三门峡市2019年中考数学试题及答案
河南省三门峡市2019-2020学年中考数学教学质量调研试卷含解析
河南省三门峡市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.抛物线223y x +=(﹣)的顶点坐标是( ) A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)2.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( ) A .221x = B.1(1)212x x -= C .21212x = D .(1)21x x -= 3.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-„ B .116a 2-<<-C .1162a -<-„ D .1162a --剟4.如图,将边长为2cm 的正方形OABC 放在平面直角坐标系中,O 是原点,点A 的横坐标为1,则点C 的坐标为( )A .(3,-1)B .(2,﹣1)C .(1,-3)D .(﹣1,3)5.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A .B .C .D .6.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >m x的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <-7.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >1;②b+c+1=1;③3b+c+6=1;④当1<x <3时,x 2+(b ﹣1)x+c <1. 其中正确的个数为A .1B .2C .3D .48.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( ) A .中位数不相等,方差不相等 B .平均数相等,方差不相等 C .中位数不相等,平均数相等 D .平均数不相等,方差相等9.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC=AB B .∠C=12∠BOD C .∠C=∠B D .∠A=∠B0D10.在同一直角坐标系中,函数y=kx-k 与ky x=(k≠0)的图象大致是 ( )A.B.C.D.11.tan60°的值是( )A.3B.32C.33D.1212.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.直线y=2x+1经过点(0,a),则a=________.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_____个.15.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.16.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.17.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=16x(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.18.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.20.(6分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.(1)求证:PC∥BD;(2)若⊙O的半径为2,∠ABP=60°,求CP的长;(3)随着点P的运动,PA PBPC的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.21.(6分)在“双十二”期间,,A B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)22.(8分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市 5 10 15 20乙超市 2 3 20 25(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?23.(8分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元) 星期一二 三 四 五 每股涨跌(元) +2 ﹣1.4+0.9﹣1.8+0.5根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?24.(10分)已知:如图,E ,F 是▱ABCD 的对角线AC 上的两点,BE ∥DF. 求证:AF =CE .25.(10分)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC DF AE ⊥=,,垂足为F.(1)求证:AF BE =;(2)如果21BE EC :=:,求CDF ∠的余切值. 26.(12分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?27.(12分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PA 、PB 、AB 、OP ,已知PB是⊙O的切线.(1)求证:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半径为32,求BC的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.2.B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)21 2x x-=,故选B.考点:由实际问题抽象出一元二次方程.3.A【解析】【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-… 故选:A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键. 4.A 【解析】 【分析】作AD ⊥y 轴于D ,作CE ⊥y 轴于E ,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO ,∠1+∠3=90°,证出∠3=∠1,由AAS 证明△OCE ≌△AOD ,得到OE=AD=1,CE=OD=3,即可得出结果. 【详解】解:作AD ⊥y 轴于D ,作CE ⊥y 轴于E ,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠1=90°. ∵AO=1,AD=1,∴22213-=,∴点A 的坐标为(13,∴AD=1,3.∵四边形OABC 是正方形,∴∠AOC=90°,OC=AO ,∴∠1+∠3=90°,∴∠3=∠1.在△OCE 和△AOD 中,∵32OEC ADOOC AO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△AOD (AAS ),∴OE=AD=1,,∴点C1). 故选A . 【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键. 5.C 【解析】 分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加; ③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大; 结合图象可得C 选项符合题意.故选C . 6.B 【解析】 【分析】根据函数的图象和交点坐标即可求得结果. 【详解】解:不等式kx+b >mx的解集为:-6<x <0或x >2, 故选B . 【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用. 7.B 【解析】分析:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <1;故①错误。
2019年河南省中考数学试卷(含答案与解析)
数学试卷 第1页(共36页) 数学试卷 第2页(共36页)绝密★启用前河南省2019年普通高中招生考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.12-的绝对值是( )A .12-B .12C .2D .2-2.成人每天维生素D 的摄入量约为0.000 004 6克.数据“0.000 004 6”用科学记数法表示为( ) A .74610-⨯B .74.610-⨯C .64.610-⨯D .50.4610-⨯ 3.如图,AB CD ∥,75B ∠=,27E ∠=,则D ∠的度数为( ) A .45 B .48 C .50 D .584.下列计算正确的是( ) A .236a a a +=B .22(3)6a a -=C .222()x y x y -=-D.=5.如图1是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图2.关于平移前后几何体的三视图,下列说法正确的是( ) A .主视图相同 B .左视图相同C .俯视图相同D .三种视图都不相同6.一元二次方程()12()13x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( ) A .1.95元 B .2.15元 C .2.25元 D .2.75元8.已知抛物线24y x bx =-++经过()2,n -和(4,)n 两点,则n 的值为( ) A .2-B .4-C .2D .49.