导数的概念及运算(基础+复习+习题+练习)
导数概念及练习题
2. 求双曲线
y 1在点 x
1 2
,
2
处的切线的斜率,并写出曲
线在该点处的切线方程和法线方程。
解 根据导数的几何意义,所求切线的斜率为
k1
y
x1 2
1 x2
x1 4 2
所以,所求切线方程为 y 2 4(x 1) 即 4x y 4 0 2
所求法线的斜率为
k2
1 k1
1 4
所求法线方程为 y 2 1 (x 1) 即 2x 8y 15 0 42
思考题解答
由导数的定义知, f ( x0 )是一个具体的 数值, f ( x)是由于 f ( x) 在某区间I 上每一 点都可导而定义在I 上的一个新函数,即 x I ,有唯一值 f ( x) 与之对应,所以两
者的区别是:一个是数值,另一个是函数.两
者的联系是:在某点x0 处的导数 f ( x0 )即是导 函数 f ( x)在x0 处的函数值.
此时对x D,有唯一的f (x)与之对应,从而形成了函数关系,
称此函数为f (x)在D上的导函数,简称为导数,记作
f (x), y, df (x) , dy
dx
dx
根据导数定义有
f (x) lim f (x x) f (x) lim f (x h) f (x)
x0
x
h0
h
f (x0 ) f (x) xx0
f (x0 ) x0
0
当x x0时,有f (x) f (x0 ) 0,即f (x) f (x0 )
当x x0时,有f (x) f (x0 ) 0,即f (x) f (x0 )
导数的概念练习题
1. 已知
f
(x)
sin
高考数学必考点专项第7练 导数的概念及其运算(练习及答案)(全国通用)(新高考专用)
高考数学必考点专项第7练导数的概念及其运算一、单选题1. 质点运动规律23s t =+,则在时间[3,3]t +∆中,相应的平均速度等于( ) A. 6t +∆B. 96t t+∆+∆ C. 3t +∆ D. 9t +∆2. 设()f x 是可导函数,且000()(2)lim2x f x f x x x∆→-+∆=∆,则0()f x '= ( )A. 12B. 1-C. 0D. 2-3. 设,,,…,,则( )A. sin xB. sin x -C. cos xD. cos x -4. 曲线2()ln 1x f x e x x =-+在点(1,(1))f 处的切线与坐标轴围成的图形的面积为( )A.21e - B.4eC.21e + D.41e + 5. 下列求导运算正确的是( )A. 2313(ln )x x x x+'=+B. 2()2x x x e xe '=C. (3cos 2)3(ln 3cos 22sin 2)x x x x x '=⋅-D. 211(ln )22ln 2log x x +'=+6. 设函数的导函数为,则图象大致是( )A.B.C.D.7. 已知正数a ,b 满足4a b +=,则曲线()ln xf x x b=+在点(,())a f a 处的切线的倾斜角的取值范围为 ( )A. [,)4π+∞B. 5[,)412ππC. [,)42ππD. [,)43ππ8. 对于三次函数32()(0)f x ax bx cx d a =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数3211()233g x x x x =-+-,则(2019)(2020)(2021)(2022)(g g g g -+-++= )A. 0B. 1C. 2D. 49. 若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<二、多选题10. 已知函数()f x 的定义域为R ,且在R 上可导,其导函数记为().f x '下列命题正确的有( )()g xA. 若函数()f x 是奇函数,则()f x '是偶函数B. 若函数()f x '是偶函数,则()f x 是奇函数C. 若函数()f x 是周期函数,则()f x '也是周期函数D. 若函数()f x '是周期函数,则()f x 也是周期函数三、填空题11. 曲线2sin cos y x x =+在点(,1)π-处的切线方程为_____________________12. 在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是__________.13. 已知函数()()sin cos 23f x f x x π=',其中()f x '为()f x 的导函数,则()2f π=__________.14. 定义方程的实数根0x 叫做函数的“新驻点”.设,则在上的“新驻点”为_________15. 已知函数,若方程()f x kx =恰有两个实数解,则实数k 的取值范围为__________.16. 已知函数,函数()f x 的图象在点和点的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.17. 已知直线y kx =是曲线x y e =的切线,也是曲线ln y x m =+的切线,则实数k =__________,实数m =__________. 四、解答题()()f x f x ='()f x ()f x18. 已知函数32()39 1.f x x x x =-+++(1)求()f x 的单调递减区间;(2)求()f x 在点(2,(2))f --处的切线方程.19. 已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积;(2)若()1f x ,求a 的取值范围.答案和解析1.【答案】A解:平均速度为22(3)3(33)633t v t t ++-+==++-,故选.A2.【答案】B解:由题得:0000020()(2)(2)()lim2lim 22x x f x f x x f x x f x x x∆→∆→-+∆+∆-=-=∆∆,即02()2f x -'=,得0() 1.f x '=- 故选.B3.【答案】D解:根据题意,,,,,,则有,,…,所以,则.故选.D4.【答案】A解:()2ln xf x e x x x '=--, 故(1)1f e '=-,(1)1f e =+,故切线方程是:(1)(1)(1)y e e x -+=--, 即(1)2y e x =-+,令0x =,解得:2y =,令0y =,解得:21x e =--, 故围成的三角形的面积1222211S e e =⨯⨯=--, 故选:.A5.【答案】C解:2313(ln )x x x x+'=-,A 错误; 22()2x x x x e xe x e '=+,B 错误;(3cos 2)3ln 3cos 223sin 23(ln 3cos 22sin 2)x x x x x x x x x '=-⨯=⋅-,C 正确;211(ln )2ln 2log x x +'=,D 错误. 故选:.C6.【答案】D解:因为4()cos f x x x =--,所以3()sin 4f x x x '=-,所以3()sin 4g x x x =-, 所以函数()g x 是奇函数,其图象关于原点成中心对称, 而函数为偶函数,其图象关于y 轴对称,所以选项B ,C 错误;又因为其图象过原点O ,所以选项A 错误. 故选:.D7.【答案】C解:()ln xf x x b=+,11()f x x b∴'=+,而正数a ,b 满足4a b +=, 1111111()()()(2)(22)1444b a f a a b a b a b a b ∴'=+=++=+++=, 当且仅当2a b ==取等号成立,∴曲线()ln xf x x b=+在(,())a f a 处的切线的斜率1k ,又倾斜角范围为[0,),π ∴曲线()ln x f x x b =+在(,())a f a 处的切线的倾斜角的取值范围为[,),42ππ 故选.C8.【答案】D解:3211()233g x x x x =-+-,2()22g x x x '=-+,()22g x x ''=-, 令()0g x ''=,得1x =, 又3211(1)1121133g =⨯-+⨯-=, 所以()g x 的对称中心为(1,1),所以(2)()2g x g x -+=, 所以(2019)(2020)(2021)(2022)[(2019)(2021)][(2020)(2022)]g g g g g g g g -+-++=-++-+224=+=,故选:.D9.【答案】D解:设切点为根据两点之间斜率和导数的几何意义,易知000x x e b e x a-=-,整理得:00000x x xe b x e ae --+=有两解,令()x x x g x e b xe ae =--+,()()x g x a x e '=-,易知()g x 最大值为().g a即,解得b a e >,又因为当x 趋近正无穷时()0g x <,当x 趋近负无穷时,()g x 趋近0b -<,则0.b > 综上,a 0b e << 故选.D10.【答案】AC解:A 中,若函数()f x 是奇函数, 则,则()f x '是偶函数,故A 正确;B 中,令()sin 1f x x =+,不是奇函数,但是偶函数,故B 错误;C 中,若函数()f x 是周期函数, 则,则()f x '也是周期函数,故C 正确. D 中,令,不是周期函数,但是周期函数,故D 错误;故选.AC11.【答案】2210x y π+-+=解:已知2sin cos y x x =+,2cos sin y x x ∴'=-,,∴曲线2sin cos y x x =+在点(,1)π-处的切线方程为:12()y x π+=--,即2210.x y π+-+= 故答案为2210x y π+-+=12.【答案】4解:由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-,解得000).x x > ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=的距离最小,4.= 故答案为:4.13.【答案】0解:因为()()[(sin )cos 2sin (cos 2)]3f x f x x x x π'=''+'()(cos cos 22sin sin 2)3f x x x x π='-,所以227()()(coscos2sin sin )()33333343f f f πππππππ'='-=-', 所以()03f π'=,所以()0f x =,所以()02f π=,故答案为0.14.【答案】4π 解:()sin ()cos f x x f x x =∴'=,令()()f x f x =',即cos sin x x =,得tan 1x =,,解得4x π=,所以,函数()y f x =在上的“新驻点”为.4π 故答案为:.4π 15.【答案】解:函数,方程()f x kx =恰有两个实数解,∴函数()f x 的图象与函数y kx =恰有2个交点.作出函数()f x 和y kx =的图象,如图所示:当直线y kx =与ln y x =相切时,设切点为00(,ln )x x , 切线斜率为01k x =, 所以切线方程为0001ln ()y x x x x -=-, 根据切线方程过原点,可得0ln 1x =,所以0x e =,1k e=, 结合图象可知,实数k 的取值范围为,故答案为16.【答案】解:由题意,,则, 所以点和点,12,x x AM BN k e k e =-=, 所以12121,0x x e ex x -⋅=-+=, 所以, 所以,(0,1)同理,所以故答案为:17.【答案】e2解:对于x y e =,设切点为(,)nn e , 因为x y e '=,故切线斜率n k e =,故切线方程为()n n y e e x n -=-,由已知得切线过(0,0), 所以()n n e e n -=-,故1n =,所以.k e =对于ln y x m =+,设切点为(,ln )c c m +,且其导函数为1y x '=, 因为直线y ex =也是曲线ln y x m =+的切线,得1|.x c y e c='== 所以1c e =,所以切点为1(,1)e,代入ln y x m =+得11ln m e =+, 所以 2.m =故答案为:e ;2.18.