θϕ∴,()[]222222169169sin 169b a b a b a ++-∈++,θϕ即这所求.222216943169b a y x b a +≤+≤+-例4 把参数方程(为参数).写成普通方程,并求出离心率.⎩⎨⎧==ϕϕsin 4cos 3y x ϕ解:由参数方程得⎪⎪⎩⎪⎪⎨⎧==.sin 4cos 3ϕϕy x 平方相加得为所求普通方程.116922=+y x ∵,,4=a 3=b ∴.791622=-=+=b a c ∴椭圆的离心率.47=e (三)随堂练习1.焦点在轴上的椭圆上一点到两准线间的距离之和为36,到两焦点的距离分别x P 为9和15的椭圆的标准方程为______________.2.参数方程(为参数)表示的曲线的焦点坐标是______________.⎩⎨⎧==θθsin 3cos 4y x θ3.椭圆(为参数)的离心率为_________________.⎩⎨⎧==θθcos 3cos 2y x θ答案:1. 2., 3.18014422=+y x ()07,-()07,35(四)总结提炼若已知条件涉及到焦点,准线方程式时,往往利用定义求解较简便.2.椭圆的参数方程(为参数)中,表明、分别是椭⎩⎨⎧==ϕϕsin cos b y a x ϕ0>>b a a 2b 2圆的长轴、短轴长,且焦点在轴上,参数的几何意义是椭圆的离心角,利用椭圆的参x ϕ数方程求的最值较方便.()y x f ,(五)布置作业1.已知椭圆中心在原点,一个焦点是,点在椭圆上,则点到与()031,F ⎪⎭⎫ ⎝⎛5124,P P 相应准线的距离为( )1FA .B .C .D .5133373253232.椭圆的左焦点为,,是两个顶点,如12222=+by a x ()0>>b a F ()0,a A -()b B ,0果到直线的距离等于,那么椭圆的离心率等于( )F AB 77b A . B . C . D .777-777+32364.椭圆(为参数)的两准线间距离为_______________.⎩⎨⎧==θθsin 4sin 5y x θ5.已知椭圆的一条准线方程是,且过点,求椭圆的标准方程.325-=x ⎪⎭⎫ ⎝⎛5124,6.求椭圆的内接矩形面积的最大值.12222=+by a x ()0>>b a 答案:1.A 2.C 3.D 4. 5.3501162522=+y x 7.设是椭圆上的任一点,则(为参数)()y x P ,⎩⎨⎧==θθsin cos b y a x θ内接矩形面积θθθθcos sin 4sin 2cos 2ab b a S =⋅=∴ .θθ>=2sin 2ab ab S 2≤ab S 2max =(六)板书设计椭圆的简单几何性质(三)一、复习引入二、例题分析例1例2例3例4练习总结。
人教版高中数学《椭圆的简单几何性质》教学设计
《椭圆的简单几何性质》(第一课时)教学设计一、教学内容解析1.内容本节课学习椭圆的几何性质,主要包括范围、长轴、短轴、对称性、离心率,以及性质的应用.2.内容解析本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第二章《圆锥曲线与方程》中2.2《椭圆》的第二课时,主要内容是研究椭圆的几何性质. 椭圆的对称性、长轴、短轴描述了椭圆的形状特征,椭圆的范围描述了椭圆的大小,椭圆的离心率是用数值刻画椭圆扁平程度的量.从单元内容看,本单元主要包括三种圆锥曲线的定义、标准方程和性质,以及坐标法的应用,在学习的过程中要深入对数形结合思想的理解.本节课是在学生熟悉了直线和圆的方程、椭圆的定义及其标准方程的基础上,并具有初步运用方程研究曲线的方法的活动经验后,第一次系统地运用代数与几何相结合的方法研究曲线的性质.它为之后研究双曲线、抛物线的几何性质、运用“以数解形”的方法解决几何问题等内容提供了数学模型和方法指导,因此本节课对体会单元核心思想方法具有举足轻重的地位和作用.本节内容蕴含了丰富的数学思想方法,突出体现了数形结合、分类讨论及类比推理的思想和用代数法研究曲线性质的数学方法.基于以上分析,确定本节课的教学重点是:利用椭圆的标准方程研究椭圆的简单几何性质,理解“以数解形”的数形结合思想.二、教学目标设置1.教学目标(1)在动手画椭圆的过程中,发现并提出椭圆对称性、大小、圆扁程度等几何性质的问题,发展学生发现问题提出问题的能力,培养学生数学抽象的能力.(2)通过对椭圆图形特征的研究,分析椭圆的范围、长轴、短轴、对称性的性质,发展学生分析几何图形和直观想象的能力.(3)结合方程分析椭圆性质,以数解形,提升学生对数形结合思想的理解.(4)通过离心率的探究,使学生经历观察、分析、归纳、概括的思维过程和动手操作的实践过程,发展学生数学逻辑推理的能力.2.目标解析(1)设计画椭圆图形,可以提高学生研究曲线时动手作图的基本技能,并让学生从作图的过程中初步了解椭圆的各项几何性质,发展学生直观想象和数学抽象的数学核心素养,培养学生分析问题和解决问题的操作性思维能力.(2)研究曲线性质时,首先从图形角度研究,可以提高学生发现问题的能力,并让学生体会几何直观在研究曲线性质中的作用.(3)通过方程对椭圆的几何性质的探究,学生进一步感受用代数方法解决几何问题的数形结合的思想,在由数释形的过程中,培养学生的探究习惯,发展学生的理性思维.(4)在椭圆离心率的探究过程中,通过实验发现规律,结合老师的引导点拨,让学生去实现对离心率的发现和理解,培养学生严谨的治学态度和不断发现问题的能力,以及运用所学知识解决新问题的能力.三、学生学情分析学生已经熟悉和掌握椭圆的定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力,但这是学生第一次通过方程研究曲线的几何性质,研究思路并不是很清晰.对于范围、对称性、顶点三个性质,通过老师的点拨引导,学生比较容易掌握.离心率概念比较抽象,学生缺乏研究此类问题的经验.本节课的教学难点是:学生对椭圆的核心性质——离心率的认识与理解.本单元内容的教学,要使学生充分经历“操作、观察、分析、抽象、概括”的学习过程.即从生活中抽象图形的模型,动手操作画图象,观察曲线的特点,探究曲线的方程,根据方程研究曲线.教学中,充分运用类比学习、螺旋提升的方法,不断形成完整的解析几何研究方法和学习策略.在运用方程讨论曲线性质时,主要以独立探究为主,离心率的发现过程要为学生创设适当的情境,使学生在最近发展区中发现问题、解决问题.对于坐标法的理解,教师要为学生创造循序渐进地理解数形结合思想的条件,以代数与几何为什么结合、怎么结合、结合时注意什么等问题为抓手,帮助学生深刻理解此数学思想方法.四、教学策略分析根据本节课教学内容的特点,为了更直观、形象地突出重点,突破难点,激发学生的学习兴趣,在课堂教学中让学生通过动手操作画椭圆,亲历知识的生成过程,力求借助信息技术手段,以“几何画板”软件为平台,通过对椭圆的核心性质离心率e 的变化的演示,观察椭圆圆扁程度的变化,让学生体会运用“数形结合”的思想方法建立起高中数学的两条主线——代数主线和几何主线间的密切联系,同时利用展台将学生的研究成果进行实时呈现,能够使本节课重点研究的椭圆的简单几何性质的四方面——椭圆的范围、对称性、顶点及离心率问题及时得到很好的解决.具体来说包括:1.任务驱动教学法:利用问题串作引导,引发学生积极思考并积极探究;2.演示教学法:学生实物投影展示和教师几何画板动态演示相结合,提高课堂效率的同时兼顾解答的规范性;3.启发式教学法:在研究范围和离心率时,教师做积极启发并与学生自主探究与合作讨论相结合突破难点;4.学法:以小组合作为基本活动模型,采用自主学习法,结合合作探究法,讨论法,归纳总结法与交流展示法.五、教学过程设计(一) 创设情境、建构概念1.情境创设:让学生观察建筑中国国家大剧院,它与湖中倒影的正视图呈椭圆形,进而引出课题.2.知识回顾:椭圆的标准方程:当焦点在x 轴时,)0(12222>>=+b a by a x 当焦点在y 轴时,)0(12222>>=+b a bx a y 【设计意图】回顾上节课所学内容,巩固知识并为本节课所学做铺垫.3.活动创设 课前布置预习作业:你能否利用所学知识,在同一坐标系中画出方程1162522=+y x 和192522=+y x 所表示的曲线.课上分组展示学生的成果,并让学生观察他们有什么几何特征.预设可能出现的情况:预设1:先判断其为椭圆,再利用定义画图;预设2:先判断其为椭圆,寻找到与坐标轴的交点,画椭圆;评价预设:寻找画图的关键点,提高画图容易度.预设3:先判断其对称性,只需精确画出其第一象限的图象;评价预设:发现椭圆的对称性,可以给画图带来方便.预设4:从函数角度出发,利用描点法作图.评价预设:将其转化为函数,利用函数图象的画法作图.【设计意图】数学是现实世界的反映.从学生感兴趣的问题出发,创设思维情境,让学生在动手操作的过程中重温方程和曲线的关系,直观感受椭圆的几何特征,自然引出本节课的课题.(二)独思共议,引导探究通过画具体的椭圆,由特殊到一般,提出一般的椭圆会有哪些性质.以椭圆)0(12222>>=+b a by a x 为例研究椭圆的几何性质. 探究一.椭圆的范围 问题1:椭圆大小如何刻画? 问题2:该椭圆上点的横坐标的取值范围是什么?纵坐标呢(预设:学生会利用图形观察得知,老师要给予肯定:图形观察很直观)问题3: 你能否用方程说明该范围?追问:范围可以由不等关系求出,如何建立y x ,的不等关系?(先独立思考2分钟再进行小组合作,后进行小组展示成果)从方程上看: 预设1:因为012222≥-=a x b y 所以122≤ax ,故可得a x a ≤≤-,同理可得b y b ≤≤-. 预设2:由椭圆方程)0(12222>>=+b a b y a x 中实数平方的非负性可得122≤a x ,122≤by , o所以a x a ≤≤-,b y b ≤≤-.预设3:利用三角换元:设θθsin ,cos ==by a x ,则θθsin ,cos b y a x ==, 所以a x a ≤≤-,b y b ≤≤-.教师总结点评:利用方程中变量的非负性,判断其它变量范围的方法,是解析几何中利用方程研究曲线范围的一般方法.【设计意图】通过椭圆的标准方程确定椭圆的范围,使学生感受利用椭圆方程研究椭圆几何性质的方法,理解椭圆)0(12222>>=+b a by a x 位于直线a x ±=和b x ±=所围成的矩形内,为描点法作图提供了参考,体会利用坐标法研究曲线几何性质的优越性.探究二.椭圆的对称性问题1:椭圆具有怎样的对称性?师生活动:学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.学生在必修2《直线的方程》和《圆的方程》的学习中经历过对曲线对称性的探究过程,此外学生还可以类比函数的奇偶性的研究方法得到椭圆的对称性,并给出椭圆中心的定义.预设:学生可能会从图形和方程的角度得到.(教师通过几何画板演示)(此问题对学生具有相当的难度,老师指明图形对称的本质是点的对称,在学生回答过程中,要强调在椭圆上“任取一点”)问题2:能否用椭圆的方程说明该对称性?(小组讨论2分钟,找代表发言)(教师动画展示)椭圆上任取点),(y x P ,关于y 轴的对称点),('y x P -也在椭圆上,说明椭圆关于y 轴对称,关于x 轴的对称点),(''y x P -也在椭圆上,说明椭圆关于x 轴对称,关于原点的对称点),('''y x P --也在椭圆上,说明椭圆关于原点对称.即坐标轴x 轴和y 轴是椭圆的对称轴,原点)0,0(O 是椭圆的对称中心,称为椭圆的中心.强调:利用曲线上任意一点关于坐标轴和原点的对称点仍在曲线上来判断曲线的对称性,也是利用方程研究曲线对称性的一般方法.问题3:研究曲线 的对称性【设计意图】学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.教师通过信息技术的引入,让学生理解图形对称性的本质是构成图形的点的对称性,即利用曲线上点的坐标的对称性,可以实现曲线的对称性.并通过练习题,让学生学以致用,体会研究曲线对称性的一般方法.探究三.椭圆的顶点问题1:观察椭圆图形,他有哪些特殊点?问题2:这些点的坐标是什么?利用学生描点画图时的特殊点,引入椭圆的顶点,让学生感受图形中某些特殊点在确定曲线位置时的作用,从而得到顶点定义,即椭圆与对称轴x 轴和y 轴的四个交点.并指出长轴,短轴和长半轴长,短半轴长等相关概念.【设计意图】让学生明确顶点等相关概念,理解顶点与对称性的关系.探究四.椭圆的形状——认识椭圆的离心率e问题1:用什么量可以刻画椭圆的扁平程度?学生活动:小组合作,利用椭圆的定义画椭圆,(小组合作讨论,相互交流,小组展示)预设1:a c ;预设评价:学生可能从椭圆的定义出发,发现画椭圆时ac 的变化对椭圆形状的影响.预设2:ab .预设评价:学生可能观察预习作业中两个椭圆的扁平程度得到. 师生活动:小组展示探究成果.学生观察当a 保持不变时,随着c 的改变,椭圆圆扁程度的变化,发现椭圆随着a c 的增大而变扁,随着a c 的减小而变圆.教师利用几何画板动态展示,并给出离心率的概念,并引导学生求出椭圆离心率的范围,【设计意图】让学生从具体问题中抽象出离心率的定义,信息技术的引入不仅可以使学生体会到定义的科学性、严谨性,让学生深刻地理解定义,更有助于培养学生的数学抽象、逻辑推理等数学素养,不断积累数学活动的经验.问题2:离心率的大小如何影响椭圆的扁平程度?预设:e 越接近于0,则c 越接近于0,即22c a b -=越接近于a , 椭圆越接近于圆; 122=-y xe 越接近于1,则c 越接近于a ,即22c a b -=越接近于0,椭圆越扁.(让学生用逼近的思想想象当0→e 时,椭圆接近于圆,当1→e 时,椭圆接近于一条线段.)【设计意图】利用等价转化的思想刻画椭圆的扁平程度,加深学生对椭圆的核心性质离心率e 的认识与理解.(三)类比联想,知识迁移类比焦点在x 轴上的椭圆的几何性质,得到焦点在y 轴上的椭圆的几何性质,让学生体会数学研究中的类比推理的过程与方法.【设计意图】让学生体会椭圆焦点位置的变化对其性质的影响,提升学生的逻辑推理素养,并为后续双曲线和抛物线的学习奠定基础.(四)巩固新知,提升能力例题分析:例1.椭圆400251622=+y x 的长轴长是________,短轴长是_________,焦点坐标是________,焦距是__________,顶点坐标是__________,离心率是________.例2.在椭圆)0(12222>>=+b a by a x 中,已知B OF 2∆为等腰直角三角形,求椭圆的离心率.问题:你能从三角函数的角度理解离心率对椭圆形状的影响吗?【设计意图】通过例题分析,巩固椭圆的几何性质,例2旨在引导学生深刻理解椭圆离心率的几何意义,实现认识上的又一次飞跃.(五)回顾反思,归纳总结学生和老师共同回顾、梳理、总结本节课所学的数学知识、思想、方法.(1)椭圆的几何性质(2)用坐标法研究曲线性质的过程与方法(3)所用的数学思想方法:数形结合、化归转化、类比推理师生活动:先由学生总结所学内容,教师补充说明,特别是通过本节课所经历的知识的探究过程,体会类比与数形结合的数学思想.通过本节课,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断地激发学生的数学学习兴趣.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标测试,当堂反馈1.已知椭圆方程为6622=+y x ,它的长轴长是__________,短轴长是___________, 焦点坐标是________,焦距是________,顶点坐标是_________,离心率是________.2.椭圆以坐标轴为对称轴,离心率32=e ,长轴长为6,则椭圆的标准方程为( ) (A)1203622=+y x (B)15922=+y x (C)15922=+y x 或15922=+x y (D)1203622=+x y 或1203622=+y x 【设计意图】通过目标检测,可以了解学生对知识的理解和掌握情况,为教学评价提供依据,其中第2题旨在体会分类讨论思想在数学中的应用.接着展示图片:展示椭圆在建筑与天文等方面的应用,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断激发学生的学习兴趣.(七)布置作业,巩固所学实践作业:查阅椭圆在建筑学与天文学方面应用的资料,每组写一份调研小报告.分层作业:P习题2.2A组2,3,4,5题必做:课本49选做:A组第9题【设计意图】作业分层布置,力求让不同基础的学生都拥有成功学习的体验.必做题主要考查学生对本节课重点知识的掌握情况,检查学生运用所学知识解决问题的能力,实践作业的设置是为了让学生体验如何检索、搜集资料进行数学学习,这是本节课所学内容的提高与拓展,可以更好地培养学生分析问题和解决问题的能力.。
