人教版七年级上册数学期末复习典型试题(按题型总结)

合集下载

人教版七年级数学上册期末复习卷 (含答案)

人教版七年级数学上册期末复习卷 (含答案)

人教版七年级数学上册期末复习卷(时间90分钟满分120分)一、选择题(共10小题,3*10=30)1.如果水库水位上升5 m记作+5 m,那么水库水位下降3 m记作()A.-3 B.-2 C.-3 m D.-2 m2.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140 m2,则FAST的反射面总面积约为()A.7.14×103 m2B.7.14×104 m2C.2.5×105 m2D.2.5×106 m23.计算-19+20等于()A.-39 B.-1 C.1 D.394.下列运算正确的是()A.a-(b+c)=a-b+cB.x-2(y-1)=x-2y+1C.5x-3x=2D.2m2n-3nm2=-m2n5.如图,AB,CD相交于点O,OE平分∠AOB,若∠AOC:∠COE=5:4,则∠AOD的度数为()A.120° B.130° C.140° D.150°6. 钟表3时30分时,时针与分针所成的角的度数为()A.90° B.75°C.60° D.45°7.如图是一个正方体的平面展开图,则原正方体中与“你”字所在面相对的字是()A .遇B .见C .未D .来8.如图所示,点C 是线段AB 上的一点,且AC =2BC.下列说法中,正确的是( )A .BC =12AB B .AC =12AB C .BC =13AB D .BC =13AC 9.已知|3m -12|+(n +32+1)2=0,则2m -n 的值为( ) A .13 B .11 C .9 D .1510.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定28条直线,则n 的值是( )A .6B .7C .8D .9二.填空题(共8小题,3*8=24)11.若m +n =0,则2m +2n +1=__ __.12. 已知关于x 的方程2x =5-a 的解为x =3,则a 的值为__ __.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.观察下列单项式:2x ,-4x 2,8x 3,-16x 4,…,根据你发现的规律,第7个单项式为________,第n 个单项式为________________.15.从正午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,−2,8,11,5,−6,则这6名学生的平均成绩为______分.17.如图所示是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与13重合的数字是___________.18.已知点O 在直线AB 上,且线段OA =4 cm ,线段OB =6 cm ,点E ,F 分别是OA ,OB的中点,则线段EF =__________cm.三.解答题(7小题,共66分)19.(8分)计算:(1)-32÷(-3)2+3×(-2)+|-4|;(2)(13-37)×42-(3-9)2×(-1)99×|-16|.20.(8分)先化简,再求值:2x 3-(7x 2-9x)-2(x 3-3x 2+4x),其中x =-1.21.(8分)解下列方程:(1)2(3-x)=-4(x +5);(2)1-3-5x 3=3x -52.22.(10分)有理数a ,b ,c 在数轴上的位置如图所示:(1)比较大小:b__ __0,a__ __c ,b__ __c ,b -a__ __0;(2)A ,B 两点间的距离为________,B ,C 两点间的距离为__ __;(3)化简:|b|-|b +c|+|c -a|-|a +c|-|b -c|.23.(10分)儿童公园的门票价格规定如下:某校七年级甲、乙两班共104人去游公园,其中甲班人数较多,有50多人,经计算,如果两班都以班为单位分别购票,则一共应付1240元.问:(1)两班各有多少学生?(2)如果两班联合起来作为一个团体购票,可以省多少元钱?24.(10分)已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图①,若∠COF=34°,则∠BOE=__ __;若∠COF=m°,则∠BOE=__ __;∠BOE与∠COF的数量关系为___________________;(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.25.(12分)如图,已知数轴上点A表示的数为8,B为数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数为__ __,点P表示的数为____________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P,Q同时出发,问:点P运动多少秒时追上点Q?(3)若点M为AP的中点,点N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.参考答案1-5CCCDB 6-10BDCAC11. 112. -113.-514. 27x7;(-1)n+12n x n15.14时40分16. 83.517. 1和918. 1或519. 解:(1)-3(2)220. 解:原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x.当x=-1时,原式=-(-1)2+(-1)=-221. 解:(1)x=-13(2)x=-1522. 解:(1) <;>;<;<(2) a-b;c-b(3)原式=-b+(b+c)+(a-c)-(a+c)+(b-c)=-b+b+c+a-c-a-c+b-c=b-2c23. 解:(1)设甲班有学生x人,则乙班有学生(104-x)人.分两种情况:①甲班多于50人,乙班多于50人,则有11x+11(104-x)=1240,无解;②甲班多于50人,乙班少于50人,则有11x+13(104-x)=1240,解得x=56,∴104-56=48.答:甲班有学生56人,乙班有学生48人(2)1240-9×104=304(元),则可以省304元24. 解:(1) 68°;2m°;∠BOE=2∠COF_(2)∠BOE和∠COF的关系依然成立.因为∠COE是直角,所以∠EOF=90°-∠COF.又因为OF平分∠AOE,所以∠AOE=2∠EOF,所以∠BOE=180°-∠AOE=180°-2(90°-∠COF)=2∠COF25. 解:(1)-6;8-5t(2)设点P运动x秒时,在点C处追上点Q,如图①,则AC=5x,BC=3x,因为AC-BC=。