【答案】解:(1)函数32()391f x x x x =-+++的导数为 2()369f x x x '=-++,令()0f x '<,解得1x <-,或3x >,可得函数()f x 的单调递减区间为(,1)-∞-和(3,)+∞;2(2)()369f x x x '=-++,可得()f x 在点(2,(2))f --处的切线斜率为3412915k =-⨯-+=-,切点为(2,3)-,即有()f x 在点(2,(2))f --处的切线方程为315(2)y x -=-+, 即为15270.x y ++=19.【答案】解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+, 所以切线方程为:1(1)(1)y e e x --=--,即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x ,只需ln 1ln ln 1a x e x a +--+,即ln 1ln -1ln a x e a x +-+,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+,令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-,因为()g x 为增函数,只需证ln 1ln a x x +-,即ln ln 1a x x +-,设()ln 1h x x x =+-,11()1x h x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减, max ()(1)0h x h ==,所以ln 0a ,1a ,即a 的取值范围为[1,).+∞。
高中数学《导数的概念及其运算》练习题
§3.1 导数的概念及运算1.下列求导运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.(2021·安徽江南十校联考)曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=03.(2020·广元模拟)已知函数f (x )=14x 2+cos x ,则其导函数f ′(x )的图象大致是( )4.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( ) A.⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6 5.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2)6.(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x7.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)= .8.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = . 9.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln 2 022-ln 2 021≈________.10.(2021·山东省实验中学四校联考)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 .11.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.12.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.13.(2020·青岛模拟)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x14.已知函数f (x )=x +a 2x,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 .15.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为 . 16.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.§3.2 导数与函数的单调性课时精练1.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )2.下列函数中,在(0,+∞)上单调递增的是( )A .f (x )=sin 2xB .g (x )=x 3-xC .h (x )=x e xD .m (x )=-x +ln x3.(2020·甘肃静宁一中模拟)已知函数f (x )=x 2+a x ,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)4.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln 2),则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .b >a >cD .c >b >a5.(多选)若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值可以是( )A .-3B .-1C .0D .26.(多选)若函数 g (x )=e x f (x )(e =2.718…,e 为自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数不具有M 性质的为( )A .f (x )=1xB .f (x )=x 2+1C .f (x )=sin xD .f (x )=x7.函数y =2ln x -3x 2的单调递增区间为________.8.若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.9.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 10.(2020·济南质检)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.11.函数f (x )=(x 2+ax +b )e -x ,若f (x )在点(0,f (0))处的切线方程为6x -y -5=0.(1)求a ,b 的值;(2)求函数f (x )的单调区间.12.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.13.(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .1221e e x x x x >D .1221e e x xx x < 14.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为____________.15.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)的解集为________. 16.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求实数m 的取值范围.§3.3 导数与函数的极值、最值课时精练1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.函数y =x e x 在[0,2]上的最大值是( ) A.1e B.2e 2 C .0 D.12e3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 24.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.1635.(多选)函数y =f (x )的导函数f ′(x )的图象如图所示,则以下命题错误的是( )A .-3是函数y =f (x )的极值点B .-1是函数y =f (x )的最小值点C .y =f (x )在区间(-3,1)上单调递增D .y =f (x )在x =0处切线的斜率小于零6.(多选)(2021·烟台模拟)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( ) A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e2,则t 的最小值为2 7.函数f (x )=2x -ln x 的最小值为________.8.若函数f (x )=x 3-2cx 2+x 有两个极值点,则实数c 的取值范围为______________.9.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π]. ①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0);③f (x )在[0,x 0]上是减函数; ④f (x 0)为f (x )的极大值.那么上面命题中真命题的序号是________.10.已知不等式e x -1≥kx +ln x 对于任意的x ∈(0,+∞)恒成立,则k 的最大值为________.11.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数.12.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).13.已知函数f (x )=x +2sin x ,x ∈[0,2π],则f (x )的值域为( )A.⎣⎡⎦⎤4π3-3,2π3+3 B.⎣⎡⎦⎤0,4π3-3 C.⎣⎡⎦⎤2π3+3,2π D .[0,2π]14.(2020·邢台模拟)若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.15.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.16.(2019·全国Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1)讨论f (x )的单调性;(2)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.高考专题突破一 高考中的导数综合问题第1课时 利用导数研究恒(能)成立问题1.设函数f (x )=ln x +a x(a 为常数).(1)讨论函数f (x )的单调性; (2)不等式f (x )≥1在x ∈(0,1]上恒成立,求实数a 的取值范围.2.已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值.3.已知函数f (x )=x 2+(a +1)x -ln x ,g (x )=x 2+x +2a +1.(1)若f (x )在(1,+∞)上单调递增,求实数a 的取值范围;(2)当x ∈[1,e]时,f (x )<g (x )恒成立,求实数a 的取值范围.4.已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.5.(2020·衡水中学检测)设函数f (x )=1-a 2x 2+ax -ln x (a ∈R ). (1)当a =1时,求函数f (x )的极值;(2)若对任意a ∈(4,5)及任意x 1,x 2∈[1,2],恒有a -12m +ln 2>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.第2课时利用导函数研究函数的零点1.