如图,在四边形ABCD 中,AD BC ∥,90D ∠=,4AD =,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( ) A.B .4 C .3图1图2毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)D10.如图,在OAB △中,顶点()0,0O ,4()3,A -,()3,4B .将OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90,则第70次旋转结束时,点D 的坐标为( )A .(10,3)B .()3,10-C .(10,)3-D .(3,)10-第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.把答案填写在题中的横线上)11.12-= .12.不等式组1,274xx ⎧-⎪⎨⎪-+⎩≤>的解集是 .13.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是 .14.如图,在扇形AOB 中,120AOB ∠=,半径OC 交弦AB 于点D ,且OC OA ⊥.若OA =,则阴影部分的面积为 .15.如图,在矩形ABCD 中,1AB =,BC a =,点E 在边BC 上,且35BE α=.连接AE ,将ABE △沿AE 折叠,若点B 的对应点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分)先化简,再求值:2212(1)244x x xx x x +--÷--+,其中x17.(本小题满分9分)如图,在ABC △中,BA BC =,90ABC ∠=.以AB 为直径的半圆O 交AC 于点D ,点E 是BD 上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC于点G .(1)求证:ADF BDG ≅△△; (2)填空:①若4AB =,且点E 是BD 的中点,则DF 的长为 ;②取AE 的中点H ,当EAB ∠的度数为 时,四边形OBEH 为菱形.18.(本小题满分9分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下: a .七年级成绩频数分布直方图:数学试卷 第5页(共36页) 数学试卷 第6页(共36页)b .七年级成绩在7080x ≤<这一组的是:70 72 74 75 76 76 77 77 77 78 79 c .根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人; (2)表中m 的值为 ;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.19.(本小题满分9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55 m 的小山EC 上,在A 处测得塑像底部E 的仰角为34,再沿AC 方向前进21 m 到达B 处,测得塑像顶部D 的仰角为60,求炎帝塑像DE 的高度.(精确到1 m .参考数据:sin340.56≈,cos340.83=,tan340.67≈ 1.73)20.(本小题满分9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由.21.(本小题满分10分)模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下: (1)建立函数模型设矩形相邻两边的长分别为x ,y .由矩形的面积为4,得4xy =,即4y x=;由周长为m ,得2()x y m +=,即2my x =-+.满足要求的(),x y 应是两个函数图象在第________象限内交点的坐标; (2)画出函数图象 函数4(0)y x x =>的图象如图所示,而函数2my x =-+的图象可由直线y x =-平移得到.请在同一直角坐标系中直接画出直线y x =-;-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共36页) 数学试卷 第8页(共36页)(3)平移直线y x =-,观察函数图象 ①当直线平移到与函数4(0)y x x=>的图象有唯一交点(2,2)时,周长m 的值为 ;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围. (4)得出结论若能生产出面积为4的矩形模具,则周长m 的取值范围为 .22.(本小题满分10分)在ABC △中,CA CB =,ACB α∠=.点P 是平面内不与点A ,C 重合的任意一点,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP . (1)观察猜想 如图1,当60α=时,BDCP的值是 ,直线BD 与直线CP 相交所成的较小角的度数是 ; (2)类比探究如图2,当90α=时,请写出BDCP的值及直线BD 与直线CP 相交所成的小角的度数,并就图2的情形说明理由; (3)解决问题当90α=时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时ADCP的值.图1图2备用图23.(本小题满分11分) 如图,抛物线212y ax x c =++交x 轴于A ,B 两点,交y 轴于点C .直线122y x =--经过点A ,C . (1)求抛物线的解析式;(2)点P 是抛物线上一动点,过点P 作x 轴的垂线,交直线AC 于点M ,设点P 的横坐标为m .①当PCM △是直角三角形时,求点P 的坐标;②作点B 关于点C 的对称点B ',则平面内存在直线l ,使点M ,B ,B '到该直线的距离都相等.当点P 在y 轴右侧的抛物线上,且与点B 不重合时,请直接写出直线l :y kx b =+的解析式.(k ,b 可用含m 的式子表示)数学试卷 第9页(共36页) 数学试卷 第10页(共36页)备用图数学试卷 第11页(共36页) 数学试卷 第12页(共36页)河南省2019年普通高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B 【解析】解:11||22-=,故选:B . 【提示】根据一个负数的绝对值是它的相反数进行解答即可. 【考点】绝对值的概念. 2.【答案】C【解析】解:60.0000046 4.610-=⨯. 【提示】本题用科学记数法的知识即可解答. 【考点】科学记数法. 3.【答案】B【解析】解:∵AB CD ∥,∴1B ∠=∠, ∵1D E ∠=∠+∠,∴752748D B E ∠=∠-∠=-=, 故选:B .【提示】根据平行线的性质解答即可. 【考点】平行线的性质,三角形外角的性质. 4.【答案】D【解析】解:235a a a +=,A 错误;22(3)9a a -=,B 错误;222(2)x y xxy y -=-+,C错误;=D 正确;故选:D .【提示】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可.【考点】整式的运算. 5.【答案】C【解析】解:观察几何体,确定三视图,此几何体将上层的小正方体平移后俯视图相同,故选C .【提示】根据三视图解答即可. 【考点】几何体的三视图. 6.【答案】A【解析】解:原方程可化为:2240x x --=, ∴1a =,2b =-,4c =-, ∴2241()(4)200∆=--⨯⨯-=>, ∴方程由两个不相等的实数根. 故选:A .【提示】先化成一般式后,再求根的判别式.【考点】一元二次方程根的情况. 7.【答案】C【解析】解:这天销售的矿泉水的平均单价是510%315%255%120% 2.25⨯+⨯+⨯+⨯=(元), 故选:C .【提示】根据加权平均数的定义列式计算可得. 【考点】加权平均数的计算. 8.【答案】B【解析】解:抛物线24y x bx =-++经过()2,n -和(4,)n 两点, 可知函数的对称轴1x =, ∴12b=, ∴2b =;数学试卷 第13页(共36页) 数学试卷 第14页(共36页)∴224y x x =-++,将点()2,n -代入函数解析式,可得4n =; 故选:B .【提示】根据()2,n -和(4,)n 可以确定函数的对称轴1x =,再由对称轴的2bx =即可求解.【考点】二次函数点的坐标特征,二元一次方程组的解法. 9.【答案】A【解析】解:如图,连接FC ,则AF FC =. ∵AD BC ∥, ∴FAO BCO ∠=∠. 在FOA △与BOC △中,FAO BCOOA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA FOA BOC ≅△△, ∴3AF BC ==,∴3FC AF ==,431FD AD AF =-=-=. 在FDC △中,∵90D ∠=, ∴222CD DF FC +=, ∴21232CD +=,∴CD = 故选:A .【提示】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF FC =.再根据ASA 证明FOA BOC ≅△△,那么3AF BC ==,等量代换得到3FC AF ==,利用线段的和差关系求出1FD AD AF =-=.然后在直角FDC △中利用勾股定理求出CD 的长.【考点】尺规作图,平行线的性质,勾股定理,角平分线的性质,全等三角形的判定与性质. 10.【答案】D【解析】解:∵4()3,A -,()3,4B , ∴336AB =+=, ∵四边形ABCD 为正方形, ∴6AD AB ==, ∴0()3,1D -, ∵704172=⨯+,∴每4次一个循环,第70次旋转结束时,相当于OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90, ∴点D 的坐标为(3,)10-. 故选:D .