高考数学一轮复习第10章统计统计案例及算法初步第2讲统计图表数据的数字特征用样本估计总体知能训练
高考数学一轮复习第10章统计统计案例及算法初步第2讲统计图表数据的数字特征用样本估计总体课件理北师大版
组距 与 ________ 组数 ; ②决定 ________ 分组 ; ③将数据 ________ 频率分布表 ; ④列 ____________ 频率分布直方图 . ⑤画 ________________
1.(2014· 高考四川卷)在“世界读书日”前夕,为了了解某 地 5 000 名居民某天的阅读时间,从中抽取了 200 名居民的 阅读时间进行统计分析.在这个问题中,5 000 名居民的阅 读时间的全体是( A ) A.总体 B.个体 C.样本的容量 D.从总体中抽取的一个样本
解析:调查的目的是“了解某地 5 000 名居民某天的阅读 时间”, 所以“5 000 名居民的阅读时间的全体”是调查的 总体.
4. (2016· 郑州第一次质量预测)我市某校组织学生参加英语 测试,成 绩的频率分布直方图如 图,数据的分组依次为 [20,40), [40,60),[60,80),[80,100],若低于 60 分的人数是 50 15,则该班的学生人数是 ________ .
解析:依题意得,成绩低于 60 分的相应的频率等于 (0.005 + 0.01)× 20= 0.3,所以该班的学生人数是 15÷ 0.3= 50.
组数据的众数.
最中间 位置 (2)中位数: 把 n 个数据按大小顺序排列, 处于________
的一个数据 (或最中间两个数据的平均数 )叫做这组数据的中 位数.
a1 + a2+„+ an n (3)平均数:把 _______________ 称为 a1, a2,„, an 这 n 个
数的平均数.
(4)标准差与方差:设一组数据 x1,x2,x3,„,xn 的平均数 为 x ,则这组数据的标准差和方差分别是 s=
2015届高考数学(人教,理科)大一轮配套练透:第10章 算法初步、统计、统计案例 第2节
[课堂练通考点]1.(2014·青岛模拟)(1)某学校为了了解2013年高考数学的考试成绩,在高考后对1 200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.问题与方法配对正确的是( ) A .(1)Ⅲ,(1)Ⅰ B .(1)Ⅰ,(2)Ⅱ C .(1)Ⅱ,(2)ⅢD .(1)Ⅲ,(2)Ⅱ解析:选A 通过分析可知,对于(1),应采用分层抽样法,对于(2),应采用简单随机抽样法.2.(2013·新课标卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:选C 由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A ;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B 和D.故选C.3.(2013·浙江联考)某地区高中分三类,A 类学校共有学生2 000人,B 类学校共有学生3 000人,C 类学校共有学生4 000人,若采取分层抽样的方法抽取900人,则A 类学校中的学生甲被抽到的概率为( )A.110B.920C.12 000D.12解析:选A 利用分层抽样,每个学生被抽到的概率是相同的,故所求的概率为9002 000+3 000+4 000=110,故选A.4.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,48解析:选B606=10,间隔应为10.故选B. 5.一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生小张只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.小张所在班级共有40人,此次考试选择题得分情况统计表如下:(1)应抽取多少张选择题得60分的试卷?(2)若小张选择题得60分,求他的试卷被抽到的概率.解:(1)得60分的人数40×10%=4.设抽取x 张选择题得60分的试卷,则4020=4x ,则x =2,故应抽取2张选择题得60分的试卷.(2)设小张的试卷为a 1,另三名得60分的同学的试卷为a 2,a 3,a 4,所有抽取60分试卷的方法为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 2,a 3),(a 2,a 4),(a 3,a 4)共6种,其中小张的试卷被抽到的抽法共有3种,故小张的试卷被抽到的概率为P =36=12.[课下提升考能]第Ⅰ组:全员必做题1.一个班级有5个小组,每一个小组有10名学生,随机编号为1~10号,为了了解他们的学习情况,要求抽取每组的2号学生留下来进行问卷调查,这里运用的方法是( )A .分层抽样法B .抽签法C .随机数法D .系统抽样法解析:选D 由系统抽样方法的特点可知选D.2.(2014·潮州模拟)某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为( )A .5,10,15B .3,9,18C .3,10,17D .5,9,16解析:选B 高级、中级、初级职称的人数所占的比例分别为15150=10%,45150=30%,90150=60%, 则所抽取的高级、中级、初级职称的人数分别为10%×30=3,30%×30=9,60%×30=18.3.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是( )A .5B .7C .11D .13解析:选B 间隔数k =80050=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.4.某校共有学生2 000名,各年级男、女生人数如下表所示:( ) A .24 B .18 C .16D .12解析:选C 一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,所以应在三年级抽取的人数为500×642 000=16.5.(2013·安徽高考)某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数解析:选C 若抽样方法是分层抽样,男生、女生应分别抽取6人、4人,所以A 错;由题目看不出是系统抽样,所以B 错;这五名男生成绩的平均数x 1=86+94+88+92+905=90,这五名女生成绩的平均数x 2=88+93+93+88+935=91,故这五名男生成绩的方差为15[(86-90)2+(94-90)2+(88-90)2+(92-90)2+(90-90)2]=8,这五名女生成绩的方差为15[(88-91)2×2+(93-91)2×3]=6,所以这五名男生成绩的方差大于这五名女生成绩的方差,但该班男生成绩的平均数不一定小于女生成绩的平均数,所以D 错,故选C.6.(2013·潍坊模拟)某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________.解析:根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.答案:367.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了检查普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是________.解析:由题意得70490×350=50(人).答案:508.网络上流行一种“QQ 农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽取人数的比例为16,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.答案:579.一个城市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本,按分层抽样方法抽取样本时,各类百货商店要分别抽取多少家?写出抽样过程.解:∵21∶210=1∶10, ∴2010=2,4010=4,15010=15. ∴应从大型商店中抽取2家,从中型商店中抽取4家,从小型商店中抽取15家.抽样过程:(1)计算抽样比21210=110;(2)计算各类百货商店抽取的个数: 2010=2,4010=4,15010=15; (3)用简单随机抽样方法依次从大、中、小型商店中抽取2家、4家、15家; (4)将抽取的个体合在一起,就构成所要抽取的一个样本.10.某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x ,y 的值.解:(1)用分层抽样的方法在35~50岁中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,∴3050=m5,解得m =3.抽取的样本中有研究生2人,本科生3人,分别记作S 1,S 2;B 1,B 2,B 3.从中任取2人的所有等可能基本事件共有10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 1,B 3),(B 2,B 3),其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人学历为研究生的概率为710. (2)由题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20, ∴4880+x =2050=1020+y,解得x =40,y =5. 即x ,y 的值分别为40,5. 第Ⅱ组:重点选做题1.2013年“神舟”十号载人飞船顺利发射升空,某校开展了“观‘神十’飞天燃爱国激情”系列主题教育活动.该学校高一年级有学生300人,高二年级有学生300人,高三年级有学生400人,通过分层抽样从中抽取40人调查“神舟”十号载人飞船的发射对自己学习态度的影响,则高三年级抽取的人数比高一年级抽取的人数多( )A .5人B .4人C .3人D .2人解析:选B 由已知可得该校学生一共有1 000人,则高一抽取的人数为300×401 000=12,高三抽取的人数为400×401 000=16,所以高三年级抽取的人数比高一年级抽取的人数多4人.2.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003,这600名学生分住在三个营区.从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9解析:选B 根据系统抽样的特点可知抽取的号码间隔为60050=12,故抽取的号码构成以3为首项,公差为12的等差数列.在第Ⅰ营区001~300号恰好有25组,故抽取25人,在第Ⅱ营区301~495号有195人,共有16组多3人,因为抽取的第一个数是3,所以Ⅱ营区共抽取17人,剩余50-25-17=8人需从Ⅲ营区抽取.。
高优指导高考数学一轮复习 第十章 统计与统计案例 10.2 统计图表、数据的数字特征、用样本估计总体
-2-
考纲要求:1.了解分布的意义和作用,能根据频率分布表画频率分布 直方图、频率折线图、茎叶图,体会它们各自的特点. 2.理解样本 数据标准差的意义和作用,会计算数据标准差. 3.能从样本数据中 提取基本的数字特征(如平均数、标准差),并给出合理的解释. 4. 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计 总体的基本数字特征,理解用样本估计总体的思想. 5.会用随机抽 样的基本方法和样本估计总体的思想解决一些简单的实际问题.