高中数学选修1-1《椭圆的简单几何性质》教案
课题:椭圆的简单几何性质(第一课时)一、教学目标:1、知识与技能(1)探究椭圆的简单几何性质,初步学习利用方程研究曲线性质的方法;(2)掌握椭圆的简单几何性质,理解椭圆方程与椭圆曲线间互逆推导的逻辑关系及利用数形结合思想方法解决实际问题。
2、过程与方法(1)通过椭圆的方程研究椭圆的简单几何性质,使学生经历知识产生与形成的过程,培养学生观察、分析、逻辑推理,理性思维的能力。
(2)通过掌握椭圆的简单几何性质及应用过程,培养学生对研究方法的思想渗透及运用数形结合思想解决问题的能力。
3、情感、态度与价值观通过数与形的辩证统一,对学生进行辩证唯物主义教育,通过对椭圆对称美的感受,激发学生对美好事物的追求。
二、教学重难点:1、教学重点:椭圆的简单几何性质及其探究过程2、教学难点:利用曲线方程研究曲线几何性质的基本方法和离心率定义的给出过程。
三、教学方法:本节课以启发式教学为主,综合运用演示法、讲授法、讨论法、有指导的发现法及练习法等教学方法。
先通过多媒体动画演示,创设问题情境;在椭圆简单几何性质的教学过程中,通过多媒体演示,有指导的发现问题,然后进行讨论、探究、总结、运用,最后通过练习加以巩固提高。
四、教学过程:(一)创设情景,揭示课题多媒体展示:模拟“嫦娥一号”升空,进入轨道运行的动画. 解说:2007年10月24日,随着中国自主研制的第一个月球探测器——嫦娥一号卫星飞向太空,自强不息的中国航天人,又将把中华民族的崭新高度镌刻在太空中。
绕月探测,中国航天的第三个里程碑。
它标志着,在实现人造地球卫星飞行和载人航天之后,中国航天又向深空探测迈出了第一步。
“嫦娥一号”卫星发射后首先将被送入一个椭圆形地球同步轨道,这一轨道离地面最近距离为200公里,最远为5.1万公里,,而我们地球的半径R=6371km.根据这些条件,我们能否求出其轨迹方程呢?要想解决这个问题,我们就一起来学习“椭圆的简单几何性质”。
(教师结合多媒体动画展示,生动解说,提出问题。
全国高中青年数学教师优质课课《椭圆的简单几何性质》(第一课时)教学设计 精品
2.2椭圆椭圆的简单几何性质(第1课时)(人教A版高中课标教材数学选修2-1)教学设计授课教师:乔树华天津市宁河区芦台第一中学2018年10月《椭圆的简单几何性质》(第一课时)教学设计天津市宁河区芦台第一中学乔树华一、教学内容解析1.内容本节课学习椭圆的几何性质,主要包括范围、长轴、短轴、对称性、离心率,以及性质的应用.2.内容解析本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第二章《圆锥曲线与方程》中2.2《椭圆》的第二课时,主要内容是研究椭圆的几何性质. 椭圆的对称性、长轴、短轴描述了椭圆的形状特征,椭圆的范围描述了椭圆的大小,椭圆的离心率是用数值刻画椭圆扁平程度的量.从单元内容看,本单元主要包括三种圆锥曲线的定义、标准方程和性质,以及坐标法的应用,在学习的过程中要深入对数形结合思想的理解.本节课是在学生熟悉了直线和圆的方程、椭圆的定义及其标准方程的基础上,并具有初步运用方程研究曲线的方法的活动经验后,第一次系统地运用代数与几何相结合的方法研究曲线的性质.它为之后研究双曲线、抛物线的几何性质、运用“以数解形”的方法解决几何问题等内容提供了数学模型和方法指导,因此本节课对体会单元核心思想方法具有举足轻重的地位和作用.本节内容蕴含了丰富的数学思想方法,突出体现了数形结合、分类讨论及类比推理的思想和用代数法研究曲线性质的数学方法.基于以上分析,确定本节课的教学重点是:利用椭圆的标准方程研究椭圆的简单几何性质,理解“以数解形”的数形结合思想.二、教学目标设置1.教学目标(1)在动手画椭圆的过程中,发现并提出椭圆对称性、大小、圆扁程度等几何性质的问题,发展学生发现问题提出问题的能力,培养学生数学抽象的能力.(2)通过对椭圆图形特征的研究,分析椭圆的范围、长轴、短轴、对称性的性质,发展学生分析几何图形和直观想象的能力.(3)结合方程分析椭圆性质,以数解形,提升学生对数形结合思想的理解.(4)通过离心率的探究,使学生经历观察、分析、归纳、概括的思维过程和动手操作的实践过程,发展学生数学逻辑推理的能力.2.目标解析(1)设计画椭圆图形,可以提高学生研究曲线时动手作图的基本技能,并让学生从作图的过程中初步了解椭圆的各项几何性质,发展学生直观想象和数学抽象的数学核心素养,培养学生分析问题和解决问题的操作性思维能力.(2)研究曲线性质时,首先从图形角度研究,可以提高学生发现问题的能力,并让学生体会几何直观在研究曲线性质中的作用.(3)通过方程对椭圆的几何性质的探究,学生进一步感受用代数方法解决几何问题的数形结合的思想,在由数释形的过程中,培养学生的探究习惯,发展学生的理性思维.(4)在椭圆离心率的探究过程中,通过实验发现规律,结合老师的引导点拨,让学生去实现对离心率的发现和理解,培养学生严谨的治学态度和不断发现问题的能力,以及运用所学知识解决新问题的能力.三、学生学情分析学生已经熟悉和掌握椭圆的定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力,但这是学生第一次通过方程研究曲线的几何性质,研究思路并不是很清晰.对于范围、对称性、顶点三个性质,通过老师的点拨引导,学生比较容易掌握.离心率概念比较抽象,学生缺乏研究此类问题的经验.本节课的教学难点是:学生对椭圆的核心性质——离心率的认识与理解.本单元内容的教学,要使学生充分经历“操作、观察、分析、抽象、概括”的学习过程.即从生活中抽象图形的模型,动手操作画图象,观察曲线的特点,探究曲线的方程,根据方程研究曲线.教学中,充分运用类比学习、螺旋提升的方法,不断形成完整的解析几何研究方法和学习策略.在运用方程讨论曲线性质时,主要以独立探究为主,离心率的发现过程要为学生创设适当的情境,使学生在最近发展区中发现问题、解决问题.对于坐标法的理解,教师要为学生创造循序渐进地理解数形结合思想的条件,以代数与几何为什么结合、怎么结合、结合时注意什么等问题为抓手,帮助学生深刻理解此数学思想方法.四、教学策略分析根据本节课教学内容的特点,为了更直观、形象地突出重点,突破难点,激发学生的学习兴趣,在课堂教学中让学生通过动手操作画椭圆,亲历知识的生成过程,力求借助信息技术手段,以“几何画板”软件为平台,通过对椭圆的核心性质离心率e 的变化的演示,观察椭圆圆扁程度的变化,让学生体会运用“数形结合”的思想方法建立起高中数学的两条主线——代数主线和几何主线间的密切联系,同时利用展台将学生的研究成果进行实时呈现,能够使本节课重点研究的椭圆的简单几何性质的四方面——椭圆的范围、对称性、顶点及离心率问题及时得到很好的解决.具体来说包括:1.任务驱动教学法:利用问题串作引导,引发学生积极思考并积极探究;2.演示教学法:学生实物投影展示和教师几何画板动态演示相结合,提高课堂效率的同时兼顾解答的规范性;3.启发式教学法:在研究范围和离心率时,教师做积极启发并与学生自主探究与合作讨论相结合突破难点;4.学法:以小组合作为基本活动模型,采用自主学习法,结合合作探究法,讨论法,归纳总结法与交流展示法.五、教学过程设计(一) 创设情境、建构概念1.情境创设:让学生观察建筑中国国家大剧院,它与湖中倒影的正视图呈椭圆形,进而引出课题.2.知识回顾:椭圆的标准方程:当焦点在x 轴时,)0(12222>>=+b a by a x 当焦点在y 轴时,)0(12222>>=+b a bx a y 【设计意图】回顾上节课所学内容,巩固知识并为本节课所学做铺垫.3.活动创设课前布置预习作业:你能否利用所学知识,在同一坐标系中画出方程1162522=+y x 和192522=+y x 所表示的曲线.课上分组展示学生的成果,并让学生观察他们有什么几何特征.预设可能出现的情况:预设1:先判断其为椭圆,再利用定义画图;预设2:先判断其为椭圆,寻找到与坐标轴的交点,画椭圆;评价预设:寻找画图的关键点,提高画图容易度.预设3:先判断其对称性,只需精确画出其第一象限的图象;评价预设:发现椭圆的对称性,可以给画图带来方便.预设4:从函数角度出发,利用描点法作图.评价预设:将其转化为函数,利用函数图象的画法作图.【设计意图】数学是现实世界的反映.从学生感兴趣的问题出发,创设思维情境,让学生在动手操作的过程中重温方程和曲线的关系,直观感受椭圆的几何特征,自然引出本节课的课题.(二)独思共议,引导探究通过画具体的椭圆,由特殊到一般,提出一般的椭圆会有哪些性质.以椭圆)0(12222>>=+b a by a x 为例研究椭圆的几何性质. 探究一.椭圆的范围 问题1:椭圆大小如何刻画? 问题2:该椭圆上点的横坐标的取值范围是什么?纵坐标呢(预设:学生会利用图形观察得知,老师要给予肯定:图形观察很直观)问题3: 你能否用方程说明该范围?追问:范围可以由不等关系求出,如何建立y x ,的不等关系?(先独立思考2分钟再进行小组合作,后进行小组展示成果)从方程上看: 预设1:因为012222≥-=a x b y 所以122≤ax ,故可得a x a ≤≤-,同理可得b y b ≤≤-. 预设2:由椭圆方程)0(12222>>=+b a b y a x 中实数平方的非负性可得122≤a x ,122≤by , 所以a x a ≤≤-,b y b ≤≤-.o预设3:利用三角换元:设θθsin ,cos ==by a x ,则θθsin ,cos b y a x ==, 所以a x a ≤≤-,b y b ≤≤-.教师总结点评:利用方程中变量的非负性,判断其它变量范围的方法,是解析几何中利用方程研究曲线范围的一般方法.【设计意图】通过椭圆的标准方程确定椭圆的范围,使学生感受利用椭圆方程研究椭圆几何性质的方法,理解椭圆)0(12222>>=+b a by a x 位于直线a x ±=和b x ±=所围成的矩形内,为描点法作图提供了参考,体会利用坐标法研究曲线几何性质的优越性.探究二.椭圆的对称性问题1:椭圆具有怎样的对称性?师生活动:学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.学生在必修2《直线的方程》和《圆的方程》的学习中经历过对曲线对称性的探究过程,此外学生还可以类比函数的奇偶性的研究方法得到椭圆的对称性,并给出椭圆中心的定义.预设:学生可能会从图形和方程的角度得到.(教师通过几何画板演示)(此问题对学生具有相当的难度,老师指明图形对称的本质是点的对称,在学生回答过程中,要强调在椭圆上“任取一点”) 问题2:能否用椭圆的方程说明该对称性?(小组讨论2分钟,找代表发言)(教师动画展示)椭圆上任取点),(y x P ,关于y 轴的对称点),('y x P -也在椭圆上,说明椭圆关于y 轴对称,关于x 轴的对称点),(''y x P -也在椭圆上,说明椭圆关于x 轴对称,关于原点的对称点),('''y x P --也在椭圆上,说明椭圆关于原点对称.即坐标轴x 轴和y 轴是椭圆的对称轴,原点)0,0(O 是椭圆的对称中心,称为椭圆的中心.强调:利用曲线上任意一点关于坐标轴和原点的对称点仍在曲线上来判断曲线的对称性,也是利用方程研究曲线对称性的一般方法.问题3:研究曲线 的对称性【设计意图】学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对122=-y x其进行研究.教师通过信息技术的引入,让学生理解图形对称性的本质是构成图形的点的对称性,即利用曲线上点的坐标的对称性,可以实现曲线的对称性.并通过练习题,让学生学以致用,体会研究曲线对称性的一般方法.探究三.椭圆的顶点问题1:观察椭圆图形,他有哪些特殊点?问题2:这些点的坐标是什么?利用学生描点画图时的特殊点,引入椭圆的顶点,让学生感受图形中某些特殊点在确定曲线位置时的作用,从而得到顶点定义,即椭圆与对称轴x 轴和y 轴的四个交点.并指出长轴,短轴和长半轴长,短半轴长等相关概念.【设计意图】让学生明确顶点等相关概念,理解顶点与对称性的关系.探究四.椭圆的形状——认识椭圆的离心率e问题1:用什么量可以刻画椭圆的扁平程度?学生活动:小组合作,利用椭圆的定义画椭圆,(小组合作讨论,相互交流,小组展示)预设1:a c ;预设评价:学生可能从椭圆的定义出发,发现画椭圆时ac 的变化对椭圆形状的影响.预设2:ab .预设评价:学生可能观察预习作业中两个椭圆的扁平程度得到. 师生活动:小组展示探究成果.学生观察当a 保持不变时,随着c 的改变,椭圆圆扁程度的变化,发现椭圆随着a c 的增大而变扁,随着a c 的减小而变圆.教师利用几何画板动态展示,并给出离心率的概念,并引导学生求出椭圆离心率的范围,【设计意图】让学生从具体问题中抽象出离心率的定义,信息技术的引入不仅可以使学生体会到定义的科学性、严谨性,让学生深刻地理解定义,更有助于培养学生的数学抽象、逻辑推理等数学素养,不断积累数学活动的经验.问题2:离心率的大小如何影响椭圆的扁平程度?预设:e 越接近于0,则c 越接近于0,即22c a b -=越接近于a , 椭圆越接近于圆; e 越接近于1,则c 越接近于a ,即22c a b -=越接近于0,椭圆越扁.(让学生用逼近的思想想象当0→e 时,椭圆接近于圆,当1→e 时,椭圆接近于一条线段.)【设计意图】利用等价转化的思想刻画椭圆的扁平程度,加深学生对椭圆的核心性质离心率e 的认识与理解.(三)类比联想,知识迁移类比焦点在x 轴上的椭圆的几何性质,得到焦点在y 轴上的椭圆的几何性质,让学生体会数学研究中的类比推理的过程与方法.【设计意图】让学生体会椭圆焦点位置的变化对其性质的影响,提升学生的逻辑推理素养,并为后续双曲线和抛物线的学习奠定基础.(四)巩固新知,提升能力例题分析:例1.椭圆400251622=+y x 的长轴长是________,短轴长是_________,焦点坐标是________,焦距是__________,顶点坐标是__________,离心率是________.例2.在椭圆)0(12222>>=+b a b y a x 中,已知B OF 2∆为等腰直角三角形,求椭圆的离心率.问题:你能从三角函数的角度理解离心率对椭圆形状的影响吗? 【设计意图】通过例题分析,巩固椭圆的几何性质,例2旨在引导学生深刻理解椭圆离心率的几何意义,实现认识上的又一次飞跃.(五)回顾反思,归纳总结学生和老师共同回顾、梳理、总结本节课所学的数学知识、思想、方法.(1)椭圆的几何性质(2)用坐标法研究曲线性质的过程与方法(3)所用的数学思想方法:数形结合、化归转化、类比推理师生活动:先由学生总结所学内容,教师补充说明,特别是通过本节课所经历的知识的探究过程,体会类比与数形结合的数学思想.通过本节课,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断地激发学生的数学学习兴趣.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标测试,当堂反馈1.已知椭圆方程为6622=+y x ,它的长轴长是__________,短轴长是___________, 焦点坐标是________,焦距是________,顶点坐标是_________,离心率是________.2.椭圆以坐标轴为对称轴,离心率32=e ,长轴长为6,则椭圆的标准方程为( ) (A)1203622=+y x (B)15922=+y x (C)15922=+y x 或15922=+x y (D)1203622=+x y 或1203622=+y x 【设计意图】通过目标检测,可以了解学生对知识的理解和掌握情况,为教学评价提供依据,其中第2题旨在体会分类讨论思想在数学中的应用.接着展示图片:展示椭圆在建筑与天文等方面的应用,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断激发学生的学习兴趣.(七)布置作业,巩固所学实践作业:查阅椭圆在建筑学与天文学方面应用的资料,每组写一份调研小报告. 分层作业:必做:课本49P 习题2.2A 组2,3,4,5题选做:A 组第9题【设计意图】作业分层布置,力求让不同基础的学生都拥有成功学习的体验.必做题主要考查学生对本节课重点知识的掌握情况,检查学生运用所学知识解决问题的能力,实践作业的设置是为了让学生体验如何检索、搜集资料进行数学学习,这是本节课所学内容的提高与拓展,可以更好地培养学生分析问题和解决问题的能力.。