【提示】先求出6AB =,再利用正方形的性质确定0()3,1D -,由于704172=⨯+,所以第70次旋转结束时,相当于OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标. 【考点】图形的旋转,点的坐标的确定.第Ⅱ卷二、填空题 11.【答案】3221-数学试卷 第15页(共36页) 数学试卷 第16页(共36页)122=- 32=. 故答案为:32.【提示】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【考点】实数的相关运算. 12.【答案】2x -≤【解析】解:解不等式12x -…,得:2x -≤, 解不等式74x -+>,得:3x <, 则不等式组的解集为2x -≤, 故答案为:2x -≤.【提示】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【考点】解不等式组. 13.【答案】49由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果, 所以摸出的两个球颜色相同的概率为49, 故答案为:49. 【提示】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得. 【考点】概率的计算. 14.π【解析】解:作OE AB ⊥于点F ,∵在扇形AOB中,120AOB ∠=,半径OC 交弦AB 于点D ,且OC OA⊥.OA=2,∴90AOD ∠=,90BOC ∠=,OA OB =, ∴30OAB OBA ∠=∠=,∴tan30232OD OA ===,4AD =,226AB AF ==⨯=,OF∴2BD =, ∴阴影部分的面积是:πAOD BDOOBC S S S +--=△△扇形,π.【提示】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是AOD △的面积与扇形OBC 的面积之和再减去BDO △的面积,本题得以解决. 【考点】不规则图形面积的计算. 15.【答案】53【解析】解:分两种情况: ①当点B '落在AD 边上时,如图1.数学试卷 第17页(共36页) 数学试卷 第18页(共36页)图1∵四边形ABCD 是矩形, ∴90BAD B ∠=∠=,∵将ABE △沿AE 折叠,点B 的对应点B '落在AD 边上, ∴1452BAE B AE BAD ∠=∠'=∠=, ∴AB BE =, ∴315a =,∴53a =;②当点B '落在CD 边上时,如图2.图2∵四边形ABCD 是矩形,∴90BAD B C D ∠=∠=∠=∠=,AD BC a ==. ∵将ABE △沿AE 折叠,点B 的对应点B '落在CD 边上, ∴90B AB E ∠=∠'=,1AB AB ='=,35EB EB a ='=,∴DB '==355EC BC BE a a =-=-=. 在ADB '△与B CE '△中,9090B AD EBC AB DD C '''⎧∠=∠=-∠⎨∠=∠=⎩, ∴ADB B CE ''△△,∴DB AB CE B E ''=',即12355a a =,解得1a =,20a =(舍去). 综上,所求a 的值为53.故答案为53.【提示】分两种情况:①点B '落在AD 边上,根据矩形与折叠的性质易得AB BE =,即可求出a 的值;②点B '落在CD 边上,证明ADB B CE ''△△,根据相似三角形对应边成比例即可求出a 的值. 【考点】图形的折叠,勾股定理. 三、解答题16.【答案】解:原式212(2)()22(2)x x x x x x x +--=-÷--- 322x x x -=-3x=, 当x =,=【解析】解:原式212(2)()22(2)x x x x x x x +--=-÷--- 322x x x -=-3x=, 当x=,=【提示】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【考点】分式的化简求值.17.【答案】解:(1)证明:如图1,∵BA BC =,90ABC ∠=,数学试卷 第19页(共36页) 数学试卷 第20页(共36页)图1∴45BAC ∠= ∵AB 是O 的直径, ∴90ADB AEB ∠=∠=,∴90DAF BGD DBG BGD ∠+∠=∠+∠= ∴DAF DBG ∠=∠ ∵90ABD BAC ∠+∠= ∴45ABD BAC ∠=∠= ∴AD BD =∴()ASA ADF BDG ≅△△; (2)①4-②30【解析】解:(1)证明:如图1,∵BA BC =,90ABC ∠=,图1∴45BAC ∠= ∵AB 是O 的直径, ∴90ADB AEB ∠=∠=,∴90DAF BGD DBG BGD ∠+∠=∠+∠= ∴DAF DBG ∠=∠ ∵90ABD BAC ∠+∠= ∴45ABD BAC ∠=∠=∴AD BD =∴()ASA ADF BDG ≅△△;(2)①如图2,过F 作FH AB ⊥于H ,∵点E 是BD 的中点,图2∴BAE DAE ∠=∠ ∵FD AD ⊥,FH AB ⊥ ∴FH FD =∵2sin sin45FH ABD BF =∠==,∴FD BF =,即BF ∵4AB =,∴4cos4522BD ==即BF FD+=,1)FD =∴4FD ==-故答案为4-②连接OE,EH ,∵点H 是AE 的中点,∴OH AE ⊥, ∵90AEB ∠= ∴BE AE ⊥ ∴BE OH ∥∵四边形OBEH 为菱形,∴12BE OH OB AB ===∴1sin 2BE EAB AB ∠==∴30EAB ∠=. 故答案为:30.【提示】(1)利用直径所对的圆周角是直角,可得90ADB AEB ∠=∠=,再应用同角的余角相等可得DAF DBG ∠=∠,易得AD BD =,ADF BDG △≌△得证;(2)作FH AB ⊥,应用等弧所对的圆周角相等得BAE DAE ∠=∠,再应用角平分线性质可得结论;由菱形的性质可得BE OB =,结合三角函数特殊值可得30EAB ∠=. 【考点】圆的相关性质,全等三角形的判定和性质,菱形的判定和性质,圆周角定理. 18.【答案】(1)23 (2)77.5(3)甲学生在该年级的排名更靠前.∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前, 八年级学生乙的成绩小于中位数78分,其名次在该班25名之后, ∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为515840022450++⨯=(人). 【解析】解:(1)在这次测试中,七年级在80分以上(含80分)的有15823+=人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79, ∴777877.52m +==, 故答案为:77.5;(3)甲学生在该年级的排名更靠前.∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前, 八年级学生乙的成绩小于中位数78分,其名次在该班25名之后, ∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为515840022450++⨯=(人). 【提示】(1)根据条形图及成绩在7080x ≤<这一组的数据可得; (2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得. 【考点】统计知识的实际应用.19.【答案】解:∵90ACE ∠=,34CAE ∠=,55m CE =,∴tan CECAE AC ∠=, ∴5582.1m tan340.67CE AC ==≈,∵21m AB =,∴61.1m BC AC AB =-=, 在Rt BCD △中,tan60CDBC=,∴ 1.7361.1105.7m CD =≈⨯≈, ∴105.75551m DE CD EC =-=-≈, 答:炎帝塑像DE 的高度约为51 m .【解析】解:∵90ACE ∠=,34CAE ∠=,55m CE =,∴tan CECAE AC ∠=, ∴5582.1m tan340.67CE AC ==≈,∵21m AB =,∴61.1m BC AC AB =-=, 在Rt BCD △中,tan60CDBC==,∴ 1.7361.1105.7m CD ≈⨯≈, ∴105.75551m DE CD EC =-=-≈, 答:炎帝塑像DE 的高度约为51 m . 【提示】由三角函数求出82.1m tan34CEAC =≈,得出61.1mBC AC AB =-=,在Rt BCD △中,由三角函数得出105.7m CD =≈,即可得出答案.【考点】解直角三角形的实际应用.20.【答案】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为30-z ()个,购买奖品的花费为W 元, 由题意可知,13)3(0z z -≥, ∴152z ≥, 30153045(51)0W z z z =+-=+,当8z =时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少. 【解析】解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为30-z ()个,购买奖品的花费为W 元, 由题意可知,13)3(0z z -≥, ∴152z ≥, 30153045(51)0W z z z =+-=+,当8z =时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.【提示】(1)设A 的单价为x 元,B 的单价为y 元,根据题意列出方程组3212054210x y x y +=⎧⎨+=⎩,即可求解;(2)设购买A 奖品z 个,则购买B 奖品为(30)z -个,购买奖品的花费为W 元,根据题意得到由题意可知,13)3(0z z -≥,30153045(51)0W z z z =+-=+,根据一次函数的性质,即可求解.【考点】二元一次方程组,不等式及一次函数解决实际问题. 