株树木的底部
周长小于100 cm.
由题意,在抽测的60株树木中,底部周长小于100 cm的株数为
(0.015+0.025)×10×60=24.
24
解析
关闭 关闭
答案
-11-
12345
1.平均数表示一组数据的平均水平,众数表示一组数据中出现次
数最多的数,中位数表示一组数据按从小到大或从大到小的顺序排
-������)2],称为标准差.
-5-
3.用样本估计总体 (1)频率分布直方图
①含义:频率分布直方图由一些小矩形来表示,每个小矩形的宽
度 中为所Δ有x小i(分矩组形的的宽面度积),之高和为为Δ���������1���������������.,小矩形的面积恰为相应的频率fi,图
②绘制频率分布直方图的步骤为:求极差;决定组距与组数;将数
-4-
(5)方差:s2=���1���[(x1-������)2+(x2-������)2+…+(xn-������)2],都反映了样本数据的 离散程度.
(6)标准差:取方差的正的平方根
s=
1 ������
高考数学一轮复习 第10章 统计、统计案例及算法初步 第2讲 统计图表、数据的数字特征、用样本估计总
第2讲 统计图表、数据的数字特征、用样本估计总体1.(2016·陕西省质检)一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为( )A .19B .17C .16D .15 解析:选D.由题意得样本数据在[20,60)内的频数为30×0.8=24,则样本在[40,50)和[50,60)内的数据个数之和为24-4-5=15.2.(2014·高考广东卷)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10解析:选 A.该地区中小学生总人数为 3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20,故选A. 3.(2016·郑州第二次质量检测)已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m 、n 的比值m n=( )A .1 B.13C.29D.38解析:选D.由题中茎叶图可知甲的数据为27,30+m 、39,乙的数据为20+n 、32、34、38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m =3.由此可以得出甲的平均数为33,所以乙的平均数也为33,所以有20+n +32+34+384=33,所以n =8,所以m n =38.4.(2016·邢台摸底考试)样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其样本方差为( )A.105B.305C. 2D .2解析:选D.依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15(12+02+12+22+22)=2,即所求的样本方差为2.5.(2016·武汉调研)如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A .0.04B .0.06C .0.2D .0.3解析:选C.由频率分布直方图的知识得,年龄在[20,25)的频率为0.01×5=0.05,[25,30)的频率为0.07×5=0.35,设年龄在[30,35),[35,40),[40,45]的频率为x ,y ,z ,又x ,y ,z 成等差数列,所以可得⎩⎪⎨⎪⎧x +y +z =1-0.05-0.35,x +z =2y ,解得y =0.2,所以年龄在[35,40)的网民出现的频率为0.2.6.(2016·济南模拟)100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则测试成绩落在[60,80)中的学生人数是________.解析:测试成绩落在[60,80)中的学生人数是100×3a +7a2a +3a +7a +6a +2a=50.答案:507.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列{a n },已知a 2=2a 1,且样本容量为300,则小长方形面积最大的一组的频数为________.解析:因为小长方形的面积由小到大构成等比数列{a n },且a 2=2a 1, 所以样本的频率构成一个等比数列,且公比为2, 所以a 1+2a 1+4a 1+8a 1=15a 1=1,所以a 1=115,所以小长方形面积最大的一组的频数为300×8a 1=160. 答案:1608.已知x 是1,2,3,x ,5,6,7这七个数据的中位数且1,2,x 2,-y 这四个数据的平均数为1,则y -1x的最小值为________.解析:1+2+x 2-y =4,所以y =x 2-1.由中位数定义知,3≤x ≤5,所以y -1x =x 2-1-1x.当x ∈[3,5]时,函数y =x 2-1与y =-1x 均为增函数,所以y =x 2-1-1x为增函数,所以⎝ ⎛⎭⎪⎫y -1x min=8-13=233.答案:2339.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高. 解:(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为20.08=25.(2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016.10.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.(1)求出m ,n 的值;(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s 2甲和s 2乙,并由此分析两组技工的加工水平.解:(1)根据题意可知:x -甲=15(7+8+10+12+10+m )=10,x -乙=15(9+n +10+11+12)=10,所以n =8,m =3.(2)s 2甲=15[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2]=5.2,s 2乙=15[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2]=2,因为x -甲=x -乙,s 2甲>s 2乙,所以甲、乙两组的整体水平相当,乙组技工更稳定一些.1.一个样本a ,3,5,7的平均数是b ,且a 、b 是方程x 2-5x +4=0的两根,则这个样本的方差是( )A .3B .4C .5D .6解析:选C.由x 2-5x +4=0的两根分别为1,4,所以有⎩⎪⎨⎪⎧a =1,b =4或⎩⎪⎨⎪⎧a =4,b =1.又a ,3,5,7的平均数是b .即a +3+5+74=b ,a +154=b ,a +15=4b ,所以⎩⎪⎨⎪⎧a =1,b =4符合题意,则方差s 2=5.2.某班有48名学生,在一次考试中统计出平均分为70,方差为75,后来发现有2名同学的分数登记错了,甲实际得80分却记成了50分,乙实际得70分却记成了100分,更正后平均分为________,方差为________.解析:因为甲少记了30分,乙多记了30分,故平均分不变,设更正后的方差为s 2,则由题意可得s 2=148[(x 1-70)2+(x 2-70)2+…+(80-70)2+(70-70)2+…+(x 48-70)2],而更正前有75=148[(x 1-70)2+(x 2-70)2+…+(50-70)2+(100-70)2+…+(x 48-70)2],化简整理得s 2=50.答案:70 503.(2016·太原模拟)为了考察某厂2 000名工人的生产技能情况,随机抽查了该厂n 名工人某天的生产产量(单位:件),整理后得到如图所示的频率分布直方图(产量的分组区间分别为[10,15),[15,20),[20,25),[25,30),[30,35]),其中产量在[20,25)的工人有6名.(1)求这一天产量不小于25的工人人数;(2)工厂规定从产量低于20件的工人中选取2名工人进行培训,求这2名工人不在同一分组的概率.解:(1)由题意得,产量在[20,25)的频率为0.06×5=0.3,所以n =60.3=20.所以这一天产量不小于25的工人人数为(0.05+0.03)×5×20=8.(2)由题意得,产量在[10,15)的工人人数为20×0.02×5=2,分别记为A ,B ,产量在[15,20)的工人人数为20×0.04×5=4,分别记为a ,b ,c ,d ,则从产量低于20件的工人中选取2名工人的结果为:(A ,B ),(A ,a ),(A ,b ),(A ,c ),(A ,d ),(B ,a ),(B ,b ),(B ,c ),(B ,d ),(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d )共15种.其中2名工人不在同一分组的结果为(A ,a ),(A ,b ),(A ,c ),(A ,d ),(B ,a ),(B ,b ),(B ,c ),(B ,d ),共8种,故所求概率P =815.4.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图,如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取2名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率. 解:(1)由茎叶图可知:甲班同学身高集中在162~179 cm ,而乙班同学身高集中在170~179 cm ,因此乙班的平均身高高于甲班.(2)x -甲=158+162+163+168+168+170+171+179+179+18210=170(cm),甲班的样本方差s 2甲=110×[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2(cm 2).(3)记“身高为176 cm 的同学被抽中”为事件A .从乙班10名同学中抽出2名身高不低于173 cm 的同学有:(173,176),(173,178),(173,179),(173,181),(176,178),(176,179),(176,181),(178,179),(178,181),(179,181),共10个基本事件,而事件A含有4个基本事件,故P (A )=410=25.。
高中数学复习第十章 统计、统计案例及算法初步
提 升 学 科 素 养
突 破 热 点 题 型
演 练 知 能 检 测
数学(6省专版)
第一节
随机抽样 系统抽样
回 扣 主 干 知 识
[例2]
(2012· 山东高考)采用系统抽样方法从960人中
抽取32人做问卷调查,为此将他们随机编号为1,2,…,
提 升 学 科 素 养
960,分组后在第一组采用简单随机抽样的方法抽到的号码
答案:D
数学(6省专版)
第一节
随机抽样
回 扣 主 干 知 识
2.(2013· 温州模拟)某工厂生产A、B、C三种不同型号的 产品,产品数量之比为3∶4∶7,现在用分层抽样的 方法抽出容量为n的样本,样本中A型号产品有15件,
提 升 学 科 素 养
那么样本容量n为
突 破 热 点 题 型
(
B.60 D.80
提 升 学 科 素 养
突 破 热 点 题 型
200 解析: 总人数为 0.2 =1 000, 该单位青年职员的人数为 1 10 000×25=400.