人教版七年级数学上册期末专项复习四套含答案

人教版七年级数学上册期末专项复习四套含答案

人教版七年级数学上册 期末专项复习01—有理数一、选择题(每小题3分,共30分)1.如果气温上升5℃记为5+℃,则8-℃表示( ) A .下降3℃B .上升3℃C .下降8℃D .上升8℃2.12020的相反数是( ) A .12020-B .12020C .2020-D .20203.下列说法中,正确的是( ) A .0是最小的整数B .最大的负整数是1-C .有理数包括正有理数和负有理数D .一个有理数的平方总是正数4.下列各组数中,相等的一组是( ) A .2-和()2--B .2--和()2--C .2和2-D .2-和2-5.若a 是有理数,则下列说法正确的是( ) A .a 一定是正数 B .a -一定是正数 C .a --一定是负数D .1a +一定是正数6.表示a ,b 两数的点在数轴上的位置如图所示,则下列判断错误的是( )A .0a b +<B .0a b ->C .0a b ⨯>D .a b <7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片,现在中国高速铁路营运里程将达到22 000公里,将22 000用科学记数法表示应为( ) A .42.210⨯B .32210⨯C .32.210⨯D .50.2210⨯8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( ) A .它精确到千分位B .它精确到0.01C .它精确到万位D .它精确到十位9.()()1352013201524620142016+++++-+++++L L =( ) A .0B .1-C .1008D .1008-10.若()212102x y -++=,则23x y +的值是( ) A .38B .18C .18-D .38-二、填空题(每小题2分,共16分)11.数轴上与表示数1的点的距离为8个单位长度的点所表示的数是________. 12.已知7a =,3b =,且0a b +>,则a =________. 13.有理数 3.7-,2,243,23-,0,0.83中,属于正数的有________,属于负数的有________. 14.若a 、b 互为倒数,c 、d 互为相反数,则式子()343ab c d -+=________.15.已知()23a -与1b -互为相反数,则式子a b b a ⎛⎫- ⎪⎝⎭的值为________.16.计算()()()20202019202020201101-+-++-=________.17.A 点为数轴上表示4-的对应点,B 点对应的数为1-的相反数,若固定A 点不动,将B 点________个单位后,B 与A 相距1个单位.(请填上移动方向和距离)18.用“●”“○”定义新运算:对于实数a ,b ,都有a b a =●和a b b =d .例如323=●,322=d ,则()()2200920100210009=d d ●________.三、解答题(共54分)19.(12分)计算.(尽可能用简便方法)(1)()31664 5.66577⎡⎤++--⎢⎥⎣⎦;(2)()11731348126424⎛⎫-+-⨯- ⎪⎝⎭;(3)()2413111421412⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭;(4)()()()()23220202231-----÷-20.(5分)若3x -与2y +互为相反数,求3x y ++的值.21.(6分)按下列程序进行计算(如图),如果第一次输入的数是20,而结果不大于100时,那么就把结果作为输入的数再进行第二次运算,直到符合要求为止,当输入值为20时,请计算输出结果.22.(6分)小明家与学校相距2.5千米,小华家与学校相距32千米.请你想一下,小明家和小华家处在学校什么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科学记数法表示)24.(9分)某天晚上,一辆治安巡逻车从A地出发,在东西方向的马路上巡逻,第七次巡逻到达B地后结束,如果规定向东行驶为正,向西行驶为负,七次巡逻的纪录如下:(单位:千米)(1)在第________次巡逻时离开A地最远.(2)求第七次巡逻结束时B地与A地的距离与方向.(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.25.(10分)观察下列一组有规律的数,解答下列问题.第1个数记为:1111 2122 ==-⨯;第2个数记为:1111 62323 ==-⨯;第3个数记为:1111 123434==-⨯;(1)第7个数记为________,190是第________个数;(2)计算:①1111 12233420192020 ++++⨯⨯⨯⨯L;②1111 13355720172019 ++++⨯⨯⨯⨯L;期末专项复习—有理数答案解析一、1.【答案】C 【解析】由题意,得8-℃表示下降8℃.故选C .2.【答案】A 【解析】12020的相反数是12020-.故选A . 3.【答案】B 【解析】没有最小的整数,故A 错误;B 正确;有理数包括0、正有理数和负有理数,C 错误;有理数的平方是非负数,D 错误.故选B .4.【答案】C5.【答案】D 【解析】A 选项,0a =时,0a =,不是负数,故本选项错误;B 选项,0a =时,0a -=,不是正数,故本选项错误;C 选项,0a =时,0a --=,不是正数,故本选项错误;D 选项,11a +≥,一定是正数,故本选项正确.故选D .6.【答案】C 【解析】由图可知,a ,b 异号,故0a b ⨯<,C 错误,符合题意,其他选项都正确,不符合题意.故选C .7.【答案】A 【解析】422000 2.210=⨯.故选A .8.【答案】D 【解析】4.609万中的9在原数46090中的十位上,所以4.609万精确到了十位.故选D . 9.【答案】D【解析】()()1352013201524620142016+++++-+++++=L L ()()()123420152016-+-++-=L()()()1111008-+-++-=-L .故选D .10.【答案】B 二、11.【答案】7-或912.【答案】713.【答案】2,243,0.83 3.7-,23- 14.【答案】3b 15.【答案】22316.【答案】117.【答案】向左移动4个单位或6个单位 18.【答案】2010 三、19.【答案】(1)31664 5.6657731664 5.665773166 5.646577512751.7⎡⎤++-⎢⎥⎣⎦⎡⎤=+--⎢⎥⎣⎦⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+- ⎪⎝⎭=-()- (2)117313481264241173134848484812642444+5636+262⎛⎫-+-⨯- ⎪⎝⎭=⨯-⨯-⨯-⨯-==()()-()+()-()--(3)421311142141213111014121⎛⎫⎡⎤---⨯-- ⎪⎣⎦⎝⎭⎛⎫=---⨯ ⎪⎝⎭=-() (4)232202022314891489=3.-----÷-=--÷=+-()()()()()- 20.【答案】解:因为3x -与2y +互为相反数,所以320x y -++=.因为30x -≥,20y +≥,所以30x -=,20y +=.即30x -=,20y +=.所以3x =,2y =-.所以()33234x y ++=+-+=.21.【答案】解:当输入20时,211201044010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入40-时, 211402048010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入80时,2118040416010022⎡⎤⎛⎫⨯÷-=⨯-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()<;当输入160-时,21116080432010022⎡⎤⎛⎫-⨯÷-=-⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦()>,故输出的结果为320. 22.【答案】解:当小明家和小华家处在学校两侧,且在一条直线上时相距最远,最远为()2.5 1.54+=千米;当小明家和小华家处于学校同侧,且在一条直线上时相距最近,最近为()2.5 1.51-=千米.23.【答案】解:1个草履虫每天吞食细菌:()460302443200 4.3210⨯⨯==⨯个,100个草履虫每天吞食细菌:()46100 4.3210 4.3210⨯⨯=⨯个.24.【答案】解:(1)Q 第一次:()044+-=-, 第二次:()43-=+7, 第三次:()396+-=-, 第四次:()682-=+, 第五次:268+=, 第六次:()853+-=, 第七次:()321+-=, ∴第五次巡逻时离开A 地最远.(2)第七次巡逻结束后,B 地在A 地东边1千米处.(3)()()4798652100124110012 4.92-+++-+++++-+-÷⨯=÷⨯=升,故该晚巡逻车共耗油4.92升.25.【答案】解:(1)1111567878==-⨯ 9 (2)①原式1111111111223342018201920192020111111111122334201820192019202020192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-+-+-+-+-=…+…+ ②原式11111111111123235257220172019111111111233557201720191112201910092019⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=⨯-+-+-+- ⎪⎝⎭⎛⎫=⨯- ⎪⎝⎭=…+…+人教版七年级数学上册 期末专项复习02—整式的加减一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习03—一元一次方程一、选择题(每小题3分,共30分) 1.下列式子书写正确的是( ) A .48aB .x y ÷C .a x y +()D .112abc2.某礼堂第一排有m 个座位,后面每排比前一排多一个座位,则第二十排有( ) A .21m +()个座位 B .20m +()个座位 C .19m +()个座位D .18m +()个座位 3.244π9x y 的系数与次数分别为( )A .49,7B .4π9,6 C .4π,6D .4π9,44.多项式2123xy xy +-的次数及最高次项的系数分别是( ) A .3,3-B .2,3-C .5,3-D .2,35.下列选项中与32125a bc -是同类项的是( ) A .23a b cB .2312ab c C .320.35ba cD .3313a bc6.如果23a x y +与3213b x y --是同类项,那么a ,b 的值分别是( ) A .1,2B .0,2C .2,1D .1,17.下列说法正确的是( ) A .22πx 的系数是2 B .2xy -的次数为2 C .2354x x x -+=-D .22232x x x -= 8.减去2x -等于2321x x -++的多项式是( )A .2341x x -++B .2341x x --C .231x -+D .231x -9.已知a ,b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A .22a b +B .23b +C .23a -D .1-10.已知代数式2326y y -+的值是8,那么2312y y -+的值是( ) A .1B .2C .3D .4二、填空题(每小题2分,共20分)11.在代数式212a -,33xy -,0,4ab ,234x -,7xy ,n 中,单项式有________个.12.多项式3265xyx y -+共有________项,各项系数分别为________.13.若单项式2123x m n --和425a b c 的次数相同,则代数式223x x -+的值为________.14.已知1n mx y -是关于x ,y 的一个单项式,且系数是9,次数是4,那么多项式4m n mx ny --是________次________项式.15.若21421242n m a b a b a b ++-+=-,则3m n -=________.16.如果33a =--(),23b =--(),24c =--(),则[]a b c ---()的值为________.17.现规定a b a b c d c d =-+-,则计算22232235xy x xy x x xy------+的值为________. 18.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,……,则第n (n 为正整数)个图案由________个▲组成.19.写出一个只含有一个字母的二次三项式,使二次项的系数和常数项都是1-,这个多项式为________. 20.若0a <,0b >,a b >,则a b a b +-=+________. 三、解答题(共50分) 21.(6分)先化简,再求值.(1)[]2363m n m m n -+--(),其中2m =,3n =;(2)2221321a a a a -+-+-()().其中1a =.22.(7分)已知m ,x ,y 满足235205x m -+-=(),213y a b +-与23a b 是同类项,求整式222223639x xy y m x xy y -+--+()()的值.23.(8分)已知222A x xy y =-+,222B x xy y =++. (1)求A B +;(2)如果230A B C -+=,求C 的表达式.24.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场.(平面示意图如下图所示)(1)用含m ,n 的代数式表示该广场的面积S (阴影部分);(2)若m ,n 满足2650m n -+-=(),求该广场的面积.25.(9分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式3323323763363103a a b a b a a b a b a -+---++-()()写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“65a =,2005b =-”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?26.(12分)为了加强公民的节水意识,合理利用水资源.某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下表:(注:水费按月份结算,3m 表示立方米)请根据上表的内容解答下列问题:(1)填空:若某户居民2月份用水34m ,则应收水费________元.(2)若该户居民3月份用水3m a (其中610a <<),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水315m (5月份用水量超过了4月份),设4月份用水3m x ,求该户居民4、5两个月共交水费多少元.(用含x 的代数式表示,并化简)期末专项复习—整式的加减答案解析一、 1.【答案】C 2.【答案】C【解析】第20排有20119m m +-=+()个座位,故选C . 3.【答案】B【解析】244π9x y 的系数为4π9,次数为6.故选B .4.【答案】A【解析】多项式2123xy xy +-的次数是3,最高次项是23xy -,系数是3-,故选A . 5.【答案】C【解析】A 选项中,23a b c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;B 选项中,2312ab c 与32125a bc -所含的相同字母的指数不相同,所以它们不是同类项,本选项不符合题意;C 选项中,320.35ba c 与32125a bc -所含的相同字母的指数相同,所以它们是同类项,本选项符合题意;D 选项中,3313a bc 与32125a bc -所含的相同字母c 的指数不相同,所以不是同类项,本选项不符合题意.故选C . 6.【答案】A【解析】由同类项的定义,得23a +=,213b -=,解得1a =,2b =.故选A . 7.【答案】D【解析】A 选项中,22πx 的系数是2π,不符合题意;B 选项中,2xy -的次数为3,不符合题意;C 选项中,不是同类项不能合并,不符合题意;D 选项中,系数相加,字母及指数不变,符合题意.故选D . 8.【答案】C【解析】根据题意,得2222321232131x x x x x x x -+++=--++=-+(-).故选C . 9.【答案】A【解析】由图可得2112b a --<<<<<,且a b >,则2222a b a b a b a b +-++=++-++-()2222a b a b a b =++-++=+.故选A .10.【答案】B【解析】根据题意,得23268y y -+=,2322y y -=,2312y y -=,2311122y y -+=+=.故选B . 二、 11.【答案】512.【答案】3 6,15-,1 13.【答案】27【解析】因为单项式2123x m n --和425a b c 的次数相同,所以21421x +-=++,解得6x =,则2223626327x x -+=-⨯+=14.【答案】五二【解析】由题意得9m =,114n -+=,即4n =,所以44594m n mx ny x y --=-,它是五次二项式. 15.【答案】172【解析】因为21421242n m a b a b a b ++-+=-,所以212n +=,14m +=,解得12n =,3m =,所以1732m n -=.16.【答案】52-【解析】3327a =--=(),239b =--=-(),2416c =--=(),则[][]27916271552a b c ---=---=-+=-()()(). 17.【答案】2422x xy -++ 【解析】222222222232235322353223542 2.xy x xy x x xyxy x xy x x xy xy x xy x x xy x xy ------+=----+----+=-++--+-=-++()()()()18.【答案】31n +()【解析】第1个图案由3114⨯+=(个)▲,第2个图案由3217⨯+=(个)▲,第3个图案由33110⨯+=(个)▲,第4个图案由34113⨯+=(个)▲,……,故第n 个图案由31n +()个▲. 19.【答案】21x x -+-(答案不唯一) 20.【答案】2a - 【解析】因为0a <,0b >,a b >,所以0a b +<,0a b -<,所以[]2a b a b a b a b a b a b a ++-=-++--=---+=-()().三、21.【答案】(1)原式2363236352.m n m m n m n m m n m n =-+-+=-+-+=-(), 当2m =,3n =, 当原式52234=⨯-⨯=.(2)原式2222132224 3.a a a a a a =-+--+=+-当1a =,原式4132=+-=.22.【答案】解:因为235205x m -+-=(),所以5x =,2m =.因为213y a b +-与23a b 是同类项,所以13y +=,解得2y =.所以2222222223639236239x xy y m x xy y x xy y x xy y -+--+=-+--+()()()() 2222222366218412x xy y x xy y x xy y =-+-+-=---.所以5x =,2y =,所以上式 224552122158=-⨯-⨯-⨯=-.23.【答案】解:(1)2222222222A B x xy y x xy y x y +=-++++=+()(). (2)因为230A B C -+=,22222232322210C B A x xy y x xy y x xy y ∴=-=++---=++()(). 24.【答案】解:(1)根据题意,得2220.540.5 3.5S m n m n n n mn mn mn =---=-=g ();(2)因为2650m n -+-=(),所以6m =,5n =.则 3.565105S =⨯⨯=. 25.【答案】解:Q332332333233233333322763363103763363103731066333=3.a ab a b a a b a b a a a b a b a a b a b a a a a a b a b a b a b -+---++-=-+++--+=+-+-++-+()()()()()∴不管a 、b 取何值,整式的值都为3.26.【答案】解:(1)8(2)4662412a a -+⨯=-()()元,所以应收水费412a -()元. (3)因为5月份用水量超过了4月份,所以4月份用水量少于37.5m .①当4月份用水量少于35m ,5月份用水量超过310m ,所以4、5月份共交水费2815104462668x x x +--+⨯+⨯=-+()()元;②当4月份用水量大于或等于35m ,但不超过36m 时,5月份用水量不少于39m 但不超过310m ,所以4、5月份共交水费2415662248x x x +--+⨯=-+()()元;③当4月份用水量超过36m 且少于37.5m 时,5月份用水量超过37.5m 但少于39m ,所以4、5月份共交水费466241566236x x -+⨯+--+⨯=()()(元).【解析】(1)248⨯=(元)人教版七年级数学上册 期末专项复习04—几何图形初步一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .平角是一条直线 B .周角是一条射线C .用2倍的放大镜看1cm 长的线段,这条线段变成了2cmD .用2倍的放大镜看°30的角,这个角变成了°602.如图所示,在AOB ∠的内部有4条射线,则图中角的个数为( )A .10B .15C .5D .203.下面说法:①若线段AC BC =,C 是线段AB 的中点;②两点之间直线最短;③延长直线AB ;④若一个角既有余角又有补角,则它的补角一定比它的余角大.正确的有( ) A .0个B .1个C .2个D .3个4.如图所示,小于平角的角有( )A .9个B .8个C .7个D .6个5.如图,C ,D 是线段AB 上两点,4cm CB =,7cm DB =,且D 是AC 的中点,则AC 的长等于( )A .3cmB .6cmC .11cmD .14cm6.小明由点A 出发向正东方向走10m 到达点B ,再由点B 向东南方向走10m 到达点C ,则下列结论正确的是( ) A .°22.5ABC ∠= B .°45ABC ∠= C .°67.5ABC ∠=D .°135ABC ∠=7.如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式正确的是( )A .12COD AOB ∠=∠ B .23AOD AOB ∠=∠C .13BOD AOB ∠=∠D .23BOC AOD ∠=∠8.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来9.射线OA 上有B 、C 两点,若8OB =,2BC =,线段OB 、BC 的中点分别为D 、E ,则线段DE 的长为( ) A .5B .3C .1D .5或310.如图,AOB COD ∠=∠,若°110AOD ∠=,°70BOC ∠=,则以下结论正确的有( )①°90AOC BOD ∠=∠=;②°20AOB ∠=;③AOB AOD AOC ∠=∠-∠;④211AOB BOD ∠=∠ A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.用度、分、秒表示:°35.12=________°________′________″. 12.已知°4231α∠=′,则α∠的余角的补角是________. 13.延长线段AB 到点C ,使12BC AB =,反向延长线段AC 到点D ,使12AD AC =.若8cm AB =,则CD =________cm .14.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于________.15.如图所示,C 是线段AB 外一点,那么AC BC +________AB (填“>”“<”或“=”),理由是________.16.如图所示,A 、O 、B 在一条直线上,°1302AOC BOC ∠=∠+,OE 平分BOC ∠,则BOE ∠=________.17.有公共顶点的两条射线分别表示南偏东°15与北偏东°25,则这两条射线组成的角的度数为________. 18.延长线段AB 到C ,使13BC AB =,D 为AC 的中点,且6cm DC =,则AB 的长是________cm . 三、解答题(共46分)19.(8分)已知平面上的三点,如图所示. (1)按下列要求画出图形:①画直线AC ;②画射线BC ;③画线段AB .(2)指出图中有几条线段,并表示出来.(3)图中有哪些线段?用图中的字母表示出来.(4)图中有哪些直线?并用图中的字母表示出来.20.(6分)如图所示的平面展开图折叠成正方体后,相对面上的两个数之和为5,求x y z ++的值.21.(6分)若:::1234134:1::∠∠∠∠=,而且°1231048∠∠∠∠=+++,那么这四个角分别为多少度?22.(8分)如下图,某轮船上午8时在A 处,测得灯塔S 在北偏东°60的方向上,向东行驶至中午12时,轮船到达B 处,在B 处测得灯塔S 在北偏西°30的方向上,已知轮船行驶速度为20千米/时. (1)在图中画出灯塔S 的位置;(2)量出船在B 处时,离灯塔S 的图上距离,并求出它的实际距离.23.(8分)如图所示,点C 是线段AB 上一点,点M 是线段AC 的中点,点N 是线段BC 的中点.(1)如果0cm 1AB =,3cm AM =,求NC 的长.(2)如果6cm MN =,求AB 的长.24.(10分)如图所示,从一点O 出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引n (n 为大于等于2的整数)条射线,则会得到多少个角?如果8n =时,检验你所得的结论是否正确.期末专项复习—几何图形初步答案解析一、 1.【答案】C 2.【答案】B 3.【答案】B【解析】①如图,C 不是线段AB 的中点,故①不正确;②两点之间线段最短,故②不正确;③直线向两边无限延伸,不能延长,故③不正确;④正确.故选B . 4.【答案】C【解析】符合条件的角中以A 为顶点的角有1个,以B 为顶点的角有2个,以C 为顶点的角有1个,以D 为顶 点的角有1个,以E 为顶点的角有2个,共有121127++++=(个)角,故选C . 5.【答案】B【解析】因为7cm DB =,4cm CB =所以743cm DC DB CB =-=-=.根据D 是AC 的中点,得2236cm AC DC ==⨯=.6.【答案】D【解析】由题意作图如下:由图可得°°°9045135ABC ∠=+=. 7.【答案】D【解析】设COD x ∠=,因为OD 平分BOC ∠, 所以BOD COD x ∠=∠=,2BOC x ∠=. 又OC 平分AOB ∠, 所以2AOC BOC x ∠=∠=,则4AOB x ∠=,所以14COD AOB ∠=∠,34AOD AOB ∠=∠,14BOD AOB ∠=∠,23BOC AOD ∠=∠,故 选D . 8.【答案】D【解析】根据正方体的表面展开图的特征,易知与“你”字所在面相对的面上标的字是“来”,与“遇” 字所在面相对的面上标的字是“的”,与“见”字所在面相对的面上标的字是“未”,故选D .9.【答案】D【解析】如图1,3DE =;如图2,5DE =.图1图210.【答案】C【解析】因为°110AOD ∠=,°70BOC ∠=,所以°40COD AOB ∠+∠=,又因为AOB COD ∠=∠,所以°20AOB COD ∠=∠=,所以°90AOC BOD ∠=∠=,故①②正确;AOD AOC COD AOB ∠-∠=∠=∠,故③正确;29AOB BOD ∠=∠,故④不正确.所以正确的有3个. 二、11.【答案】35 7 12 12.【答案】°13231′ 13.【答案】18 14.【答案】2415.【答案】>两点之间线段最短 16.【答案】°50 17.【答案】°140 18.【答案】9 三、19.【答案】解:(1)如图所示:(2)图中有3条线段,分别是线段AB 、AC 、BC .(3)图中的射线有:射线CE 、CF 、AG 、AF 、CG 、BE . (4)图中的直线有:直线AC 20.【答案】421.【答案】°120∠=,°260∠=,°380∠=,°420∠=. 22.【答案】解:(1)灯塔S 的位置如下图:(2)量得图中2cm BS =,轮船上午8时到中午12时行驶了4小时,则行驶的路程为20480⨯=(千米).而图 中AB 的距离为4cm ,故该图的比例为418010001002000000=⨯⨯.所以轮船离灯塔S 的实际距离为 20000002400000040⨯==(厘米)千米.23.【答案】(1)因为M 为AC 的中点,所以2AC AM =.因为3cm AM =,所以236cm AC =⨯=.因为10cm AB =,所以10cm 6cm 4cm BC AB AC =-=-=,又因为N 为BC 的中点,所以12cm 2NC BC ==. (2)因为M 为AC 的中点,所以12MC AC =.因为N 为CB 的中点,所以12CN CB =,所以 111222MC CN AC CB AC CB +=+=+(),即12MN AB =,而6cm MN =,所以12cm AB =. 24.【答案】解:当2n =时,角的个数为1;当3n =时,角的个数为123+=;当4n =时,角的个数为1236++=; 当5n =时,角的个数为123410+++=;当射线的条数为n 时,角的个数为112342112n n n n ++++-+-=-…()()().当8n =时,1118182822n n -=⨯-⨯=()().所以n 条射线可 得到112n n -g ()个角的结论也是正确的.。