21.【答案】(1)一 (2)图象如下所示:(3)①8②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立4y x =和2my x =-+并整理得:21402x mx -+=,214404m ∆=-⨯≥时,两个函数有交点,解得:8m ≥; (4)8m ≥【解析】解:(1),x y 都是边长,因此,都是正数, 故点(),x y 在第一象限, 答案为:一; (2)图象如下所示:(3)①把点(2,2)代入2my x =-+得: 222m=-+,解得:8m =;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立4y x =和2my x =-+并整理得:21402x mx -+=,214404m ∆=-⨯≥时,两个函数有交点,解得:8m ≥;(4)由(3)得:8m ≥.【提示】(1),x y 都是边长,因此,都是正数,即可求解; (2)直接画出图象即可; (3)①把点()2,2代入2my x =-+即可求解;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立4y x=和 = 2m y x -+并整理得:21402x mx -+=,即可求解;(4)由(3)可得.【考点】反比例函数与一次函数图象的应用. 22.【答案】160(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .图2∵45PAD CAB ∠=∠=, ∴PAC DAB ∠=∠,∵AB ADAC AP= ∴DAB PAC △△, ∴PCA DBA ∠=∠,BD ABPC AC== ∵EOC AOB ∠=∠, ∴45CEO OABB ∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45.(3)如图3-1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .图3-1∵CE EA =,CF FB =, ∴EF AB ∥,∴45EFC ABC ∠=∠=, ∵45PAO ∠=, ∴PAO OFH ∠=∠, ∵POA FOH ∠=∠, ∴H APO ∠=∠,∵90APC ∠=,EA EC =, ∴PE EA EC ==,∴EPA EAP BAH ∠=∠=∠, ∴H BAH ∠=∠, ∴BH BA =,∵45ADP BDC ∠=∠=, ∴90ADB ∠=, ∴BD AH ⊥,∴22.5DBA DBC ∠=∠=, ∵90ADB ACB ∠=∠=, ∴A ,D ,C ,B 四点共圆,22.5DAC DBC ∠=∠=,22.5DCA ABD ∠=∠=,∴22.5DAC DCA ∠=∠=,∴DA DC =,设AD a =,则DC AD a ==,PD ,∴2ADCP==如图3-2中,当点P 在线段CD 上时,同法可证:DA DC =,设AD a =,则CD AD a ==,=2PD ,图3-2∴PC a =-,∴2AD PC ==【解析】解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .图1∵60PAD CAB ∠=∠=, ∴CAP BAD ∠=∠, ∵CA BA =,PA DA =, ∴()SAS CAP BAD ≅△△, ∴PC BD =,ACP ABD ∠=∠, ∵AOC BOE ∠=∠,∴60BEO CAO ∠=∠=, ∴1BDPC=,线BD 与直线CP 相交所成的较小角的度数是60, 故答案为1,60.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .图2∵45PAD CAB ∠=∠=, ∴PAC DAB ∠=∠,∵AB ADAC AP== ∴DAB PAC △△, ∴PCA DBA ∠=∠,BD ABPC AC== ∵EOC AOB ∠=∠, ∴45CEO OABB ∠=∠=,∴直线BD 与直线CP 相交所成的小角的度数为45.(3)如图3-1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .图3-1∵CE EA =,CF FB =, ∴EF AB ∥,∴45EFC ABC ∠=∠=, ∵45PAO ∠=, ∴PAO OFH ∠=∠, ∵POA FOH ∠=∠, ∴H APO ∠=∠,∵90APC ∠=,EA EC =, ∴PE EA EC ==,∴EPA EAP BAH ∠=∠=∠,∴H BAH ∠=∠, ∴BH BA =,∵45ADP BDC ∠=∠=, ∴90ADB ∠=, ∴BD AH ⊥,∴22.5DBA DBC ∠=∠=, ∵90ADB ACB ∠=∠=, ∴A ,D ,C ,B 四点共圆,22.5DAC DBC ∠=∠=,22.5DCA ABD ∠=∠=,∴22.5DAC DCA ∠=∠=,∴DA DC =,设AD a =,则DC AD a ==,PD ,∴2ADCP=如图3-2中,当点P 在线段CD 上时,同法可证:DA DC =,设AD a =,则CD AD a ==,PD ,图3-2∴2PC a =-,∴2AD PC == 【提示】(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .证明()SAS CAP BAD △≌△,即可解决问题.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .证明△DAB ∽△PAC ,即可解决问题. (3)分两种情形:①如图3-1中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .证明AD=DC 即可解决问题.②如图3-2中,当点P 在线段CD 上时,同法可证:DA DC =解决问题. 【考点】图形变换,规律探究.23.【答案】解:(1)当0x =时,1222y x =--=-, ∴点C 的坐标为(0,)2-;当0y =时,1202x --=,解得:4x =-,∴点A 的坐标为()4,0-.将0()4,A -,2(0,)C -代入212y ax x c =++,得:16202a c c -+=⎧⎨=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =+-.(2)①∵PM x ⊥轴, ∴90PMC ∠≠,∴分两种情况考虑,如图1所示.图1(i )当90MPC ∠=时,PC x ∥轴, ∴点P 的纵坐标为2-. 当2y =-时,2112242x x +-=-, 解得:12x =-,20x =, ∴点P 的坐标为(2,2)--;(ii )当90PCM ∠=时,设PC 与x 轴交于点D .∵90OAC OCA ∠+∠=,90OCA OCD ∠+∠=, ∴OAC OCD ∠=∠. 又∵90AOC COD ∠=∠=, ∴AOCCOD △△,∴OD OC OC OA =,即224OD =, ∴1OD =,∴点D 的坐标为(1,0).设直线PC 的解析式为()0y kx b k =+≠, 将2(0,)C -,()1,0D 代入y kx b =+,得:20b k b =-⎧⎨+=⎩,解得:22k b =⎧⎨=-⎩,∴直线PC 的解析式为22y x =-.联立直线PC 和抛物线的解析式成方程组,得:22211242y x y x x =-⎧⎪⎨=+-⎪⎩, 解得:1102x y =⎧⎨=-⎩,22610x y =⎧⎨=⎩,点P 的坐标为(6,10).综上所述:当PCM △是直角三角形时,点P 的坐标为(2,2)--或(6,10). ②当0y =时,2112042x x +-=, 解得:14x =-,22x =, ∴点B 的坐标为(2,0).∵点P 的横坐标为0()0m m m ≠>且,∴点P 的坐标为211(,2)42m m m +-,∴直线PB 的解析式为11(4)(4)42y m x m =+-+(可利用待定系数求出).∵点B ,B '关于点C 对称,点B ,B ',P 到直线l 的距离都相等, ∴直线l 过点C ,且直线l PB ∥直线, ∴直线l 的解析式为1(4)24y m x =+-.【解析】解:(1)当0x =时,1222y x =--=-, ∴点C 的坐标为(0,)2-;当0y =时,1202x --=,解得:4x =-,∴点A 的坐标为()4,0-.将0()4,A -,2(0,)C -代入212y ax x c =++,得: 16202a c c -+=⎧⎨=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =+-.(2)①∵PM x ⊥轴, ∴90PMC ∠≠,∴分两种情况考虑,如图1所示.图1(i )当90MPC ∠=时,PC x ∥轴, ∴点P 的纵坐标为2-. 当2y =-时,2112242x x +-=-, 解得:12x =-,20x =, ∴点P 的坐标为(2,2)--;(ii )当90PCM ∠=时,设PC 与x 轴交于点D . ∵90OAC OCA ∠+∠=,90OCA OCD ∠+∠=, ∴OAC OCD ∠=∠. 又∵90AOC COD ∠=∠=, ∴AOCCOD △△,∴OD OC OC OA =,即224OD =,∴1OD =,∴点D 的坐标为(1,0).设直线PC 的解析式为()0y kx b k =+≠, 将2(0,)C -,()1,0D 代入y kx b =+,得:20b k b =-⎧⎨+=⎩,解得:22k b =⎧⎨=-⎩, ∴直线PC 的解析式为22y x =-.联立直线PC 和抛物线的解析式成方程组,得:22211242y x y x x =-⎧⎪⎨=+-⎪⎩, 解得:1102x y =⎧⎨=-⎩,22610x y =⎧⎨=⎩,点P 的坐标为(6,10).综上所述:当PCM △是直角三角形时,点P 的坐标为(2,2)--或(6,10). ②当0y =时,2112042x x +-=, 解得:14x =-,22x =, ∴点B 的坐标为(2,0).