《椭圆的简单几何性质》教学设计
椭圆的简单几何性质(1)教学设计杨华燕大附中2.2.2椭圆的简单几何性质(1)教学设计一、教学任务及对象1、教学内容分析《椭圆的简单几何性质》是选修2-1第二章第二节的内容,本节内容是在学生已经学过曲线与方程和椭圆的概念及其标准方程基础上引入的,是利用椭圆的标准方程研究椭圆的几何性质,它是由方程研究曲线的性质的一个应用,也是为后面学习利用双曲线、抛物线的标准方程研究其几何性质做铺垫,因此本节课起到承前启后的作用。
2、教学对象分析本节课授课的对象是高二年级的学生,他们已掌握了椭圆的标准方程,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。
二、教学目标依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:1、知识与技能:使学生掌握椭圆的几何性质,初步学会运用椭圆的几何性质解决问题,进一步体会数形结合的思想。
2、过程与方法:通过数和形两条线研究椭圆的几何性质,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数形结合的思想方法;对椭圆的几何性质的归纳、总结时培养学生抽象概括能力;进一步强化数形结合思想。
3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断创新的学习习惯和品质。
三、重、难点分析重点:椭圆的简单几何性质难点:培养数形结合思想四、教学策略为了突出重点、突破难点,在教学中采取了以下策略:1.教法分析为了充分调动学生学习的积极性,采用“生本课堂”模式,培养学生的创新精神,使学生在解决问题的同时,形成了方法.另外恰当的利用多媒体课件进行辅助教学,借助信息技术创设情境激发学生的学习兴趣.2.学法分析本节课通过探究椭圆的几何性质,让学生体会数形结合思想,加深对解析几何的理解;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、分析问题和解决问题的能力.五、教学过程本节课中应把更多的时间、机会留给学生,让学生充分的交流、探究,积极引导学生动手操作、动脑思考。
椭圆的几何性质(教案
《椭圆的简单几何性质》(第一课时)论证学法指导,探索新知1、范围的探究问1:根据12222=+byax(a>b>0)的图象,你能说出x、y的范围吗?问2:如何根据方程12222=+byax(a>b>0)来验证x、y 的取值范围?引导:椭圆标准方程12222=+byax(a>b>0)有什么特点?(1)方程的左边是平方和的形式,右边是常数1。
(2)方程中x2和y2的系数不相等。
(展示过程)归纳结论:①椭圆方程中x、y的范围为:axa≤≤-且byb≤≤-;②椭圆位于直线x=a±和y=b±所围成的矩形内。
2、对称性的探究(1)椭圆12222=+byax(a>b>0)具有怎样的对称性呢?你能根据图象加以说明吗?(展示动画,归纳总结)(2)你能根据椭圆的标准方程来验证它的对称性吗?如何验证?①把x换成-x,方程变吗?说明图象关于什么对称?②把y换成-y,方程变吗?说明图象关于什么对称?教师提问,学生独立思考,然后通过观看动画得出结论。
教师巡视,展示学生解答过程,师生评价。
动画展示椭圆的对称性,归纳结论。
教师提问,学生观察思考、动手操作。
教师展示学生解答过程,师生共评。
教师结合图形给出相关定义。
学生结合图形,展开讨论。
图形展示,得出结论。
学生观察、回答。
使学生从对称性的本质上得到研究对称性的方法。
动画展示椭圆的对称性,使学生体会椭圆的对称美。
展示和评价学生的解题过程,培养学生逻辑推理能力。
结合图形给出相关定义,使学生对定义有深刻理解,也为范围的探究作好铺垫。
体会a、b、c的几何意义,体现数与形的紧密结合,为椭圆扁平程度的探究奠定基础。
环节教学内容师生互动设计意图(3)归纳总结:椭圆12222=+byax(a>b>0)的图象关于x轴,y轴和原点对称,坐标轴是其对称轴,坐标原点是其对称中心,对称中心也叫椭圆的中心。
3、顶点的探究椭圆12222=+byax(a>b>0)与对称轴有几个交点呢?你能根据方程求出这些交点坐标吗?顶点定义:椭圆与对称轴的交点叫做椭圆的顶点。
高中数学 2.1.2 第1课时 椭圆的简单几何性质教案 选修1-1
2.1.2 椭圆的简单几何性质第1课时椭圆的简单几何性质(教师用书独具)●三维目标1.知识与技能掌握椭圆的简单几何性质,了解椭圆标准方程中a,b,c的几何意义,明确其相互关系.2.过程与方法能够画出椭圆的图形,会利用椭圆的几何性质解决相关的简单问题.3.情感、态度与价值观从离心率大小变化对椭圆形状的影响,体现数形结合,体会数学的对称美、和谐美.●重点、难点重点:由标准方程分析出椭圆几何性质.难点:椭圆离心率几何意义的导入和理解.对重难点的处理:为了突出重点,突破难点,应做好①让学生自主探索新知,②重难点之处进行反复分析,③及时巩固(教师用书独具)●教学建议根据教学内容并结合学生所具备的逻辑思维能力,为了体现学生的主体地位,遵循学生的认知规律,宜采用这样的教学方法:启发式讲解,互动式讨论,研究式探索,反馈式评价.●教学流程创设问题情境,引出问题:椭圆有哪些简单几何性质?⇒引导学生结合椭圆的图形,观察、比较、分析,导出焦点在x轴上的椭圆的简单几何性质.⇒引导学生类比导出焦点在y轴上椭圆的简单几何性质.⇒通过例1及其互动探究,使学生掌握已知椭圆方程求几何性质的方法.⇒通过例2及其变式训练,使学生掌握由椭圆的几何性质求其标准方程的方法.⇒探究离心率对椭圆形状的影响及求解方法,完成例3及其变式训练,从而解决如何求离心率问题.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第22页)课标解读1.掌握椭圆的简单几何性质及应用.(难点)2.掌握椭圆离心率的求法及a ,b ,c 的几何意义.(难点)3.理解长轴长、短轴长、焦距与长半轴长、短半轴长、半焦距的概念.(易混点)椭圆的简单几何性质已知两椭圆C 1、C 2的标准方程:C 1:x 225+y 216=1,C 2:y 225+x 216=1.1.椭圆C 1的焦点在哪个坐标轴上,a 、b 、c 分别是多少?椭圆C 2呢? 【提示】 C 1:焦点在x 轴上,a =5,b =4,c =3,C 2:焦点在y 轴上,a =5,b =4,c =3.2.怎样求C 1、C 2与两坐标轴的交点?交点坐标是什么?【提示】 对于方程C 1:令x =0,得y =±4,即椭圆与y 轴的交点为(0,4)与(0,-4);令y =0得x =±5,即椭圆与x 轴的交点为(5,0)与(-5,0).同理得C 2与y 轴的交点(0,5),(0,-5),与x 轴的交点(4,0)(-4,0). 焦点的 位置焦点在x 轴上焦点在y 轴上焦点的位置 焦点在x 轴上 焦点在y 轴上顶点 A 1(-a,0),A 2(a,0) B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴长 短轴长=2b ,长轴长=2a焦点 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距 |F 1F 2|=2c对称性 对称轴为坐标轴,对称中心为(0,0)离心率e =ca椭圆的离心率观察不同的椭圆,其扁平程度各不一样,如何刻画椭圆的扁平程度呢? 【提示】 利用椭圆的离心率. 1.定义椭圆的焦距与长轴长的比e =c a,叫做椭圆的离心率. 2.性质离心率e 的范围是(0,1).当e 越接近于1,椭圆越扁,当e 越接近于0,椭圆就越接近于圆.(对应学生用书第23页)由椭圆方程研究几何性质已知椭圆16x 2+9y 2=1,求椭圆的顶点坐标、焦点坐标、长轴长、短轴长、焦距和离心率.【思路探究】 (1)所给椭圆方程是标准形式吗?(2)怎样由椭圆的标准方程求得a 、b 、c 的值进而写出其几何性质中的基本量?【自主解答】 将椭圆方程化为x 2116+y 219=1,则a 2=19,b 2=116,椭圆焦点在y 轴上,c2=a 2-b 2=19-116=7144,所以顶点坐标为(0,±13),(±14,0),焦点坐标为(0,±712),长轴长为23,短轴长为12,焦距为76,离心率为74.1.已知椭圆的方程讨论性质时,若不是标准形式的先化成标准形式,再确定焦点的位置,进而确定椭圆的类型.2.焦点位置不确定的要分类讨论,找准a 与b ,正确利用a 2=b 2+c 2求出焦点坐标,再写出顶点坐标.同时要注意长轴长、短轴长,焦距不是a ,b ,c ,而应是a ,b ,c 的两倍.本例中,若把椭圆方程改为“25x 2+16y 2=400”,试求其长轴长、短轴长、离心率、焦点与顶点坐标.【解】 将方程变形为y 225+x 216=1,得a =5,b =4,所以c =3.故椭圆的长轴长和短轴长分别为2a =10和2b =8,离心率e =c a =35,焦点坐标为F 1(0,-3),F 2(0,3),顶点坐标为A 1(0,-5),A 2(0,5),B 1(-4,0),B 2(4,0).由椭圆的几何性质求其标准方程求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点(2,-6);(2)过(3,0)点,离心率e =63. 【思路探究】 (1)椭圆的焦点位置确定了吗?(2)你将怎样求得a 2、b 2并写出标准方程?【自主解答】 (1)由题意知2a =4b ,∴a =2b .设椭圆标准方程为x 2a 2+y 2b 2=1或y 2a 2+x 2b2=1,代入点(2,-6)得,4a 2+36b 2=1或36a 2+4b2=1,将a =2b 代入得,a 2=148,b 2=37或a 2=52,b 2=13, 故所求的椭圆标准方程为x 2148+y 237=1或y 252+x 213=1. (2)当椭圆焦点在x 轴上时,有a =3,c a =63, ∴c =6,∴b 2=a 2-c 2=9-6=3, ∴椭圆的标准方程为x 29+y 23=1; 当椭圆焦点在y 轴上时,b =3,c a =63, ∴a 2-b 2a =63,∴a 2=27,∴椭圆的标准方程为x 29+y 227=1.故所求椭圆标准方程为x 29+y 227=1或x 29+y 23=1.求标准方程的常用方法是待定系数法,基本思路是“先定位、再定量”. 1.定位即确定椭圆焦点的位置,若不能确定,应分类讨论.2.定量即通过已知条件构建关系式,用解方程(组)的方法求a 2、b 2.其中a 2=b 2+c 2,e =c a是重要关系式,应牢记.分别求适合下列条件的椭圆的标准方程. (1)长轴长是6,离心率是23;(2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为6. 【解】 (1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b >0).由已知得2a =6,a =3.e =c a =23,∴c =2.∴b 2=a 2-c 2=9-4=5.∴ 椭圆的标准方程为x 29+y 25=1或x 25+y 29=1.(2)设椭圆方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△B 1FB 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|B 1B 2|=2b ,∴c =b =3,∴a 2=b 2+c 2=18, 故所求椭圆的标准方程为x 218+y 29=1.求椭圆的离心率(1)已知椭圆的焦距与短轴长相等,求其离心率.(2)若一个椭圆长轴长度、短轴的长度和焦距成等差数列,求该椭圆的离心率. 【思路探究】 (1)由焦距与短轴长相等,你能得出a 、b 、c 的关系吗?可以用离心率公式求离心率吗?(2)由题意得2b =a +c ,如何使用这一关系式求e? 【自主解答】 (1)由题意得:b =c ,∴e 2=c 2a 2=c 2b 2+c 2=c 22c 2=12.∴e =22. (2)∵椭圆的长轴长度、短轴长度与焦距成等差数列, ∴2b =a +c ,∴4b 2=(a +c )2.又∵a 2=b 2+c 2,∴4(a 2-c 2)=a 2+2ac +c 2, 即3a 2-2ac -5c 2=0, ∴(a +c )(3a -5c )=0.∵a +c ≠0,∴3a -5c =0,∴3a =5c ,∴e =c a =35.求椭圆离心率的常用方法:1.直接法:求出a 、c 后用公式e =ca求解;或求出a 、b 后,用公式e =1-b 2a2求解. 2.转化法:将条件转化为关于a 、b 、c 的关系式,用b 2=a 2-c 2消去b ,构造关于c a的方程来求解.(1)求椭圆x 216+y 28=1的离心率.(2)已知椭圆的两个焦点F 1、F 2,点A 为椭圆上一点,且AF 1→·AF 2→=0,∠AF 2F 1=60°,求椭圆的离心率.【解】 (1)e =1-b 2a2=1-816=12=22. (2)设F 1F 2=2c ,由题意知,△AF 1F 2中,∠A =90°,∠AF 2F 1=60°,∴|AF 1|=3c ,|AF 2|=c .∵|AF 1|+|AF 2|=3c +c =2a , 即(3+1)c =2a ,∴e =ca=23+1=3-1.(对应学生用书第25页)混淆长轴长与长半轴长、短轴长与短半轴长的概念致误 求椭圆25x 2+y 2=25的长轴长和短轴长.【错解】 将方程化为标准方程得:x 2+y 225=1,∴a =5,b =1,∴长轴长是5,短轴长是1.【错因分析】 错解中将长半轴长、短半轴长与长轴长、短轴长混淆了,从而导致错误. 【防范措施】 根据定义,长轴长为2a ,短轴长为2b ,往往与长半轴长a 、短半轴长b 混淆,解题时要特别注意.【正解】 将已知方程化成标准方程为x 2+y 225=1.∴a =5,b =1,∴2a =10,2b =2. 故长轴长为10,短轴长为2.1.通过椭圆方程可讨论椭圆的简单几何性质;反之,由椭圆的性质也可以通过待定系数法求椭圆的方程.2.椭圆的离心率反映了椭圆的扁平程度,离心率可以从关于a 、b 、c 的一个方程求得,也可以用公式求得.(对应学生用书第25页)1.椭圆6x 2+y 2=6的长轴的顶点坐标是( ) A .(-1,0)、(1,0) B .(-6,0)、(6,0)C .(-6,0)、(6,0)D .(0,-6)、(0,6)【解析】 椭圆的标准方程为x 2+y 26=1,焦点在y 轴上,其长轴的端点坐标为(0,±6).【答案】 D2.椭圆x 2+4y 2=1的离心率为( ) A.32 B.34 C.22 D.23【解析】 椭圆方程可化为x 2+y 214=1,∴a 2=1,b 2=14,∴c 2=34,∴e 2=c 2a 2=34,∴e =32. 【答案】 A3.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A. 3B.32C.83D.23【解析】 ∵椭圆焦点在x 轴上, ∴0<m <2,a =2,c =2-m ,e =c a =2-m 2=12. 故2-m 2=14,∴m =32.【答案】 B4.已知椭圆的中心在坐标原点,离心率为45,一个焦点是(0,4),求此椭圆的标准方程.【解】 由题意:c =4,e =45,∴a =5,∴b 2=a 2-c 2=9. 又椭圆的焦点在y 轴上,∴其标准方程为y 225+x 29=1.一、选择题1.(2013·济南高二检测)若椭圆的长轴长为10,焦距为6,则椭圆的标准方程为( ) A.x 2100+y 236=1 B.x 225+y 216=1 C.x 2100+y 264=1或y 2100+x 264=1 D.x 225+y 216=1或y 225+x 216=1 【解析】 由题意2a =10,2c =6,∴a =5,b 2=16,且焦点位置不确定,故应选D. 【答案】 D2.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有( )A .相同短轴B .相同长轴C .相同离心率D .以上都不对【解析】 由于椭圆x 2a 2+y 29=1中,焦点的位置不确定,故无法确定两椭圆的长轴、短轴、离心率的关系.【答案】 D3.