新人教版七年级数学(上册)期末试卷及参考答案(往年题考)

新人教版七年级数学(上册)期末试卷及参考答案(往年题考)

新人教版七年级数学(上册)期末试卷及参考答案(往年题考)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若, 那么的值是( )A. 10B. 52C. 20D. 322.如图, 过△ABC的顶点A, 作BC边上的高, 以下作法正确的是()A. B.C. D.3.如图, 在△ABC中, AB=20cm, AC=12cm, 点P从点B出发以每秒3cm速度向点A运动, 点Q从点A同时出发以每秒2cm速度向点C运动, 其中一个动点到达端点, 另一个动点也随之停止, 当△APQ是以PQ为底的等腰三角形时, 运动的时间是( )秒A. 2.5B. 3C. 3.5D. 44.一副三角板按如图方式摆放, 且∠1的度数比∠2的度数大50°, 若设∠1=x°, ∠2=y°, 则可得到方程组为A. B. C. D.5.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如果, 那么代数式的值为()A. B. C. D.7. 下列各组数中, 能作为一个三角形三边边长的是()A. 1, 1, 2B. 1, 2, 4C. 2, 3, 4D. 2, 3, 58.如图,将一副三角尺按不同的位置摆放, 下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④9.已知(a≠0, b≠0), 下列变形错误的是()A. B. 2a=3b C. D. 3a=2b10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是________.2.如图, 将三个同样的正方形的一个顶点重合放置, 那么的度数为__________.3. 如图, 点E是AD延长线上一点, 如果添加一个条件, 使BC∥AD, 则可添加的条件为__________. (任意添加一个符合题意的条件即可)4. 同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等, 则此温度的摄氏度数为__ ______℃.5. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.6. 已知|x|=3, 则x的值是________.三、解答题(本大题共6小题, 共72分)1. 解方程组2. 在解方程组时, 由于粗心, 小军看错了方程组中的n, 得解为, 小红看错了方程组中的m, 得解为(1)则m, n的值分别是多少?(2)正确的解应该是怎样的?3. 如图, AD平分∠BAC交BC于点D, 点F在BA的延长线上, 点E在线段CD上, EF 与AC相交于点G, ∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上, 且∠EDH=∠C, 则∠F与∠H相等吗, 请说明理由.4. 如图, 在△ABC和△ADE中, AB=AC, AD=AE, 且∠BAC=∠DAE, 点E在BC上. 过点D作DF∥BC, 连接DB.求证: (1)△ABD≌△ACE;(2)DF=CE.5. 为弘扬中华传统文化, 我市某中学决定根据学生的兴趣爱好组建课外兴趣小组, 因此学校随机抽取了部分同学的兴趣爱好进行调查, 将收集的数据整理并绘制成下列两幅统计图, 请根据图中的信息, 完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中, “戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名, 请你估计该校有多少名学生喜欢书法?6. 某车间有27名工人, 每人每天可以生产1500个螺钉或2400个螺母. 一个螺钉需要配两个螺母, 为使每天生产的螺钉和螺母刚好配套, 应安排生产螺钉和螺母的工人各多少名?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.A2.A3.D4.C5.C6.A7、C8、A9、B10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.-3.2.20°.3.∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4.-405.40°6.±3三、解答题(本大题共6小题, 共72分)1.2.(1) m=2;n=3;(2)方程组正确的解为3.略4.(1)证明略;(2)证明略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、安排名工人生产螺钉、安排名工人生产螺母.。

人教版 七年级数学上册 期末综合复习(含答案)

人教版 七年级数学上册 期末综合复习(含答案)

人教版 七年级数学上册 期末综合复习一、选择题1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短2. 下列式子中是方程的是( )A .5x +4B .3x -5<7 C.34x -2=6D .3×2-1=5 3. 计算-2×3×(-4)的结果是( )A .24B .12C .-12D .-24 4. 如图,数轴上的单位长度为1,有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 表示的数是 ( )A .-2B .0C .1D .45. 在式子:①2x+1;②1+7=15-8+1;③1-x=x -1;④x+2y=3中,方程共有( )A .1个B .2个C .3个D .4个6. 分别从正面、左面、上面看如图所示的立体图形,得到的平面图形都一样的是( )A.①②B.①③C.②③D.①④7. 计算(-2)2020÷(-2)2019所得的结果是()A.22019B.-22019C.-2D.18. 已知∠α=39°18',∠β=39.18°,∠γ=39.3°,下面结论正确的是()A.∠α<∠γ<∠βB.∠γ>∠α=∠βC.∠α=∠γ>∠βD.∠γ<∠α<∠β9. 温度由-4 ℃上升7 ℃是()A.3 ℃ B.-3 ℃C.11 ℃ D.-11 ℃10. 小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分.若小明得了94分,则小明答对的题数是()A.17 B.18 C.19 D.20二、填空题11. 计算:7x-4x=________.12. 比较大小:-2________-3.(选填>,=或<)13. 原价为a元的书包,现按8折出售,则售价为________元.14. 方程x+3=1-2x变形为x+2x=1-3的依据是____________;方程-5x=6变形为x=-65的依据是____________.15. 若一个数的相反数是8,另一个数是绝对值最小的数,则这两个数的和是________.16. 小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,需付手工费5元,则小红购买珠子应该花费____________元.17. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.18. 已知2+23=22×23;3+38=32×38;4+415=42×415;…若10+a b =102×a b (a ,b 为正整数),则a +b =________.三、解答题19. 解下列方程:(1)4x -9x =10; (2)3x -5x =6+2;(3)-52y +32y =5;(4)3x +2x -9x =30-3×6.20. 解方程:2352246x x ---=21. 某商场的一种彩电标价为m 元/台.节日期间,商场按九折的优惠价出售,商场销售n 台彩电共得多少元?你所得到的单项式的系数和次数分别是多少?22. 一种长方体肥皂盒,它的长、宽、高分别是16厘米、6厘米、3厘米,一箱装30块肥皂,请你设计一种包装箱,符合下列要求:①肥皂盒装箱时,面积相同的面互相对接;②包装箱是一个长方体;③装入肥皂盒后不留空隙.怎样设计才能使包装箱所用材料最少?23. 下面是小红做的一道题,请你判断她的解答过程是否正确,若不正确,请改正.解方程:x +30.2-0.4x -10.5=-2.5.解:原方程可变形为10x +302-4x -105=-25,5(10x +30)-2(4x -10)=-25×10,42x =-420,x =-10.24. 张亮同学在解关于y 的方程3y -a 4-5y -7a 6=1去分母时,忘记将方程右边的1乘12,从而求得方程的解为y =10,现请你帮助张亮同学求出原方程的解.人教版 七年级数学上册 期末综合复习-答案一、选择题1. 【答案】D2. 【答案】C3. 【答案】A4. 【答案】C5. 【答案】B6. 【答案】A [解析] 分别从正面、左面、上面看球,得到的平面图形都是圆;分别从正面、左面、上面看正方体,得到的平面图形都是正方形.7. 【答案】C8. 【答案】C[解析] ∵∠α=39°18'=39.3°,39.18°<39.3°, ∴∠α=∠γ>∠β.故选C .9. 【答案】A 【解析】温度上升,-4℃+7℃=3℃,故本题选A.10. 【答案】B二、填空题11. 【答案】3x12. 【答案】> 【解析】℃负数比较大小,绝对值大的反而小,∴-2>-3.13. 【答案】45a14. 【答案】等式的性质1等式的性质215. 【答案】-8 [解析] 因为一个数的相反数是8,所以这个数是-8.又因为绝对值最小的数是0,所以这两个数的和是-8+0=-8.16. 【答案】(3a+4b+5)17. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t,根据题意,得(100-60)t=100,解得t=2.5.所以100t=100×2.5=250,即速度快的人要走250步才能追上速度慢的人.18. 【答案】109[解析] 仔细观察式子特点可知:3=22-1,8=32-1,15=42-1,故当a=10时,b=102-1=99,则a+b=10+99=109.三、解答题19. 【答案】[解析] “合并同类项”在解方程的过程中的作用体现在将方程化为ax=b(a≠0)的形式,然后运用等式的性质2求解.解:(1)合并同类项,得-5x=10.系数化为1,得x=-2.(2)合并同类项,得-2x=8.系数化为1,得x=-4.(3)合并同类项,得-y=5.系数化为1,得y=-5.(4)合并同类项,得-4x=12.系数化为1,得x=-3.20. 【答案】81321. 【答案】解:共得0.9mn元,单项式的系数是0.9,次数是2.22. 【答案】解:设计各种方案,计算各种方案的表面积,得出两种方案所用材料最少.方案一:以16×3的面相对连放三块构成底层,再如此总共放10层,整个表面积为2616平方厘米;方案二:以16×3的面相对连放五块构成底层,再如此总共放6层,整个表面积仍为2616平方厘米.23. 【答案】解:不正确.改正如下:原方程可变形为 10x +302-4x -105=-2.5. 去分母、去括号,得50x +150-8x +20=-25. 移项、合并同类项,得42x =-195.系数化为1,得x =-6514.24. 【答案】4352解:方程3y -a 4-5y -7a 6=1.张亮同学去分母时方程右边的1忘记乘12, 则原方程变为3(3y -a)-2(5y -7a)=1, 此时方程的解为y =10,代入得3(30-a)-2(50-7a)=1.去括号,得90-3a -100+14a =1.移项、合并同类项,得11a =11.解得a =1.将a =1代入方程3y -a 4-5y -7a 6=1,得3y -14-5y -76=1.去分母,得3(3y -1)-2(5y -7)=12. 去括号,得9y -3-10y +14=12.移项、合并同类项,得y =-1.即原方程的解为y =-1.。