∵点P 的横坐标为0()0m m m ≠>且,∴点P 的坐标为211(,2)42m m m +-,∴直线PB 的解析式为11(4)(4)42y m x m =+-+(可利用待定系数求出).∵点B ,B '关于点C 对称,点B ,B ',P 到直线l 的距离都相等, ∴直线l 过点C ,且直线l PB ∥直线, ∴直线l 的解析式为1(4)24y m x =+-.【提示】(1)利用一次函数图象上点的坐标特征可求出点A ,C 的坐标,根据点A ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM x ⊥轴可得出90PMC ∠≠,分90MPC ∠=及90PCM ∠=两种情况考虑:(i )当90MPC ∠=时,PC x ∥轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii )当90PCM ∠=时,设PC 与x 轴交于点D ,易证AOCCOD △△,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式成方程组,通过解方程组可求出点P 的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征可得出点B ,P 的坐标,根据点P ,B 的坐标,利用待定系数法可求出直线PB 的解析式,结合题意可知:直线l 过点C ,且直线l PB ∥直线,再结合点C 的坐标即可求出直线l 的解析式.【考点】二次函数的图象和性质,直角三角形的性质,相似三角形的判定和性质,中位线定理,一次函数的性质,分类讨论思想.。
河南省2019年中考数学试题与答案【word解析版】
2019年河南省中考数学试卷一、选择题(每小题 3 分,共 24分)1.( 3 分) (2019 年河南省 ) 下列各数中,最小的数是()A.0 B.C.﹣D.﹣3考点:有理数大小比较.分析:根据正数大于 0, 0 大于负数,可得答案.解答:解:﹣ 3,故选: D.点评:本题考查了有理数比较大小,正数大于0, 0 大于负数是解题关键.2.( 3 分) (2019 年河南省 ) 据统计, 2019 年河南省旅游业总收入达到约3875.5 亿元.若将 3875.5 亿用科学记数法表示为 3.8755 ×10 n,则 n 等于()A.10B.11C.12D. 13考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10 n的形式,其中 1≤|a|< 10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答:解: 3875.5 亿=3875 5000 0000=3.8755 ×10 11,故选: B.a×10 n的形式,其中 1≤|a| < 10, n 为整点评:此题考查科学记数法的表示方法.科学记数法的表示形式为数,表示时关键要正确确定 a 的值以及 n 的值.3.( 3 分)(2019 年河南省 ) 如图,直线 AB,CD相交于点 O,射线 OM平分∠ AOC, ON⊥OM,若∠ AOM=35°,则∠ CON 的度数为()A.35°B. 45°C. 55° D . 65°考点:垂线;对顶角、邻补角.分析:由射线 OM平分∠ AOC,∠AOM=35°,得出∠ MOC=35°,由 ON⊥OM,得出∠ CON=∠MON﹣∠ MOC得出答案.解答:解:∵射线 OM平分∠ AOC,∠ AOM=35°,∴∠ MOC=35°,∵ON⊥OM,∴∠ MON=90°,∴∠ CON=∠MON﹣∠ MOC=90°﹣ 35°=55°.故选: C.点评:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.4.( 3 分) (2019 年河南省 ) 下列各式计算正确的是()A.a+2a=3a2B.(﹣ a3)2=a6C. a3?a2=a6D.( a+b)2=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,积的乘方,同底数幂的乘法,平方差公式分别求出每个式子的值,再判断即可.解答:解: A、 a+2a=3a,故本选项错误;B、(﹣ a3)2=a6,故本选项正确;C、 a3?a2=a5,故本选项错误;D、( a+b)2=a2+b2+2ab,故本选项错误,故选B.点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,平方差公式的应用,主要考查学生的计算能力.5.( 3 分) (2019 年河南省 ) 下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船反射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查考点:分析:随机事件;全面调查与抽样调查;概率的意义.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解: A.“打开电视,正在播放河南新闻节目”是随机事件,本项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,本项错误;C.神舟飞船反射前需要对零部件进行全面调查,本项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查.故选: D.点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.( 3 分) (2019 年河南省 ) 将两个长方体如图放置,则所构成的几何体的左视图可能是()A.B.C.D.考点:分析:解答:故选:点评:简单组合体的三视图.根据从左边看得到的图形是左视图,可得答案.解:从左边看,下面是一个矩形,上面是一个等宽的矩形,该矩形的中间有一条棱,C.本题考查了简单组合体的三视图,注意能看到的棱用实线画出.7.( 3 分) (2019年河南省) 如图,?ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4, AC=6,则BD的长是()A.8 B.9 C.10D.11考点:平行四边形的性质;勾股定理.分析:利用平行四边形的性质和勾股定理易求BO的长,进而可求出解答:解:∵ ?ABCD的对角线AC与 BD相交于点 O,∴BO=DO, AO=CO,∵AB⊥AC, AB=4, AC=6,∴BO==5,BD的长.∴BD=2BO=10,故选 C.点评:本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.( 3 分) (2019 年河南省 ) 如图,在Rt△ABC中,∠ C=90°, AC=1cm, BC=2cm,点 P 从点 A 出发,以 1cm/s 的速度沿折线 AC→CB→BA 运动,最终回到点映 y 与 x 之间函数关系的图象大致是(A,设点)P 的运动时间为x( s),线段AP 的长度为y( cm),则能够反A.B.C.D.考点:动点问题的函数图象.分析:这是分段函数:①点 P 在 AC边上时, y=x,它的图象是一次函数图象的一部分;②点 P 在边 BC上时,利用勾股定理求得y 与 x 的函数关系式,根据关系式选择图象;③点 P 在边 AB 上时,利用线段间的和差关系求得y 与 x 的函数关系式,由关系式选择图象.解答:解:①当点 P 在 AC边上,即0≤x≤1时, y=x ,它的图象是一次函数图象的一部分.故C错误;②点 P 在边 BC上,即1<x≤3时,根据勾股定理得AP=,即 y=,则其函数图象是y 随 x 的增大而增大,且不是线段.故B、 D 错误;③点 P 在边 AB 上,即3<x≤3+时, y= +3﹣ x=﹣ x+3+,其函数图象是直线的一部分.综上所述, A 选项符合题意.故选: A.点评:本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.二、填空题(每小题 3 分,共 21分)9.( 3 分) (2019 年河南省 ) 计算:﹣| ﹣2|= 1 .考点:实数的运算.分析:首先计算开方和绝对值,然后再计算有理数的减法即可.解答:解:原式 =3﹣ 2=1,故答案为: 1.点评:此题主要考查了实数的运算,关键是掌握立方根和绝对值得性质运算.10.( 3 分) (2019 年河南省 ) 不等式组的所有整数解的和为﹣2.考点:一元一次不等式组的整数解.分析:先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的所有整数解相加即可求解.解答:解:,由①得: x≥﹣ 2,由②得: x<2,∴﹣ 2≤x< 2,∴不等式组的整数解为:﹣2,﹣ 1, 0, 1.所有整数解的和为﹣2﹣ 1+0+1=﹣ 2.故答案为:﹣2.点评:本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.( 3 分) (2019年河南省) 如图,在△ ABC 中,按以下步骤作图:①分别以B, C 为圆心,以大于BC的长为半径作弧,两弧相交于M, N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠ B=25°,则∠ ACB的度数为105°.考点:作图—基本作图;线段垂直平分线的性质.分析:首先根据题目中的作图方法确定MN是线段 BC的垂直平分线,然后利用垂直平分线的性质解题即可.解答:解:由题中作图方法知道MN为线段 BC的垂直平分线,∴CD=BD,∵∠ B=25°,∴∠ DCB=∠B=25°,∴∠ ADC=50°,∵CD=AC,∴∠ A=∠ADC=50°,∴∠ ACD=80°,∴∠ ACB=∠ACD+∠BCD=80°+25°=105°,故答案为: 105°.点评:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.12.