曲线x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的关系是( )A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不等的焦距,不同的焦点D .以上都不对【解析】 曲线x 225+y 29=1焦距为2c =8,而曲线x 29-k +y 225-k (10<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B.【答案】 B4.过椭圆x 2a 2+y 2b 2=1(a >b >0)左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22 B.33C.12D.13【解析】 Rt △PF 1F 2中,|F 1F 2|=2c ,∠F 1PF 2=60°,∴|PF 1|=2c 3,|PF 2|=4c3,∴|PF 1|+|PF 2|=6c3=2a ,a =3c . ∴e =ca=13=33. 【答案】 B5.设AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴,若把线段AB 分为100等份,过每个分点作AB 的垂线,分别交椭圆的上半部分于点P 1,P 2,…,P 99,F 1为椭圆的左焦点,则|F 1A |+|F 1P 1|+|F 1P 2|+…+|F 1P 99|+|F 1B |的值是( )A .98aB .99aC .100aD .101a【解析】 由椭圆的定义及其对称性可知,|F 1P 1|+|F 1P 99|=|F 1P 2|+|F 1P 99|=…=|F 1F 49|+|F 1P 51|=|F 1A |+|F 1B |=2a ,F 1P 50=a ,故结果应为50×2a +|F 1P 50|=101a .【答案】 D 二、填空题6.(2013·兰州高二检测)若椭圆x 2k +8+y 29=1的离心率为23,则k 的值为________. 【解析】 若焦点在x 轴上,则9k +8=1-(23)2=59,k =415;若焦点在y 轴上,则k +89=59,∴k =-3. 【答案】415或-3 7.椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为________. 【解析】 如图所示,△AF 1F 2为等腰直角三角形. ∴OA =OF 1,即c =b , 又∵a 2=b 2+c 2=2c 2,∴c a =22. 【答案】228.一个顶点为(0,2),离心率e =12,坐标轴为对称轴的椭圆方程为________.【解析】 (1)当椭圆焦点在x 轴上时,由已知得b =2,e =c a =12,∴a 2=163,b 2=4,∴方程为3x 216+y 24=1.(2)当椭圆焦点在y 轴上时,由已知得a =2,e =c a =12,∴a 2=4,b 2=3,∴方程为y 24+x 23=1.【答案】 3x 216+y 24=1或y 24+x23=1三、解答题9.(1)求与椭圆x 29+y 24=1有相同的焦点,且离心率为55的椭圆的标准方程;(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x 轴上的椭圆的标准方程.【解】 (1)∵c =9-4=5,∴所求椭圆的焦点为(-5,0),(5,0).设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).∵e =c a =55,c =5,∴a =5,b 2=a 2-c 2=20. ∴所求椭圆的标准方程为x 225+y 220=1.(2)因椭圆的焦点在x 轴上,设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2c =8,∴c =4, 又a =6,∴b 2=a 2-c 2=20. ∴椭圆的标准方程为x 236+y 220=1.10.已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形,求该椭圆的离心率.【解】 如图,不妨设椭圆的焦点在x 轴上, ∵AB ⊥F 1F 2,且△ABF 2为正三角形, ∴在Rt △AF 1F 2中,∠AF 2F 1=30°. 令|AF 1|=x ,则|AF 2|=2x .∴|F 1F 2|=|AF 2|2-|AF 1|2=3x =2c . 由椭圆定义,可知|AF 1|+|AF 2|=2a .∴e =2c 2a =3x 3x =33.图2-1-211.如图2-1-2所示,在Rt △ABC 中,∠CAB =90°,AB =2,AC =22,一曲线E 过点C ,动点P 在曲线E 上运动,且保持|PA |+|PB |的值不变.(1)建立适当的坐标系,求曲线E 的方程;(2)试判断该方程是否为椭圆方程,若是,请写出其长轴长、焦距、离心率.【解】 (1)以AB 所在直线为x 轴,AB 的中点O 为原点建立直角坐标系,则A (-1,0),B (1,0),由题设可得|PA |+|PB |=|CA |+|CB |=22+22+222=2 2.由椭圆定义知动点P 的轨迹为椭圆.不妨设动点P 的轨迹方程为x 2a 2+y 2b2=1(a >b >0),则a =2,c =1,b =a 2-c 2=1, ∴曲线E 的方程为x 22+y 2=1.(2)由(1)的求解过程知曲线E 的方程是椭圆方程,其长轴长为22,焦距为2,离心率为22. (教师用书独具)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在一点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,求该椭圆的离心率的取值范围.【解】 在△PF 1F 2中,由正弦定理得|PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1,则结合已知,得a|PF 2|=c |PF 1|,即|PF 1|=c a |PF 2|.由椭圆的定义知|PF 1|+|PF 2|=2a ,则ca|PF 2|+|PF 2|=2a ,即|PF 2|=2a 2c +a ,由椭圆的几何性质和已知条件知|PF 2|<a +c ,则2a 2c +a <a +c ,即c 2+2ac -a 2>0,所以e 2+2e -1>0,解得e <-2-1或e >2-1.又e ∈(0,1),故椭圆的离心率e ∈(2-1,1).椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆M 上任一点,且PF 1→·PF 2→的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是( )A .[14,12]B .[12,22]C .(22,1) D .[12,1)【解析】 设P (x ,y ),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),PF 1→·PF 2→=x 2+y 2-c 2.又x 2+y 2可看作P (x ,y )到原点的距离的平方,所以(x 2+y 2)max =a 2,所以(PF 1→·PF 2→)max =b 2,所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12,∴12≤e ≤22. 【答案】 B。
椭圆的简单几何性质 精品教案
2.2椭圆【课题】:椭圆的简单几何性质1方案一:【设计与执教者】:广州市第89中学,田鹰,tianyingtian@。
【教学时间】:40分钟【学情分析】:(适用于特色班)学生对于椭圆及其标准方程都有了一定的认识,本节课通过学生对椭圆图形的直观观察,探索发现应该关注椭圆的哪些性质,以及其性质在代数方面上的反映。
【三维目标】:1、知识与技能:①熟练掌握椭圆的范围,对称性,顶点等简单几何性质。
②掌握标准方程中a,b,c的几何意义③通过对椭圆的研究,加强学生对学习“圆锥曲线”的方法(用代数来研究几何)的理解。
2、过程与方法:通过学生对椭圆的图形的研究,加深对“数形结合法”的理解3、情感态度与价值观:通过“数形结合法”的学习,培养学生辨证看待问题。
【教学重点】:知识与技能①②③【教学难点】:知识与技能③【课前准备】:课件学案方案二:【设计与执教者】:广州市第89中学,田鹰,tianyingtian@。
【教学时间】:40分钟【学情分析】:(适用于平行班)学生对于椭圆及其标准方程都有了一定的认识,本节课通过学生对椭圆图形的直观观察,引导学生发现应该关注椭圆的哪些性质,以及其性质在代数方面上的反映。
【三维目标】:1、知识与技能:①熟练掌握椭圆的范围,对称性,顶点等简单几何性质。
②掌握标准方程中a,b,c的几何意义③通过对椭圆的研究,加强学生对学习“圆锥曲线”的方法(用代数来研究几何)的理解。
2、过程与方法:通过学生对椭圆的图形的研究,加深对“数形结合法”的理解3、情感态度与价值观:通过“数形结合法”的学习,培养学生辨证看待问题。
【教学重点】:知识与技能①②③【教学难点】:知识与技能③【课前准备】:课件学案。
《椭圆的简单几何性质》第一课时示范公开课教学设计【高中数学人教版】
《椭圆的简单几何性质》第1课时教学设计利用已知条件求曲线的方程,利用方程研究曲线的性质和画图是解析几何的两大任务,利用方程研究椭圆的几何性质可以说是第一次,传统的教学过程往往是利用多媒体课件展示椭圆曲线,让学生观察、猜想椭圆的几何性质,然后再利用椭圆的标准方程进行证明,体现从感性到理性符合学生的认知规律等,也可以说是用方程研究椭圆曲线性质的一种思路,但未能很好地体现“利用方程研究曲线性质”的本质.因此,本节在教学一开始的问题设置就体现了利用方程研究曲线的意识,在三个性质的研究中一直是用方程的结构特征来得到性质,真正培养学生如何利用方程研究曲线性质的能力.同时,根据椭圆的简单几何性质的课时安排,第1课时不研究椭圆的离心率,保证了学生的研究时间;与直线方程和圆方程的类比能够使得学生掌握椭圆标准方程的特点,学生在自主探究过程中能够联想得到三角换元,说明该种教学方法还是符合学生的认知规律的,同时体现了教材的本质.1.掌握椭圆的范围、对称性、顶点,掌握a,b,c的几何意义以及a,b,c的相互关系,初步学习利用方程研究曲线性质的方法.2.利用曲线的方程来研究曲线性质的方法是学习解析几何以来的第一次,通过初步尝试,使学生经历知识产生与形成的过程,不仅注意对研究结果的掌握和应用,更重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养学生观察、分析、逻辑推理、理性思维的能力.3.通过自主探究、交流合作使学生亲身体验探究的艰辛,从中体味合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气;通过多媒体展示,让学生体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质.教学重点:从知识上来讲,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;从学生的体验来说,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法.教学难点:椭圆几何性质的形成过程,即如何从椭圆标准方程的结构特征中抽象出椭圆的几何性质.通过本节课的教学力求使一个平淡的性质陈述过程成为一个生动而有价值的教学过程.学生主动交流合作、大胆探究的过程应是教学的难点.引入新课提出问题:方程16x 2+25y 2=400表示什么样的曲线,你能利用以前学过的知识画出它的图形吗?活动设计:情形1:列表、描点、连线进行作图,在取点的过程中想到了椭圆的范围问题; 情形2:求出椭圆曲线与坐标轴的四个交点,联想椭圆曲线的形状得到图形;情形3:方程变形,求出a ,b ,c ,联想椭圆画法,利用绳子作图;情形4:只作第一象限内的图形,联想椭圆形状,对称得到其他象限内的图形.辨析与研讨:实物投影展示学生的画图过程,挖掘学生的原有认知,体现同学的思维差异,培养学生的思维习惯.设计意图:(1)问题设置来源于课本例题,选题目的有利于学生从多个角度进行思考和探索,培养学生的发散思维,第一问的解决体现了对二元二次方程的研究,为利用方程研究性质打下基础;(2)课堂教学体现学生自主探究知识的过程,问题的设置体现了研究问题角度的转变——用方程研究曲线性质的问题,同时使学生意识到椭圆的几何特征:范围、对称性、关键点;(3)实物投影展示学生的研究过程和研究成果,重在发现学生的思维差异和思维认识层次;(4)辨析过程中重视学生的思维起点,通过彼此交流,发现问题,共同探讨,得到统一的认识.点评:(1)能够抓住椭圆的几何特征、范围、对称性、关键点作图;(2)研究问题的方向发生了变化,利用方程研究曲线的几何性质;(3)本节课我们利用椭圆的标准方程来研究椭圆的几何性质,体现特殊到一般的思想方法.教师板书:椭圆的简单几何性质.探求新知问题:学生思考:与直线方程和圆的方程相对比,椭圆标准方程x 2a 2+y 2b2=1(a >b >0)有什么特点?(1)椭圆方程是关于x ,y 的二元二次方程;(2)方程的左边是平方和的形式,右边是常数1;(3)方程中x 2和y 2的系数不相等.设计意图:类比直线方程和圆的方程能够使学生容易得到椭圆标准方程的特点,体现了新旧知识的联系与区别,符合学生的认知规律,同时为利用方程研究椭圆曲线的几何性质做好了准备.【问题1】自主探究:结合椭圆标准方程的特点,利用方程研究椭圆曲线的范围. 实物投影展示学生的解题过程,激励学生开拓思维.学生活动过程:情形1:x 2a 2+y 2b 2=1变形为y 2b 2=1-x 2a2≥0,x 2≤a 2|x |≤a -a ≤x ≤a . 这就得到了椭圆在标准方程下x 的范围-a ≤x ≤a .同理,我们也可以得到y 的范围-b ≤y ≤b .情形2:可以把x 2a 2+y 2b 2=1看成sin 2α+cos 2α=1,利用三角函数的有界性来考虑x a ,y b的范围.点评:你可能没有意识到,如果将a ,b 乘过去,就得到了⎩⎪⎨⎪⎧x =acosα,y =bsinα,这是我们以后要学习的椭圆方程的另外一种表达方式,椭圆的参数方程,有兴趣的同学下课后可以阅读有关内容.所以我们在研究问题的过程中,结果并不重要,重要的是放宽研究问题的思路,拓宽我们的思维角度.谁还有其他的方法?情形3:椭圆的标准方程表示两个非负数的和为1,那么这两个数都不大于1,所以x 2a 2≤1,同理可以得到y 的范围.情景4:利用学习过函数的定义域、值域,这对研究椭圆的范围有何启示呢?由x 2a 2+y 2b 2=1,则y =±b aa 2-x 2,可通过求这个函数的定义域、值域得范围. 但y =±b aa 2-x 2是函数吗? 学生(思考后)说不是. 教师提问:怎么处理呢?学生活动:把 y =b a a 2-x 2和y =-b aa 2-x 2分别看作是一个函数. 先求函数y =b aa 2-x 2的定义域、值域.利用前面学习过的代数函数求定义域、值域的方法,可得 -a ≤x ≤a , 0≤y ≤b ,同样得 y =-b aa 2-x 2中 -a ≤x ≤a , -b ≤y ≤0 ,于是得到范围.教师总结:只需求 y =b aa 2-x 2(0≤x ≤a ) 的定义域、值域即可,然后利用对称性可得范围. 通过前面的探讨,我们知道椭圆是有范围的,即它围在一个矩形框内.有了前面这几个性质,我们就可以很快地作出焦点在 x 轴上的椭圆的草图了.教师在黑板上示范作图(先找到标准方程所表示的椭圆与坐标轴的四个交点,画出矩形框,再用光滑曲线连接,并注意对称性).设计意图:(1)传统的研究椭圆的几何性质往往是利用图形直观得到性质,然后利用方程进行证明,没有真正体现出利用方程研究曲线几何性质的路子,因此在这里通过多媒体课件始终展示椭圆标准方程的特点,使学生在把握椭圆方程结构特征的基础上来研究椭圆曲线的几何性质;(2)通过开头问题的铺垫,学生的思维在这里体现得异常活跃,除了教材中得到范围的方法外,另外两种方法很多同学都能想到,使学生真正感受成功的喜悦;(3)多媒体课件展示椭圆的范围,体现数形结合思想.结论:由椭圆方程中x ,y 的范围得到椭圆位于直线x =±a 和y =±b 所围成的矩形里.【问题2】 自主探究:继续观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性.