人教版七年级第一学期数学期末复习及答案

人教版七年级第一学期数学期末复习及答案

七年级数学上册期末复习一、选择题1.计算15--,结果正确的是( ).A .6-B .4-C .2-D .1-2.下列概念表述正确的是( ).A .单项式ab 的系数是0,次数是2B .单项式3232a b -的系数是2-,次数是5C .22xy -是单项式D .5-是多项式2435a ab -+-的常数项3.若方程6322x a +=与方程()5147x x +=+的解相同,则a 的值是( )A .103B .310C .103-D .104.下列变形正确的是( )A .由()()31520x x ---=得27x =-B .由123x x +=-得213x x -=--C .由1123x -=,得321x -=D .由23x =得23x = 5.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:若输入的值为π,则10y 的值为( )A .2562551ππ+B .5125111ππ+C .102410231ππ+D .204820471ππ+ 6.下列说法正确的是( )A .多项式1x π+是二次二项式B .单项式a -的系数和次数都是1C .多项式3327462xy x y xy --+的次数是6D .单项式223a b π-的系数是23- 7.已知32m x y -与5n xy 的差是单项式,则代数式2m n -的值是( )A .2-B .3-C .5-D .7-8.整式mx+n 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程-mx -n=8的解为( )A .-1B .0C .1D .29.课外小组女同学原来占全组人数的13,加入4名女同学后,女同学就占全组的12,则课外小组原来的人数是( ) A .35 B .12 C .37 D .3810.观察下列图形,并阅读图形下面的相关文字,如图所示:两条直线相交,三条直线相交,四条直线相交,最多有一个交点,最多有三个交点;最多有6个交点,像这样,10条直线相交,最多交点的个数是( )A .40个B .45个C .50个D .55个二、填空题 11.当x =1,y =﹣1时,关于x 、y 的二次三项式21+m ax +(m +1)by ﹣3值为0,那么当x =﹣12,y =12时,式子a m x +2mby +132的值为_____. 12.已知有理数a,b 满足ab,0,a+b,0,7a+2b+1=,|b,a|,则()123a b a b ⎛⎫++- ⎪⎝⎭的值为_____, 13.若代数式(2x 2+ax ﹣y+6)﹣(2bx 2﹣3x+5y ﹣1)的值与字母x 所取的值无关,代数式13a 2﹣2b 2﹣(14a 3﹣3b 2)=_____14.某班学生到A 景点春游,队伍从学校出发,以每小时4km 的速度前进.走到1km 时,班长被派回学校取一件遗忘的东西,他以每小时5km 的速度回校,取了东西后又以同样的速度追赶队伍,结果在距景点1km 的地方追上了队伍,则学校到景点的路程为___km .15.如图,AM 、CM 平分,BAD 和,BCD ,若,B =34°,,D =42°,则,M =_____.三、解答题16.如图,数轴上有三个点A 、B 、C ,表示的数分别是4-、2-、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动______个单位.(2)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是_______个单位;(3)若在表示1-的点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步按此规律继续跳下去,那么跳第99次时,应跳_______步,落脚点表示的数是_______.(4)数轴上有个动点表示的数是x ,则|1||4||5|x x x ++-++的最小值是_______.17.计算:(1)2(3)(5)-+--- (2)11544⎛⎫-+÷-⨯ ⎪⎝⎭(3)153(36)26⎛⎫-+⨯- ⎪⎝⎭ (4)411125623⎛⎫---+⨯- ⎪⎝⎭ 18.我们规定,若关于x 的一元一次方程ax b =的解为x b a =-,则称该方程为“奇异方程”.例如:24=x 的解为242x ==-,则该方程24=x 是“奇异方程”.请根据上述规定解答下列问题:(1)判断方程58x =-________(回答“是”或“不是”)“奇异方程”;(2)若3a =,有符合要求的“奇异方程”吗?若有,求b 的值;若没有,请说明理由.(3)若关于x 的一元一次方程2x mn m =+和2x mn n -=+都是“奇异方程”,求代数式2212(11)43()()22m n mn m m mn n n ⎡⎤⎡⎤-++++--+-⎣⎦⎣⎦的值. 19.探索研究:(1)比较下列各式的大小(请用“>”或“<”或“=”连接),|2||3|-+_______|23|-+ ,1123-+-_______1123-- ,|6||3|+-_______|63|-,|0||8|+-_______|08|-(2)通过以上比较,请你分析、归纳出当a 、b 为有理数时,||||a b +与||a b +的大小关系是________________________________________(请直接写出结论)(3)根据(2)中得出的结论,当||2021|2021|x x +=-时,则x 的取值范围是________.(4)如果123412a a a a +++=,12342a a a a +++=,则12a a +=_______.20.“分类讨论”是一种重要数学思想方法,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的三个问题.例:三个有理数a ,b ,c 满足0abc >,求||||||a b c a b c++的值. 解:由题意得:a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.,当a ,b ,c 都是正数,即0a >,0b >,0c >时, 则:||||||1113a b c a b c a b c a b c++=++=++=; ,当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <, 则:||||||1(1)(1)1a b c a b c a b c a b c--++=++=+-+-=-; 综上所述:||||||a b c a b c ++的值为3或-1.请根据上面的解题思路解答下面的问题:(1)已知||3a =,1=b ,且a b <,求+a b 的值;(2)已知a ,b 是有理数,当0ab ≠时,求||||a b a b +的值; (3)已知a ,b ,c 是有理数,0a b c ++=,0abc <.求||||||b c a c a b a b c +++++的值. 21.已知,点O 为直线AB 上一点,90COD ∠=︒,OE 是AOD ∠的平分线.(1)如图1,若63COE ∠=︒,求BOD ∠的度数;(2)如图2,QF 是BOC ∠的平分线,求EOF ∠的度数;(3)如图3,在(2)的条件下,OP 是BOD ∠的一条三等分线,13DOP BOD ∠=∠,若AOC DOF EOF ∠+∠=∠,请直接写出FOP ∠的度数.(不用写过程)22.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠; 乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.23.如图,点A 、B 、C 在数轴上对应的数分别是12-、b 、c ,且b 、c 满足2(9)200b c -+-=,动点P 从点A 出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O、B两点之间为“变速区”,规则为从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速,从点B运动到点O期间速度变为原来的3倍,之后立刻恢复原速,设运动时间为t秒.(1)b=____,c=____,A、C两点间的距离为____个单位;(2),若动点P从A出发运动至点C时,求t的值;,当P、Q两点相遇时,求相遇点在数轴上所对应的数;(3)当t=___时,P、Q两点到点B的距离相等.【参考答案】1.B 2.D 3.A 4.B 5.C 6.C 7.C 8.A 9.B 10.B 11.512.0.13.43 414.1015.38°16.(1)3;(2)3,7;(3)197,100-;(4)9.17.(1)4;(2)-81;(3)-36;(4)-318.(1)不是;(2)有,92;(3)149-19.(1)>,=,>,=;(2)|a|+|b|≥|a+b|;(3)x≤0;(4)7或-7或5或-5.20.(1)2-或4-;(2)2±或0;(3)1-.21.(1)126︒;(2)45︒;(3)35︒22.(1)甲超市实付款352元,乙超市实付款360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.23.(1)9,20,32;(2),412t=;,相遇点对应的数为6;(3)当t=12或25时,点P、Q到点B的距离相等.。