已知函数f(x)=e x(ax+1),曲线y=f(x)在x=1处的切线方程为y=bx-e.(1)求a,b的值;(2)若函数g(x)=f(x)-3e x-m有两个零点,求实数m的取值范围.2.已知f(x)=ax2(a∈R),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[1,e]上有两个不相等的解,求a的取值范围.3.已知函数f(x)=e x+ax-a(a∈R且a≠0).(1)若函数f(x)在x=0处取得极值,求实数a的值,并求此时f(x)在[-2,1]上的最大值;(2)若函数f(x)不存在零点,求实数a的取值范围.4.(2020·潍坊检测)已知函数f(x)=ln x-x2+ax,a∈R.(1)证明:ln x≤x-1;(2)若a≥1,讨论函数f(x)的零点个数.5.已知函数f(x)=e x+1-kx-2k(其中e是自然对数的底数,k∈R).(1)讨论函数f(x)的单调性;(2)当函数f(x)有两个零点x1,x2时,证明x1+x2>-2.第3课时利用导数证明不等式1.(2021·莆田模拟)已知函数f(x)=x e x-1-ax+1,曲线y=f(x)在点(2,f(2))处的切线l的斜率为3e-2.(1)求a的值及切线l的方程;(2)证明:f(x)≥0.2.(2021·沧州七校联考)设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.3.已知函数f(x)=eln x-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,证明:xf(x)-e x+2e x≤0.4.已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )在(0,+∞)上的单调性;(2)证明:e x -e 2ln x >0恒成立.5.(2018·全国Ⅰ)已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.。
导数的计算练习题
导数的概念及运算知识与方法:1. 常见基本初等函数的导数公式和:0'=C (C 为常数); 1)'(-=n n nx x , n ∈N +; x x cos )'(sin =;x x sin )'(cos -=;x x e e =)'(; a a a x x ln )'(=; xx 1)'(ln =; 111(l o g )l o g ln a a x e x a x '=⋅=. 2.常用导数运算法则:法则1 )()()]()(['''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+ . 法则3 )0)(()()()()()(])()([2≠'-'='x v x v x v x u x v x u x v x u 3.复合函数的导数法则:设函数u =g (x )在点x 处有导数()x u g x ''=,函数f (u )在点x 处的u 处有导数()u y f u ''=;则复合函数y =f [(x )]在点x 处也有导数,且.x u x y y u '''=⋅也可简述为:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数.1. 下列求导运算正确的是 ( )e x x xx x A x 3x 222log 3)D.(3 -2xsinx )cosx (x C. 2ln 1)B.(log 11)1.(='='='+='+2. 3(21)y x =+在0x =处的导数是 ( )A. 0B. 1C. 3D. 63. 函数n m mx y -=2的导数为34x y =',则 ( )A.m = 1,n = 2B.m =-1,n=2C.m =-1,n =-2D.m =1,n =-2 4.已知2)3(,2)3(-='=f f 则3)(32lim3--→x x f x x 的值为 ( )A. -4B. 0C. 8D. 不存在5.一点沿直线运动,如果由始点起经过t 秒后的距离为43215243s t t t =-+,那么速度为零的时刻是( )A .1秒末 B .0秒 C .4秒末 D .0,1,4秒末6.过原点作曲线y =e x 的切线,则切点的坐标为 ,切线的斜率为 。
导数概念练习题
导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。
导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。
下面是一些导数概念的练习题,帮助大家更好地理解这个概念。
已知函数f(x) = x^2 + 2x + 1,求f'(x)。
已知函数f(x) = sin(x),求f'(x)。
已知函数f(x) = log(x),求f'(x)。
已知函数f(x) = e^x,求f'(x)。
已知函数f(x) = x^n,求f'(x)。
已知函数f(x) = x/ln(x),求f'(x)。
解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。
已知函数f(x) = e^(arctan(x)),求f'(x)。
解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。
解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。
解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。
导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。
求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。
下面是一些求导数的练习题,供大家参考。
(1)θ=sinx,y=cosx。
(x)=3xx=0为函数的极值点。
随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。
导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。
因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。
选修2-2第1章第1-2节 导数的概念及运算(理)(习题+解析)
选修2-2第1章第1-2节导数的概念及运算(理)(习题+解析)年级 高二 学科 数学 版本 苏教版(理)课程标题 选修2-2第1章第1-2节 导数的概念及运算1. 已知f (x )=x 2+2xf ′(1),则f ′(0)等于( )A. 0B. -4C. -2D. 22. 设f 0(x )=cos x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2 010(x )=( )A. sin xB. -sin xC. cos xD. -cos x3. 设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是 ( )A. [-2,2]B. [2,3]C. [3,2]D. [2,2]4. 曲线y =x x -2在点(1,-1)处的切线方程为( )A. y =x -2B. y =-3x +2切线方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程。
11. 设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0。
(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值。
12. 已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线。
若1C 和2C 有且仅有一条公切线,求a 的值,并写出此公切线的方程。
1. B 解析:∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2, ∴f (x )=x 2-4x ,∴f ′(x )=2x -4,∴f ′(0)=-4。
2020年 高考数学(文科)常考基础题、易错题 提分必刷题之 导数的概念及运算
第1讲导数的概念及运算一、填空题1.设y=x2e x,则y′=________.解析y′=2x e x+x2e x=(2x+x2)e x.答案(2x+x2)e x2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)=________.解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案-13.曲线y=sin x+e x在点(0,1)处的切线方程是________.解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x -y+1=0.答案2x-y+1=04.(2017·苏州调研)已知曲线y=ln x的切线过原点,则此切线的斜率为________.解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案1 e5.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 26.(2017·南师附中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析由图形可知:f(3)=1,f′(3)=-13,∵g′(x)=f(x)+xf′(x),∴g′(3)=f(3)+3f′(3)=1-1=0. 答案07.(2017·苏北四市模拟)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a=________.解析∵y′=-1-cos xsin2x,∴由条件知1a=-1,∴a=-1.答案-18.(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析由y=x+ln x,得y′=1+1x,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8二、解答题9.已知点M是曲线y=13x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数:①y =sin x ;②y =ln x ;③y =e x ;④y =x 3.其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k∈Z)时,结论成立;对于②:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于③:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于④:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案①12.(2017·合肥模拟改编)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为________.解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 213.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
2024年新高考版数学专题1_4.1 导数的概念及运算(分层集训)
y y
(3x12 x2
a
1)
x
2
x13
,
有且仅有一组解,即方程x2-(3
x12
-1)x+2
x13
+a=0有两个相
等的实数根,
从而Δ=(3 x12-1)2-4(2 x13+a)=0⇔4a=9 x14-8 x13-6 x12+1. (1)若x1=-1,则4a=12,a=3.