( 3 分) (2019 年河南省 ) 已知抛物线 y=ax 2+bx+c(a≠0)与 x 轴交于 A,B 两点,若点 A 的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段 AB的长为8 .考点:抛物线与 x 轴的交点.分析:由抛物线 y=ax2+bx+c 的对称轴为直线x=2,交 x 轴于 A、B 两点,其中 A 点的坐标为(﹣ 2, 0),根据二次函数的对称性,求得 B 点的坐标,再求出AB的长度.解答:解:∵对称轴为直线 x=2 的抛物线 y=ax 2+bx+c (a≠0)与 x 轴相交于 A、 B 两点,∴A、 B 两点关于直线x=2 对称,∵点 A 的坐标为(﹣2, 0),∴点 B 的坐标为( 6, 0),AB=6﹣(﹣ 2) =8.故答案为: 8.点评:此题考查了抛物线与 x 轴的交点.此题难度不大,解题的关键是求出 B 点的坐标.13.( 3 分) (2019 年河南省 ) 一个不透明的袋子中装有仅颜色不同的 2 个红球和 2 个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出第一个人摸到红球且第二个人摸到白球的情况数,即可求出所求的概率.解答:解:列表得:红红白白红﹣﹣﹣(红,红)(白,红)(白,红)红(红,红)﹣﹣﹣(白,红)(白,红)白(红,白)(红,白)﹣﹣﹣(白,白)白(红,白)(红,白)(白,白)﹣﹣﹣所有等可能的情况有12 种,其中第一个人摸到红球且第二个人摸到白球的情况有 4 种,则P= =.故答案为:.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.( 3 分) (2019 年河南省 ) 如图,在菱形ABCD中, AB=1,∠ DAB=60°,把菱形ABCD 绕点 A顺时针旋转30°得到菱形 AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.考点:菱形的性质;扇形面积的计算;旋转的性质.分析:连接 BD′,过 D′作 D′H⊥AB,则阴影部分的面积可分为 3 部分,再根据菱形的性质,三角形的面积公式以及扇形的面积公式计算即可.解答:解:连接BD′,过 D′作 D′H⊥AB,∵在菱形ABCD中, AB=1,∠ DAB=60°,把菱形ABCD绕点 A 顺时针旋转30°得到菱形AB′C′D′,∴D′H=,∴S△ABD′=1×=,∴图中阴影部分的面积为+﹣,故答案为:+﹣.点评:本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.15.( 3 分) (2019 年河南省 ) 如图矩形ABCD中, AD=5, AB=7,点 E 为 DC上一个动点,把△ ADE 沿 AE折叠,当点D 的对应点D′落在∠ ABC 的角平分线上时,DE的长为或.考点:翻折变换(折叠问题).分析:连接 BD′,过 D′作 MN⊥AB,交出 MD′,再分两种情况利用勾股定理求出解答:解:如图,连接BD′,过 D′作AB 于点 M, CD于点DE.MN⊥AB,交 AB 于点N,作 D′P⊥BC 交 BC于点 P,先利用勾股定理求M, CD于点 N,作 D′P⊥BC 交 BC于点 P,∵点 D 的对应点 D′落在∠ ABC 的角平分线上,∴MD′=PD′,设MD′=x,则 PD′=BM=x,∴AM=AB﹣ BM=7﹣ x,又折叠图形可得AD=AD′=5,22∴x+( 7﹣ x) =25,解得 x=3 或 4,即MD′=3 或 4.在RT△END′中,设 ED′=a,①当 MD′=3 时, D′E=5﹣ 3=2, EN=7﹣ CN﹣DE=7﹣ 3﹣ a=4﹣ a,222,∴a=2 +( 4﹣ a)解得 a=,即 DE= ,②当 MD′=4 时, D′E=5﹣ 4=1, EN=7﹣ CN﹣DE=7﹣ 4﹣ a=3﹣ a,222,∴a=1 +( 3﹣ a)解得 a=,即 DE= .故答案为:或.点评:本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.三、解答题(本大题共8 小题,满分75 分)16.( 8 分) (2019 年河南省 ) 先化简,再求值:+( 2+),其中x=﹣1.考点:专题:分式的化简求值.计算题.分析:先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把 x 的值代入计算.解答:解:原式=÷=÷=?=,当 x=﹣1时,原式==.点评:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.17.( 9 分) (2019 年河南省 ) 如图, CD是⊙O 的直径,且CD=2cm,点切线 PA, PB,切点分别为点A, B.( 1)连接 AC,若∠ APO=30°,试证明△ ACP 是等腰三角形;( 2)填空:P 为CD的延长线上一点,过点P 作⊙O的①当 DP= 1 cm 时,四边形AOBD是菱形;②当 DP=﹣1cm时,四边形AOBD是正方形.考点:切线的性质;等腰三角形的判定;菱形的判定;正方形的判定.分析:( 1)利用切线的性质可得 OC⊥PC.利用同弧所对的圆周角等于圆心角的一半,求得∠ ACP=30°,从而求得.(2)①要使四边形 AOBD是菱形,则 OA=AD=OD,所以∠ AOP=60°,所以 OP=2OA,DP=OD.②要使四边形 AOBD是正方形,则必须∠ AOP=45°, OA=PA=1,则 OP= ,所以 DP=OP﹣ 1.解答:解:( 1)连接 OA, AC∵PA 是⊙O的切线,∴OA⊥PA,在 RT△AOP中,∠ AOP=90°﹣∠ APO=90°﹣30°=60°,∴∠ ACP=30°,∵∠ APO=30°∴∠ ACP=∠APO,∴A C=AP,∴△ ACP是等腰三角形.( 2)① 1,②.点评:本题考查了切线的性质,圆周角的性质,熟练掌握圆的切线的性质和直角三角形的边角关系是解题的关键.18.( 9 分) (2019 年河南省 ) 某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300 名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:( 1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为144°;(2)请补全条形统计图;(3)该校共有 1200 名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:( 1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的 27 人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.解答:解:( 1)360°×( 1﹣ 15%﹣ 45%)=360°× 40%=144°;故答案为: 144°;(2)“经常参加”的人数为: 300×40%=120 人,喜欢篮球的学生人数为: 120﹣ 27﹣33﹣ 20=120 ﹣ 80=40 人;补全统计图如图所示;( 3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160 人;( 4)这个说法不正确.理由如下:小明得到的 108 人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9 分) (2019 年河南省 ) 在中俄“海上联合﹣2018”反潜演习中,我军舰 A 测得潜艇军舰 A 正上方 1000 米的反潜直升机 B 测得潜艇 C 的俯角为68°,试根据以上数据求出潜艇深度.(结果保留整数,参考数据:sin68 °≈ 0.9 ,cos68°≈ 0.4 ,tan68 °≈ 2.5 ,C 的俯角为30°,位于C 离开海平面的下潜1.7 )考点:解直角三角形的应用- 仰角俯角问题.分析:过点 C 作 CD⊥AB,交 BA的延长线于点D,则 AD即为潜艇 C 的下潜深度,分别在Rt三角形ACD中表示出 CD和在 Rt 三角形 BCD中表示出BD,从而利用二者之间的关系列出方程求解.解答:解:过点C作 CD⊥AB,交 BA的延长线于点D,则 AD即为潜艇C的下潜深度,根据题意得:∠ ACD=30°,∠ BCD=65°,设AD=x,则 BD=BA+AD=1000+x,在Rt三角形ACD中, CD===,在Rt三角形BCD中, BD=CD?tan68°,∴1000+x=x?tan68 °解得: x==≈308米,∴潜艇 C 离开海平面的下潜深度为308 米.点评:本题考查了解直角三角形的应用,解题的关键是从题目中抽象出直角三角形并选择合适的边角关系求解.20.( 9 分) (2019 年河南省 ) 如图,在直角梯形OABC中, BC∥AO,∠ AOC=90°,点A,B 的坐标分别为(5,0),(2, 6),点 D 为 AB上一点,且 BD=2AD,双曲线 y= ( k>0)经过点 D,交 BC于点 E.(1)求双曲线的解析式;(2)求四边形 ODBE的面积.考点:反比例函数综合题.专题:综合题.分析:( 1)作 BM⊥x轴于 M,作 BN⊥x轴于 N,利用点 A,B 的坐标得到 BC=OM=5, BM=OC=6, AM=3,再证明△ADN∽△ ABM,利用相似比可计算出DN=2,AN=1,则 ON=OA﹣ AN=4,得到 D 点坐标为( 4, 2),然后把 D点坐标代入 y=中求出 k 的值即可得到反比例函数解析式;( 2)根据反比例函数k 的几何意义和 S四边形=S﹣ S ﹣S 进行计算.ODBE梯形 OABC△OCE△OAD解答:解:( 1)作 BM⊥x轴于 M,作 BN⊥x轴于 N,如图,∵点 A, B 的坐标分别为( 5, 0),( 2,6),∴BC=OM=5, BM=OC=6, AM=3,∵DN∥BM,∴△ ADN∽△ ABM,∴ == ,即= = ,∴D N=2, AN=1,∴ON=OA﹣ AN=4,∴D点坐标为( 4, 2),把D( 4, 2)代入 y= 得 k=2×4=8,∴反比例函数解析式为 y= ;(2) S 四边形ODBE=S 梯形OABC﹣ S△OCE﹣ S△OAD=×( 2+5)× 6﹣×|8| ﹣×5×2=12.