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.下列四个有理数中,绝对值最小的数是()A.-5B.0C.4D.-92.温度由﹣13℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃3.数据202万用科学记数法表示为()A.2.02×105B.0.202×107C.20.2×105D.2.02×1064.已知||1(2)312m m x--+=是关于x 的一元一次方程,则m 的值为()A.1m =B.2m =C.2m =-D.2m =±5.下列方程中,与13x x -=-+的解相同的是()A.20x +=B.230x -=C.22x x-=D.20x -=6.陈老师做了一个周长为()24a b +的长方形教具,其中一边长为()a b -,则另一边长为A.3b B.5a b +C.2a D.35a b-7.如图,点A,O,B 在一条直线上,OE⊥AB 于点O,如果∠1与∠2互余,那么图中相等的角有()A.6对B.5对C.4对D.3对8.若代数式2243(251)ax x y x bx y +-+--+-的值与x 的取值无关,则a b +的值为A.6B.-6C.2D.-29.如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD=2,则线段AB 的长是()A.10B.15C.20D.2510.一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2022次落下时,落点处表示的数为()A.-2022B.2022C.-1011D.1011二、填空题11.若点A、B、C、D 在数轴上的位置如图所示,则-3的相反数所对应的点是_________.12.计算:11||32-=_________.13.点A、B 在数轴上,若数轴上点A 表示-1,且AB=2,则点B 表示的数是_______.14.某企业对应聘人员进行专业考试,试题由50道不定项选择题组成,评分标准规定:每道题全选对得4分,不选得0分,选错或正确选项不全倒扣2分.已知某人有4道题未选,得了172分,则这个人全选对了_________道题.15.如图,将边长为m 的正方形纸片沿虚线剪成两块正方形和两块长方形,若拿掉边长为n 的小正方形后,再把剩下的三块图形拼成一块长方形,则这块长方形周长为_________.16.有一组数:(1,1,0),(2,4,7),(3,9,26),(4,16,63),…,按照其中的规律,第n 组数为_________.17.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=_____.18.如图,将一副三角尺的直角顶点O 重合在一起.若∠COB 与∠DOA 的比是2:7,OP 平分∠DOA,则∠POC=_________度.三、解答题19.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+320.解方程:(1)2121136x x +--=(2)1(35)2(5)2x x x --=+.21.先化简,再求值:2222734(2)2(32)a ab b b ab a ab --+---,其中2a =-,2b =.22.某同学在黑板上正确解答了一道整式的计算题,但被另一位同学不慎擦掉了算式中的一部分,如图所示:22(475)351x x x x +-+=--+.(1)求被擦掉的多项式;(2)若12x =-,求被擦掉多项式的值.23.已知x,y 为有理数,现规定一种新运算“⊗”,满足2021x y xy ⊗=-.(1)求(25)(4)⊗⊗-的值;(2)记()P a b c =⊗-,Q a b a c =⊗-⊗,请猜想P 与Q 的数量关系,并说明理由.24.如图,已知A、B 两点在数轴上,点A 表示的数为a,点B 表示的数为b,且a、b 满足2++-=,点P以每秒4个单位长度的速度从点A向右运动.点Q以每秒3个单(20)|60|0a b位长度的速度从点O向右运动(点P、点Q同时出发).(1)分别求出点A、B在数轴上对应的数;(2)经过几秒时,点P、点Q分别到原点O的距离相等?(3)当点P运动到什么位置时,恰好使AP=2BQ?25.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.26.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOC=70°,∠COE=50°,求∠BOD的度数;(2)如果∠AOE=160°,求∠BOD的度数;(3)如果OM平分∠AOE,∠COD:∠BOC=2:3,∠COM=15°,求∠BOD的度数.参考答案1.B【分析】根据负数的绝对值为负数的相反数,正数的绝对值是其本身,即可求解.【详解】解:55-=,00=,44=,99-=,且9540>>>,所以绝对值最小的数是0.故选:B.【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义即可求解.2.B【分析】根据题意列出算式,计算即可出值.【详解】解:由题意得上升后的温度为:﹣13+8=﹣5℃,故选:B.【点睛】本题考查有理数的加法,熟练掌握运算法则是解题的关键.3.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:202万62020000 2.0210==⨯.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C【分析】根据一元一次方程的定义可得到一个关于m 的方程,即可求出m 的值.【详解】解:根据一元一次方程的定义,可得:||11m -=,且20m -≠,可解得2m =-,故选:C.【点睛】本题主要考查一元一次方程的定义,解题的关键是掌握注意x 的系数不等于0.5.D【分析】先求出13x x -=-+的解为2x =,然后再分别求出每个选项中方程的解,即可求解.【详解】解:13x x -=-+,移项合并同类项得:24=x ,解得:2x =,A、20x +=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;B、230x -=,解得:32x =,与13x x -=-+的解不相同,故本选项不符合题意;C、22x x -=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;D、20x -=,解得:2x =,与13x x -=-+的解相同,故本选项符合题意;故选:D【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.6.A【分析】根据长方形周长公式表示另一边长即可.【详解】解:由题意得,另一边长为()2432a b a b b +--=故选:A.【点睛】此题考查了代数式的问题,解题的关键是掌握长方形周长公式.7.B【分析】根据互余的性质得出相等的角即可得出答案.【详解】解:图中相等的角有1,2,,,COA BOD AOE BOE COD BOE COD AOE ∠=∠∠=∠∠=∠∠=∠∠=∠,共5对故选:B.【点睛】此题考查了找等角的问题,解题的关键是掌握互余的性质.8.D【分析】已知多项式合并后,根据结果与x 的取值无关,求出a 与b 的值,代入计算即可求出值.【详解】解:2243(251)ax x y x bx y +-+--+-2243251ax x y x bx y =+-+-+-+2(2)(4)64a xb x y =-++-+由结果与x 的取值无关,得到a﹣2=0,b+4=0,解得:a=2,b=-4,242a b +=-=-,故选:D.【点睛】此题考查了整式的值与字母无关问题,熟练掌握整式运算法则是解本题的关键.9.C【分析】设AC=2x,则BC=3x,利用线段中点的性质表示出CD,列出方程即可解决.【详解】解:设AC=2x,则BC=3x,∴AB=AC+BC=5x,∵点D 是AB 的中点,∴AD=12AB=2.5x,∴CD=AD −AC=2.5x −2x=0.5x,∵CD=2,∴0.5x=2,∴x=4,∴AB=5x=20,故选:C.【点睛】本题考查了两点间距离,根据题目的已知并结合图形分析是解题的关键.10.C【分析】根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,当它跳第偶数次落下时,落点处表示的数为2n -,所以当它跳第2022次落下时,落点处表示的数为202221011-÷=-.故选:C【点睛】本题主要考查了数字类规律题,数轴上两点间的距离,明确题意,准确得到规律是解题的关键.11.A【分析】先求出-3的相反数,再根据所得的结果在数轴上找到对应的点即可.【详解】解:∵-3的相反数是3∴-3的相反数3对应的点是A .故答案为:A【点睛】本题考查了相反数的定义,数轴上点所表示的数等知识,关键在于正确理解相反数的意义.12.16【分析】根据绝对值的性质可得1111||3223-=-,即可求解.【详解】解:11111||32236-=-=.故答案为:16【点睛】本题主要考查了绝对值的性质,有理数的加减运算,熟练掌握绝对值的性质,有理数运算法则是解题的关键.13.-3或1##1或-3【分析】分两种情况:当点B 在点A 的右边时,当点B 在点A 的左边时,即可求解.【详解】解:根据题意得:当点B 在点A 的右边时,点B 表示的数是()211+-=;当点B 在点A 的左边时,点B 表示的数是()123--=-;∴点B 表示的数是-3或1.故答案为:-3或1【点睛】本题主要考查了数轴上两点间的距离,利用分类讨论思想解答是解题的关键.14.44【分析】设这个人全选对了x 道题,那么做错了()504x --道题,根据得了172分,可列方程求解.【详解】解:设这个人全选对了x 道题,根据题意得,()42504172x x ---=,解得44x =.答:这个人全选对了44道题.故答案为:44.【点睛】本题考查一元一次方程的应用,关键设出全选对的题目数,表示出做错的题目数,以分数做为等量关系列方程求解.15.4m【分析】根据题意和矩形的性质列出代数式解答即可.【详解】解:新长方形的周长=2[(m+n)+(m﹣n)]=4m.【点睛】本题考查正方形、矩形等知识,解题的关键是理解题意,学会利用所学知识解决实际问题.16.(n ,2n ,31n -)【分析】根据题意可得第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现,第n 组数为(n ,2n ,31n -).故答案为:(n ,2n ,31n -)【点睛】本题主要考查了数字类的规律题,明确题意,准确得到规律是解题的关键.17.23【详解】∵x+5=7-2(x-2)∴x=2.把x=2代入6x+3k=14得,12+3k=14,∴k=23.18.20【分析】根据条件可知90AOB COD ∠=∠=︒,并且180COB DOA AOB COD ∠+∠=∠+∠=︒,再根据COB ∠与DOA ∠的比是2:7,可求DOA ∠,再根据角平分线的定义和角的和差关系即可求解.【详解】解:180COB DOA COB COA COB DOB AOB COD ∠+∠=∠+∠+∠+∠=∠+∠=︒ ,又COB ∠ 与DOA ∠的比是2:7,718014027DOA ∴∠=︒⨯=︒+,OP 平分DOA ∠,70DOP ∴∠=︒,20POC ∴∠=︒.故答案为:20.【点睛】本题考查了余角与补角,角平分线的定义,正确认识COB DOA ∠+∠AOB COD =∠+∠180=︒这一个关系是解题的关键,这是一个常用的关系,需熟记.19.(1)10;(2)﹣1;(3)0;(4)2.【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=32;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.222a b -,4-【分析】直接去括号进而合并同类项,再把已知数据代入得出答案.【详解】解:原式2222734264a ab b b ab a ab =--+--+,222a b =-,当2a =-,2b =时,原式222a b =-,22(2)22=--⨯,48=-,4=-.【点睛】此题主要考查了整式的加减——化简求值,解题的关键是正确去括号、合并同类项.22.(1)2724x x -+-(2)274-【分析】(1)设被擦掉的多项式为M,根据题意列出多项式并化简即可.(2)将12x =-代入求解即可.(1)解:设被擦掉的多项式为M,则()22351475M x x x x =--+--+22351475x x x x =--+-+-2724x x =-+-.(2)解:若12x =-,则2724M x x =-+-21172422⎛⎫⎛⎫=-⨯-+⨯-- ⎪ ⎪⎝⎭⎝⎭274=-.【点睛】此题考查了整式的加减运算及求值,解题的关键是掌握整式的加减运算及求值的方法、通过合并同类项将整式进行化简.23.(1)6023(2)2021P Q =-,理由见解析【分析】(1)根据新运算可得()()(25)(4)20114⊗-=⊗-⊗-,再次利用新运算,即可求解;(2)根据新运算可得()2021P a b c ab ac =⊗-=--,Q a b a c ab ac =⊗-⊗=-,即可求解.(1)解:()()()()2542520214⊗⊗-=⨯-⊗-)()()20114=-⊗-()()201142021=-⨯--6023=;(2)解:2021P Q =-,理由如下:∵()()20212021P a b c a b c ab ac =⊗-=--=--,()20212021Q a b a c ab ac ab ac =⊗-⊗=---=-,∴2021P Q =-.【点睛】本题主要考查了有理数的混合运算,整式的混合运算,理解新运算是解题的关键.24.(1)20-、60(2)207秒或20秒(3)28或220【分析】(1)根据绝对值和平方的非负性可得200a +=,600b -=,即可求解;(2)设经过x 秒时,点P、点Q 分别到原点O 的距离相等,分两种情况:当点P、Q 在点O 两侧时,当点P 与Q 重合时,即可求解;(3)设经过y 秒时,恰好使AP=2BQ.分两种情况:当点Q 在点B 的左侧时,当点Q 在点B 的右侧时,即可求解.(1)解:∵()220600a b ++-=(),且()2200a +≥(),600b -≥,∴200a +=,600b -=,∴20a =-,60b =,∴点A、B 在数轴上对应的数分别20-、60.(2)解:设经过x 秒时,点P、点Q 分别到原点O 的距离相等,当点P、Q 在点O 两侧时,依题意得:2043x x -=,解得:207x =;当点P 与Q 重合时,依题意得:4203x x -=,解得:20x =,∴经过207秒或20秒时,点P、Q 分别到原点O 的距离相等.(3)解:设经过y 秒时,恰好使AP=2BQ.当点Q 在点B 的左侧时,依题意得:()42603y y =-,解得:12y =,∴4122028⨯-=,当点Q 在点B 的右侧时,依题意得:()42360y y =-,解得60y =,∴46020220⨯-=,∴当点P 运动到28或220位置时,恰好使AP=2BQ.【点睛】本题主要考查了数轴上两点间的距离,动点问题,一元一次方程的应用,利用分类讨论和数形结合思想解答是解题的关键.25.(1)①如图所示,射线AC 即为所求,见解析;②如图所示,线段AB,BC,BD 即为所求,见解析;③如图所示,线段CF 即为所求,见解析;(2)根据两点之间,线段最短.【分析】(1)①连接AC 并延长即可;②连接AB,BC,BD 即可;③以点A 为圆心,BD 长为半径画弧交AC 于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC 即为所求;②如图所示,线段AB,BC,BD 即为所求;③如图所示,线段CF 即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.26.(1)60°(2)80°(3)75°【分析】(1)根据OB 平分∠AOC,OD 平分∠COE,可得35BOC ∠= ,25COD ∠= ,即可求解;(2)根据OB 平分∠AOC,OD 平分∠COE,可得∠COD=12∠COE ,∠BOC =12∠AOC,从而得到∠BOD==12(∠COE +∠AOC),即可求解;(3)设∠COD=2x,则∠BOC=3x,可得∠COE =2∠COD =4x,∠AOC=2∠BOC =6x,从而得到∠AOE=10x,进而得到∠EOM=12∠AOE=5x,再由∠COM=15°,可得到x=15°,即可求解.(1)解:∵OB 平分∠AOC,∠AOC=70°,∴1352BOC AOC ∠=∠= ,∵OD 平分∠COE,∠COE=50°,∴1252COD COE ∠=∠= ,∴∠BOD=∠BOC+∠COD=35°+25°=60°.(2)解:∵OB平分∠AOC,OD平分∠COE,∴∠COD=12∠COE,∠BOC=12∠AOC∴∠BOD=∠COD+∠BOC=12∠COE+12∠AOC=12(∠COE+∠AOC)=12∠AOE=80°.(3)解∵∠COD:∠BOC=2:3,∴设∠COD=2x,则∠BOC=3x,∵OB平分∠AOC,OD平分∠COE,∴∠COE=2∠COD=4x,∠AOC=2∠BOC=6x,∴∠AOE=10x,∵OM平分∠AOE,∴∠EOM=12∠AOE=5x,∵∠EOM-∠COE=∠COM=15°,∴5x-4x=15°,∴x=15°,∴∠BOD=∠COD+∠BOC=2x+3x=75°.。