(2)4a=9 x14 -8 x13-6 x12 +1, 令h(x)=9x4-8x3-6x2+1, 则h'(x)=36x3-24x2-12x=12x(x-1)(3x+1),
x0
2x
答案 BC
B. lim f (2) f (2 x)
Δx0
2x
D. lim f (2) f (2 x)
x0
2x
2.(2023届长沙长郡中学月考,3)已知函数y=f(x)的图象在点P(3,f(3))处的 切线方程是y=-2x+7,则f(3)-f '(3)= ( ) A.-2 B.2 C.-3 D.3 答案 D
2
2
解得λ=0,所以f(x)=x3-3 x,f '(x)=3x2-3 ,令f '(x)=0,得x=- 2 或 2 ,f(x),f '(x)随x
2
2
的变化情况如表.
22
x
-1
2
f '(x)
f(x)
5
8
1 2
,
2
2
2 2
-
0
2 2
,2
2
+
↘
极小值- 2
↗
导数的计算练习题
导数的计算练习题导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
计算导数是解决各种数学问题的基础和关键步骤。
本文将提供一些导数计算的练习题,以帮助读者加深对导数的理解和应用。
练习一:求导基本函数1. 求函数f(x) = 3x^2 - 2x + 1在x = 2处的导数。
解答:首先,我们可以使用导数的定义公式来计算导数。
导数的定义是函数的极限值,即f'(x) = lim(h->0) [f(x+h)-f(x)]/h。
将x = 2代入公式,可以得到f'(2) = lim(h->0) [(3(2+h)^2 - 2(2+h) + 1 - (3(2)^2 - 2(2) + 1))/h。
化简后得到f'(2) = lim(h->0) [12h+16]/h,进一步化简得到f'(2) = 12。
2. 求函数g(x) = sin(x) + cos(x)在x = π/4处的导数。
解答:使用导数的基本公式,可以得到g'(x) = cos(x) - sin(x)。
将x= π/4代入公式可以得到g'(π/4) = cos(π/4) - sin(π/4) = (√2/2) - (√2/2) = 0。
练习二:求导复合函数3. 求函数h(x) = (2x + 1)^3在x = 2处的导数。
解答:这是一个复合函数,我们可以使用链式法则来计算其导数。
链式法则表示当一个函数由两个函数复合而成时,它的导数等于两个函数的导数的乘积。
首先,我们需要计算内层函数[ϕ(x)]的导数,即ϕ'(x) = (2x + 1)^2。
然后,计算外层函数[ψ(x)]的导数,即ψ'(x) = 3x^2。
最后,将两个导数相乘得到h'(x) = ψ'(ϕ(x)) * ϕ'(x)。
将x = 2代入公式可以得到h'(2) = ψ'(ϕ(2)) * ϕ'(2) = ψ'(5) * ϕ'(2) = 3(5)^2 * (2(2) + 1)^2 = 225* 25 = 5625。
第01讲 导数的概念及运算 (精讲+精练)(学生版)
第01讲导数的概念及运算 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:导数的概念高频考点二:导数的运算高频考点三:导数的几何意义①求切线方程(在型)②求切线方程(过型)③已知切线方程(或斜率)求参数④导数与函数图象⑤共切点的公切线问题⑥不同切点的公切线问题⑦与切线有关的转化问题第四部分:高考真题感悟第五部分:第01讲导数的概念及运算(精练)1、平均变化率(1)变化率事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值. (2)平均变化率一般地,函数()f x 在区间[]21,x x 上的平均变化率为:2121()()f x f x x x --.(3)如何求函数的平均变化率求函数的平均变化率通常用“两步”法:①作差:求出21()()y f x f x ∆=-和21x x x ∆=-②作商:对所求得的差作商,即2121()()f x f x y x x x -∆=∆-. 2、导数的概念(1)定义:函数()f x 在0x x =处瞬时变化率是()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000limlim,我们称它为函数()x f y =在0x x =处的导数,记作() 或0x f '即 0x x y ='()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000limlim =. (2)定义法求导数步骤:① 求函数的增量:00()()y f x x f x ∆=+∆-; ② 求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③ 求极限,得导数:00000()()'()limlim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.3、导数的几何意义函数()y f x =在点0x x =处的导数的几何意义,就是曲线()y f x =在点00(,)P x y 处的切线的斜率k ,即0()k f x '=.4、基本初等函数的导数公式5若()f x ',()g x '存在,则有 (1)[()()]()()f x g x f x g x '''±=±(2)[()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3)2()()()()()[]()()f x f xg x f x g x g x g x ''⋅-⋅'= 6、复合函数求导复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为x u x y y u '''=,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.7、曲线的切线问题(1)在型求切线方程已知:函数)(x f 的解析式.计算:函数)(x f 在0x x =或者))(,(00x f x 处的切线方程.步骤:第一步:计算切点的纵坐标)(0x f (方法:把0x x =代入原函数)(x f 中),切点))(,(00x f x . 第二步:计算切线斜率'()k f x =.第三步:计算切线方程.切线过切点))(,(00x f x ,切线斜率)('0x f k =。
同步练习】基本初等函数的导数公式及运算法则基础练习题及答案
同步练习】基本初等函数的导数公式及运算法则基础练习题及答案1.函数$y=x^2$在点$x=1$处的导数是2.2.函数$f(x)=(2x+1)^2(4x-2x+1)$的导数是$24x^2-1$。
3.函数$f(x)=(x+2a)(x-a)^2$的导数为$f'(x)=2(x^2-a^2)+2(x-a)\cdot 2x=2(3x^2-2ax-a^2)$。
4.函数$f(x)=1+\sin x$,其导函数为$f'(x)=\cos x$,则$f'(\pi/3)=1/2$。
5.已知函数$f(x)=3x^2$,则$f'(3)=18$。
6.函数$f(x)=(2e^x)+\sin x$的导数是$f'(x)=2e^x+\cos x$。
7.已知$f(x)=\sin x+\cos x+\pi/2$,则$f'(\pi/2)=-1$。
8.已知函数$f(x)=2\sin x+\cos x$,则$f'(\pi)=-2$。
9.已知函数$f(x)=\frac{1}{2}x^2$,则$f(x)=\frac{1}{2}x^2+C$,其中$C$为常数。
10.某物体的瞬时速度为0时,$t=2$。
11.已知函数$f(x)=ax^2+b$的图像开口向下,$\lim\limits_{\Delta x\rightarrow 0}\frac{f(a+\Delta x)-f(a)}{\Delta x}=4$,则$a=-2$。
12.已知函数$f(x)=x^4+ax^2-bx$,且$f'(-1)=-13$,$f'(-1)=-27$,则$a+b=-18$。
13.已知函数$f(x)=x\sin x+\cos x$,则$f'(\frac{\pi}{2})=-1$。
14.函数$f(x)=x\mathrm{e}^x$的导函数为$f'(x)=(x+1)\mathrm{e}^x$,所以$f'(x)>0$的解集为$(0,+\infty)$。