实物投影展示学生的解题过程,体现学生的思维认识:-x 代替x 后方程不变,说明椭圆关于y 轴对称;-y 代替y 后方程不变,说明椭圆曲线关于x 轴对称;-x 、-y 代替x ,y 后方程不变,说明椭圆曲线关于原点对称.问题设置:从对称性的本质上入手,如何探究曲线的对称性?辨析与研讨:-x 代替x 后方程不变,就是用(-x ,y )来代换方程中的(x ,y ),方程不变,(-x ,y )和(x ,y )关于y 轴对称,两点坐标都满足方程,而(x ,y )是曲线上任意一点,因此椭圆曲线关于y 轴对称;其他同理.相关概念:在标准方程下,坐标轴是对称轴,原点是对称中心,椭圆的对称中心叫做椭圆的中心.设计意图:(1)抓住椭圆标准方程的特点不放松,引导学生探究如何利用方程研究椭圆的对称性;(2)在学生的表述过程中重视学生的思维方式,培养学生正确处理问题的思路,能够引导学生从对称性的本质上得到研究对称性的方法;(3)多媒体课件展示椭圆的对称性,使学生体会椭圆的对称美.【问题3】自主探究:再次观察椭圆标准方程的特点,利用方程求出椭圆曲线与对称轴的交点坐标.实物投影展示学生的解题过程,体现学生的思维认识:在椭圆的标准方程中,令x=0,得y=±b,令y=0,得x=±a.顶点概念:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标:A1(-a,0),A2(a,0),B1(0,b),B2(0,-b).相关概念:线段A1A2,B1B2分别叫做椭圆的长轴和短轴,它们的长分别等于2a,2b,a 和b分别叫做椭圆的长半轴长和短半轴长.在椭圆的定义中,2c表示焦距,这样,椭圆方程中的a,b,c就有了明显的几何意义.设置问题:在椭圆标准方程的推导过程中令a2-c2=b2能使方程简单整齐,其几何意义是什么?学生探究:c表示半焦距,b表示短半轴长,因此,连结顶点B2和焦点F2,可以构造一个直角三角形,在直角三角形内,|OF2|2=|B2F2|2-|OB2|2,即a2-c2=b2.多媒体展示特征三角形.设计意图:(1)利用方程研究椭圆的顶点坐标学生比较容易接受,相关概念也容易理解,关键是a2-c2=b2的几何意义,多媒体课件的展示体现了a,b,c的几何意义,从而得到a2-c2=b2的本质.运用新知活动设计:阅读课本例4,你有什么认识?活动成果:(1)利用方程研究椭圆的几何性质时,若椭圆的方程不是标准方程,首先应将方程化为标准方程,然后找出相应的a,b,c.(2)利用椭圆的几何性质,可以简化画图过程,保证图形的准确性.掌握画椭圆草图的基本步骤和注意事项:①以椭圆的长轴长、短轴长为邻边长,以原点为中心画矩形;②由矩形四边的中点确定椭圆的四个顶点;③用曲线将四个顶点连成一个椭圆;④画图时要注意它们的对称性及顶点附近的平滑性.设计意图:(1)学生阅读交流提高认识而不是教师讲解,能够使学生感悟知识的应用;(2)与开头相呼应,使学生认识到运用椭圆的简单几何性质能够简化作图过程.反思与评价:回顾知识的形成过程,同学交流,谈谈对本节课的认识:(1)知识与技能:椭圆的范围、对称性、顶点,初步学习了利用椭圆标准方程研究椭圆曲线性质的方法;(2)过程与方法:重视对研究方法的思想渗透及分析问题和解决问题能力的培养;以自主探究为主,通过体验数学发现和创造的历程,培养了我们观察、分析、逻辑推理、理性思维的能力;(3)情感、态度与价值观:善于观察,敢于创新,学会与人合作,感受到探究的乐趣,体会椭圆方程结构的和谐美和椭圆曲线的对称美,培养学生的审美习惯和良好的思维品质.设计意图:不会反思,就不会学习,通过反思,深化知识的形成过程,完善认知结构,掌握研究的方法和思路,拓宽思维角度,提高思维层次.课堂小结(1)椭圆的范围、长轴长、短轴长.(2)椭圆的对称性,对称轴、对称中心.布置作业(1)反思知识的形成过程,掌握研究问题的方法;(2)研究y 2a 2+x 2b 2=1(a >b >0)的范围、对称性、顶点; (3)课后延伸:同学们再来观察椭圆的结构特征“方程中x 2和y 2的系数不相等”,因此当x 2和y 2的系数发生变化时,椭圆的形状是如何随之变化的?设计意图:课后作业的设置体现了本节课研究方法的延伸,作业(1)强调研究方法的重要性,作业(2)是对学生学习效果的一种检验,作业(3)引导学生利用椭圆方程的结构特征自主研究椭圆的另一条性质——离心率;1.课堂设计理念授人以鱼不如授人以渔.通过创设符合学生认知规律的问题情景,挖掘学生内在的研究问题的巨大潜能,使学生在做中学,学中思,亲身体会创造过程,充分展示思维差异,培养学生的自主探究能力,逻辑推理能力,提高学生的思维层次,掌握获取知识的方法和途径,真正体现学生学习知识过程中的主体地位.2.对教材的研究认识利用已知条件求曲线的方程,利用方程研究曲线的性质和画图是解析几何的两大任务,利用方程研究椭圆的几何性质可以说是第一次,传统的教学过程往往是利用多媒体课件展示椭圆曲线,让学生观察、猜想椭圆的几何性质,然后再利用椭圆的标准方程进行证明,体现从感性到理性符合学生的认知规律等,也可以说是用方程研究椭圆曲线性质的一种思路,但未能很好地体现“利用方程研究曲线性质”的本质.因此,在教学一开始的问题设置就体现了利用方程研究曲线的意识,在三个性质的研究中一直是用方程的结构特征来得到性质,真正培养学生如何利用方程研究曲线性质的能力.同时,根据椭圆的简单几何性质的课时安排,本节课不研究椭圆的离心率,保证了学生的研究时间;与直线方程和圆方程的类比能够使得学生掌握椭圆标准方程的特点,学生在自主探究过程中能够联想得到三角换元,说明该种教学方法还是符合学生的认知规律的,同时体现了教材的本质.3.课堂教学模式的设置自主探究是传统教学模式的一种补充,自主探究能够使学生成为研究问题的主人,能够培养学生的思维能力.数学是思维的科学,思维能力是数学的核心,教学过程的设计要能够体现教学本质;能够突出所学数学内容的本质;组织教学的过程要能触及学生的灵魂深处.因此,课堂教学中提倡问题教学,抓住学生的认识现实,恰当地创设问题情境,使学习者能够在课堂上进行积极有效的学习.4.课堂练习题的说明如何利用椭圆的标准方程研究椭圆的几何性质是本节课的主题,是进一步学习双曲线和抛物线的基础.为了不冲淡主题,课堂教学过程重在培养学生的研究方法,提高学生的思维能力.因此,在椭圆几何性质的其他课时中将适当增加相应的练习,强化学生对知识的掌握和应用.。
椭圆的简单几何性质教案
一、教案基本信息椭圆的简单几何性质教案课时安排:1课时教学目标:1. 让学生掌握椭圆的定义及基本性质。
2. 培养学生运用几何知识分析问题、解决问题的能力。
3. 引导学生发现椭圆在实际生活中的应用,培养学生的学习兴趣。
教学内容:1. 椭圆的定义2. 椭圆的基本性质3. 椭圆的标准方程4. 椭圆的焦点与离心率5. 椭圆的参数方程二、教学过程1. 导入:利用多媒体展示一些生活中的椭圆形状的物体,如地球、月球、鸡蛋等,引导学生发现椭圆在生活中的广泛存在。
2. 知识讲解:1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。
2. 讲解椭圆的基本性质:(1)椭圆的两个焦点在椭圆的长轴上,且长轴长度为2a。
(2)椭圆的短轴长度为2b。
(3)椭圆的离心率e=c/a,其中c为焦距,a为半长轴,b为半短轴。
(4)椭圆的面积S=πab。
3. 讲解椭圆的标准方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1。
4. 讲解椭圆的参数方程:椭圆的参数方程为x=acosθ,y=bsinθ。
3. 案例分析:给出一个实际问题,如求解椭圆上一点到两焦点的距离之和。
引导学生运用椭圆的性质解决问题。
4. 课堂练习:布置一些有关椭圆性质的练习题,让学生课后巩固所学知识。
5. 总结:对本节课的内容进行总结,强调椭圆的基本性质及应用。
三、课后作业1. 复习椭圆的定义及基本性质。
2. 练习椭圆的标准方程和参数方程的转化。
3. 寻找生活中的椭圆形状物体,了解椭圆在实际中的应用。
四、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对椭圆知识的理解和运用能力。
五、教学评价通过课堂讲解、练习和课后作业,评价学生对椭圆定义、基本性质、标准方程和参数方程的掌握程度,以及运用椭圆知识解决实际问题的能力。
六、教学活动设计1. 互动提问:在上一节课中,我们学习了椭圆的定义及基本性质,谁能简要回顾一下椭圆的定义是什么?2. 小组讨论:请同学们分成小组,讨论如何运用椭圆的性质解决实际问题。
〖2021年整理〗《椭圆的简单几何性质》优秀教案
椭圆的简单几何性质(第一课时)(杨军君)一、教学目标 (一)学习目标1给定椭圆标准方程,能说出椭圆的范围,对称性,顶点坐标和离心率; 2在图形中,能指出椭圆中e c b a ,,,的几何意义及其相互关系; 3知道离心率大小对椭圆扁平程度的影响 (二)学习重点1用方程研究椭圆上点的横纵坐标范围,对称性; 2椭圆的简单几何性质 (三)学习难点椭圆的离心率及椭圆几何性质的简单应用 二教学设计 (一)预习任务设计 1预习任务(1)读一读:阅读教材第43页至第46页(2)想一想:椭圆的离心率对椭圆扁平程度的影响?(3)写一写:焦点分别在,x y 轴上的椭圆的范围、对称性、顶点 2预习自测判断(正确的打“√”,错误的打“×”)(1)椭圆22221(0)x y a b a b +=>>的长轴长为a ( )(2)椭圆的离心率e 越大,椭圆就越圆( )(3)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为2212516x y +=( )(4)已知点(,)m n 在椭圆228324x y +=上,则24m +的最大值为4+( ) 【知识点】椭圆的几何性质【解题过程】通过椭圆的标准方程22221x y a b +=可认识到椭圆的相应几何量:长轴长2a ,短轴长2b ,离心率e ca=,的取值范围取值范围a x a -≤≤【思路点拨】通过椭圆的标准方程认识几何性质 【答案】(1)×;(2)×;(3)×;(4)√ (二)课堂设计 1知识回顾椭圆的标准方程:当焦点在轴时,)0(12222>>=+b a b y a x当焦点在轴时,)0(12222>>=+b a b x a y2新知讲解探究一:具体方程,认识图形 ●活动① 图形引发性质运用所学的知识,你能否画出方程14922=+y x 所对应的曲线?(如果不能精确地画出,也可以画出它的草图)预案一:利用椭圆的定义,用绳子画图;预案二:根据所学先判断其为椭圆,求与x 轴y 轴的交点再连结;预案三:根据所学判断椭圆具有对称性,只需比较精确地画出第一象限的部分;【设计意图】让学生在画曲线的时候,通过动手能发现椭圆上点的坐标取值有范围限制,即椭圆的范围;发现椭圆具有对称性,从而为引出对称性作铺垫;发现特殊点(与对称轴的交点),即椭圆的顶点研究曲线的性质,可以从整体上把握它的形状,大小和位置以椭圆)0(12222>>=+b a b y a x 为例,你觉得应该从哪些方面研究它的几何性质?【设计意图】引出研究曲线性质的意义,为后面研究椭圆的几何性质指明角度 探究二:简化抽象、探究性质 ●活动① 归纳梳理、理解提升 (1)范围:由标准方程知,椭圆上点的坐标(,)x y 满足不等式22221,1x y a b≤≤,∴22x a ≤,22y b ≤,∴||x a ≤,||y b ≤说明椭圆位于直线x a =±,y b =±所围成的矩形里 (2)对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称所以,椭圆关于x 轴、y 轴和原点对称这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心 (3)顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点同理令0y =得x a =±,即1(,0)A a -,2(,0)A a是椭圆与x 轴的两个交点 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22R t O BF ∆中,2||O B b =,2||O F c =,22||BF a =,且2222222||||||O F B F O B =-,即222c a b =-(4)离心率:椭圆的焦距与长轴的比e ca=叫椭圆的离心率 ∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a+=e 1,0c a b →→→⎧⎨⎩当时,椭圆图形越扁; e 00,c b a →→→⎧⎨⎩当时,椭圆越接近于圆●活动② 巩固基础、检查反馈 例1根据下列条件求椭圆的标准方程 (1)28,e 3c ==; (2)过点(3,0)P ,离心率e =,求椭圆的标准方程 【知识点】椭圆的标准方程以及离心率 【解题过程】(1)8e ,1223c c a a e =∴===,又2222212880b a c =-=-= ∴椭圆标标准方程为22114480x y +=或22114480y x += (2)当椭圆的焦点在x 轴上时,3,c a ca ==∴=从而222963b a c =-=-=,∴椭圆的方程为22193x y +=当椭圆的焦点在y 轴上时,3,c b a === 227a ∴=,∴椭圆方程为221927x y += ∴所求椭圆的方程为221927x y +=或22193x y += 【思路点拨】已知椭圆的某些性质,和与性质相关的条件求标准方程仍需先判定焦点位置,从而确定方程形式,并用待定系数的思想,求出方程中的,a b 值,得到方程【答案】(1)22114480x y +=或22114480y x +=;(2)221927x y +=或22193x y +=同类训练 已知椭圆()22550mx y m m +=>的离心率为e =,求m 的值 【知识点】椭圆的离心率【解题过程】依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有a b c ====,得3m =;②当焦点在y 轴上,即5m >时,有a b c ===253m =⇒=【思路点拨】根据椭圆焦点的位置确定,,a b c 的值,结合离心率的定义建立方程求解 【答案】m =3或253例2已知12,F F 分别为椭圆12222=+by a x 的左右焦点,P 是以12F F 为直径的圆与椭圆的一个交点,且12212PF F PF F ∠=∠,求这个椭圆的离心率 【知识点】椭圆的离心率【解题过程】由题意12PF F ∆为直角三角形,且90P ∠=,1260PF F ∠=,122F F c =,则12,PF c PF ==,所以由椭圆的定义知,122PF PF a +=,即2c a =,得离心率e 1ca== 【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围1-同类训练 已知椭圆12222=+by a x (0)a b >>,过椭圆的右焦点作x 轴的垂线交椭圆于A B 、两点,0OA OB ⋅=,求椭圆的离心率 【知识点】椭圆的离心率【解题过程】2(,0)F c ,把x c =代入椭圆12222=+b y a x 得2(,)b A c a由0OA OB ⋅=,结合图形得22||||OF AF =,即:22222e e 10e b c b ac a c ac a =⇒=⇒-=⇒+-=⇒=【思路点拨】求离心率一般是先找到关于,,a b c 的一个齐次关系式,然后再变形求e 的值或范围 【答案】1+52- 例3如图,设(),M x y 与定点()4,0F 的距离和它到直线:254x =的距离的比是常数45,求点的轨迹方程【知识点】椭圆的方程以及离心率 【解题过程】分析:若设点(),M x y ,则()224MF x y =-+,到直线:254x =的距离254d x =-,则容易得点的轨迹方程25:44,5d M l x MF M P M d =⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭解:设是点到直线的距离,根据题意,点的轨迹就是集合2(4)4.2554x y x -+=-22925225,x y +=将上式两边平方,并化简,得22 1.259x y +=即 所以,点M 的轨迹是长轴、短轴长分别为10,6的椭圆【思路点拨】利用条件直接求轨迹方程,我们可以将例3抽象为下面问题:点(,)P x y 与定点(,0)F c 的距离和它到一定直线2:a l x c =的距离之比是常数ca (0)a c >>,求点P 的轨迹方程(记222b ac =-,则轨迹方程为22221x y a b+=)【答案】221 259x y+=3课堂总结知识梳理椭圆的简单几何性质:标准方程)(012222>>=+b a by a x )0(12222>>=+b a bx a y 图形范围 ,a x a b y b -≤≤-≤≤,a y a b x b -≤≤-≤≤顶点 1(,0)A a -2(,0)A a 1(0,)B b -2(0,)B b 1(0,)A a -2(0,)A a 1(,0)B b -2(,0)B b 长轴长 2a短轴长 2b对称性对称轴:,x y 轴;对称中心:(0,0)cb a ,,关系 222a bc =+离心率e c a=重难点归纳利用椭圆轴长、离心率、准线等性质求解椭圆方程时,需注意:(1)在,,,e a b c 四个参数中,只要知道其中的任意两个,便可求出其它两个,必须正确地掌握四个参数间的相互关系;(2)离心率的转化和变形:22222e 1()1(1)2c b be b a e a a==-⇒=-⇒=- (三)课后作业 基础型 自主突破+错误!