答案:400
演 练 知 能 检 测
数学(6省专版)
第一节
随机抽样
回 扣 主 干 知 识
5.(2012· 湖北高考)一支田径运动队有男运动员 56 人,女运 动员 42 人.现用分层抽样的方法抽取若干人,若抽取的 男运动员有 8 人,则抽取的女运动员有________人.
突 破 热 点 题 型
(2)在使用随机数表时,如遇到三位数或四位数时,
可从选择的随机数表中的某行某列的数字计起,每三个 或四个作为一个单位,自左向右选取,有超过总体号码 或出现重复号码的数字舍去.
—————————————————————————
北师版高考总复习一轮数学精品课件 第10章统计与成对数据的统计分析 第2节用样本估计总体
解析 对于A,因为一队每场比赛平均失球数是1.5,二队每场比赛平均失球
数是2.1,所以平均来说一队比二队防守技术好,故A正确;对于B,因为二队
每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,所以二队经
常失球,故B错误;对于C,因为一队全年比赛失球个数的标准差为1.1,二队全
年比赛失球个数的标准差为0.4,所以一队有时表现很差,有时表现又非常
2+3
解析 由频率分布直方图可知众数为
=2.5,即x1=2.5,平均数
2
x2=0.2×1.5+0.24×2.5+0.2×3.5+0.16×4.5+0.12×5.5+0.04×6.5+0.04×
7.5=3.54,
显然25%分位数位于[2,3)之间,则0.2+(x3-2)×0.24=0.25,解得x3≈2.208,所以
位数为x,则0.35+0.03(x-70)=0.5,解得x=75,所以中位数的估计值为75分,故
C正确;
样本平均数的估计值为45×(10×0.005)+55×(10×0.020)+
65×(10×0.010)+75×(10×0.030)+85×(10×0.025)+95×(10×0.010)=73
(分),故D错误.
[对点训练2]
(1)(2024·山东烟台模拟)某组样本数据的频率分布直方图如图所示,设该组
样本数据的众数、平均数、25%分位数分别为x1,x2,x3,则x1,x2,x3的大小
关系是(注:同一组中数据用该组区间中点值近似代替)( A )
A.x3<x1<x2
B.x2<x1<x3
高考数学一轮复习 第十章 统计、统计案例课件 湘教版
1.从2 014名学生中选取10名学生参加全国数学联赛,若采用 下面的方法选取:先用简单随机抽样法从2 014人中剔除4人, 剩下的2 010人再按系统抽样的方法抽取,则每人入选的概率( )
A.不全相等
5 C.都相等,且为 1007
B.均不相等
1 D.都相等,且为 201
4.某单位200名职工的年龄分布情况如图,现要从中抽取40名 职工作样本.用系统抽样法,将全体职工随机按1~200编号, 并按编号顺序平均分为40组(1~5号,6~10号,…, 196~200 号).若第5组抽出的号码为22,则第8组抽出的号码应是.若用 分层抽样方法,则40岁以下年龄段应抽取人.
第十章
统计、统计案例
10.1 10.2 10.3
随机抽样 用样本估计总体 变量间的相关关系、统计案例
知识点
考纲下载
1.理解随机抽样的必要性和重要性. 随机抽样 2.会利用简单随机抽样方法从总体中抽取样本,了解分层抽样和 系统抽样方法. 1.体会分布的意义和作用,会列频率分布表,会画频率分布直方 图、频率分布折线图、茎叶图,理解它们各自的特点. 2.理解样本数据标准差的意义和作用,会计算标准差. 3.能从样本数据中提取基本的数字特征(如平均数、标准差), 用样本估计总 并给出合理的解释. 体 4.会用样本的频率分布估计总体分布,会用样本的基本数字特征 估计总体的基本数字特征,理解用样本估计总体的思想. 5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单 的实际问题.
A.700 B.669 C.695 D.676
【解析】由题意可知,第一组随机抽取的编号l=15,
分段间隔数k=N/n=1 000/50=20,
则抽取的第35个编号为a35=15+(35-1)×20=695. 【答案】C
高考数学一轮复习第十章算法初步统计统计案例专题提能概率统计中的数学建模与数据分析课件
(1)从游客中随机抽取3人,记这3人的总得分为随机变量X,求X的分布列 与数学期望; (2)(ⅰ)若从游客中随机抽取m(m∈N+)人,记这m人的总分恰为m分的概 率为Am,求数列{Am}的前10项和; (ⅱ)在对所有游客进行随机问卷调查的过程中,记已调查过的人的累计 得分恰为n分的概率为Bn,探讨Bn与Bn-1(n≥2)之间的关系,并求数列{Bn} 的通项公式.
破解此题的关键:一是认真审题,判断随机变量的所有可能取值,并 注意相互独立事件的概率与互斥事件的概率的区别,求出随机变量取 各个值时的概率,从而列出随机变量的分布列;二是将概率的参数表 达式与数列的递推式相结合,可得数列的通项公式,此种解法新颖独 特.
(二)函数与期望相交汇应用 [例2] (2021·重庆一中模拟)某蛋糕店制作并销售一款蛋糕,制作一个蛋 糕成本3元,且以8元的价格出售,若当天卖不完,剩下的无偿捐献给饲 料加工厂.根据以往100天的资料统计,得到如下需求量表.该蛋糕店一天 制作了这款蛋糕X(X∈N)个,以x(单位:个,100≤x≤150,x∈N)表示当 天的市场需求量,T(单位:元)表示当天出售这款蛋糕获得的利润.