(复习指导)3.1 导数的概念及运算含解析
第三章导数及其应用3.1导数的概念及运算必备知识预案自诊知识梳理1.函数y=f(x)从x1到x2的平均变化率为f(x2)-f(x1)x2-x1(或ΔyΔx).2.函数y=f(x)在x=x0处的导数(1)定义:f'(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)几何意义:f'(x0)是曲线y=f(x)在点(x0,f(x0))处的切线的.3.函数f(x)的导函数:一般地,如果一个函数f(x)在区间(a,b)内的每一点x处都有导数,导数值记为f'(x),则f'(x)是关于x的函数,称f'(x)为f(x)的,通常也简称为导数.4.导数公式表(其中三角函数的自变量单位是弧度)5.导数的运算法则(1)[f(x)±g(x)]'=;(2)[f(x)·g(x)]'=;(3)[f(x)g(x)]'=f'(x)g(x)-f(x)g'(x)[g(x)]2(g(x)≠0).6.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y'x=,即y对x的导数等于的导数与的导数的乘积.1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.函数y=f(x)的导数f'(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f'(x)|反映了变化的快慢,|f'(x )|越大,曲线在这点处的切线越“陡”.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”. (1)f'(x 0)是函数y=f (x )在x=x 0附近的平均变化率. ( ) (2)求f'(x 0)时,可先求f (x 0)再求f'(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)曲线y=f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( )2.一质点沿直线运动,如果由始点起经过t s 后的位移为s=13t 3-32t 2+2t ,那么速度为零的时刻是( )A .0 sB .1 s 末C .2 s 末D .1 s 末和2 s 末3.(2020全国1,理6)函数f (x )=x 4-2x 3的图像在点(1,f (1))处的切线方程为( ) A.y=-2x-1 B.y=-2x+1 C.y=2x-3 D.y=2x+14.(2020山东淄博一模,13)曲线f (x )=1x +ln 1x 在点(1,f (1))处的切线方程是 .5.(2020全国3,文15)设函数f (x )=e xx+a .若f'(1)=e4,则a= .关键能力学案突破考点导数的运算【例1】分别求下列函数的导数. (1)y=e x ·cos x ; (2)y=x (x 2+1x+1x 3); (3)y=x-sin x2cos x 2;√1+x 2.?解题心得函数求导应遵循的原则(1)求导之前,应利用代数、三角恒等变换等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)进行导数运算时,要牢记导数公式和导数的四则运算法则,切忌记错记混.(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导.对点训练1求下列函数的导数.(1)y=x2sin x;(2)y=ln x+1x;(3)y=cosxe x;(4)y=ln(2x-5).考点导数几何意义的应用(多考向探究)考向1过函数图像上一点求切线方程【例2】已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解题心得求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y=f(x)在点P(x0,f(x0))处的切线方程是y-f(x0)=f'(x0)(x-x0).求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.对点训练2(1)已知函数f(x)=x ln x(x>0),若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为()A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=0(2)(2020全国1,文15)曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为.考向2已知曲线切线方程(或斜率)求切点【例3】(1)(2020湖北高考模拟,理13)设曲线y=e x+1上点P处的切线平行于直线x-y-1=0,则点P的坐标是.的导函数是f'(x),且f'(x)是奇函数.若曲线y=f(x)的一条切线的(2)设a∈R,函数f(x)=e x+ae x斜率是3,则切点的横坐标为.2解题心得已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.(x>0)上点P处的切线垂直,则点P 对点训练3设曲线y=e x在点(0,1)处的切线与曲线y=1x的坐标为.考向3已知切线方程(或斜率)求参数的值【例4】若曲线f(x)=x ln x+2m上点P处的切线方程为x-y=0.(1)求实数m的值;(2)若过点Q(1,t)存在两条直线与曲线y=f(x)相切,求实数t的取值范围.解题心得已知切线方程(或斜率)求参数值的关键就是列出函数的导数等于切线斜率的方程.对点训练4(2020天津河北区线上测试,17)已知曲线f(x)=ax ln x-bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x-e,则a,b的值分别为,.1.对于函数求导,一般要遵循先化简再求导的基本原则.对于复合函数求导,关键在于分清复合关系,适当选取中间变量,然后“由外及内”逐层求导.2.导数的几何意义是函数的图像在切点处的切线斜率,应用时主要体现在以下几个方面:(1)已知切点A(x0,f(x0))求斜率k,即求在该点处的导数值k=f'(x0);(2)已知斜率k,求切点B(x1,f(x1)),即解方程f'(x1)=k;(3)已知切线过某点M(x1,f(x1))(不是切点)求斜率k,常需设出切点A(x0,f(x0)),求导数得出斜率k=第三章导数及其应用3.1导数的概念及运算必备知识·预案自诊知识梳理2.(2)斜率3.导函数4.αxα-1cos x-sin x1cos2x -1sin2xa x ln a e x1xlna1x5.(1)f'(x)±g'(x)(2)f'(x)g(x)+f(x)g'(x)6.y'u ·u'x y 对u u 对x考点自诊1.(1)× (2)× (3)√ (4)× (5)×2.D ∵s=13t 3-32t 2+2t ,∴v=s'=t 2-3t+2.令v=0,则t 2-3t+2=0,解得t 1=1,t 2=2.故选D . 3.B 对函数f (x )求导可得f'(x )=4x 3-6x 2,由导数的几何意义知在点(1,f (1))处的切线的斜率为k=f'(1)=-2.又因为f (1)=-1,所以切线方程为y-(-1)=-2(x-1),化简得y=-2x+1.4.2x+y-3=0 由已知,f'(x )=-1x 2−1x ,所以f'(1)=-2.又因为f (1)=1,所以切线方程为y-1=-2(x-1),即2x+y-3=0. 5.1 对函数f (x )=e xx+a 求导得f'(x )=e x (x+a -1)(x+a )2,由题意得f'(1)=e ·a(1+a )2=e4,解得a=1.关键能力·学案突破例1解(1)y'=(e x )'cos x+e x (cos x )'=e x cos x-e x sin x.(2)∵y=x 3+1+1x2,∴y'=3x 2-2x3. (3)∵y=x-sin x2cos x2=x-12sin x , ∴y'=(x -12sinx)'=1-12cos x. (4)y=ln √1+x 2=12ln(1+x 2), ∴y'=12·11+x 2(1+x 2)'=12·11+x 2·2x=x1+x 2.