人教版七年级上册数学期末考试试题及答案

人教版七年级上册数学期末考试试题及答案

人教版七年级上册数学期末考试试卷一、单选题1.12-的相反数是()A .2-B .2C .12-D .122.下列方程为一元一次方程的是()A .y +3=0B .x +2y =3C .x 2=2xD .12y y+=3.将3922亿用科学记数法表示为()A .8392210⨯B .93.92210⨯C .113.92210⨯D .123.92210⨯4.单项式xmy 3与4x 2yn 的和是单项式,则nm 的值是()A .3B .6C .8D .95.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A .两点之间,线段最短B .两点确定一条直线C .过一点,有无数条直线D .连接两点之间线段的长度叫做两点间的距离6.下列运算中,正确的是()A .-2-1=-1B .-2(x-3y )=-2x+3yC .3÷6×12=3÷3=1D .5x 2-2x 2=3x 27.某商品的标价为200元,8折销售仍赚60%,则商品进价为()元.A .140B .120C .160D .1008.一个角的补角是它的余角的三倍,则这个角为()A .45︒B .30°C .15︒D .60︒9.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是()A .B .C .D .10.已知方程216x y -+=,则整式3610x y --的值为A .5B .10C .12D .15二、填空题11.多项式3x 2y-7x 4y 2-xy 4的次数是______.12.计算77°53′26″+43°22′16″=_____.13.已知关于x 的方程(m+1)x |m |+2=0是一元一次方程,则m=______14.已知3a -4与-5互为相反数,则a 的值为______.15.|x-y|=y-x ,则x ___y .16.若2214x x -+=,则2247x x -+的值是______.17.如图,已知点C 为AB 上一点,AC =12cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点;则DE 的长为_____cm .三、解答题18.计算:(1)(+15)+(-30)-(+14)-(-25)(2)-42+3×(-2)2×(13-1)÷(-113)19.解方程:2(x+8)=3(x-1)20.如图,平面上有A 、B 、C 、D 四个点,根据下列语句画图.(1)画直线AB ,作射线AD ,画线段BC ;(2)连接DC ,并将线段DC 延长至E ,使DE =2DC .21.先化简,再求值:(3a2b﹣ab2)﹣2(ab2﹣3a2b),其中a=13,b=﹣3.22.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?x x<的正方形拼成的图形.23.如图是由边长分别为4和3的长方形与边长为()3(1)用含有x的代数式表示图中阴影部分的面积并化简;(2)当2x=时,求这个阴影部分的面积.24.为了美化环境,建设生态桂林,某社区需要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天能完成的绿化改造面积比乙队多200平方米,甲队与乙队合作一天能完成800平方米的绿化改造面积.(1)甲、乙两工程队每天各能完成多少平方米的绿化改造面积?(2)该社区需要进行绿化改造的区域共有12000平方米,甲队每天的施工费用为600元,乙队每天的施工费用为400元,比较以下三种方案:①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成.哪一种方案的施工费用最少?25.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.26.如图,点A,B,C在数轴上对应数为a,b,c.(1)化简|a﹣b|+|c﹣b|;(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.参考答案1.D【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D.【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.A 【分析】根据一元一次方程的定义,形如0ax b +=(0a ≠),含有一个未知数,且未知数的最高次数是一次的方程即为一元一次方程,逐项判断作答即可.【详解】A.y +3=0含有一个未知数,且未知数的最高次数是一次,是一元一次方程,故选项A 符合题意;B.x +2y =3含有两个未知数,不是一元一次方程,故选项B 与题意不符;C.x 2=2x 最高次数是二次,不是一元一次方程,故选项C 与题意不符;D.12y y+=不是整式方程,不是一元一次方程,故选项D 与题意不符.故选A .【点睛】本题主要考查了一元一次方程的定义,0ax b +=(0a ≠)的方程即为一元一次方程;含有一个未知数,且未知数的最高次数是一次,是判断是否是一元一次方程的依据.3.C 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:3922亿=392200000000=3.922×1011.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.D 【分析】同类项的定义:字母相同,并且相同字母的指数也相同的两个单项式叫同类项,据此求出m 、n ,代入求解即可.【详解】解:由两个单项式的和还是单项式可得xmy³与4x²yn 同类项∴m=2,n=3,∴nm=3²=9,故选:D .【点睛】本题考查代数式求值、同类项的定义、合并同类项,能得出两个单项式是同类项是解答的关键.5.B 【分析】依据直线基本事实两点确定一条直线来解答即可.【详解】在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据直线基本事实是两点确定一条直线.故选择:B .【点睛】本题考查了直线的性质,掌握直线的性质是解题的关键.6.D 【分析】计算出各选项中式子的值,即可判断哪个选项是正确的.【详解】A 、213--=-,故选项错误;B 、()2326x y x y --=-+,故选项错误;C 、11113632624÷⨯=⨯⨯=,故选项错误;D 、222523x x x -=,故选项正确.故选D .【点睛】本题考查有理数混合运算、合并同类项、去括号与添括号,解题的关键是明确它们各自的计算方法.7.D 【分析】设进价为x 元,根据售价=标价×打折数=进价×(1+利润率)列方程求解即可.【详解】解:设进价为x 元,则依题可得:200×0.8=(1+0.6)x ,解得:x=100,故选:D .【点睛】本题考查一元一次方程的应用,理解题意,熟知打折销售中的等量关系是解答的关键.8.A 【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列方程求出这个角的度数即可.【详解】设这个角是α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α),解得α=45°.故选:A .【点睛】本题考查了余角与补角,是基础题,熟记概念并列出方程是解题的关键.9.B 【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选:B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.10.A 【分析】根据题意求出x-2y ,利用添括号法则把原式变形,代入计算即可.【详解】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y)-10=3×5-10=5,故选A.【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.11.6次【分析】直接利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式3x2y-7x4y2-xy4次数最高的项为-7x4y2,次数是:6次.故答案为:6次.【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.12.121°15′42″【分析】把秒和秒相加,分和分相加,度和度相加,满60向上一位近1.【详解】解:77°53′26″+43°22′16″=(77°+43°)+(53′+22′)+(26″+16″)=120°+75′+42″=121°15′42″.故答案为121°15′42″.【点睛】本题考查了度分秒的加法,将度与度相加,分与分相加,秒与秒相加,满60向上一位近1.13.1【分析】直接利用一元一次方程的定义分析得出答案.【详解】∵关于x的方程(m+1)x|m|+2=0是一元一次方程,∴|m|=1,m+1≠0,解得:m=1.故答案为1.【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.14.3【分析】根据相反数的性质互为相反数的和为0列方程求解即可.【详解】解:由题意,得3a–4+(-5)=0,解得a=3,故答案为:3.【点睛】本题考查了一元一次方程,相反数的性质,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆,互为相反数的两个数的和为0是解题关键.15.≤【分析】利用绝对值的性质:|a|≥0,可以先去掉绝对值再进行判断大小.【详解】解:∵|x-y|=y-x ,∴y-x≥0,∴y≥x ,故答案为:≤.16.13【分析】根据已知等式得到223x x -=,再利用整体思想代入求值即可.【详解】∵2214x x -+=,∴223x x -=,∴2246x x -=,∴22476713x x -+=+=.故答案为:13.【点睛】本题考查了代数式求值,熟练掌握整体思想是解题的关键.17.4【分析】根据AC =12cm ,CB =23AC ,求出CB 的长度,从而得到AB 的长度,根据D 、E 分别为AC 、AB 的中点,分别求出AD ,AE ,最后根据DE =AE−AD 即可求出DE 的长.【详解】解:∵AC =12cm ,CB =23AC ,∴CB =12×23=8(cm ),∴AB =AC +CB =12+8=20(cm ),∵D 、E 分别为AC 、AB 的中点,∴AD =12AC =12×12=6(cm ),AE =12AB =12×20=10(cm ),∴DE =AE−AD =10−6=4(cm ),故答案为:4.【点睛】本题考查了两点间的距离,线段中点的定义,解题的关键是:根据D 、E 分别为AC 、AB 的中点,求出AD ,AE 的长.18.(1)-4;(2)-10.【分析】(1)根据有理数的加减运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】(1)解:原式=-15-14+25=-4(2)解:原式=-16+3×4×(-23)×(-34)=-16+12×12=-10.【点睛】此题主要考查有理数的混合运算,解题的关键是熟知其运算法则.19.(1)x=19;(2)x=38【分析】(1)根据去括号、移项、合并同类项、化系数为1的计算过程解答即可;(2)根据去分母、去括号、合并同类项、化系数为1的计算过程解答即可.【详解】(1)解:去括号,得:2x+16=3x-3,移项、合并同类项,得:-x=-19,化系数为1,得:x=19;(2)解:去分母,得:2(5x+1)-(2x-1)=6,去括号,得:10x+2-2x+1=6,移项、合并同类项,得:8x=3,化系数为1:x=3 8.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤是解答的关键.20.(1)见解析;(2)见解析【分析】(1)根据直线,射线,线段的定义画出图形.(2)在DC的延长线上截取CE=CD即可.【详解】解:(1)如图,直线AB,射线AD,线段BC即为所求作.(2)如图,线段DE即为所求作.【点睛】本题考查作图-复杂作图,直线,射线,线段的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.9a2b-3ab2,-12【分析】先去括号,再合并同类项,最后将a=13,b=﹣3代入化简后的结果,即可求解.【详解】解:()()2222323a b ab ab a b ---2222326a b ab ab a b =--+2293a b ab =-当a =13,b =﹣3时,原式()()22119333391233⎛⎫=⨯⨯--⨯⨯-=--=- ⎪⎝⎭.【点睛】本题主要考查了整式的加减混合运算,熟练掌握整式的加减混合运算法则是解题的关键.22.应该分配8人生产螺钉.【详解】分析:根据每人每天平均生产600个螺钉或800个螺母,以及一个螺钉与两个螺母配套,进而得出等式求出即可.本题解析:设生产螺钉x 人,螺母(20-x )人,()800206002x x -=,x=8,答:应该分配8人生产螺钉.点睛:本题考查了一元一次方程的应用,属于基础题,解答本题关键是得出生产的螺母数是螺钉的2倍这一等量关系.23.(1)21122x x +;(2)3【分析】(1)根据阴影部分的面积等于长方形和正方形的面积和减去三个三角形的面积可列代数式;(2)将2x =代入计算可求解阴影部分的面积.【详解】解:阴影部分的面积为:()()22111123443222x x x x +--⨯+-⨯-2221311126622222x x x x x x =+----+=+;(2)当2x =时,阴影部分的面积为1142322⨯+⨯=,答:阴影部分的面积为3.【点睛】本题主要考查列代数式,代数式求值,列代数式求解阴影部分的面积是解题的关键.24.(1)甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米;(2)选择方案①完成施工费用最少【分析】(1)设乙工程队每天能完成绿化的面积是x 平方米,根据甲队与乙队合作一天能完成800平方米的绿化改造面积,列出方程,求解即可;(2)利用施工费用=每天的施工费用×施工时间,即可求出选择各方案所需施工费用,再比较后即可得出结论.【详解】解:(1)设乙队每天能完成绿化的面积是x平方米,则甲队每天能完成绿化的面积是(x+200)米,依题意得:x+x+200=800解得:x=300,x+200=500∴甲队每天能完成绿化的面积是500平方米,乙队每天能完成绿化的面积是300平方米.(2)选择方案①甲队单独完成所需费用=1200060014400500⨯=(元);选择方案②乙队单独完成所需费用=1200040016000300⨯=(元);选择方案③甲、乙两队全程合作完成所需费用=()1200040060015000800+⨯=(元);∴选择方案①完成施工费用最少.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出方程;(2)利用总费用=每天支出的费用×工作时间,分别求出选择各方案所需费用.25.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.26.(1)c﹣a;(2)a=﹣10,c=5,b=﹣5;(3)点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【分析】(1)根据数轴可得c>b>a,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)由题意得运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,然后根据P,Q两点间的距离为6,列出方程计算即可求解.【详解】解:(1)由数轴及题意得:∵c>b>a,∴原式=b﹣a+c﹣b=c﹣a;(2)原点位置如图:∵BC=10,∴c﹣b=10,又∵b+c=0,∴c=5,b=﹣5,又∵BC=10,AC=3AB,∴BC=2AB=10,∴AB=5,∴b﹣a=5,∴a=﹣10;(3)∵AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:﹣10+t,Q:5﹣0.5t,若P,Q两点间的距离为6,则有()-+--=,t t1050.56解得t=6或t=14,均小于15秒,∴点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【点睛】本题主要考查数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用,熟练掌握数轴上的动点问题、两点距离、线段的和差关系及一元一次方程的应用是解题的关键.。

人教版七年级上册数学期末复习典型试题(按题型总结)

人教版七年级上册数学期末复习典型试题(按题型总结)

七年级上册数学期末复习典型试题一.填空题1、 一 0.5的绝对值是 ____ ,相反数是 _______ ,倒数是 _______ 。

2、 一个数的绝对值是 4,则这个数是 ______________ ,数轴上与原点的距离为 5的数是 _______ 。

3、 一 2x 与3x — 1互为相反数,则x。

4、 (1 )设a 、b 互为相反数,c 、d 互为倒数,则2013 ( a+b ) - cd 的值是 ___________________ 。

(2)已知a 、b 互为相反数,c 、d 互为倒数,且 m = 3,贝U 2a - 4m 2 + 2b -(cd) 2005=_______________ab5、已知ab HO.则」+ —=,a b6、(1)已知 a +3 +(b -1) =0 ,则 3a + b = ____________ 。

(2) 如果 |a —1| ^b +2)2 =0 则(a + b f 012的值是 ________________________卄2x(3) 若 x —2 +( y+5) =0 ,贝U y = _____________ 。

10、 将弯曲的河道改直,可以缩短航程,是因为:两点之间,__________ 最短11、 小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是_ _.12、 如图所示,/ AO 是平角,/ AOC=30 / BOD=60, OM 、ON 分别是/ AOC / BOD 的平分线,/ MON 等7、 (1) 2 单项式一注的系数是2,次数是3-2xy 2 1 的次数5(2)单项式-2二xy 3的系数是,次数是 (1) 如果3"2"+4k =是关于x 的一元一次方程,则4(2) 9、 (1) 1 一m = 0关于y 的一兀一次方程,则 m =2已知x=3是方程ax-6=a+10的解,贝U a= ____________如果3y 9-2m(2)若x =2是方程3x —4持一a 的解,则2011a120^的值是14题图于 __________________14. ________________________________________________________________________ 如图3,Z AOD=80, /15、计算51 ° 36/ = ° 25.14 ° =;下午1点24分,时针与分针所组成的_______ 度。

人教版七年级数学上册期末综合复习试题(有答案)

人教版七年级数学上册期末综合复习试题(有答案)