(一)概率与数列交汇问题 [例 1] (2021·湖北武汉质量监测)武汉又称江城,是湖北省省会,它不仅 有着深厚的历史积淀与丰富的民俗文化,更有着众多名胜古迹与旅游景 点,黄鹤楼与东湖便是其中的两个.为合理配置旅游资源,现对已参观黄 鹤楼景点的游客进行随机问卷调查,若不游玩东湖记 1 分,若继续游玩 东湖记 2 分,每位游客选择是否参观东湖的概率均为12,游客之间选择意 愿相互独立.
[解析] (1)X 的所有可能取值为 3,4,5,6.
P(X=3)=123=18,P(X=4)=C23123=38,P(X=5)=C23123=38,P(X=6)= 123=18. 所以 X 的分布列为
届高考数学大一轮总复习 第十章 统计、统计案例及算法初步 10.2 统计图表、数据的数字特征、用样本
4.样本的数字特征及意义
(1)众数、中位数、平均数:
数字特征
定义与求法
众数
一组数据中重复出现次数__最__多____的数
中位数
把一组数据按__大__小__顺__序__排列,处在__最__中__间___位置的一 个数据(或两个数据的平均数)
平均数
如果有n个数据x1,x2,…,xn,那么这n个数的平均数= _1n_(_x1_+__x_2+__…__+__x_n_)___
基础自测
[判一判] (1)在频率分布直方图中,小矩形的高表示频率。( × ) 解析 错误。在频率分布直方图中,小矩形的高表示频率/组距。 (2)频率分布直方图中各个长方形的面积之和为1。( √ ) 解析 正确。根据频率分布直方图的意义可知,其中各个长方形的 面积之和为1。 (3)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记一 次。( × ) 解析 错误。在茎叶图中,数据不需要按从小到大的顺序写,且相 同的数据需重复记录,不能只记一次。
解析 由题意得:-x =10+6+58+5+6=7,
∴s2=15×[(10-7)2+(6-7)2+(8-7)2+(5-7)2+(6-7)2]=3.2。
5.在样本频率分布直方图中,共有 5 个小长方形,已知中间一个小长 方形的面积是其余 4 个小长方形面积之和的13,且中间一组的频数为 10,则 这个样本的容量是___4_0____。
高考数学复习第十章统计统计案例第二课时统计图表数据的数字特征及用样本估计总体文市赛课公开课一等奖省名
3/66
4.会用样本的频率分布估计总体分布,会用样本的基本数 字特征估计总体的基本数字特征,理解用样本估计总体的思想.
5.会用随机抽样的基本方法和样本估计总体的思想解决一 些简单的实际问题.
4/66
1.统计图表 统计图是表达和分析数据的重要工具,常用的统计图表有 频率分布直方图 、扇形统计图、折线统计图、茎叶图 等.
A.0.13
B.0.39
C.0.52
D.0.64
12/66
解析:由列表可知样本数据落在(10,40]上的频数52. 故其频率为0.52. 答案:C
13/66
3.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他 们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名 运动员的中位数分别为________.
考点一 频率分布直方图的绘制与应用 [例1] 对某电子元件进行寿命追踪调查,情况如下:
寿命(h) [100,200)
个数
20
[200, 300)
30
[300, 400)
80
[400, 500)
40
[500, 600]
30
16/66
(1)列出频率分布表; (2)画出频率分布直方图; (3)估计电子元件寿命在[100,400)h以内的概率; (4)估计电子元件寿命在400 h以上的概率. 审题视点 分组及频数统计题中已给出,只需列表画图即 可,解答(3)(4)可用频率代替概率.
的个数是120×0.75=90. 答案:A
24/66
2.(2016·高考安徽卷)某企业为了解下属某部门对本企业职 工的服务情况,随机访问50名职工.根据这50名职工对该部门的 评分,绘制频率分布直方图(如图所示),其中样本数据分组区间 为:[40,50)[50,60),…,[80,90),[90,100].
高考数学一轮复习第10单元算法初步统计统计案例听课学案理2
第十单元算法初步、统计、统计案例第63讲算法初步课前双击巩固1.算法(1)算法通常是指按照解决某一类问题的和的步骤.(2)应用:算法通常可以编成计算机,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用、流程线及来表示算法的图形.3.三种基本逻辑结构4.基本算法语句(1)输入语句、输出语句和赋值语句的格式与功能:(2)条件语句的格式及框图:①IF-THEN格式:图10-63-1 ②IF-THEN-ELSE格式:图10-63-2(3)循环语句的格式及框图:①UNTIL语句:图10-63-3 ②WHILE语句:图10-63-4题组一常识题1.[教材改编]执行如图10-63-5所示的程序框图,运行相应的程序,若输入x的值为2,则输出S的值为.图10-63-52.[教材改编]运行如图10-63-6所示的程序后输出的结果是3,则输入的x值是.图10-63-6题组二常错题◆索引:注意循环结构中控制循环的条件;注意区分程序框图是条件结构还是循环结构.3.若[x]表示不超过x的最大整数,执行如图10-63-7所示的程序框图,则输出S的值为.图10-63-74.操作图10-63-8中的流程图,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则①处填,②处填.图10-63-85.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”图10-63-9是关于该算法的程序框图,如果输入a= 153,b= 119,则输出的a的值是.图10-63-9课堂考点探究探究点一算法的基本结构1 (1)[2017·咸阳三模]已知如图10-63-10所示的程序框图的输入值x∈[-1,4],则输出y值的取值范围是()A.[0,2]B.[-1,2]C.[-1,15]D.[2,15]图10-63-10(2)如图10-63-11所示的程序框图的运行结果为S=20,则判断框中可以填入的关于k的条件是()图10-63-11A.k>9?B.k≤8?C.k<8?D.k>8?[总结反思] 解决程序框图问题时一定要注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件结构还是循环结构;(3)注意区分“当型循环结构”和“直到型循环结构”;(4)处理关于循环结构的问题时,一定要正确控制循环次数;(5)要注意各个程序框的顺序.式题 (1)[2017·雅安三诊]执行如图10-63-12所示的程序框图,为使输出的数据为31,则判断框中可以填入的条件为()A.i≤3?B.i≤4?C.i≤6?D.i≤7?图10-63-12(2)[2017·银川一中二模]执行如图10-63-13所示的程序框图,输入n=6,m=4,那么输出的p 等于()A.720B.360C.240D.120图10-63-13探究点二算法的交汇性问题考向1与统计的交汇问题2 图10-63-14(1)是某县参加2017年高考的学生身高(单位:cm)的条形统计图,将从左到右的各条形表示的学生人数依次记为A1,A2,…,A10(如A2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在[160,180)内的学生人数,则在程序框图中的判断框内应填写()图10-63-14A.i<6?B.i<7?C.i<8?D.i<9?[总结反思] 与统计交汇的程序框图问题,多体现在将统计的图表知识(如频率分布直方图、茎叶图等)与程序框图交汇在一起,解决此类问题时应根据题意读懂统计的图表数据后,再根据程序框图的算法进行推理演算.考向2与函数的交汇问题3 [2017·四川绵阳中学三模]某市乘坐出租车的收费办法如下:图10-63-15(1)不超过3千米的里程收费10元;(2)超过3千米的里程按每千米2元收费(对于其中不足千米的部分, 若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费),当车程超过3千米时,另收燃油附加费1元.相应系统收费的程序框图如图10-63-15所示,其中x(单位:千米)为行驶里程,y(单位:元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填 ()A.y=2[x+0.5]+4B.y=2[x+0.5]+5C.y=2[x-0.5]+4D.y=2[x-0.5]+5[总结反思] 与函数交汇的程序框图问题,常见的有条件结构的应用、分段函数的求值问题,读图时应正确理解题意,根据相应条件选择与之对应的运算法则求值.考向3与数列求和的交汇问题4 图10-63-16图10-63-16是一个算法的程序框图,如果输入i=0,S=0,那么输出的结果为()A.B.C.D.[总结反思] 解决与数列求和交汇的程序框图问题的关键有以下两个方面:一是循环结构的识图、推理,将其输出结果呈现为一个数列求和的形式;二是结合数列求和的知识对结果进行求和运算.常见题型为等差数列、等比数列求和,裂项相消法求和以及周期分组法求和.强化演练1.【考向3】[2017·岳阳二模]执行如图10-63-17所示的程序框图,输出s的值为()图10-63-17A.1B.C.D.2.【考向2】[2017·江西八校联考]执行如图10-63-18所示的程序框图,若输出S的值为4,则判断框中填入的条件可能是()图10-63-18A.k<18?B.k<17?C.k<16?D.k<15?3.【考向3】执行如图10-63-19所示的程序框图,若输出的结果是,则输入的a为()A.6B.5C.4D.3图10-63-194.【考向2】[2017·福州一中质检]执行如图10-63-20所示的程序框图,则输出的结果是()A.1B.C.D.2图10-63-205.【考向1】图10-63-21是计算某年级500名学生期末考试成绩(满分为100分)及格率q 的程序框图,则图中处理框内应填入.