对点训练1解(1)y'=(x 2)'sin x+x 2(sin x )'=2x sin x+x 2cos x.(2)y'=ln x+1x'=(ln x )'+1x'=1x −1x 2. (3)y'=cosx e x ' =(cosx )'e x -cosx (e x )'(e x )2=-sinx+cosxe x. (4)令u=2x-5,y=ln u ,则y'=(ln u )'u'=12x -5·2=22x -5,即y'=22x -5. 例2解(1)∵f'(x )=3x 2-8x+5,∴f'(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y+2=x-2,即x-y-4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 03-4x 02+5x 0-4).∵f'(x 0)=3x 02-8x 0+5,∴切线方程为y-(-2)=(3x 02-8x 0+5)(x-2).又切线过点P (x 0,x 03-4x 02+5x 0-4),∴x 03-4x 02+5x 0-2=(3x 02-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过A (2,-2)的曲线f (x )的切线方程为x-y-4=0或y+2=0.对点训练2(1)B (2)y=2x (1)f'(x )=ln x+1,x>0,设直线l 的方程为y=kx-1,直线l 与f (x )的图像的切点为(x 0,y 0),则{kx 0-1=y 0,x 0lnx 0=y 0,lnx 0+1=k .解得{x 0=1,y 0=0,k =1.所以直线l 的方程为y=x-1,即x-y-1=0. (2)设切点坐标为(x 0,y 0).对y=ln x+x+1求导可得y'=1x +1. 由题意得,1x 0+1=2,解得x 0=1,故y 0=ln1+1+1=2,切线方程为y-2=2(x-1),即y=2x.例3(1)(0,2) (2)ln 2 (1)由题意,得y'=e x ,且切线斜率为1,设切点为P (x ,y ),则e x =1,所以x=0,y=e 0+1=2,故切点P 的坐标为(0,2).(2)函数f (x )=e x +a e x 的导函数是f'(x )=e x -ae x .又因为f'(x )是奇函数,所以f'(x )=-f'(-x ),即e x -ae x =-(e -x -a·e x ),则e x (1-a )=e -x (a-1),所以(e 2x+1)·(1-a )=0,解得a=1.所以f'(x )=e x -1e x .令e x -1e x =32,解得e x =2或e x =-12(舍去),所以x=ln2. 对点训练3(1,1) ∵函数y=e x 的导函数为y'=e x ,∴曲线y=e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0).∵函数y=1x 的导函数为y'=-1x 2,∴曲线y=1x (x>0)在点P 处的切线的斜率k 2=-1x 02.由题意可知,k 1k 2=-1,即1·(-1x 02)=-1,所以x 02=1.又x 0>0,∴x 0=1.又点P 在曲线y=1x (x>0)上,∴y 0=1.故点P 的坐标为(1,1). 例4解(1)设点P 坐标为(n ,n ).f (x )=x ln x+2m 的导数为f'(x )=1+ln x ,点P (n ,n )处的切线斜率为1+ln n=1,可得n=1,即切点为(1,1),则1=2m ,解得m=12.(2)f (x )=x ln x+1.设切点为(u ,v ),则切线的斜率为f'(u )=1+ln u ,即有切线的方程为y-u ln u-1=(1+ln u )(x-u ).代入点Q (1,t ),即有t-u ln u-1=(1+ln u )(1-u ).即为t-2=ln u-u ,在(0,+∞)上有两实数解,记g (u )=ln u-u ,导数为g'(u )=1u -1.当u>1时,g (u )递减,当0<u<1时,g (u )递增,可得当u=1时,取得最大值g (1)=-1,即有t-2<-1,解得t<1.故实数t 的取值范围为(-∞,1).对点训练41 -1 将点(e,f (e))代入直线y=3x-e 的方程得f (e)=3e -e =2e .f (x )=ax ln x-bx ,则f'(x )=a ln x+a-b.由题意得{f (e )=(a -b )e =2e ,f '(e )=2a -b =3,解得{a =1,b =-1.。
导数概念 公式知识点总结+习题含详细讲解
.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x+∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
2024届新高考数学复习:专项(导数的概念及运算)历年好题练习(附答案)
2024届新高考数学复习:专项(导数的概念及运算)历年好题练习[基础巩固]一、选择题1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( )A .2B .0C .-2D .-42.已知函数f (x )=g (x )+2x 且曲线y =g (x )在x =1处的切线方程为y =2x +1,则曲线y =f (x )在x =1处的切线的斜率为( )A .2B .4C .6D .83.已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( )A .a =e ,b =-1B .a =e ,b =1C .a =e -1,b =1D .a =e -1,b =-14.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)ꞏ(x -a 2)ꞏ…ꞏ(x -a 8),则f ′(0)=( )A .26B .29C .212D .2155.设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x6.已知曲线y =x 24 -3ln x 的一条切线的斜率为-12 ,则切点的横坐标为( )A .3B .2C .1D .127.f ′(x )是f (x )=sin x +a cos x 的导函数,且f ′⎝⎛⎭⎫π4 =2 ,则实数a 的值为( ) A .23 B .12C .34D .18.已知曲线y =x +ln x 在点(1,1)处的切线与二次曲线y =ax 2+(a +2)x +1相切,则a 等于( )A .-2B .0C .1D .89.函数f (x )的定义域为R ,f (-1)=2,对于任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)二、填空题10.已知物体运动的位移s与时间t之间的函数关系式为s=12t3-t,则当t=2时,该物体的瞬时速度为________.11.已知函数f(x)=e x ln x,f′(x)为f(x)的导函数,则f′(1)的值为________.12.若曲线y=e-x在点P处的切线与直线2x+y+1=0平行,则点P的坐标是________.[强化练习]13.函数f(x)=x4-2x3的图象在点(1,f(1))处的切线方程为()A.y=-2x-1 B.y=-2x+1C.y=2x-3 D.y=2x+114.(多选)已知函数f(x)=-x3+2x2-x,若过点P(1,t)可作曲线y=f(x)的三条切线,则t的取值可以是()A.0 B.1 27C.128D.12915.已知e是自然对数的底数,函数f(x)=(x-1)e x+3e的图象在点(1,f(1))处的切线为l,则直线l的横截距为________.16.[2022ꞏ新高考Ⅰ卷]若曲线y=(x+a)e x有两条过坐标原点的切线,则a的取值范围是________.参考答案1.D ∵f (x )=2xf ′(1)+x 2,∴f ′(x )=2f ′(1)+2x ,∴f ′(1)=2f ′(1)+2,∴f ′(1)=-2,∴f (x )=-4x +x 2,∴f ′(x )=-4+2x ,∴f ′(0)=-4.2.B ∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=2.