点评:本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k 的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.21.( 10 分) (2019年河南省 ) 某商店销售10 台 A 型和 20 台 B 型电脑的利润为4000 元,销售 20 台 A 型和 10 台B 型电脑的利润为3500 元.( 1)求每台 A 型电脑和 B型电脑的销售利润;( 2)该商店计划一次购进两种型号的电脑共100 台,其中 B 型电脑的进货量不超过 A 型电脑的 2 倍,设购进 A 型电脑 x 台,这 100 台电脑的销售总利润为y 元.①求 y 关于 x 的函数关系式;②该商店购进 A 型、 B 型电脑各多少台,才能使销售总利润最大?( 3)实际进货时,厂家对 A 型电脑出厂价下调m(0< m< 100)元,且限定商店最多购进 A 型电脑 70 台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100 台电脑销售总利润最大的进货方案.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.分析:( 1)设每台 A 型电脑销售利润为x 元,每台 B 型电脑的销售利润为y 元;根据题意列出方程组求解,( 2)①据题意得,y=﹣ 50x+15000,②利用不等式求出x 的范围,又因为y=﹣ 50x+15000 是减函数,所以x 取 34, y 取最大值,( 3)据题意得, y=( 100+m)x﹣ 150( 100﹣ x),即 y=( m﹣50) x+15000,分三种情况讨论,①当0< m<50 时,y随 x 的增大而减小,② m=50 时, m﹣50=0, y=15000 ,③当 50< m< 100 时, m﹣ 50>0, y 随 x 的增大而增大,分别进行求解.解答:解:( 1)设每台 A 型电脑销售利润为x 元,每台 B 型电脑的销售利润为y 元;根据题意得解得答:每台 A 型电脑销售利润为100 元,每台 B 型电脑的销售利润为150 元.(2)①据题意得, y=100x﹣ 150( 100﹣ x),即 y=﹣50x+15000 ,②据题意得, 100﹣x≤2x,解得 x≥33 ,∵y=﹣ 50x+15000,∴y随 x 的增大而减小,∵x为正整数,∴当 x=34 时, y 取最大值,则100﹣ x=66,即商店购进34 台 A 型电脑和66 台 B 型电脑的销售利润最大.(3)据题意得, y=( 100+m) x﹣ 150(100﹣ x),即 y=( m﹣ 50) x+15000,33≤x≤70①当 0< m<50 时, y 随 x 的增大而减小,∴当 x=34 时, y 取最大值,即商店购进34 台 A 型电脑和66 台 B 型电脑的销售利润最大.②m=50 时, m﹣ 50=0, y=15000,即商店购进 A 型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当 50< m< 100 时, m﹣50> 0, y 随 x 的增大而增大,∴当 x=70 时, y 取得最大值.即商店购进70 台 A 型电脑和30 台 B 型电脑的销售利润最大.点评:本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数 x 值的增大而确定y 值的增减情况.22.( 10 分) (2019 年河南省 ) ( 1)问题发现如图 1,△ ACB和△ DCE均为等边三角形,点A, D,E 在同一直线上,连接BE.填空:①∠ AEB 的度数为60°;②线段 AD,BE 之间的数量关系为AD=BE .( 2)拓展探究DE 如图 2,△ ACB和△ DCE均为等腰直角三角形,∠ ACB=∠DCE=90°,点A, D,E 在同一直线上,CM为△ DCE中边上的高,连接BE,请判断∠ AEB 的度数及线段CM, AE, BE 之间的数量关系,并说明理由.( 3)解决问题如图 3,在正方形ABCD中,,若点P 满足PD=1,且∠ BPD=90°,请直接写出点 A 到BP的距离.CD=考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质;直角三角形斜边上的中线;正方形的性质;圆周角定理.专题:综合题;探究型.分析:( 1)由条件易证△ ACD≌△ BCE,从而得到:AD=BE,∠ ADC=∠BEC.由点A,D, E 在同一直线上可求出∠ADC,从而可以求出∠ AEB 的度数.(2)仿照( 1)中的解法可求出∠ AEB 的度数,证出 AD=BE;由△ DCE为等腰直角三角形及 CM为△ DCE中 DE边上的高可得 CM=DM=ME,从而证到 AE=2CH+BE.(3)由 PD=1可得:点 P 在以点 D 为圆心, 1 为半径的圆上;由∠ BPD=90°可得:点 P 在以 BD为直径的圆上.显然,点 P 是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于( 2)中的结论即可解决问题.解答:解:( 1)①如图1,∵△ ACB和△ DCE均为等边三角形,∴CA=CB, CD=CE,∠ ACB=∠DCE=90°.∴∠ ACD=∠BCE.在△ ACD和△ BCE中,∴△ ACD≌△ BCE.∴∠ ADC=∠BEC.∵△ DCE为等边三角形,∴∠ CDE=∠CED=60°.∵点 A, D,E 在同一直线上,∴∠ ADC=120°.∴∠ BEC=120°.∴∠ AEB=∠BEC﹣∠ CED=60°.故答案为: 60°.②∵△ ACD≌△ BCE,∴A D=BE.故答案为: AD=BE.(2)∠ AEB=90°, AE=BE+2CM.理由:如图 2,∵△ ACB和△ DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ ACD=∠BCE.在△ ACD和△ BCE中,∴△ ACD≌△ BCE.∴A D=BE,∠ ADC=∠BEC.∵△ DCE为等腰直角三角形,∴∠ CDE=∠CED=45°.∵点 A, D,E 在同一直线上,∴∠ ADC=135°.∴∠ BEC=135°.∴∠ AEB=∠BEC﹣∠ CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠ DCE=90°,∴DM=ME=CM.∴A E=AD+DE=BE+2CM.(3)∵ PD=1,∴点 P 在以点 D 为圆心, 1 为半径的圆上.∵∠ BPD=90°,∴点 P 在以 BD为直径的圆上.∴点 P 是这两圆的交点.①当点 P 在如图 3①所示位置时,连接 PD、 PB、 PA,作 AH⊥BP,垂足为H,过点 A 作 AE⊥AP,交 BP 于点 E,如图 3①.∵四边形ABCD是正方形,∴∠ ADB=45°. AB=AD=DC=BC= ,∠ BAD=90°.∴BD=2.∵DP=1,∴B P= .∵A、 P、 D、B 四点共圆,∴∠ APB=∠ADB=45°.∴△ PAE 是等腰直角三角形.又∵△ BAD 是等腰直角三角形,点B、E、 P 共线, AH⊥BP,∴由( 2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴A H=.②当点 P 在如图 3②所示位置时,连接 PD、 PB、 PA,作 AH⊥BP,垂足为H,过点 A 作 AE⊥AP,交 PB 的延长线于点E,如图 3②.同理可得: BP=2AH﹣ PD.∴=2AH﹣ 1.∴A H=.综上所述:点 A 到 BP的距离为或.点评:本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23.( 11 分) (2019 年河南省 ) 如图,抛物线y=﹣ x2+bx+c 与 x 轴交于点A(﹣ 1, 0), B( 5, 0)两点,直线y=﹣x+3 与 y 轴交于点C,与 x 轴交于点D.点 P 是 x 轴上方的抛物线上一动点,过点P 作 PF⊥x轴于点 F,交直线 CD于点 E.设点 P 的横坐标为m.( 1)求抛物线的解析式;( 2)若 PE=5EF,求 m的值;P,使点E′落在y 轴上?若存在,请直接写出相应的( 3)若点 E′是点 E 关于直线PC的对称点,是否存在点点 P 的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:( 1)利用待定系数法求出抛物线的解析式;(2)用含 m的代数式分别表示出 PE、EF,然后列方程求解;(3)解题关键是识别出四边形 PECE′是菱形,然后根据 PE=CE的条件,列出方程求解.解答:解:( 1)将点 A、 B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为: y=﹣ x2+4x+5.( 2)∵点 P 的横坐标为m,2m+3), F( m, 0).∴P( m,﹣ m+4m+5), E( m,﹣22m+2|,∴PE=|y ﹣ y |=| (﹣ m+4m+5)﹣(﹣ m+3) |=| ﹣ m+PEEF=|y E﹣ y F|=| (﹣ m+3)﹣ 0|=|﹣ m+3|.由题意, PE=5EF,即: | ﹣m2+m+2|=5| ﹣ m+3|=|m+15|2m+2=2①若﹣ m+m+15,整理得: 2m﹣ 17m+26=0,解得: m=2或 m= ;2m+2=﹣(2①若﹣ m+m+15),整理得: m﹣ m﹣17=0,解得: m=或 m=.由题意, m的取值范围为:﹣ 1< m< 5,故 m= 、 m=这两个解均舍去.∴m=2或 m=.(3)假设存在.作出示意图如下:∵点 E、E′关于直线PC对称,∴∠ 1=∠2,CE=CE′, PE=PE′.∵PE 平行于 y 轴,∴∠ 1=∠3,∴∠ 2=∠3,∴ PE=CE,∴P E=CE=PE′=CE′,即四边形 PECE′是菱形.由直线CD解析式y=﹣x+3,可得OD=4, OC=3,由勾股定理得CD=5.过点 E 作EM∥x轴,交y 轴于点M,易得△ CEM∽△ CDO,∴,即,解得CE= |m| ,2∴PE=CE= |m| ,又由( 2)可知: PE=|﹣ m+ m+2|∴|﹣ m2+ m+2|= |m| .22①若﹣ m+m+2= m,整理得: 2m﹣ 7m﹣ 4=0,解得 m=4或 m=﹣;22或 m=3﹣.②若﹣ m+m+2=﹣ m,整理得: m﹣ 6m﹣ 2=0,解得 m=3+由题意, m的取值范围为:﹣1< m< 5,故 m=3+这个解舍去.综上所述,存在满足条件的点P,可求得点 P 坐标为(﹣,),( 4, 5),( 3﹣, 2﹣ 3).点评:本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.。