=1的离心率为错误!,则m 的值为( ) 【知识点】椭圆的离心率【解题过程】由题意得a 2=2,b 2=m ,∴c 2=2-m ,又错误!=错误!,∴错误!=错误!,∴m =错误! 【思路点拨】利用椭圆离心率定义解题【答案】B1:错误!+错误!=1和椭圆C 2:错误!+错误!=1 0错误!8=错误!错误!b >0的左、右焦点为F 1、F 2,离心率为错误!,过F 2的直线交C 于A 、B 两点,若△AF 1B 的周长为4错误!,则C 的方程为( )+错误!=1 错误!+2=1 错误!+错误!=1 错误!+错误!=1 【知识点】椭圆的几何性质【解题过程】根据条件可知错误!=错误!,且4a =4错误!, ∴a =错误!,c =1,b =错误!,椭圆的方程为错误!+错误!=1 【思路点拨】过焦点的直线利用椭圆的定义 【答案】A+错误!=1a >b >0的左、右顶点分别是A ,B ,左、右焦点分别是F 1、F 2若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( ) -2【知识点】椭圆的几何性质【解题过程】∵A 、B 分别为左右顶点,F 1、F 2分别为左右焦点,∴|AF 1|=a -c ,|F 1F 2|=2c ,|BF 1|=a +c ,又由|AF 1|、|F 1F 2|、|F 1B |成等比数列得a -ca +c =4c 2,即a 2=5c 2,所以离心率e =错误! 【思路点拨】利用椭圆的几何性质中量的关系 【答案】B轴上,其上任意一点到两焦点的距离和为8,焦距为2错误!,则此椭圆的标准方程为________ 【知识点】椭圆的定义【解题过程】由已知,2a =8,2c =2错误!,∴a =4,c =错误!,∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为错误!+2=1 【思路点拨】利用条件求a,b,c 的值 【答案】错误!+2=16已知椭圆的短半轴长为1,离心率00,∴a 2>1, ∴1b >0,半焦距为c ,则错误!∴错误!∴b 2=a 2-c 2=36-27=9, ∴椭圆G 的方程为错误!+错误!=1【思路点拨】利用椭圆a,b,c 三者关系以及椭圆定义解题 【答案】错误!+错误!=1+错误!=1的左焦点为F ,直线=m 与椭圆相交于点A 、B 当△F AB 的周长最大时,△F AB 的面积是________【知识点】椭圆的几何性质【解题过程】如图,当直线=m ,过右焦点1,0时,△F AB 的周长最大,由错误!解得=±错误!,∴|AB |=3 ∴S =错误!×3×2=3 【思路点拨】数形结合解题 【答案】3 探究型 多维突破0,0是椭圆错误!+错误!=1上一点,A 点的坐标为6,0,求线段错误!错误!错误!错误!错误!错误!错误!22(26)(2)184x y -+=22(3)12x y -+=22(3)12x y -+=12:2:1PF PF =12:2:1PF PF =+32=mm >0的离心率e =错误!,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标 【知识点】椭圆的几何性质【解题过程】椭圆方程可化为错误!+错误!=1, ∵(2)033m m m m m m +-=>++,∴m >错误! 即a 2=m ,b 2=错误!,22(2)3m m c a b m +=-=+由e =错误!得,错误!=错误!,∴m =1 ∴椭圆的标准方程为2+错误!=1, ∴a =1,b =错误!,c =错误!∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1-错误!,0,F 2错误!,0;四个顶点分别为A 1-1,0,A 21,0,B 10,-错误!,B 2021错误!【思路点拨】利用离心率的定义建立关系6已知椭圆上横坐标等于焦点横坐标的点,它到轴的距离等于短半轴长的错误!,求椭圆的离心率【知识点】椭圆的几何性质【解题过程】解法一:设焦点坐标为F1-c,0,F2c,0,M是椭圆上一点,依题意设M点坐标为c,错误!b在Rt△MF1F2中,|F1F2|2+|MF2|2=|MF1|2,即4c2+错误!b2=|MF1|2,而|MF1|+|MF2|=错误!+错误!b=2a,整理,得3c2=3a2-2ab又c2=a2-b2 3b=2a∴错误!=错误!∴e2=错误!=错误!=1-错误!=错误!,∴e=错误!解法二:设Mc,错误!b,代入椭圆方程,得错误!+错误!=1,∴错误!=错误!,∴错误!=错误!,即e=错误!【思路点拨】利用椭圆的几何关系结合椭圆离心率的定义解题。
人教课标版高中数学选修1-1《椭圆的简单几何性质(第1课时)》教案-新版
2.1.2椭圆的简单几何性质(第1课时)一、教学目标 核心素养发展直观想象、 逻辑推理 、数据分析素养 学习目标(1)掌握椭圆的范围、对称性、顶点、离心率等几何性质. (2)明确椭圆中,,,a b c e 的几何意义,以及,,,a b c e 之间的相互关系. (3)能利用椭圆的几何性质解决椭圆的简单问题. 学习重点利用椭圆的标准方程研究椭圆的几何性质 学习难点椭圆离心率的概念的理解及椭圆的几何性质的综合应用 二、教学设计 (一)课前设计 1.预习任务 任务1预习教材3739P P - ,思考椭圆上的点,x y 的的取值范围? 椭圆具有怎样的对称性?与数轴的交点是什么? 任务2完成41P 的练习5,思考椭圆的扁平程度与那些量有关? 2.预习自测1. 椭圆22259225x y +=的长轴长、短轴长、离心率依次是( ) A .5,3,0.8 B .10,6,0.8 C .5,3,0.6D .10,6,0.6.答案:B解析:椭圆的几何性质2. 椭圆2266x y +=的长轴的端点坐标是( ) A .(-1,0)、(1,0)B .(-6,0)、(6,0)C .(6,0)-、(6,0)D .(0,6)-、(0,6). 答案:D解析:椭圆的几何性质 (二)课堂设计 1.知识回顾(1)椭圆的定义:平面内点M 到两定点12,F F 的距离和为常数,即122MF MF a +=,当122a F F >时,点M 的轨迹是椭圆(2)椭圆的标准方程:焦点在x 轴上的椭圆标准方程为__()222210x y a b a b +=>>__焦点在y 轴上的椭圆标准方程为__()222210y x a b a b+=>>__其中a ,b ,c 的关系为____ 222a b c =+_____.(3)(),P x y 关于原点对称的点()1,P x y --,(),P x y 关于x 轴对称的点()2,P x y -,(),P x y 关于y 轴对称的点()3,P x y - 2.问题探究问题探究一 椭圆的几何性质●活动一 设椭圆的标准方程为22221(0)x y a b a b +=>>,研究椭圆的范围就是研究椭圆上点的横、纵坐标的取值范围.(1)从形的角度看:椭圆位于直线x a =±和y b =±所围成的矩形框里.(2)从数的角度看:利用方程研究,易知222210y x b a =-≥,故221x a ≤,即a x a -≤≤;222210x y a b=-≥故221y b ≤,即b y b -≤≤. ●活动二 (1)从形的角度看:观察椭圆的图形可以发现,椭圆是中心对称图形,也是轴对称图形.(2)从数的角度看:在椭圆方程22221(0)x y a b a b +=>>中以,x y --分别代替,x y ,方程不变,∴椭圆22221(0)x y a b a b +=>>既关于x 轴对称,又关于y 轴对称,从而关于坐标原点对称,椭圆的对称中心叫做椭圆的中心. ●活动三如图, 椭圆22221(0)x y a b a b +=>>与它的对称轴共有四个交点,即12,A A 和12,B B ,这四个点叫做椭圆的顶点,线段12,A A 叫做椭圆的长轴,它的长等于2a ;线段12,B B 叫做椭圆的短轴,它的长等于2b.显然,椭圆的两个焦点在它的长轴_上. ●活动四椭圆的焦距与长轴长的比ca叫做椭圆的长轴.用e 表示,即c e a =.(1)离心率的范围:01e <<(2)椭圆离心率的意义:椭圆离心率的变化刻画了椭圆的扁平程度. 当e 越接近于1时,c 越接近于a ,从而22b a c =-越小,因此椭圆越扁 当e 越接近于0时,c 越接近于0,从而22b a c =-越接近于a,因此椭圆越接近于圆;当且仅当a b =时,0c =,这时两个焦点重合,图象变为圆222x y a +=. ★▲问题探究二 椭圆中,,,a b c e 的几何意义,以及,,,a b c e 之间的相互关系 例1.求椭圆222525x y +=的长轴和短轴的长、焦点和顶点坐标. 【知识点:椭圆的几何性质】详解:把原方程化成标准方程:22125y x +=.这里5,1a b ==,所以25126c =-=.因此,椭圆的长轴和短轴的长分别是210a =和22b =,两个焦点分别是12(0,26),(0,26)F F -,椭圆的四个顶点是1212(0,5),(0,5),(1,0),(1,0)A A B B --. 点拔:解决这类问题关键是将所给方程正确地化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系求椭圆的几何性质.例2.求适合下列条件的椭圆的标准方程. (1)椭圆过点 ()3,0,离心率63e =; (2)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为8. 【知识点:椭圆的几何性质,椭圆的标准方程】 详解: (1)若焦点在x 轴上,则3a =, ∵63c e a ==,2226,963c b a c ∴=∴=-=-=, ∴椭圆的方程为22193x y += 若焦点在y 轴上,则3b =,∵22296113c b e a a a ==-=-=解得 227a =.∴椭圆的方程为221279y x +=综上可知椭圆方程为22193x y +=或221279y x +=. (2)设椭圆的方程为22221(0)x y a b a b +=>>.如图所示,12A FA ∆为等腰直角三角形,OF 为斜边12A A 的中线(高),且12,2OF c A A b ==2224,32c b a b c ∴==∴=+=,故所求椭圆的方程为2213216x y +=. 点拔:利用椭圆的几何性质求椭圆的标准方程时,需要解决定位问题和定量问题.定位问题是由顶点、焦点可确定焦点在哪个坐标轴上,不能确定的要分情况讨论.定量问题可由长轴长、离心率、顶点坐标、焦点坐标来确定.利用离心率确定a ,b ,c 时,常用22=1c b e a a=-.例3.已知椭圆的对称轴是坐标轴,O 是坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且2cos 3OFA ∠=,求椭圆的方程. 【知识点:椭圆的几何性质,椭圆的标准方程】 详解:∵椭圆的长轴长是6、且2c os 3O FA ∠=,∴点A 不是长轴的端点(是短轴的端点).∴2, 3.33c OF c AF a ===∴=2222,325c b ∴==-=.∴椭圆的方程是:22195x y +=或22159x y +=. 点拔:△OFA 是椭圆的特征三角形,它的两直角边长分别为b 、c ,斜边的长为a ,∠OFA 的余弦值是椭圆的离心率.问题探究三 利用椭圆的几何性质解决椭圆的简单问题 ●活动一 求椭圆的离心率例4.12,F F 为椭圆的两个焦点,过2F 的直线交椭圆于,P Q 两点,11PF PQ PF PQ ⊥=且,求椭圆的离心率. 【知识点:椭圆的几何性质,椭圆的定义】解析 由题目可获取以下主要信息:①已知椭圆上两点与焦点连线的几何关系.②求椭圆的离心率.解答本题的关键是把已知条件化为,,a b c 之间的关系.详解: 如图所示,设m PF =1,则1,2PQ m FQm ==.由椭圆定义得a QF QF PF PF 22121=+=+. 所以a Q F PQ PF 411=++.即()a m 422=+.所以()a m 224-=.又()a m a PF 22222-=-=.在12Rt PF F ∆中, 2212221F F PF PF =+.即()()222224224222c aa =-+-.所以()222962321,62c e a=-=-=-.点拔:求椭圆的离心率e 的值,即求ca的值,解答这类题目的主要思路是将已知条件转化为,,a b c 之间的关系.如特征三角形中边边关系、椭圆的定义、222c a b =-等关系都与离心率有直接联系,同时,,,a b c 之间是平方关系,所以,在求e 值时,也常先考查它的平方值. ●活动二 椭圆中的最值问题例5.设P 为椭圆22221x y a b+=上任意一点,1F 为它的一个焦点,求1PF 的最大值和最小值.【知识点:椭圆的几何性质,椭圆的定义】详解:设2F 为椭圆的另一焦点,则由椭圆定义得:a PF PF 221=+,122PF PF c -≤Q ,1222c PF PF c ∴-≤-≤,122222a c PF a c ∴-≤≤+,即c a PF c a +≤≤-1,1PF ∴的最大值为c a +,最小值为c a -.点拔:椭圆上到某一焦点的最远点与最近点分别是长轴的两个端点,应掌握这一性质.例6.若AB 为过椭圆22221x y a b+=中心的弦,Fc (,0)为椭圆的右焦点,则AFB ∆ 的面积最大值是多少?【知识点:椭圆的几何性质,直线与椭圆的位置关系】 详解:设A 、B 两点的坐标分别为0000(,),(,)x y x y --,则:AFB OFB OFA S S S ∆∆∆=+001122c y c y =⋅⋅+⋅⋅-00122c y c y =⋅⋅=⋅.因为点A 、B 在椭圆22221x y a b+=上,所以点A 00(,)x y 的纵坐标0y 的最大值是0y b =.所以AFB S ∆的最大值为bc .点拔:此题关键的地方是写出过椭圆中心的弦与椭圆交点的坐标,然后表示出相应面积. 3.课堂总结 【知识梳理】依据椭圆的几何性质填写下表: 标准方程22221(0)x y a b a b +=>> 22221(0)y x a b a b +=>> 图形性质 焦点 12(,0),(,0)F c F c - 12(0,),(0,)F c F c -焦距 ()2212||2F F c c a b ==-()2212||2F F c c a b ==-范围 ,x a y b ≤≤,x b y a ≤≤对称性 关于x 轴 ,y 轴 ,坐标原点对称顶点 (,0),(0,)a b ±±(0,),(,0)a b ±±轴长轴长2a ,短轴长2b【重难点突破】(1)根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一.本节就是根据椭圆的标准方程来研究它的几何性质.其性质可分为两类:一类是与坐标系无关的本身固有性质,如长短轴长、焦距、离心率;一类是与坐标系有关的性质,如顶点、焦点.(2)通过对椭圆的范围、对称性、特殊点(顶点、焦点、中心)、对称轴及其他特性的讨论从整体上把握曲线的形状、大小和位置,进而掌握椭圆的性质,学习过程中应注意,图形与方程对照、方程与性质对照,通过数形结合的方式探究掌握椭圆的几何性质.