∵函数f (x )=g (x )+2x ,∴f ′(x )=g ′(x )+2=g ′(1)+2,∴f ′(1)=2+2=4,即曲线y =f (x )在x =1处的切线的斜率为4.故选B.3.D 因为y ′=a e x +ln x +1,所以当x =1时,y ′=a e +1,所以曲线在点(1,a e)处的切线方程为y -a e =(a e +1)(x -1),即y =(a e +1)x -1,所以⎩⎪⎨⎪⎧a e +1=2,b =-1, 解得⎩⎪⎨⎪⎧a =e -1b =-1. 4.C ∵函数f (x )=x (x -a 1)(x -a 2)ꞏ…ꞏ(x -a 8),∴f ′(x )=(x -a 1)(x -a 2)ꞏ…ꞏ(x -a 8)+x [(x -a 1)(x -a 2)ꞏ…ꞏ(x -a 8)]′,∴f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.5.D ∵f (x )=x 3+(a -1)x 2+ax 为奇函数,∴a -1=0,得a =1,∴f (x )=x 3+x ,∴f ′(x )=3x 2+1,∴f ′(0)=1,则曲线y =f (x )在点(0,0)处的切线方程为y =x ,故选D.6.B 令y ′=2x 4 -3x =-12 ,解得x =-3(舍去)或x =2.故切点的横坐标为2,故选B.7.B ∵f ′(x )=cos x -a sin x ,∴f ′⎝⎛⎭⎫π4 =22 -22 a =24 ,得a =12 . 8.D 由y =x +ln x ,得y ′=1+1x ,∴当x =1时,y ′=2,∴切线方程为y -1=2(x -1),即y =2x -1,由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,得ax 2+ax +2=0,由题意得⎩⎪⎨⎪⎧a ≠0,Δ=a 2-8a =0, 得a =8. 9.B 设g (x )=f (x )-2x -4,g ′(x )=f ′(x )-2,由题意得g ′(x )>0恒成立,∴g (x )在(-∞,+∞)上单调递增,又g (-1)=f (-1)-2×(-1)-4=0,又f (x )>2x +4等价于g (x )>0,∴原不等式的解为x >-1.10.5答案解析:由题知s ′=32 t 2-1,故当t =2时,该物体的瞬时速度为32 ×22-1=5.11.e答案解析:f ′(x )=e x ꞏln x +e x x ,∴f ′(1)=e.12.(-ln 2,2)答案解析:∵y =e -x ,∴y ′=-e -x ,设P (x 0,y 0),由题意得-e -x 0=-2,∴e -x 0=2,∴-x 0=ln 2,x 0=-ln 2,∴P (-ln 2,2).13.B f ′(x )=4x 3-6x 2,则f ′(1)=-2,易知f (1)=-1,由点斜式可得函数f (x )的图象在(1,f (1))处的切线方程为y -(-1)=-2(x -1),即y =-2x +1.故选B.14.CD ∵f (x )=-x 3+2x 2-x ,∴f ′(x )=-3x 2+4x -1.由已知得,过点P (1,t )作曲线y =f (x )的三条切线,情况如下:①点P (1,t )在曲线上,此时切点为P (1,t ),把P 点坐标代入函数答案解析式可得P (1,0),利用切线公式得y =f ′(1)(x -1),所以切线为x 轴,但此时切线只有一条,不符合题意.②点P (1,t )不在曲线上,设切点为(x 0,y 0),又切线经过点P (1,t ),所以切线方程为y -t =f ′(x 0)(x -1). 因为切线经过切点,所以y 0-t =(-3x 20 +4x 0-1)(x 0-1).又因为切点在曲线上,所以y 0=-x 30 +2x 20 -x 0.联立方程得化简得t =2x 30 -5x 20 +4x 0-1. 令g (x )=2x 3-5x 2+4x -1,即t =g (x )有三个解,即直线y =t 与y =g (x )的图象有三个交点.令g ′(x )=6x 2-10x +4=2(x -1)(3x -2)=0,可得两极值点为x 1=1,x 2=23 .所以x ∈⎝⎛⎭⎫-∞,23 和(1,+∞)时,g (x )单调递增,x ∈⎝⎛⎭⎫23,1 时,g (x )单调递减, 所以当g (1)=0<t <127 =g ⎝⎛⎭⎫23 时,满足直线y =t 与y =g (x )的图象有三个交点,而0<129 <128 <127 ,故选CD.15.-2答案解析:因为f ′(x )=e x +(x -1)e x =x e x ,所以切线l 的斜率为f ′(1)=e ,由f (1)=3e 知切点坐标为(1,3e),所以切线l 的方程为y -3e =e(x -1).令y =0,解得x =-2,故直线l 的横截距为-2.16.(-∞,-4)∪(0,+∞)答案解析:设切线的切点坐标为(x 0,y 0).令f (x )=(x +a )e x ,则f ′(x )=(x +1+a )e x ,f ′(x 0)=(x 0+1+a )e x 0.因为y 0=(x 0+a )e x 0,切线过原点,所以f ′(x 0)=y 0x 0,即(x 0+1+a )ꞏe x 0=(x 0+a )e x 0x 0.整理,得x 20 +ax 0-a =0.由题意知该方程有两个不同的实数根,所以Δ=a 2+4a >0,解得a <-4或a >0.。
导数的概念及运算
导数的概念及运算(基础+复习+习题+练习)(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--导数的概念及运算一,导数的概念1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy ∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()()()lim x f x x f x f x x∆→+∆-'=∆ 在定义式中,设x x x ∆+=0,则0x x x -=∆,当x ∆趋近于0时,x 趋近于0x ,因此,导数的定义式可写成000000()()()()()lim lim x o x x f x x f x f x f x f x x x x ∆→→+∆--'==∆-. 2.求函数()y f x =的导数的一般步骤:()1求函数的改变量)()(x f x x f y -∆+=∆ ()2求平均变化率x x f x x f x y ∆-∆+=∆∆)()(;()3取极限,得导数y '=()f x '=x y x ∆∆→∆0lim 3.导数的几何意义: 导数0000()()()lim x f x x f x f x x∆→+∆-'=∆是函数)(x f y =在点0x 处的瞬时变化率,它反映的函数)(x f y =在点0x 处变化..的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为000()()()y f x f x x x -='-4.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函数()f x '为函数)(x f y =在开区间内的导函数,简称导数,也可记作y ',即()f x '=y '=xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 001函数)(x f y =在0x 处的导数0x x y ='就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数()f x '在0x 处的函数值,即0x x y ='=0()f x '.所以函数)(x f y =在0x 处的导数也记作0(f x ' 1.用导数的定义求下列函数的导数:()1 2()y f x x ==;()2 24()y f x x ==2.