图10-63-21探究点三基本算法语句5 图10-63-22为一个求50个数的平均数的程序,在横线上应填充的语句为 ()图10-63-22A.i>50B.i<50C.i>=50D.i<=50[总结反思] 应用基本算法语句的四个关注点:(1)输入、输出语句:在输入、输出语句中加提示信息时要加引号,变量之间用逗号隔开.(2)赋值语句:左、右两边不能对换,赋值号左边只能是变量.(3)条件语句:条件语句中包含其他条件语句时,要分清内外条件结构,保证结构完整性.(4)循环语句:分清“UNTIL”语句和“WHILE”语句的格式和特征,不能混用.式题 (1)当a=3时,如图10-63-23所示的程序输出的结果是()A.9B.3C.10D.6图10-63-23(2)在执行图10-63-24中的程序时,如果输入n的值为6,那么输出的结果为()A.6B.720C.120D.1图10-63-24第64讲随机抽样课前双击巩固1.简单随机抽样(1)抽取方式:逐个;(2)每个个体被抽到的概率;(3)常用方法:和.2.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由组成时,往往选用分层抽样.3.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体;(2)确定,对编号进行,当(n是样本容量)是整数时,取k=;(3)在第1段用确定第1个个体编号l(l≤k);(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号,依次进行下去,直到获取整个样本.题组一常识题1.[教材改编]为了了解一批零件的长度,抽测了其中200个零件的长度,在这个抽样中,总体的一个样本是.2.[教材改编]某中学从编号为1~60的60个班级中,随机抽取6个班级进行卫生检查,所抽班级的号码是6,16,26,36,46,56,则这种抽样方法是.3.[教材改编]某学校高三年级有男同学200人,女同学300人,用分层抽样的方法抽取一个容量为50的样本,则应抽取男同学人,女同学人.4.[教材改编]总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为.7816657208026314021443199714019832049234493682003623486969387181题组二常错题◆索引:系统抽样中剔除的个体随机;分层抽样每层抽取的个数比例是相同的;简单随机抽样、系统抽样、分层抽样都是等可能抽样.5.某学校为了解高一年级1203 名学生对某项教改试验的意见,打算从中抽取一个容量为40 的样本,若采用系统抽样,则分段间隔为.6.某公司有员工500人,其中不到35岁的有125人,35~50岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从员工中抽取了100人,则应在这三个年龄段中抽取的人数分别为.7.某校要从高一、高二、高三共2012名学生中选取50名组成志愿团,若先用简单随机抽样的方法从2012名学生中剔除12名,再从剩下的2000名学生中按分层抽样的方法抽取50名,则下面对每名学生入选的概率描述正确的是.(填序号)①都相等且为;②都相等且为;③不完全相等.课堂考点探究探究点一简单随机抽样1 (1)某班级有男生20人,女生30人,从中抽取10人组成样本,其中一次抽样结果是抽到了4名男生、6名女生, 则下列说法正确的是()A.这次抽样可能采用的是简单随机抽样B.这次抽样一定没有采用系统抽样C.这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D.这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率(2)[2017·辽宁实验中学模拟]福利彩票“双色球”中红色球的号码可以从01,02,03,…,32,33这33个两位数号码中选取,小明利用下面的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第4个被选中的红色球号码为()81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 8506 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49A.12B.33C.06D.16[总结反思] (1)简单随机抽样满足:①抽取的个体数有限;②逐个抽取;③不放回抽取;④等可能抽取.(2)抽签法适用于总体中个体数较少的情况,随机数表法适用于总体中个体数较多的情况.式题假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋牛奶进行检测,利用随机数表抽样时,先将800袋牛奶按000,001,…,799进行编号,如果从下面随机数表第2行第7列开始向右读取,那么抽取检测的第5袋牛奶的编号为.8442 1753 3157 2455 0688 7704 7447 6721 7633 5025 8392 12066301 6378 5916 9556 6719 9810 5071 7512 8673 5807 4439 52383321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279探究点二系统抽样2 某学校高一、高二、高三年级学生人数分别为720,720,800,现从全校学生中随机抽取56人参加防火防灾问卷调查.先采用分层抽样方法确定各年级参加调查的人数,再在各年级内采用系统抽样方法确定参加调查的学生.若将高三年级的学生依次编号为001,002,…,800,则高三年级抽取的学生的编号不可能为()A.001,041,…,761B.031,071,…,791C.027,067,…,787D.055,095,…,795[总结反思] 解决系统抽样问题的两个关键步骤:(1)分组的方法应依据抽样比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.式题 (1)某种饮料每箱装6瓶,库存23箱未开封的饮料,现欲对这种饮料进行质量检测,工作人员需从中随机取出10瓶,若采用系统抽样法,则要剔除的饮料的瓶数是 ()A.2B.8C.6D.4(2)[2018.长沙长郡中学月考]某中学将参加摸底测试的1200名学生编号为1,2,3, (1200)从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为()A.68B.92C.82D.170探究点三分层抽样3 (1)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为k∶5∶3,现用分层抽样方法抽出一个容量为120的样本,已知A种型号产品共抽取了24件,则抽取的C种型号产品件数为()A.24B.30C.36D.40(2)[2017·衡水中学二模]某学校为了解学生学习的情况,采用分层抽样的方法从高一年级的2400名学生、高二年级的2000名学生、高三年级的n名学生中,抽取90人进行问卷调查.已知高一年级被抽取的学生人数为36,那么高三年级被抽取的学生人数为()A.20B.24C.30D.32[总结反思] 进行分层抽样的相关计算时,常用到的两个关系:(1)=;(2)总体中某两层的个体数之比等于样本中这两层所抽取的个体数之比.式题 (1)为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新三县空气质量进行调查,按地域特点在三县内设置空气质量观测点.已知三县内观测点的个数分别为6,y,z,依次构成等差数列,且6,y,z+6成等比数列,若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为()A.8B.6C.4D.2(2)[2017·乌鲁木齐模拟]某高中有学生2000人,其中高一年级有760人,若从全校学生中随机抽出1人,抽到的学生是高二年级学生的概率为0.37,现采用分层抽样(按年级分层)方法在全校抽取20人,则应在高三年级中抽取的学生人数为.第65讲用样本估计总体课前双击巩固1.作频率分布直方图的步骤(1)求极差(即一组数据中与的差);(2)决定与;(3)将数据;(4)列;(5)画.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的 ,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时 增加, 减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 3.茎叶图的优点茎叶图的优点是不但可以保留所有信息,而且可以 记录,这对数据的记录和表示都能带来方便.4.样本的数字特征(1)众数、中位数、平均数= (2)标准差、方差①标准差:样本数据到平均数的一种平均距离,一般用s 表示,s=.②方差:标准差的平方s 2.s 2=[(x 1-)2+(x 2-)2+…+(x n -)2],其中x i (i=1,2,3,…,n )是 ,n 是 ,是 .题组一 常识题1.[教材改编]如图10-65-1是100位居民月均用水量的频率分布直方图,则月均用水量在[2,2.5)(单位:t)范围内的居民有人.图10-65-12.[教材改编]某赛季甲、乙两名篮球运动员每场比赛得分数据用茎叶图(如图10-65-2)表示,从茎叶图的分布情况看,运动员的发挥更稳定.图10-65-23.[教材改编]某射手在一次训练中五次射击的成绩(单位:环)分别为9.4,9.4,9.4,9.6,9.7,则该射手成绩的方差是.4.[教材改编]从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为.题组二常错题◆索引:频率分布直方图与茎叶图中识图不清致误;中位数、平均数、众数的概念混淆不清致误;方差、平均数的统计意义不清楚致误.5.如图10-65-3所示的茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x= ,y= .图10-65-36.