(3)根据椭圆几何性质解决实际问题时,关键是将实际问题转化为数学问题,建立数学模型,用代数知识解决几何问题,体现了数形结合思想、函数与方程及等价转化的思想方法. (4)如图所示在2Rt BF O V 中,a c O BF =∠2cos ,记ace =则10<<e ,e 越大,O BF 2∠越小,椭圆越扁;e 越小,O BF 2∠越大,椭圆越圆. 4.随堂检测1.已知点(,)m n 在椭圆228324x y +=,则24m +的取值范围是( )A .423,423⎡⎤-+⎣⎦B .43,43⎡⎤-+⎣⎦C .422,422⎡⎤-+⎣⎦D .42,42⎡⎤-+⎣⎦答案:A离心率()22101c b e e a a==-<<解析:【知识点:椭圆的几何性质】2.椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程是( )A .221169x y +=或221916x y += B .221259x y +=或221259y x += C .2212516x y +=或2212516y x +=D .无法确定 答案:C解析:【知识点:椭圆的标准方程,椭圆的几何性质】3.设椭圆的两个焦点分别为F 1、F 2,过F 1作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率为( ) A.22B.212- C .22- D.12- 答案:D解析:【知识点:椭圆的几何性质】设椭圆方程为()012222>>=+b a by a x 如图,∵)0,(1c F -,∴()P y c P ,-代入椭圆方程得12222=+b y a c P ,∴222a b y P =,∴2121F F a b PF ==,即c ab 22=, 又∵222c a b -=,∴c ac a 222=-,∴0122=-+e e ,又10<<e ,∴12-=e . (三)课后作业 基础型 自在突破1.已知点(,1)A a 在椭圆22142x y +=的内部,则a 的取值范围是( ) A. 22a -<< B. 22a a <->或 C .22a -<< D .11a -<< 答案: A解析:【知识点:椭圆的几何性质】2.若焦点在轴上的椭圆2212x y m+=的离心率为12,则m =( ) A. 3B.32C .83D .23答案:B解析:【知识点:椭圆的几何性质】3. 椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A. 14B.12C .2D .4 答案: A解析:【知识点:椭圆的几何性质】4. 已知椭圆的长轴长8,离心率为32,则椭圆的标准方程为()A.221 43x y+=B.221163x y+=或221163y x+=C.221 164x y+=D.221164x y+=或221164y x+=答案:D解析:【知识点:椭圆的标准方程,椭圆的几何性质】5.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是______.答案:1 2解析:【知识点:椭圆的几何性质】6.椭圆的一个焦点与短轴两端点的连线互相垂直,与离它较近的长轴端点的距离为105-,则此椭圆的方程为________________________.答案:222211 105510x y x y+=+=或解析:【知识点:椭圆的标准方程,椭圆的几何性质】能力型师生共研7.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为()A. 22B.3 2C.5 3D.63答案:A解析:【知识点:椭圆的几何性质】8.已知22221(0)x y a b a b +=>>的两个定点为()(),0,0,A a B b ,且左焦点为,F FAB ∆是以B 为直角三角形,则椭圆的离心率为( )A. 312- B. 512- C. 1+54D.3+14答案:B解析:【知识点:椭圆的几何性质】9. 以椭圆两焦点F 1、F 2所连线段为直径的圆,恰好过短轴两端点,则此椭圆的离心率e 等于__________ 答案:22解析:【知识点:椭圆的几何性质】 10. 求适合下列条件的椭圆的标准方程:(1)与椭圆369422=+y x 有相同的焦距,且离心率为55. (2)长轴长是短轴长的2倍,且经过点()4,2-P . 答案:见解析解析:【知识点:椭圆的标准方程,椭圆的几何性质】(1)∵椭圆369422=+y x 的标准方程为:14922=+y x , ∴5492=-=c ,∴该椭圆的焦距522=c ,5=c .又∵55==a c e ,∴5=a ,252=a .∴20525222=-=-=c ab . ∴所求椭圆的方程为:1202522=+y x 或1202522=+x y . (2)设椭圆的标准方程为12222=+b y a x 或()012222>>=+b a bx a y ,由已知得b a 2=,且椭圆过点()4,2-, ∴1164422=+b b 或1441622=+bb , 解得172=b ,682=a 或82=b ,322=a ,∴所求的椭圆方程为1176822=+y x 或183222=+x y . 探究型 多维突破11.已知A 、B 为椭圆C:2211y x m m+=+的长轴的两个端点,P 是椭圆C 上的动点,且APB ∠的最大值是23π,则实数m 的值等于( )A.312+B.312-C.12D.32-答案: C解析:【知识点:椭圆的几何性质】由椭圆性质知,当点P 位于短轴的端点时APB ,∠取得最大值, 则tan 1132m m m+π=⇒=.12. 设P 是椭圆22221(0)x y a b a b +=>>上的一点,F 1,F 2是椭圆的左、右焦点,且∠F 1PF 2=60°,求椭圆的离心率的取值范围. 答案:见解析解析:【知识点:椭圆的定义,椭圆的几何性质】 解法一:如下图点P 是椭圆上的点,F 1,F 2是椭圆的焦点,由椭圆定义得a PF PF 221=+,① 在△F 1PF 2中,由余弦定理得21260cos 212212221=-+=︒PF PF F F PF PF . 即21222214PF PF c PF PF =-+. 由①得221222142a PF PF PF PF =++, 所以22134b PF PF =⋅②. 由①和②根据基本不等式,得221212⎪⎪⎭⎫⎝⎛+≤⋅PF PF PF PF . 即2234a b ≤,又222c a b -=,故()22234a c a ≤-,解得21≥=a c e . 又1<e ,所以该椭圆的离心率e 的范围是⎪⎭⎫⎢⎣⎡1,21.解法二:由解法一得出a PF PF 221=+①,22134b PF PF =⋅②. 由①②可知1PF ,2PF 是方程034222=+-b ax x 的两根.则有0344422≥⨯-=∆b a ,即()2222443c a b a -=≥,所以224a c ≥.所以21≥=a c e ,又1<e ,所以该椭圆离心率e 的范围是⎪⎭⎫⎢⎣⎡1,21.解法三:设点()y x P ,,则ex a PF +=1,ex a PF -=2. 在△F 1PF 2中由余弦定理,得21260cos 212212221=-+=︒PF PF F F PF PF . 化简得222234ea c x -=,又因为a x a <<-. 2222340a e a c <-≤,即1314022<-≤ee ,解得121<≤e ,所以离心率的范围是⎪⎭⎫⎢⎣⎡1,21. 解法四:设椭圆交y 轴于B 1,B 2两点,则当点P 位于B 1或B 2处时,点P 对两焦点的张角最大,故︒≥∠60211F B F ,则︒≥∠3021F OB . 在Rt △OB 1F 2中2130sin sin 21=︒≥=∠a c F OB ,所以离心率e 的取值范围是⎪⎭⎫⎢⎣⎡1,21. [点评] 本题根据椭圆定义及性质从不同角度应用了四种方法求椭圆离心率的范围,法一应用了基本不等式,法二构造一元二次方程,应用了方程思路,可谓奇思妙解,法三通过焦半径公式搭建起应用x 范围的桥梁,法四应用了极端思想使问题迅速得解,由此可见,在椭圆中建立不等关系的途径或方法还是比较多的,平时解题时需要根据已知条件灵活选择方法,达到快速而又准确地解答题目的目的. 四、自助餐1. 已知点(3,2)在椭圆22221x y a b+=上,则( ).A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上答案:C解析:【知识点:椭圆的几何性质】2.椭圆的焦点在x 轴上,长、短半轴之和为10,焦距为45,则椭圆的标准方程A.221 3616x y+=B.221 1636x y+=C.221 64x y+=D.221 64y x+=答案:A解析:【知识点:椭圆的标准方程,椭圆的几何性质】3.椭圆221259x y+=上点P到右焦点的距离().A.最大值为5,最小值为4B.最大值为10,最小值为8C.最大值为10,最小值为6D.最大值为9,最小值为1答案:D解析:【知识点:椭圆的几何性质】点评:若椭圆上的点P到焦点的距离最小,则P点是椭圆的长轴离焦点近的端点,若椭圆上的点P到焦点的距离最大,则P点是椭圆的长轴离焦点远的端点4.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是().A.221 8172x y+=B.221 819x y+=C.221 8145x y+=D.221 8136x y+=解析:【知识点:椭圆的标准方程,几何性质】5.椭圆22194x y k+=+的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D.1925或21 答案:C解析:【知识点:椭圆的几何性质】6.P 点在椭圆22143x y +=上运动,点Q 、R 分别在圆22(1)1x y ++=与22(1)1x y -+=上运动,则PQ PR +的最大值是( ) A .4 B .6C .27D .523+ 答案:B解析:【知识点:椭圆的几何性质,圆的性质】7. 已知P 是以12,F F 为焦点的椭圆22221(0)x y a b a b +=>>上的一点,若121210,tan 2PF PF PF F ⋅=∠=u u u r u u u u r ,则此椭圆的离心率为________.解析:【知识点:椭圆的几何性质】 答案:538.已知1F ,2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是_____________.答案:⎪⎪⎭⎫⎝⎛22,0 解析:【知识点:椭圆的几何性质】9.椭圆22221(0)x y a b a b +=>> 的离心率为512e -=,A 是左顶点,F 是右焦点,B 是短轴的一个端点,则ABF ∠等于_____________. 答案:90︒解析:【知识点:椭圆的几何性质】10.如图所示,12,F F 分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.答案:见解析解析:【知识点:椭圆的几何性质】设椭圆的长半轴、短半轴、半焦距长分别为a 、b 、c ,可得焦点为()0,1c F -、()0,2c F ,点M 的坐标为⎪⎭⎫ ⎝⎛b c 32,,∵Rt △MF 1F 2中,221MF F F ⊥, ∴2122221MF MF F F =+,即2122944MF b c =+, 根据椭圆的定义得a MF MF 221=+, 可得()222213222⎪⎭⎫ ⎝⎛-=-=b a MF a MF ,∴222944322b c b a +=⎪⎭⎫ ⎝⎛-,整理得ab a c 384422-=,可得()ab c a 2322=-,所以ab b 232=,解得a b 32=, ∴a b a c 3522=-=,因此可得35==a c e ,即该椭圆的离心率等于35. 11. 动点M 到一个定点()0,c F 的距离和它到一条定直线c a x l 2:=的距离比是常数()10<<=e ace ,求动点M 的轨迹方程. 答案:见解析解析:【知识点:椭圆的定义】 设()y x M ,,由题意得()ac ca x y c x =-+-222, ()()22222222c a a y a x c a-=+-,令222b c a =-,方程化为22221(0)x y a b a b +=>>∴所求动点的轨迹方程为22221(0)x y a b a b+=>> .12. P 是椭圆22221(0)x y a b a b+=>> 上异于长轴端点的任一点,1F 、2F 是椭圆的两个焦点,若12PF F α∠=,21PF F β∠=,求证:椭圆的离心率sin()sin sin e αβαβ+=+.答案:见解析解析:【知识点:椭圆的定义,标准方程,椭圆的几何性质】 证明:在△12PF F 中,由正弦定理,得:1212sin sin sin[180()]PF PF F F βααβ==-+.由等比定理得1212sin sin sin()PF PF F F βααβ+=++,即:22sin sin sin()a cβααβ=++.∴sin()sin sin c e a αβαβ+==+.。
椭圆的简单几何性质优秀教学设计1
椭圆的简单几何性质知识回顾1.椭圆的定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
2.椭圆的标准方程:当焦点在X轴上时:当焦点在Y轴上时:3.椭圆中a,b,c的关系:a2=b2+c2[师]放映多媒体,引导学生回顾。
同时板书[生]回顾并回答问题通过回顾椭圆定义及其标准方程,为新课的学习做好铺垫观察发现观察焦点在x轴上的椭圆方程的图像,并思考:1.你能从它的图像上看出它的范围吗?2.它具有怎样的对称性?3.椭圆上哪些点比较特殊?1.范围:椭圆在直线x=±a和直线y=±b所围成的矩形2.对称性:椭圆关于x轴、y轴及原点对称,黑板画图强调椭圆性质与坐标系无关3.顶点:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).[师]放映多媒体,引导学生思考问题。
[师]放映多媒体,结合图形引导学生从标准方程得出该性质并板书[师]通过多媒体讲解,逐步引导学生发现并总结出这一性质并板书[师]放映多媒体,结合黑板上的图引导学生,讲解,板书[生]思考、动手并回答问题。
[生]积极思考并解答,共同得到性质并笔记[生]主动探索并得出结论[生]积极思考,回答问题,解答,得到性质从图像入手,更直观的发现椭圆的这些性质通过老师的引导,学生很容易观察到特点,从而得出椭圆的简单几何性质之一数形结合的思想,使得我们更加清楚且容易得出这一性质yB2B1A1A2F1F2cabx22221(0)x ya ba b+=>>22221(0)y xa ba b+=>>。
椭圆的简单几何性质(教学设计)高中数学人教A版2019选择性必修第一册
3.1.3椭圆的简单几何性质第1课时教学设计(一)教学内容利用椭圆的方程研究椭圆的简单几何性质(二)教学目标1.通过对椭圆图像的观察,能发现椭圆的简单几何性质,发展学生的直观想象素养。
2.经历椭圆简单几何性质的代数推导过程,获得利用代数方法证明几何性质的技能,发展学生的逻辑推理与数学运算素养。
3.在观察、发现、猜想、证明过程中,了解一般的数学发现及证明规律,体会严谨的数形结合思想。
(三)教学重点及难点重点:椭圆的简单几何性质难点:通过椭圆的方程研究几何性质;理解椭圆的离心率。
(四)教学过程设计(主体内容)1、创设情境,发现问题问题1:我们是怎样研究圆的?生:圆的方程和几何性质。
追问:我们学习了椭圆的哪些知识,接下来要研究什么?生:学习了椭圆的定义和标准方程,接下来要研究椭圆的几何性质。
追问:研究椭圆的哪些性质呢?生1:形状、大小、对称性、特殊点。
追问:如何研究呢?生2:图像,应该还与方程有关。
教师:没错,就是要用图形和代数两个方面去研究椭圆的性质。
数学家华罗庚说过“数少形时少直观,形缺数时难入微”,我们今天借助上节课学习的椭圆的标准方程研究椭圆的几何性质。
设计意图:创建数学情境,引导学生通过圆的方程和性质类比发现问题——椭圆有怎样的简答几何性质,明确研究的基本思想和方法,先形后数,体会数形结合的思想。
2、数学探究,解决问题教师:为了研究方便,以椭圆()222210x y a b a b+=>>为例。
探究1:范围问题2:圆的方程确定时,横纵坐标有范围。
那么椭圆有范围吗?如何寻找范围呢?学生活动:独立思考后讨论探究。
生1:椭圆的范围就是利用椭圆的方程确定椭圆上点的横、纵坐标的取值范围。