人教版七年级数学上册期末综合复习试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列算式中,运算结果为负数的是A. B. C. D.2. “把弯曲的公路改直,就能缩短路程”其中蕴含的数学道理是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.直线比曲线短3. 下列说法中正确的是()A.正数和负数统称有理数B.零是最小的有理数C.互为相反数的两数之和为零D.绝对值相等的两数相等4.下列说法中,不正确的个数是( )①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线②角的两边越长,角的度数越大③多项式是一次二项式④的系数是A. B. C. D.5. 下列计算正确的是()A. B.C. D.6. 如图所示,在数轴上点表示的数可能是()A. B. C. D.7. 用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A. B. C. D.8. 下列对于,叙述正确的是( )A.读作的次幂B.底数是,指数是C.表示个相乘的积的相反数D.表示个相乘的积9. 已知长方形的长为,宽比长少,则这个长方形的周长是()A. B. C. D.10. 如图,小于平角的角共有()A.个B.个C.个D.个二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 下列式子中的等式有________,一元一次方程有________.(填序号)①;②;③;④;⑤;⑥;⑦;⑧.12. 如图,点、、在一条直线上,,是的平分线,则________度.13. 若,,则________(填“”或“”).14. 若与互为相反数,则的值是________.15. 已知与互补,若,则的度数是________.16. 的倒数是________;相反数是________;的绝对值是________.17. 一件工作,甲单独做小时完成,乙单独做小时完成.现在由甲先单独做小时,剩下的由甲、乙合作.还须几小时完成?若设剩下的部分需要小时完成,则可列方程为________.18. 一件夹克衫先按成本价提高标价,再将标价打折出售,结果获利元,则这件夹克衫的成本价为________元.19. 在学校秋季运动会中,小明的跳远比赛跳出了米,若小明的跳远成绩记做米,那么小东跳出了米,记作________米.20. 在数轴上与数相距个单位长度的点表示的数为________.绝对值小于的所有整数是________.所有绝对值不大于的负整数的乘积是________.三、解答题(本题共计6 小题,共计60分,)21. 计算(1)(2)22. 如图,利用尺规,在的边上方作=,在射线上截取=,连接,并证明:(尺规作图要求保留作图痕迹,不写作法)23. 一个边长为厘米的正方体,它是由个边长为厘米的小正方体组成的,为上底面的中心,如果挖去的阴影部分为四棱锥,剩下的部分还包括多少个完整的棱长是厘米的小正方体?24. 将下列平面图形绕直线旋转一周,所得的几何体分别是什么?25. 一名学生从小学一年级到大学本科毕业,一般要读年书,如果一年在校就读时间为天,每天个小时,用科学记数法表示在校就读的小时数.26. 某条工作流水线上有四个工作台、、、,以工作台为起点,以工作台的右边为正,已知台在台的右边米处,在台的右边米处,在台的右边米处.如果有一个工人先从台向左走了米,然后又向右走米.求:(1)这个工人现在的位置距台有多少米?是在台的左边还是右边?(2)这个工人的位置离台有多少米?(3)这个工人的位置离台有多远?在台右边多少米处?(4)这个工人的位置离台有多远?参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:,,,,,,,.故选.2.【答案】C【解答】解:“把弯曲的公路改直,就能缩短路程”其中蕴含的数学道理是两点之间线段最短,故选:.3.【答案】C【解答】解:、整数和分数统称有理数,而有理数包括正有理数,和负有理数,故本选项错误;、负数都小于,没有最小的有理数,故本选项错误;、互为相反数的两数之和为零,故本选项正确;、绝对值相等的两数相等或者互为相反数,故本选项错误.故选.4.【答案】C【解答】解:①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线,正确;②叫的度数与角的两边的长度没有关系,故错误;③多项式是二次一项式,故错误;④的系数是,故错误.故选.5.【答案】D【解答】解:、合并同类项系数相加字母及指数不变,故错误;、合并同类项系数相加字母及指数不变,故错误;、合并同类项系数相加字母及指数不变,故错误;、合并同类项系数相加字母及指数不变,故正确;故选:.6.【答案】C【解答】在数轴上点表示的数可能是,7.【答案】B【解答】解:以为圆心,为半径画交于,连结,在上取,以为圆心,为半径画弧,再以为圆心,为半径画弧交前面所画弧于,连结,,即为所求之角.根据上述作图方法,可知在与中,,,.故选.8.【答案】C【解答】解:,读作:负的的次幂,∴故不正确;,的底数是,指数是,∴故不正确;,表示个相乘的积的相反数,∴故正确;,表示个相乘的积的相反数,∴故不正确.故选.9.【答案】C【解答】∵长方形的长为,宽比长少,∴长方形的宽为=,∴这个长方形的周长是:==;10.【答案】B【解答】解:小于平角的角有,,,,,,,,,共个.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】①③④⑤⑦⑧,⑤⑧【解答】解:①③④⑤⑦⑧是等式;②是代数式;⑥是不等式;⑤由原方程,得,符合一元一次方程的定义;⑧由原方程,得,符合一元一次方程的定义;∴⑤⑧是一元一次方程.故答案是:①③④⑤⑦⑧;⑤⑧.12.【答案】【解答】解:∵与是邻补角,∴,∵,∴,∵平分,∴.故答案为:.13.【答案】【解答】解:,,∵,∴.故答案为:.14.【答案】【解答】解:∵与互为相反数,∴,解得.故答案为:.15.【答案】【解答】解:∵与互补,∴.∵,∴.故答案为:.16.【答案】,,【解答】∵,=.∴的倒数是;∵==,∴相反数是;∵=.的绝对值是.17.【答案】【解答】解:设剩下的部分需要小时完成,由题意得,.故答案为:.18.【答案】【解答】解:设这件夹克衫的成本价为元,由题意,得,解得:.则这件夹克衫的成本价为元.故答案为:.19.【答案】【解答】解:小明的跳远比赛跳出了米,若小明的跳远成绩记做米,那么小东跳出了米,记作米,故答案为:.20.【答案】,,【解答】解:∵,,∴数轴上与数相距个单位长度的点表示的数为、.∵绝对值小于的所有整数的绝对值是、或,∴绝对值小于的所有整数是:、、.∵所有绝对值不大于的负整数有、、、,∴所有绝对值不大于的负整数的乘积是:.故答案为:、;、、;.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)原式;(2)原式.【解答】解:(1)原式;(2)原式.22.【答案】图象如图所示,∵=,∴,∵=,=,∴,∴=,∴.【解答】图象如图所示,∵=,∴,∵=,=,∴,∴=,∴.23.【答案】最后剩下的立体图形中包含个完整的边长是厘米的小正方体.【解答】解:根据题干分析可得:剩下的立体图形是底面为正方形的正四棱锥,如图,从正侧面看,共有层,从下数第一层完整的正方体个数为:(个),第二层也是(个),三层个,四层个,第五层没有完整的正方体;所以(个);24.【答案】解:图是两个同底得圆锥;图是圆台的下面去掉了一个圆锥;图圆柱的上面加了一个圆锥.【解答】解:图是两个同底得圆锥;图是圆台的下面去掉了一个圆锥;图圆柱的上面加了一个圆锥.25.【答案】解:,将用科学计数法表示为:.【解答】解:,将用科学计数法表示为:.26.【答案】解:(1),所以,距台有米,是在台的右边;(2)这个工人的位置离台有米;(3)这个工人的位置离台米,在台右边米处;(4)这个工人的位置离台有米.【解答】解:(1),所以,距台有米,是在台的右边;(2)这个工人的位置离台有米;(3)这个工人的位置离台米,在台右边米处;(4)这个工人的位置离台有米.。

人教版七年级数学上期末复习易错题典型题整理集训试题提优拔尖

人教版七年级数学上期末复习易错题典型题整理集训试题提优拔尖

0D C B A 期末复习易错题典型题整理姓名一、选择题1.8708900精确到万位是( )A .870万B .8.70×106C .871×104D .8.71×1062.已知2(1)3(1)4(1)x y x y y x y x ++--+=---+-,则x y +等于( )A .65-B .65C .56-D .563.a 、b 两数的平方差除以a 与b 的差的平方,用代数式表示是 ( )A.()222b a b a -- B.22b a b a -- C.()222b a b a -- D.222b a b a -- 4.当x =-3时,多项式ax 5+bx 3+cx -5的值是7,那么当x =3时,它的值是 ( )A .-3B .-7C .7D .-175.按图示的程序计算,若开始输入的x 为正整数,最后输出的结果为40,则满足条件的x 的不同值最多有( )A . 2个B . 3个C . 4个D . 5个a bab+6.若=0,则下列结论中成立的是 ( )A .a b 、是一对不等于0的互为相反数B .a b 、互为倒数C .0a =或0b =D .0a =且0b =7.若一个数的相反数为非负数,则这个数是( )A .正数 B.负数 C.正数或0 D.负数或08.甲、乙两名同学从学校到县城,甲的速度是4千米/小时,乙的速度是6千米/小时,甲先出发1小时,结果乙比甲早到1小时,则学校与县城间的路程是( )A.24千米B.12千米C.10千米D.8千米9.有两根同样长的蜡烛,粗烛可燃烧4小时,细烛可燃烧3小时。

一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现粗烛的长度是细烛的2倍,则停电时间为( )A.2小时B.2小时20分C.2小时24分D.2小时40分10.在同一平面内,两条不重合直线的位置关系可能是( )A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交11.数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( ) A.a c b d +<+ B.a c b d +=+ C.a c b d +>+ D.不确定12.一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( )A 、高12.8%B 、低12.8%C 、高40%D 、高28%二、填空题13.将数轴对折,是表示—3和1的两个点重合,若此时表示—5的点与另一个表示=x x 的点也重合,则 .14.比—4大3的数是 ,比—4大—6的数是 ,比—4的相反数大—4的数是 .15.算式—8—3+1—7按“和”的意义读作 ,按“运算”的意义读作 .16.现有一个不成立的等式“62—60=4”,请移动其中一个数字,使得等式成立,则移动后成立的等式是 .17.甲乙丙丁四个小朋友合买了一个60元的电动玩具,甲付的钱数是其他小朋友付的总钱数的一半,乙付的钱数是其他小朋友付的总钱数的31,丙付的钱数是其他小朋友付的总钱数的,41则丁付了 元.18.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10,两种都会的有7人,设会弹古筝的有m 人,则该班同学共有 人(用含m 的式子表示)19.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次的自己顺序的倒数加1,第1位同学报(111+),第2位同学报(121+),第3位同学报(131+)……这样得到的20个数的积为 . 20.如果两个角的两条边分别互相平行其中一个角45°,则另一个角等于 °. 21.在等号右边的括号内填上适当的项.(1)a b c d a ++-=+( ); (2)a b c d a -+-=-( );(3)a b c d a b ---=-+( ); (4)a b c d a b +++=+-( ).22.如图,边长为a 和3的两个正方形在一起,则阴影部分面积为 . (结果用含有a 的式子表示,并化成最简形式)三、解答题 23.已知0)21(32=-+-b a ,求代数式22222ab b a +-⎪⎭⎫⎝⎛的值.24.甲、乙两工人同时接受一批生产任务,开始工作时,甲先花去212小时改装机器,提高工作效率,因此前4小时结束时,甲比乙少做400个零件,继续工作4小时后,甲反比乙多做4200个零件,问这一天甲、乙各做了多少个零件?25.观察下列各式:(1)-a+b=-(a-b) ; (2) 2-3x=-(3x-2); (3) 5x+30=5(x+6); -x-6=-(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知的值求22221,21,5b b a b b a +++--=-=+.26.世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母A 、B 、C 、D 、E 的五个大小相同的正方形是展厅,剩余的是四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米. 设展厅的正方形边长为x 米:(1)用含x 米的代数式表示核心筒的正方形边长为 米;(2)求该模型的每个休息厅的图形周长(用含x 的式子表示);(3)若每个展厅的正方形周长比每个休息厅的图形周长少36米,求x 的值.27.大家知道a 的几何意义是:数轴上表示数a 的点到原点之间的距离.如1-a 的几何意义为:表示数轴上表示数a 与数1两点之间的距离.(1)试问 :5+a 的几何意义为:数轴上表示数a 与数 两点之间的距离;(2)根据绝对值的几何意义解决以下问题:设a 、b 、c 为整数,且|a ﹣b |+|c ﹣b |=1,求|c ﹣a |+|a ﹣b |+|b ﹣c |的值.28.一列客车的速度每小时60千米,一列货车的速度是每小时45千米,货车比客车长135米,如果两车在平行轨道上同向行驶,客车从后面赶上货车,它们交叉时间是1分30秒,求各车长度,如果两车在平行的轨道上相向行驶,它们交叉时间要多少秒?29.晚饭后,小明准备出去散步,出去时看了一下表,时间是6点多,时针与分针成90°角.散步回家后,小明又看了一下表,还不到7点,而时针与分针又恰好成90°角,问小明出去了多长时间?30.已知数轴上B A 、两点对应数分别为P ,和42 为数轴上一动点,对应数为x .(1)若的值;的三等分点,直接写出为线段x AB P (2)数轴上是否存在点值;?若存在,求出点距离和为点、点到使x B A P P 10,若不存在,请说明理由。

最新人教版七年级数学上册知识点归纳总结及典型试题汇总-七上数学重点题型

最新人教版七年级数学上册知识点归纳总结及典型试题汇总-七上数学重点题型

人教版七年级数学上册期末总复习(学)第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,和统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π(是不是)有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0⇔a 是非负数; a ≤0 ⇔ a 是负数或0⇔a 是非正数.2.数轴:数轴是规定了(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为.(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它,0的绝对值是,负数的绝对值等于;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