如图10-65-4是某学校抽取的部分学生体重的频率分布直方图,已知图中从左到右的前3个分组的频率依次成等差数列,第2个分组的频数为10,则抽取的学生人数为.图10-65-47.甲、乙、丙三个班各有20名学生,一次数学考试后,三个班学生的成绩与人数统计如下:甲班成绩乙班成绩丙班成绩用s1,s2,s31,s2,s3的大小关系是.课堂考点探究探究点一频率分布直方图1 某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,使其对手机进行打分,得分的频数分布表如下:(1)完成如图10-65-5所示的频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);图10-65-5(2)根据评分的不同,利用分层抽样的方法从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和数学期望.[总结反思] (1)绘制频率分布直方图时的两个注意点:①制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确; ②频率分布直方图的纵坐标是,而不是频率.(2)由频率分布直方图进行相关计算时,需掌握的两个关系式:①×组距=频率;②=频率,此关系式的变形为=样本容量,样本容量×频率=频数.式题 [2017·淮北二模]交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.一般早高峰时段T≥3,从贵阳市交通指挥中心随机选取了早高峰时段二环以内50个交通路段,依据交通指数数据绘制的频率分布直方图如图10-65-6所示.(1)据此直方图估算T∈[4,8)时交通指数的中位数和平均数.(2)据此直方图求出早高峰时段二环以内的3个路段中至少有2个严重拥堵的概率.(3)某人上班路上所用时间:畅通时为20分钟,基本畅通时为30分钟,轻度拥堵时为35分钟,中度拥堵时为45分钟,严重拥堵时为60分钟.求此人早高峰时所用时间的数学期望.图10-65-6探究点二茎叶图2 “一带一路”经济带的发展规划已经得到了越来越多相关国家的重视和参与.某市顺潮流、乘东风,闻迅而动,决定利用旅游资源优势,撸起袖子大干一场.该市相关部门为了了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如图10-65-7所示.(1)若景点甲中的数据的中位数是125,景点乙中的数据的平均数是124,求x,y的值;(2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,今从这段时期中任取4天,记其中游客数超过120人的天数为ξ,求P(ξ≤2);(3)现从图中共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115人且不高于125人的天数为η,求η的分布列和数学期望.图10-65-7[总结反思] 使用茎叶图时的两个注意点:(1)观察所有的样本数据,弄清图中数字的特点,注意不要漏掉数据;(2)注意不要混淆茎叶图中茎与叶的含义.式题 (1)[2017·北京海淀区一模]《中国诗词大会》是中央电视台首档全民参与的诗词节目,节目以“赏中华诗词、寻文化基因、品生活之美”为基本宗旨,力求通过对诗词知识的比拼及赏析,带动全民重温那些曾经学过的古诗词,分享诗词之美,感受诗词之趣,从古人的智慧和情怀中汲取营养,涵养心灵.如图10-65-8是2016年《中国诗词大会》节目中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关图10-65-8(2)[2017·宜宾二诊]某生产车间的甲、乙两位工人生产同一种零件,这种零件的标准尺寸为85 mm,现分别从他们生产的零件中各随机抽取8件进行检测,其尺寸(单位:mm)用茎叶图表示如图10-65-9所示,则估计 ()A.甲、乙生产的零件尺寸的中位数相等B.甲、乙生产的零件质量相当C.甲生产的零件质量比乙生产的零件质量好D.乙生产的零件质量比甲生产的零件质量好图10-65-9探究点三样本数字特征3[2017·蚌埠质检]某学校高一、高二、高三三个年级共有300名教师,为了调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,统计数据如下表(单位:小时):(1)试估计该校高三年级的教师人数;(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,求该周甲的备课时间不比乙的备课时间长的概率;(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8,9,10(单位: 小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中数据的平均数记为,试判断与的大小(结论不要求证明).[总结反思] 利用频率分布直方图估计样本数字特征的方法:(1)中位数:在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数.(2)平均数:平均数的估计值等于每个小矩形的面积乘矩形底边中点横坐标之和.(3)众数:最高的矩形底边中点的横坐标.式题 (1)[2017·广西贵港、玉林联考]随着人民生活水平的提高,对城市空气质量的关注度也逐渐增高,图10-65-10是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格空气,下面叙述不正确的是()图10-65-10A.1月至8月空气质量合格天数超过20天的月份有5个B.第二季度与第一季度相比,空气质量达标天数的比重下降了C.8月份是空气质量最好的一个月D.6月份的空气质量最差(2)[2017·佛山一模]本学期王老师任教高三(1)班、高三(2)班两个平行班,两个班都是50名学生,如图10-65-11反映的是两个班学生在本学期5次数学测试中班级平均分的对比,由图可知不正确的结论是()图10-65-11A.(1)班的数学成绩平均水平好于(2)班B.(2)班的数学成绩没有(1)班稳定C.下次考试(2)班的数学平均分要高于(1)班D.在第1次考试中,(1),(2)两个班的总平均分为98第66讲变量间的相关关系、统计案例课前双击巩固1.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系;另一类是,与函数关系不同,是一种非确定性关系.(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为,点散布在从左上角到右下角的区域内,两个变量的相关关系为.2.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有,这条直线叫作.(2)回归方程为=x+,其中=,=-.(3)通过求Q=(y i-bx i-a)2的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫作最小二乘法.(4)相关系数:当r>0时,表明两个变量;当r<0时,表明两个变量.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间.通常|r|大于时,认为两个变量有很强的线性相关性.3.独立性检验假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:K2=(其中n=a+b+c+d为样本容量).题组一常识题1.[教材改编]下列关系中,属于相关关系的是.(填序号)①正方形的边长与面积;②农作物的产量与施肥量;③人的身高与眼睛近视的度数;④哥哥的数学成绩与弟弟的数学成绩.2.[教材改编]对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图如图10-66-1①;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判断变量x 与y, u与v .(填正相关、负相关或不相关)图10-66-13.[教材改编]某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和K2统计量研究患肺病是否与吸烟有关.计算得K2的观测值k≈4.453,经查对临界值表知P(K2≥3.841)=0.05,现给出下列四个结论,其中正确的是.(填序号)①在100个吸烟的人中约有95个人患肺病;②若某人吸烟,则他有95%的可能性患肺病;③有95%的把握认为“患肺病与吸烟有关”;④只有5%的把握认为“患肺病与吸烟有关”.4.[教材改编]对具有线性相关关系的变量x和y,测得一组数据如下表所示.若已求得x与y之间的回归直线的斜率为6.5,则这条回归直线的方程为.题组二常错题◆索引:易混淆相关关系与函数关系;误认为样本数据必在回归直线上;利用回归方程分析问题时,所得的数据易误认为是准确值.5.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图10-66-2所示的人体脂肪含量与年龄关系的散点图.根据该图知,人体脂肪含量与年龄相关,且脂肪含量的中位数20%.图10-66-26.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是.(填序号)①y与x具有正的线性相关关系;②回归直线过样本点的中心(,);③若该大学某女生身高增加1 cm,则其体重约增加0.85 kg;④若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg.7.某产品在某销售点的零售价x(单位:元)与每天的销售量y(单位:个)的统计数据如下表所示.由表中数据可得回归直线方程=x+中的=-5,根据模型预测零售价为20元时,每天的销售量约为个.课堂考点探究探究点一变量相关关系的判断。
高考数学一轮复习统考第10章统计统计案例第2讲用样本估计总体课件北师大版2020071712
A.甲
B.乙
C.甲、乙相等
D.无法确定
答案
解析 从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样 本数据更加集中,因此甲地浓度的方差较小.