()1已知000(2)()lim 13x f x x f x x→--=△△△,求0()f x '()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-二,导数的四则计算 常用的导数公式及求导法则:(1)公式①0'=C ,(C 是常数)②x x cos )(sin '= ③x x sin )(cos '-=④1')(-=n n nx x ⑤a a a x x ln )('= ⑥x x e e =')(2 ⑦a x x a ln 1)(log '= ⑧x x 1)(ln '= ⑨x x 2'cos 1)(tan = ⑩(x x 2'sin 1)cot -=(2)法则:''')]([)]([)]()([x g x f x g x f ±=±,)()()()()]()(['''x f x g x g x f x g x f += )()()()()(])()([2'''x g xf xg x g x f x g x f -=2,复合函数的求导法则:复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为'''x u x y y u =⋅.题型1, 导数的四则计算1,求下列函数的导数:()1 ln x y e x =⋅ ()2 11xx e y e +=-()3sin 1cos xy x =+ ()4()21sin cos y x x x x =-⋅+⋅()532x x x y e e =⋅-+ ()6()()33421y x x x =-⋅-32,求导数(1)()324y x x =- (2)sin x y x=(3)3cos 4sin y x x =- (4)()223y x =+(5)()ln 2y x =+三,复合函数的导数链式法则若y= f (u ),u=)(x ϕ⇒ y= f [)(x ϕ],则x y '=)()(x u f ϕ''若y= f (u ),u=)(v ϕ,v=)(x ψ⇒ y= f [))((x ψϕ],则 x y '=)()()(x v u f ψϕ'''说明:复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念及运算
一,导数的概念
1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ∆时,则函数
()y f x =相应地有增量)()(00x f x x f y -∆+=∆,如果0→∆x 时,y ∆与x ∆的比
x
y ∆∆(也叫函数的平均变化率)有极限即
x
y
∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()()
()lim x f x x f x f x x
∆→+∆-'=∆
在定义式中,设x x x ∆+=0,则0x x x -=∆,当x ∆趋近于0时,x 趋近于0x ,因
此,导数的定义式可写成
000000
()()()()
()lim
lim x o
x x f x x f x f x f x f x x x x ∆→→+∆--'==∆-. 2.求函数()y f x =的导数的一般步骤:()1求函数的改变量)()(x f x x f y -∆+=∆
()2求平均变化率
x x f x x f x y ∆-∆+=
∆∆)()(;()3取极限,得导数y '=()f x '=x
y x ∆∆→∆0lim 3.导数的几何意义:
导数0000()()
()lim
x f x x f x f x x
∆→+∆-'=∆是函数)(x f y =在点0x 处的瞬时变化率,它
反映的函数)(x f y =在点0x 处变化..
的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果
)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 000()()()y f x f x x x -='-
4.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一
个),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函数()f x '为函数)(x f y =在开区间内的导函数,简称导数,也可记作y ',即()f x '=y '=x
x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim
00
函数)(x f y =在0x 处的导数0
x x y ='
就是函数)(x f y =在开区间),(b a )),((b a x ∈上导数()f x '在0x 处的函数值,即0
x x y ='
=0()f x '.所以函数)(x f y =在0x 处的导数也
记作0()f x '
1.用导数的定义求下列函数的导数:()1 2
()y f x x ==;()2 2
4()y f x x ==
2.()1已知000
(2)()
lim 13x f x x f x x
→--=△△△,求0()f x '
()2若(3)2f '=,则1
(3)(12)
lim 1
x f f x x →-+=-
二,导数的四则计算
常用的导数公式及求导法则: (1)公式
①0'
=C ,(C 是常数) ②x x cos )(sin '
= ③x x sin )(cos '
-=
④1
'
)(-=n n nx
x
⑤a a a x x ln )('
=
⑥x
x e e ='
)(
⑦a x x a ln 1)(log '
=
⑧x x 1)(ln '
= ⑨x x 2'cos 1)(tan = ⑩(x
x 2
'
sin 1)cot -= (2)法则:'
'')]([)]([)]()([x g x f x g x f ±=±, )()()()()]()(['''x f x g x g x f x g x f +=
)
()()()()(])()([2'''x g x f x g x g x f x g x f -=
2,复合函数的求导法则:复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为'''x u x y y u =⋅.
题型1, 导数的四则计算 1,求下列函数的导数:
()1 ln x
y e x =⋅ ()2 1
1
x x e y e +=-
()3sin 1cos x
y x
=
+ ()4()21sin cos y x x x x =-⋅+⋅
()532x x x y e e =⋅-+ ()
6()()33421y x x x =-⋅-
2,求导数 (1)()3
2
4y x x
=- (2)sin x
y x
=
(3)3cos 4sin y x x =- (4)()2
23y x =+
(5)()ln 2y x =+
三,复合函数的导数 链式法则
若y= f (u ),u=)(x ϕ⇒ y= f [)(x ϕ],则
x y '=)()(x u f ϕ''
若y= f (u ),u=)(v ϕ,v=)(x ψ⇒ y= f [))((x ψϕ],则
x y '=
)()()(x v u f ψϕ'''
说明:复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成的,
且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。
在求导时要由外到内,逐层求导。
1,函数4
)31(1
x y -=的导数.
2,求51x
x
y -=的导数.
3,求下列函数的导数
x y 23-=
4,求下列函数的导数
(1)y=x 21-cos x (2)y=ln (x +2
1x +)
5 ,设)1ln(++=x x y 求 y '.
跟踪练习:
求下函数的导数.
6,(1)cos
3
x
y = (2)y =
7,(1)y =(5x -3)4 (2)y =(2+3x )5 (3)y =(2-x 2)3 (4)y =(2x 3+x )2
8,(1)y =3
2)12(1-x (2)y =4131+x (3)y =sin(3x -6π) (4)y =cos(1+x 2
)
9,⑴3
2)2(x y -=; ⑵2
sin x y =;⑶)4
cos(x y -=π
; ⑷)13sin(ln -=x y .
10,求下列函数的导数
(1) y =sin x 3+sin 3
3x ; (2)1
22sin -=
x x y (3))2(log 2
-x a。