我采用有界性的方法:222210x y a b=-≥,则a x a -≤≤;同理,b y b -≤≤。
生2:因为221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,联系到cos x a θ=,sin y b θ=,利用三角函数的有界性,可求得范围。
3.1.2椭圆的简几何性质(第一课时) (1)
3.1.2椭圆的简单几何性质(第一课时)(人教A版选择性必修数学第一册第三章圆锥曲线的方程)一、教学目标1.掌握椭圆的范围、对称性、中心、顶点、轴、离心率等几何性质,能够应用椭圆的标准方程研究椭圆的几何性质。
2.会根据椭圆的几何性质求椭圆的标准方程二、教学重难点1.学会椭圆的长短轴、焦点坐标、离心率的基本概念2.掌握椭圆的离心率、长短轴的定义基础及其灵活应用三、教学过程1.椭圆的简单几何性质1.1创设情境,引发思考【实际情境】神舟飞船发射成功,飞行轨道具有何种特征?阅读教材,完成下表。
____≤x ≤____ _____≤x ≤_____问题1:请用圆规作出图中椭圆焦点的位置。
并说明依据。
【活动预设】1.引导学生归纳概括出椭圆的图形特征: 2.椭圆标准方程中a 、b 、c 的关系. 【设计意图】渗透数形结合思想1.2探究典例,形成概念活动:探究离心率的定义依据【活动预设】求适合下列条件的椭圆的焦点坐标和离心率:【设计意图】为数学概念的形成提供理论依据.问题2:求适合下列条件的椭圆的长短轴、焦点坐标和离心率:(1)x2100+y236=1;(2)x236+y2100=1【活动预设】探究焦点位置与标准方程之间联系。
【设计意图】比较不同的焦点位置对图形的影响1.3具体感知,理性分析活动:自主举例的接龙活动.【活动要求】分成A、B组:A组给出标准方程B组画出椭圆的图像并说明特征;然后交换:A组给出椭圆的图形B组写出标准方程。
【活动预设】对椭圆的标准方程的形式给出清晰的认识【设计意图】在形成椭圆概念后,遵循从一般到特殊的思路,在实践活动中进行再认识,熟悉概念,从外延的角度加深概念的理解,从而形成数形结合的思想用标准方程研究椭圆的几何性质。
2.初步应用,理解概念例1 求椭圆16x2+25y2=400旳长轴长短轴长,离心率,焦点和顶点坐标【预设的答案】16x2+25y2=400是否为标准方程?【设计意图】对椭圆方程的结构认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2椭圆椭圆的简单几何性质(第1课时)(人教A版高中课标教材数学选修2-1)教学设计《椭圆的简单几何性质》(第一课时)教学设计一、教学内容解析1.内容本节课学习椭圆的几何性质,主要包括范围、长轴、短轴、对称性、离心率,以及性质的应用.2.内容解析本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第二章《圆锥曲线与方程》中2.2《椭圆》的第二课时,主要内容是研究椭圆的几何性质. 椭圆的对称性、长轴、短轴描述了椭圆的形状特征,椭圆的范围描述了椭圆的大小,椭圆的离心率是用数值刻画椭圆扁平程度的量.从单元内容看,本单元主要包括三种圆锥曲线的定义、标准方程和性质,以及坐标法的应用,在学习的过程中要深入对数形结合思想的理解.本节课是在学生熟悉了直线和圆的方程、椭圆的定义及其标准方程的基础上,并具有初步运用方程研究曲线的方法的活动经验后,第一次系统地运用代数与几何相结合的方法研究曲线的性质.它为之后研究双曲线、抛物线的几何性质、运用“以数解形”的方法解决几何问题等内容提供了数学模型和方法指导,因此本节课对体会单元核心思想方法具有举足轻重的地位和作用.本节内容蕴含了丰富的数学思想方法,突出体现了数形结合、分类讨论及类比推理的思想和用代数法研究曲线性质的数学方法.基于以上分析,确定本节课的教学重点是:利用椭圆的标准方程研究椭圆的简单几何性质,理解“以数解形”的数形结合思想.二、教学目标设置1.教学目标(1)在动手画椭圆的过程中,发现并提出椭圆对称性、大小、圆扁程度等几何性质的问题,发展学生发现问题提出问题的能力,培养学生数学抽象的能力.(2)通过对椭圆图形特征的研究,分析椭圆的范围、长轴、短轴、对称性的性质,发展学生分析几何图形和直观想象的能力.(3)结合方程分析椭圆性质,以数解形,提升学生对数形结合思想的理解.(4)通过离心率的探究,使学生经历观察、分析、归纳、概括的思维过程和动手操作的实践过程,发展学生数学逻辑推理的能力.2.目标解析(1)设计画椭圆图形,可以提高学生研究曲线时动手作图的基本技能,并让学生从作图的过程中初步了解椭圆的各项几何性质,发展学生直观想象和数学抽象的数学核心素养,培养学生分析问题和解决问题的操作性思维能力.(2)研究曲线性质时,首先从图形角度研究,可以提高学生发现问题的能力,并让学生体会几何直观在研究曲线性质中的作用.(3)通过方程对椭圆的几何性质的探究,学生进一步感受用代数方法解决几何问题的数形结合的思想,在由数释形的过程中,培养学生的探究习惯,发展学生的理性思维.(4)在椭圆离心率的探究过程中,通过实验发现规律,结合老师的引导点拨,让学生去实现对离心率的发现和理解,培养学生严谨的治学态度和不断发现问题的能力,以及运用所学知识解决新问题的能力.三、学生学情分析学生已经熟悉和掌握椭圆的定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力,但这是学生第一次通过方程研究曲线的几何性质,研究思路并不是很清晰.对于范围、对称性、顶点三个性质,通过老师的点拨引导,学生比较容易掌握.离心率概念比较抽象,学生缺乏研究此类问题的经验.本节课的教学难点是:学生对椭圆的核心性质——离心率的认识与理解.本单元内容的教学,要使学生充分经历“操作、观察、分析、抽象、概括”的学习过程.即从生活中抽象图形的模型,动手操作画图象,观察曲线的特点,探究曲线的方程,根据方程研究曲线.教学中,充分运用类比学习、螺旋提升的方法,不断形成完整的解析几何研究方法和学习策略.在运用方程讨论曲线性质时,主要以独立探究为主,离心率的发现过程要为学生创设适当的情境,使学生在最近发展区中发现问题、解决问题.对于坐标法的理解,教师要为学生创造循序渐进地理解数形结合思想的条件,以代数与几何为什么结合、怎么结合、结合时注意什么等问题为抓手,帮助学生深刻理解此数学思想方法.四、教学策略分析根据本节课教学内容的特点,为了更直观、形象地突出重点,突破难点,激发学生的学习兴趣,在课堂教学中让学生通过动手操作画椭圆,亲历知识的生成过程,力求借助信息技术手段,以“几何画板”软件为平台,通过对椭圆的核心性质离心率e 的变化的演示,观察椭圆圆扁程度的变化,让学生体会运用“数形结合”的思想方法建立起高中数学的两条主线——代数主线和几何主线间的密切联系,同时利用展台将学生的研究成果进行实时呈现,能够使本节课重点研究的椭圆的简单几何性质的四方面——椭圆的范围、对称性、顶点及离心率问题及时得到很好的解决.具体来说包括:1.任务驱动教学法:利用问题串作引导,引发学生积极思考并积极探究;2.演示教学法:学生实物投影展示和教师几何画板动态演示相结合,提高课堂效率的同时兼顾解答的规范性;3.启发式教学法:在研究范围和离心率时,教师做积极启发并与学生自主探究与合作讨论相结合突破难点;4.学法:以小组合作为基本活动模型,采用自主学习法,结合合作探究法,讨论法,归纳总结法与交流展示法.五、教学过程设计(一) 创设情境、建构概念1.情境创设:让学生观察建筑中国国家大剧院,它与湖中倒影的正视图呈椭圆形,进而引出课题.2.知识回顾:椭圆的标准方程:当焦点在x 轴时,)0(12222>>=+b a b y a x当焦点在y 轴时,)0(12222>>=+b a bx a y【设计意图】回顾上节课所学内容,巩固知识并为本节课所学做铺垫. 3.活动创设课前布置预习作业:你能否利用所学知识,在同一坐标系中画出方程1162522=+y x 和192522=+y x 所表示的曲线.课上分组展示学生的成果,并让学生观察他们有什么几何特征. 预设可能出现的情况:预设1:先判断其为椭圆,再利用定义画图;预设2:先判断其为椭圆,寻找到与坐标轴的交点,画椭圆; 评价预设:寻找画图的关键点,提高画图容易度.预设3:先判断其对称性,只需精确画出其第一象限的图象; 评价预设:发现椭圆的对称性,可以给画图带来方便. 预设4:从函数角度出发,利用描点法作图.评价预设:将其转化为函数,利用函数图象的画法作图.【设计意图】数学是现实世界的反映.从学生感兴趣的问题出发,创设思维情境,让学生在动手操作的过程中重温方程和曲线的关系,直观感受椭圆的几何特征,自然引出本节课的课题.(二)独思共议,引导探究通过画具体的椭圆,由特殊到一般,提出一般的椭圆会有哪些性质.以椭圆)0(12222>>=+b a by a x 为例研究椭圆的几何性质.探究一.椭圆的范围问题1:椭圆大小如何刻画? 问题2:该椭圆上点的横坐标的取值范围是什么?纵坐标呢(预设:学生会利用图形观察得知,老师要给予肯定:图形观察很直观)问题3: 你能否用方程说明该范围?追问:范围可以由不等关系求出,如何建立y x ,的不等关系?(先独立思考2分钟再进行小组合作,后进行小组展示成果) 从方程上看:预设1:因为012222≥-=a x b y 所以122≤ax ,故可得a x a ≤≤-,同理可得b y b ≤≤-.o预设2:由椭圆方程)0(12222>>=+b a b y a x 中实数平方的非负性可得122≤a x ,122≤by ,所以a x a ≤≤-,b y b ≤≤-.预设3:利用三角换元:设θθsin ,cos ==bya x ,则θθsin ,cosb y a x ==, 所以a x a ≤≤-,b y b ≤≤-.教师总结点评:利用方程中变量的非负性,判断其它变量范围的方法,是解析几何中利用方程研究曲线范围的一般方法.【设计意图】通过椭圆的标准方程确定椭圆的范围,使学生感受利用椭圆方程研究椭圆几何性质的方法,理解椭圆)0(12222>>=+b a by a x 位于直线a x ±=和b x ±=所围成的矩形内,为描点法作图提供了参考,体会利用坐标法研究曲线几何性质的优越性.探究二.椭圆的对称性问题1:椭圆具有怎样的对称性?师生活动:学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.学生在必修2《直线的方程》和《圆的方程》的学习中经历过对曲线对称性的探究过程,此外学生还可以类比函数的奇偶性的研究方法得到椭圆的对称性,并给出椭圆中心的定义.预设:学生可能会从图形和方程的角度得到.(教师通过几何画板演示)(此问题对学生具有相当的难度,老师指明图形对称的本质是点的对称,在学生回答过程中,要强调在椭圆上“任取一点”) 问题2:能否用椭圆的方程说明该对称性? (小组讨论2分钟,找代表发言)(教师动画展示)椭圆上任取点),(y x P ,关于y 轴的对称点),('y x P -也在椭圆上,说明椭圆关于y 轴对称,关于x 轴的对称点),(''y x P -也在椭圆上,说明椭圆关于x 轴对称,关于原点的对称点),('''y x P --也在椭圆上,说明椭圆关于原点对称.即坐标轴x 轴和y 轴是椭圆的对称轴,原点)0,0(O 是椭圆的对称中心,称为椭圆的中心.强调:利用曲线上任意一点关于坐标轴和原点的对称点仍在曲线上来判断曲线的对称性,也是利用方程研究曲线对称性的一般方法.问题3:研究曲线 的对称性【设计意图】学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.教师通过信息技术的引入,让学生理解图形对称性的本质是构成图形的点的对称性,即利用曲线上点的坐标的对称性,可以实现曲线的对称性.并通过练习题,让学生学以致用,体会研究曲线对称性的一般方法.探究三.椭圆的顶点问题1:观察椭圆图形,他有哪些特殊点? 问题2:这些点的坐标是什么?利用学生描点画图时的特殊点,引入椭圆的顶点,让学生感受图形中某些特殊点在确定曲线位置时的作用,从而得到顶点定义,即椭圆与对称轴x 轴和y 轴的四个交点.并指出长轴,短轴和长半轴长,短半轴长等相关概念.【设计意图】让学生明确顶点等相关概念,理解顶点与对称性的关系.探究四.椭圆的形状——认识椭圆的离心率e问题1:用什么量可以刻画椭圆的扁平程度?学生活动:小组合作,利用椭圆的定义画椭圆, (小组合作讨论,相互交流,小组展示)预设1:a c ;预设评价:学生可能从椭圆的定义出发,发现画椭圆时ac的变化对椭圆形状的影响.预设2:ab.预设评价:学生可能观察预习作业中两个椭圆的扁平程度得到. 师生活动:小组展示探究成果.学生观察当a 保持不变时,随着c 的改变,椭圆圆扁程度的变化,发现椭圆随着a c 的增大而变扁,随着ac的减小而变圆.教师利用几何画板动态展示,并给出离心率的概念,并引导学生求出椭圆离心率的范围,【设计意图】让学生从具体问题中抽象出离心率的定义,信息技术的引入不仅可以使学生体会到定义的科学性、严谨性,让学生深刻地理解定义,更有助于培养学生的数学抽象、逻辑推理等数学素养,不断积累数学活动的经验.122=-y x问题2:离心率的大小如何影响椭圆的扁平程度?预设:e 越接近于0,则c 越接近于0,即22c a b -=越接近于a , 椭圆越接近于圆;e 越接近于1,则c 越接近于a ,即22c a b -=越接近于0,椭圆越扁.(让学生用逼近的思想想象当0→e 时,椭圆接近于圆,当1→e 时,椭圆接近于一条线段.)【设计意图】利用等价转化的思想刻画椭圆的扁平程度,加深学生对椭圆的核心性质离心率e 的认识与理解.(三)类比联想,知识迁移类比焦点在x 轴上的椭圆的几何性质,得到焦点在y 轴上的椭圆的几何性质,让学生体会数学研究中的类比推理的过程与方法.【设计意图】让学生体会椭圆焦点位置的变化对其性质的影响,提升学生的逻辑推理素养,并为后续双曲线和抛物线的学习奠定基础.(四)巩固新知,提升能力 例题分析:例1.椭圆400251622=+y x 的长轴长是________,短轴长是_________,焦点坐标是________,焦距是__________,顶点坐标是__________,离心率是________.例2.在椭圆)0(12222>>=+b a by a x 中,已知B OF 2∆为等腰直角三角形,求椭圆的离心率.问题:你能从三角函数的角度理解离心率对椭圆形状的影响吗?【设计意图】通过例题分析,巩固椭圆的几何性质,例2旨在引导学生深刻理解椭圆离心率的几何意义,实现认识上的又一次飞跃.(五)回顾反思,归纳总结学生和老师共同回顾、梳理、总结本节课所学的数学知识、思想、方法. (1)椭圆的几何性质(2)用坐标法研究曲线性质的过程与方法(3)所用的数学思想方法:数形结合、化归转化、类比推理师生活动:先由学生总结所学内容,教师补充说明,特别是通过本节课所经历的知识的探究过程,体会类比与数形结合的数学思想.通过本节课,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断地激发学生的数学学习兴趣.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标测试,当堂反馈1.已知椭圆方程为6622=+y x ,它的长轴长是__________,短轴长是___________, 焦点坐标是________,焦距是________,顶点坐标是_________,离心率是________.2.椭圆以坐标轴为对称轴,离心率32=e ,长轴长为6,则椭圆的标准方程为( ) (A)1203622=+y x (B)15922=+y x (C)15922=+y x 或15922=+x y (D)1203622=+x y 或1203622=+y x 【设计意图】通过目标检测,可以了解学生对知识的理解和掌握情况,为教学评价提供依据,其中第2题旨在体会分类讨论思想在数学中的应用.接着展示图片:展示椭圆在建筑与天文等方面的应用,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断激发学生的学习兴趣.(七)布置作业,巩固所学实践作业:查阅椭圆在建筑学与天文学方面应用的资料,每组写一份调研小报告.分层作业:必做:课本P习题2.2A组2,3,4,5题49选做:A组第9题【设计意图】作业分层布置,力求让不同基础的学生都拥有成功学习的体验.必做题主要考查学生对本节课重点知识的掌握情况,检查学生运用所学知识解决问题的能力,实践作业的设置是为了让学生体验如何检索、搜集资料进行数学学习,这是本节课所学内容的提高与拓展,可以更好地培养学生分析问题和解决问题的能力.。