解析
茎叶图的绘制及应用
(1)制作茎叶图的一般方法是:将所有两位数的十位数字作为“茎”,个 位数字作为“叶”,茎相同者共用一个茎,茎按从小到大顺序由上到下列出.
1.(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了 n 块地作试验 田.这 n 块地的亩产量(单位:kg)分别为 x1,x2,…,xn,下面给出的指标 中可以用来评估这种农作物亩产量稳定程度的是( )
A.x1,x2,…,xn 的平均数 B.x1,x2,…,xn 的标准差 C.x1,x2,…,xn 的最大值 D.x1,x2,…,xn 的中位数 解析 因为可以用极差、方差或标准差来描述数据的离散程度,所以 要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选 B.
解析 答案
2.(2020·云川贵百校联考)某课外小组的同学们从社会实践活动中调查
了 20 户家庭某月的用电量,如下表所示:
用电量/度 120 140 160 180
200
户数
2
3
5
8
2
则这 20 户家庭该月用电量的众数和中位数分别是( )
A.180,170
B.160,180
C.160,170
D.180,160
第十章 统计、统计案例 第2讲 用样本估计总体
1
PART ONE
基础知识整合
1.用样本的频率分布估计总体分布 (1)作频率分布直方图的步骤 ①求极差(即一组数据中 01 __最__大__值___与 02 ___最__小__值___的差). ②决定 03 ___组__距___与 04 ___组__数___. ③将数据 05 ___分__组___. ④列 06 ___频__率__分__布__表____. ⑤画 07 ____频__率__分__布__直__方__图_____.
2021高考数学一轮复习第10章第3节统计图表、数据的数字特征、用样本估计总体教学案文北师大版
第三节 统计图表、数据的数字特征、用样本估计总体[最新考纲] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.(对应学生用书第179页)1.统计图表 统计图表是表达和分析数据的重要工具,常用的统计图表有条形统计图、扇形统计图、折线统计图、象形统计图、茎叶图等. 2.数据的数字特征(1)众数、中位数、平均数①众数:在一组数据中,出现次数最多的数据叫作这组数据的众数.②中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数.③平均数:样本数据x 1,x 2,…,x n 的平均数x =1n(x 1+x 2+…+x n ). (2)方差和标准差 ①方差:s 2=1n []x 1-x 2+x 2-x 2+…+x n -x 2.②标准差:s =s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数.标准差的单位与原始测量单位相同,在统计中,通常用标准差来刻画数据的离散程度.3.频率分布直方图与频率分布折线图(1)频率分布直方图:每个小矩形的宽度为Δx i (分组的宽度),高为f i Δx i ,小矩形的面积恰为相应的频率f i ,我们称这样的图形为频率分布直方图.(2)频率分布折线图在频率分布直方图中,按照分组原则,再在左边和右边各加上一个区间,从所加的左边区间的中点开始,用线段依次连接频率分布直方图中各个矩形的顶端中点,直至右边所加区间的中点就得到频率分布折线图.4.用样本估计总体通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的频率分布,另一种是用样本的数字特征估计总体的数字特征. [常用结论] 1.频率分布直方图的三个结论(1)频率分布直方图中相邻两横坐标之差Δx i 称为组距,纵坐标f i Δx i =频率组距,频率=组距×f i Δx i. (2)在频率分布直方图中,各小长方形的面积总和等于1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)小长方形的高=频率组距,所有小长方形高的和为1组距. 2.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;②数据ax 1,ax 2,…,ax n 的方差为a 2s 2.一、思考辨析(正确的打“√”,错误的打“×”)(1)在频率分布直方图中,小矩形的高表示频率. ( ) (2)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高.( )(3)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( )(4)一组数据的方差越大,说明这组数据的波动越大.( ) [答案](1)× (2)√ (3)√ (4)√二、教材改编1.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( )A .4B .8C .12D .16B [设频数为n ,则n 32=0.25,∴n =32×14=8.] 2.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92A [∵这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数是91+922=91.5,平均数x =87+89+90+91+92+93+94+968=91.5.] 3.如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有________人.25 [用水量为[2,2.5)的频率为0.5×0.5=0.25,则用水量为[2,2.5)的居民有100×0.25=25(人).]4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1 [5个数的平均数x =4.7+4.8+5.1+5.4+5.55=5.1,所以它们的方差s 2=15[(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)2]=0.1.](对应学生用书第180页)⊙考点1 扇形图和折线图(1)通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.(2)折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.1.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半A[设新农村建设前经济收入的总量为x,则新农村建设后经济收入的总量为2x.建设前种植收入为0.6x,建设后种植收入为0.74x,故A不正确;建设前其他收入为0.04x,建设后其他收入为0.1x,故B正确;建设前养殖收入为0.3x,建设后养殖收入为0.6x,故C正确;建设后养殖收入与第三产业收入的总和占建设后经济收入总量的58%,故D正确.]2.(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳A [对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A 错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B 正确;对于选项C,D,由图可知显然正确.故选A.]解答第1题时,理解“经济收入增加了一倍”是解题的关键.⊙考点2 茎叶图茎叶图的应用(1)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.(2)给定两组数据的茎叶图,比较数字特征时,“重心”下移者平均数较大,数据集中者方差较小.1.(2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7A [由两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以15×[56+62+65+74+(70+x )]=15×(59+61+67+65+78),解得x =3,故选A.]2.在如图所示一组数据的茎叶图中,有一个数字被污染后模糊不清,但曾计算得该组数据的极差与中位数之和为61,则被污染的数字为( )A .1B .2C .3D .4B [由题图可知该组数据的极差为48-20=28,则该组数据的中位数为61-28=33,易得被污染的数字为2,故选B.]3.甲、乙两名篮球运动员5场比赛得分的原始记录如茎叶图所示,若甲、乙两人的平均得分分别为x 甲,x 乙,则下列结论正确的是( )A.x 甲<x 乙;乙比甲得分稳定B.x 甲>x 乙;甲比乙得分稳定C.x 甲>x 乙;乙比甲得分稳定D.x 甲<x 乙;甲比乙得分稳定A [因为x 甲=2+7+8+16+225=11,x 乙=8+12+18+21+255=16.8,所以x 甲<x 乙且乙比甲成绩稳定,故选A.]第3题,从数据重心位置及数据离散程度,亦可知道答案.⊙考点3 频率分布直方图1.由频率分布直方图进行相关计算时,需掌握的两个关系式(1)频率组距×组距=频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数. 2.利用频率分布直方图估计样本的数字特征的方法(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.(2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.(3)众数:最高的矩形的中点的横坐标.(1)在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1 000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分(2)(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.①求乙离子残留百分比直方图中a ,b 的值;②分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).(1)D [由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4 000×0.25=1 000,故B 正确;由频率分布直方图可得:平均分等于45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为70+10×0.050.3≈71.67,故D 错误.故选D.] (2)[解] ①由已知得0.70=a +0.20+0.15,故a =0.35.b =1-0.05-0.15-0.70=0.10.②甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05,乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.频率分布直方图中各小长方形的面积之和为1,在求参数的值时,经常用到这个结论. [教师备选例题]某城市100户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数.[解](1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,解得x =0.007 5.即直方图中x 的值为0.007 5.