人教版七年级数学上册期末考试题及答案【完整版】

人教版七年级数学上册期末考试题及答案【完整版】

人教版七年级数学上册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x yx y-=-⎧⎨+=⎩(2)4(1)3(2)833634x yx y--+=⎧⎪++⎨=⎪⎩2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-405、40°6、2或-8三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=⎩;(2)62xy=⎧⎨=⎩2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、略4、略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

人教版七年级数学上册期末复习测试卷(含答案)

人教版七年级数学上册期末复习测试卷(含答案)

人教版七年级数学上册期末复习测试卷一、 填空题:(每小题3分,共30分)1. 有7个面的棱柱有________个顶点,有__________条棱.2. 若0)8(52=++-y x ,则x =_________,y =__________.3. 在数轴上与-2所对应的点相距3个单位长度的点表示的数是_____________.4. 已知a 与-4互为相反数c 与d 互为倒数互为倒数,m 的绝对值为6,则cda m 2421--=____________. 5. 代数式7322b a π-系数为____________.6. 如图1,∠1=∠2,∠3=∠4,∠BOD =65°,则∠AOE =__________.7. 关于x 的一元一次方程05327=+-k xk的解是______________.8. 正方体骰子上都有1~6个数字,掷两次骰子,朝上的数字之和等于11的可能性是_________.9. 加工一圆柱形机器零件,图纸上注明了它的直径是ϕ02.001.0125+-,125ϕ表示直径是125毫米,+0.02与-0.01表示合格产品的误差,那么合格产品直径的取值范围是_____________________. 10. 研究下列算式,你会发现什么规律?1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 …… 请将你找出的规律用公式表示出来:_______________________________. 二、选择题:(每小题3分,共30分)11. 用小立方体搭成的几何体的一个视图为 ,这一定是( ) A. 左视图B. 主视图C. 俯视图D. 不是俯视图12. 下列语句中,正确的是( )A. 一个数的相反数一定是负数B. 一个数的绝对值一定不是负数 2)1O ABCDE 图113. 甲从点A 出发向北偏东45°走到点B ,乙从点A 出发向西偏北30°走到点C ,则∠BAC =( )A. 15°B. 75°C. 105°D. 135°14. 解方程23.02.05.005.022.004.0=--+xx 时,下列变形正确的是( )A. 2003255224=--+x xB. 232.05.05224=--+xx C.23255224=--+xxD.203255224=--+xx 15. 有理数a 、b 在数轴上对应的位置如图2所示,下列四个式子是的数是正数的是( )A. b a +B. b a -C. abD. 33b a16. 某产品降价后的价格为a 元,比原来降低了20%,则原价为( )A.%201+a元 B. a %)201(+元 C. a %)201(-元D.%201-a元17. 下列说法正确的是( )A. 一条直线的平行线只有一条B. 一条直线的垂线只有一条C. 两条互相垂直的线段不一定相交D. 与线段不相交的直线一定与线段平行 18. 一批产品的合格率为95%,从中任意抽取1件是不合格产品的可能性为( )A.2019 B.201 C.51 D.21 19. 将-369 000用科学记数法应表示为( )A. -369B. 5107.3⨯-C. 3.69×510D. -3.69×510 20. 三个连续整数的和为21,则它们的积是( )A. 336B. 326C. 346D. 316三、解答题:(满分60分)21. (10分)计算下列各题:(每小题5分,共10分)(1))83()321()43(411-+----(2))61()]416(4.0)25.0(311[-÷-⨯+-÷图222. 解下列各方程:(每小题5分,共10分)(1)x x 5.12)73(72-=+(2)52221+-=--y y y23. (8分)如图3,直线AB 与CD 相交于O 点,OF ⊥CD ,∠BOF =∠DOE ,你能猜出OE 与AB的位置关系吗?并说明理由.24. (8分)出售一种产品,数量x 与售价y 之间的关系如下表(表中售价栏中的0.5是包装袋的价钱)(1)写出用数量x 表示售价y 的公式;(2)计算6.5千克该货的售价.25. (8分)我校七年级学生为保护我国珍稀大熊猫进行了捐款,(1)班捐款为七年级总捐款数的31,(2)班捐款数为(1)班(3)班数的和的一半,(3)班捐了380元,求七年级总捐款数. ABCDEO F图326. (8分)请你联系生活实际,根据方程1151210=++x x 编写一道应用题,并补全解题过程.27. (8分)小李通过对某地区2018年至2020年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图(如图4)和快餐公司盒饭销量的平均数情况条形图(如图5),利用图4、图5共同提供的信息:解答下列问题:(1)2019年该地区销售盒饭共__________万盒;(2)该地区盒饭销售量最大的年份是___________年,这一年的年销售量是____________万盒; (3)这三年中该地区每年平均销售盒饭答 案年份年份图4图51. 10,152. 5,-83. -5或14. ±35. 四,单,73-6. 130°7. -58.181 9. 124.99≤d ≤125.0210. 2)1()2(+=+n n n二、选择题:(每小题3分,共30分)一、解答题:(满分60分) 21. 计算:(每小题5分,共10分)(1)2473;(2)-17. 22. 解方程:(每小题5分,共10分)(1)x =0;(2)711=y . 23. (8分)(1)5.03+=x y ;(2)y =20. 24. (8分)1 140. 25. (8分)略.26. (8分)(1)118;(2)2000;(3)96.1、三人行,必有我师。

人教版七年级数学上册期末考试卷及答案【完整版】

人教版七年级数学上册期末考试卷及答案【完整版】

人教版七年级数学上册期末考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组21 2319x yx y+=⎧⎨-=-⎩2.已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、C7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、①③④⑤.6、2或-8三、解答题(本大题共6小题,共72分)1、25 xy=-⎧⎨=⎩2、m=4,n=﹣1.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1)详略;(2)70°.5、(1)40;(2)72;(3)280.6、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学期末复习典型试题(按题型总结)一.填空题1、-0.5的绝对值是 ,相反数是 ,倒数是 。

2、一个数的绝对值是4,则这个数是 ,数轴上与原点的距离为5的数是 。

3、—2x 与3x —1互为相反数,则=x 。

4、(1)设b a 、互为相反数,d c 、互为倒数,则2013(b a +)-cd 的值是_____________。

(2)已知a 、b 互为相反数,c 、d 互为倒数,且3=m ,则20052)(242cd b m a -+-=_________。

5、已知bbaa ab +≠,则0=___________。

6、(1)已知0)1(32=-++b a ,则=+b a 3 。

(2)如果2|1|(2)0a b -++=,则()2012b a +的值是______________.。

(3)若()0522=++-y x ,则y x= 。

7、(1)单项式 -22xy π的系数是 ,次数是 ;多项式 125323+--xy y x 的次数 。

(2)单项式32xy π-的系数是___________,次数是___________. 8、(1)如果123304kx k 是关于x 的一元一次方程,则k____。

(2)如果0m 21y32m-9=+关于y 的一元一次方程,则m = 。

9、(1)已知x=3是方程ax-6=a+10的解,则a=_____________。

(2)若x =2是方程a x x -=-243的解,则201120111aa +的值是 。

10、将弯曲的河道改直,可以缩短航程,是因为:两点之间, 最短11、小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是 ____.12、如图所示, ∠AOB 是平角, ∠AOC=300, ∠BOD=600, OM 、ON 分别是∠AOC、∠BOD 的平分线, ∠MON 等于_________________. 13、如图,图中共有 条线段,共有 个三角形。

14. 如图3,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为______,∠COD 的度数为________. 15、计算51°36ˊ=____°25.14°= ___° ____′____″;下午1点24分,时针与分针所组成的____度。

二、选择题A FE D CB1912题图 13题图 14题图1、 温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为( )A. 81310⨯B. 81.310⨯C. 91.310⨯D. 91.32.设x 是有理数,那么下列各式中一定表示正数的是( )。

A 、2008xB 、x+2008C 、|2008x |D 、|x| + 20083、绝对值大于3且小于5的所有整数的和是( )A. 7 B. -7 C. 0 D. 54、(1)如果p m y x 2与qn y x 3是同类项,则( )A. m =q ,n =pB. mn =pqC. m +n =p +qD. m =n ,p =q (2)若832253y xxy n m--与的和是单项式,则m 、n 的值分别是( )A .m =2,n =2B .m =4,n =1C .m =4,n =2D .m =2,n =3 5、下面合并同类项正确的是( )(A )3x +2x 2=5x 3 (B )2a 2b -a 2b =1 (C )-ab -ab =0 (D )-y 2x +x y 2=0 6、(1)已知代数式x +2y 的值是3,则代数式2x +4y +1的值是( ) A. 1 B.4 C.7 D.不能确定 (2)已知232=+x x ,则多项式2394x x +-的值是( )。

A .0 B.2 C.4 D.6 7、 将方程421312+-=-x x 去分母,得( ) A.)2(31)12(4+-=-x x B. )2(12)12(4+-=-x x C.)2(36)12(+-=-x x D. )2(312)12(4+-=-x x8、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A .17124110=--+x x B.17124110=--+x x C.10710241010=--+x x D.1710241010=--+x x 9、(1)如图是一个简单的数值运算程序,当输入的x 的值为-1时,则输出的值为( )A .-5B .-1C .1D .5(2)按照下图所示的操作步骤,若输入x 的值为-2,则给出的值为 .(3)右上图是一数值转换机,若输入的x 为-5,则输出的结果为(4)如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是 .10 )(A) (B ) (C ) (D )11、如左图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是 ( )输入输出×4-2>10是否输 出×(-3) 输入x -2 输入x 平方 乘以3 输出x减去512、沿圆柱体上面直径截去一部分的物体如图所示,它的俯视图是( )13、 A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是 ( ) A. 2 B. 2或10 C. 2.5 D. 2或2.514、(1)元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )(A )1600元 (B )1800元 (C )2000元 (D )2100元 (2)商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为( )。

A. 330元 B. 210元 C. 180元 D.150元(3)一件商品按成本价提高20%后标价,又以9折销售,售价为270元。

设这件商品的成本价为x 元,则可列方程:_______________.15、某种产品,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。

A .80元 B .85元 C .90元 D .95元16、文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,第一台盈利20%,另—台亏本20%, 则本次出售中,商场 ( )A.不赚不赔 B .赚160元 C .赚80先 D. 赔80元17、某校七年级学生总人数为500,其男女生所占比例如图17所示,则该校七年级男生人数为( )A 、48B 、52C 、240D 、2618、如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a +B .2(315)cm a + C .2(69)cm a + D .2(615)cm a +19、火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a 、b 、c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A .c b a 23++B .c b a 642++C .c b a 4104++D .c b a 866++男生52%女生48%图3图17cab第19题图三 图形题:1、用小立方块搭一个几何体,它的主视图与俯视图如下图所示,则它最少需 个立方块 ,最多需 个立方块主视图 俯视图 2、(本题4分) 如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:3、如图,这是一个由7个小立方体搭成的几何体,请你画出它的三视图4、(5分) 按要求画出图形并填空:⑴点C 在直线AB 上,点P 在直线AB 外; ⑵过点P 画射线PD,且与直线AB 交于点D ; ⑶P 、C 两点间的距离是线段 的长度。

5、画四边形ABCD ,在四边形内找一点O ,使得线段AO 、BO 、CO 、DO 的和最小。

(画出即可,不写作法)6、如图已知点C 为AB 上一点,AC =12cm, CB =32AC ,D 、E 分别为AC 、AB 的中点求DE 的长。

7、已知线段AB=6cm ,点C 在线段AB 上,且CA=4cm ,O 是AB 的中点,则线段OC 的长度是多少?四.有理数的计算:①)9()11(3---+ ②1108(2)()2--÷-⨯-2113第20题图B C D E③-22-(-2)2+(-3)2×(-32)-42÷|-4| (4五.解方程:①6)5(34=--x x ②5(x+8)-5=6(2x -7)③142312-+=-x x ④335252--=--x x x六.先化简,再求值:(1)y xy x y x xy y x 22)(2)(22222----+的值,其中2,2=-=y x (2))3123()31(221y x y x x +-+--,其中x =-1,y =2 ;(3)已知多项式(2mx 2+5x 2+3x +1)―(5x 2―4y 2+3x)化简后不含x 2项 求多项式2m 3―[3m 3―(4m―5)+m]的值.七.应用题:1、我校初一所有学生参加2011年“元旦联欢晚会”,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,则初一年级共有多少名学生?2、星星果汁店中的A种果汁比B种果汁贵1元,小彬和同学要了3 杯B种果汁、2杯A种果汁,一共花了16元。

A种果汁、B种果汁的单价分别是多少元?3、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?4、一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?5、“春节期间”,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?6(单位:元)星期一二三四五每股涨跌+4 +4.5 -1 -2.5 -6(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰的交易税,如果小红爸爸在星期五收盘时将全部股票卖出,你对他的收益情况怎样评价?7、某地电话拨号上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.05元/分;第二种是包月制,69元/月(限一部个人住宅电话上网)。

相关文档
最新文档