(2)月平均用电量的众数是220+2402=230. ∵(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,∴月平均用电量的中位数在[220,240)内.设中位数为a ,则0.45+0.012 5×(a -220)=0.5,解得a =224,即中位数为224.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.[解](1)由频率分布直方图可知:月均用水量在[0,0.5)内的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a +0.5×a ,解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x <2.5.由0.50×(x -2)=0.5-0.48,解得x =2.04.故可估计居民月均用水量的中位数为2.04吨.⊙考点4 样本的数字特征利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小;标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.样本数字特征的计算(1)(2019·江苏高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.(2)(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.(1)53 (2)0.98 [(1)由题意,该组数据的平均数为6+7+8+8+9+106=8, 所以该组数据的方差是16[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=53.(2)x =10×0.97+20×0.98+10×0.9910+20+10=0.98. 则经停该站高铁列车所有车次的平均正点率的估计值为0.98.]本例(2)中实际上就是用样本的平均数估计总体平均数.样本的数字特征与频率分布直方图或茎叶图交汇(2019·全国卷Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[-0.20,0) [0,0.20) [0.20,0.40) [0.40,0.60) [0.60,0.80) 企业数 2 24 53 14 7(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.[解](1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21. 产值负增长的企业频率为2100=0.02. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y =1100×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100∑5i =1n i (y i -y )2 =1100×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6, s =0.029 6=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.求标准差时,应先求平均数,再求方差,最后求标准差.[教师备选例题]1.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )甲 乙A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 C [甲的平均数是4+5+6+7+85=6,中位数是6,极差是4,方差是-22+-12+02+12+225=2;乙的平均数是5+5+5+6+95=6,中位数是5,极差是4,方差是-12+-12+-12+02+325=125,故选C.] 2.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲 10 8 9 9 9 乙1010799甲 [x 甲=x 乙=9,s 2甲=15×[(9-10)2+(9-8)2+(9-9)2+(9-9)2+(9-9)2]=25,s 2乙=15×[(9-10)2+(9-10)2+(9-7)2+(9-9)2+(9-9)2]=65>s 2甲,故甲更稳定.]甲、乙两人在相同条件下各射击10次,每次中靶环数情况如图所示:(1)请填写下表(写出计算过程):平均数 方差 命中9环及9环以上的次数甲 乙①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);③从折线图上两人射击命中环数的走势看(分析谁更有潜力).[解]由题图,知甲射击10次中靶环数分别为9,5,7,8,7,6,8,6,7,7.将它们由小到大排列为5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为2,4,6,8,7,7,8,9,9,10.将它们由小到大排列为2,4,6,7,7,8,8,9,9,10.(1)x甲=110×(5+6×2+7×4+8×2+9)=7(环),x乙=110×(2+4+6+7×2+8×2+9×2+10)=7(环),s2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.填表如下:甲乙∴甲成绩比乙稳定.②∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.③∵甲成绩在平均数上下波动,而乙处于上升势头,从第三次以后就没有比甲少的情况发生,∴乙更有潜力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 相关性与最小二乘估计、统计案例
1.(2016·陕西省质检)一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为( )
A .19
B .17
C .16
D .15 解析:选D.由题意得样本数据在[20,60)内的频数为30×0.8=24,则样本在[40,50)和[50,60)内的数据个数之和为24-4-5=15.
2.(2014·高考广东卷)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
A .200,20
B .100,20
C .200,10
D .100,10
解析:选 A.该地区中小学生总人数为 3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20,故选A. 3.(2016·郑州第二次质量检测)
已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m 、n 的比值m n
=( )
A .1 B.13
C.29
D.38
解析:选D.由题中茎叶图可知甲的数据为27,30+m 、39,乙的数据为20+n 、32、34、38.由此可知乙的中位数是33,所以甲的中位数也是33,所以m =3.由此可以得出甲的平均数
为33,所以乙的平均数也为33,所以有20+n +32+34+384=33,所以n =8,所以m n =3
8
.
4.(2016·邢台摸底考试)样本中共有五个个体,其值分别为0,1,2,3,m .若该样本的平均值为1,则其样本方差为( )
A.105
B.305
C. 2
D .2
解析:选D.依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15
(12+02+12+22+22
)
=2,即所求的样本方差为2.
5.(2016·武汉调研)如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )
A .0.04
B .0.06
C .0.2
D .0.3
解析:选C.由频率分布直方图的知识得,年龄在[20,25)的频率为0.01×5=0.05,[25,30)的频率为0.07×5=0.35,设年龄在[30,35),[35,40),[40,45]的频率为x ,y ,z ,
又x ,y ,z 成等差数列,所以可得⎩
⎪⎨⎪
⎧x +y +z =1-0.05-0.35,x +z =2y ,
解得y =0.2,所以年龄在[35,40)的网民出现的频率为0.2.
6.(2016·济南模拟)100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则测试成绩落在[60,80)中的学生人数是________.
解析:测试成绩落在[60,80)中的学生人数是100×3a +7a
2a +3a +7a +6a +2a
=50.
答案:50
7.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列{a n },已知a 2=2a 1,且样本容量为300,则小长方形面积最大的一组的频数为________.
解析:因为小长方形的面积由小到大构成等比数列{a n },且a 2=2a 1, 所以样本的频率构成一个等比数列,且公比为2, 所以a 1+2a 1+4a 1+8a 1=15a 1=1,
所以a 1=1
15
,
所以小长方形面积最大的一组的频数为300×8a 1=160. 答案:160
8.已知x 是1,2,3,x ,5,6,7这七个数据的中位数且1,2,x 2
,-y 这四个数据的平
均数为1,则y -1
x
的最小值为________.
解析:1+2+x 2-y =4,所以y =x 2-1.由中位数定义知,3≤x ≤5,所以y -1x =x 2
-1-1x
.
当x ∈[3,5]时,函数y =x 2-1与y =-1x 均为增函数,所以y =x 2
-1-1x
为增函数,所以⎝ ⎛⎭
⎪
⎫y -1x
min
=8-13=233.
答案:233
9.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:
(1)求分数在[50,60]的频率及全班人数;
(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高. 解:(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频
数为2,所以全班人数为2
0.08
=25.
(2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩
形的高为4
25
÷10=0.016.
10.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.
(1)求出m ,n 的值;
(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s 2甲和s 2
乙,并由此分析两组技工的加工水平.
解:(1)根据题意可知:x -甲=15(7+8+10+12+10+m )=10,x -
乙=15
(9+n +10+11+12)
=10,所以n =8,m =3.
(2)s 2甲=15[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2
]=5.2,
s 2乙=15[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2
]=2,
因为x -甲=x -乙,s 2甲>s 2
乙,所以甲、乙两组的整体水平相当,乙组技工更稳定一些.。