2019年河南省中招考试数学试卷及答案(解析版)
2019年河南省中招考试数学试卷及答案(解析版)2019年河南省中招考试数学试卷及答案解析⼀、选择题(每⼩题3分,共24分)1.下列各数中,最⼩的数是()(A). 0 (B).13(C).-13(D).-3答案:D解析:根据有理数的⼤⼩⽐较法则(正数都⼤于0,负数都⼩于0,正数都⼤于负数,两个负数,其绝对值⼤的反⽽⼩)⽐较即可.解:∵﹣3<-13<0<13,∴最⼩的数是﹣3,故选A.2. 据统计,2013年河南省旅游业总收⼊达到3875.5亿元.若将3875.5亿⽤科学计数法表⽰为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).13答案:B解析:科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.3875.5亿=3.8755×1011,故选B.3.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350 (B). 450 (C) .550(D). 650答案:C解析:根据⾓的平分线的性质及直⾓的性质,即可求解.∠CON=900-350=550,故选C.4.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b2答案:B解析:根据同底数幂的乘法;幂的乘⽅;完全平⽅公式;同类项加法即可求得;(-a3)2=a6计算正确,故选B5.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节⽬”是必然事件(B)某种彩票中奖概率为10%是指买⼗张⼀定有⼀张中奖(C)神州飞船发射前需要对零部件进⾏抽样检查(D)了解某种节能灯的使⽤寿命适合抽样调查答案:D解析:根据统计学知识;(A)“打开电视,正在播放河南新闻节⽬”是随机事件,(A)错误。
河南省三门峡市中考数学试卷
河南省三门峡市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·迁安模拟) 下列各数中,相反数为4的是()A . 4B . ﹣4C . 0.4D . 0.252. (2分)(2020·江油模拟) 2018年我国大学生毕业人数将达到8200000人,这个数据用科学记数法表示为()A . 8.2×107B . 8.2×106C . 82×105D . 0.82×1073. (2分)(2017·南安模拟) 下列计算正确的是()A . a+a=a2B . a•a2=a3C . (﹣a3)2=a9D . (3a)3=9a34. (2分)(2017·东湖模拟) 平面直角坐标系中,P(3,﹣2),则点P关于y轴对称的点的坐标为()A . (3,2)B . (﹣3,2)C . (﹣3,﹣2)D . (﹣2,﹣3)5. (2分) (2016八上·平谷期末) 下列二次根式中,是最简二次根式的是()A .B .C .D .6. (2分)(2019·平阳模拟) 某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是()A . 6℃B . 6.5℃C . 7℃D . 7.5℃7. (2分)等腰三角形一边长等于5,一边长等于9,则它的周长是()A . 14B . 23C . 19或23D . 198. (2分)(2019·深圳) 下面命题正确的是()A . 矩形对角线互相垂直B . 方程x2=14x的解为x=14C . 六边形内角和为540°D . 一条斜边和一条直角边分别相等的两个直角三角形全等二、填空题 (共10题;共11分)9. (1分) (2016九上·长春期中) 分解因式:a2﹣3a=________.10. (1分) (2020七上·拉萨期中) 比-x2+x+3多x2+5x的是________.11. (1分) (2019九上·西岗期末) 点A(1,6)、B(2,n)都在反比例函数y= 的图象上,则n的值为________.12. (1分)(2017·南充) 如果 =1,那么m=________.13. (1分)(2019·零陵模拟) 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________.14. (1分)(2020·玄武模拟) 关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是________.15. (1分) (2018八上·沙洋期中) 如图,在中,CD平分∠ACB,DE∥BC,DE交AC于E,若DE=7,AE=5,则AC=________。
2019年三门峡市中考数学模拟试题与答案
2019年三门峡市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。
每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
) 1.我国每年淡水为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500用科学记数法表示为A .275×102B .2.75×103C .2.75×104D .0.275×1052. 在下列交通标志图中,既是轴对称图形,又是中心对称图形的是3.下列各式运算中正确的是A.336)2-(y y -=B.0130= C.448a a a -=÷- D.13169±=4. 一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是 A .4 B .5 C .10 D .115.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是A .主视图B .左视图C .俯视图D .主视图和俯视图 6. 函数a ax y -=与)0(≠=a xay 在同一坐标系中的图象可能是7. 已知关于x 的不等式组有四个整数解,则实数a 的取值范围A. -3<a ≤ 2B. -3≤a ≤ 2C.-3<a ≤-2D. -3≤ a <-28.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是A .5B .6C .7D .8 9.对于二次函数y =-14x 2+x -4,下列说法正确的是A .当x >0时,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点10. 如图,已知∠AOB=30°,以O 为圆心、a 为半径画弧交OA 、OB 于A 1、B 1,再分别以A 1、B 1为圆心、a 为半径画弧交于点C 1,以上称为一次操作.再以C 1为圆心,a 为半径重新操作,得到C 2.重复以上步骤操作,记最后一个两弧的交点(离点O 最远)为C K ,则点C K 到射线OB 的距离为A.a 2B.32a C .a D.3a 第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11.多项式ab ab b a --222的次数是 .12.函数y=的自变量x 的取值范围为 .13. Rt△ABC 中,∠C =90°,AC =3,BC =4.把它沿边BC 所在的直线旋转一周,所得到的几何体 的全面积为 .14.实数a 在数轴上的位置如图所示,化简()__12=+-a a15. 已知线段AB =8cm ,在直线AB 上画线段BC ,使BC =3cm ,则线段AC =__________.16.如图,直线l :y =-12x +1与坐标轴交于A ,B 两点,点M(m ,0)是x 轴上一动点,以点M 为圆心,2个单位长度为半径作⊙M,当⊙M 与直线l 相切时,则m 的值为 .三、解答题(共7小题,计72分) 17.(本题8分)计算:(cos --+-︒-0122601.18.(本题8分)先化简,再求值:(x 2-4x 2-4x +4 -2x -2 )÷ x 2+2xx-2 , 然后选取一个你喜欢的数代入求值.19.(本题10分)为了丰富同学们的课余生活,某学校将举行“亲近大自然”户外活动.现随机抽取了部分学生进行主题为“你最想去的景点是”的问卷调查,要求学生只能从“A (绿博园),B (人民公园),C (湿地公园),D (森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.(1)本次共调查了多少名学生? (2)补全条形统计图;(3)若该学校共有3 600名学生,试估计该校最想去湿地公园的学生人数.20.(本题10分)定义:在△ABC 中,∠C =30°,我们把∠A 的对边与∠C 的对边的比叫做∠A 的邻弦,记作 thi A ,即thi A =∠A 的对边∠C 的对边=BCAB .请解答下列问题:已知:在△ABC 中,∠C =30°.(1)若∠A =45°,求thi A 的值; (2)若thi A =3,则∠A = °;(3)若∠A 是锐角,探究thi A 与sin A 的数量关系 . 21.(本题12分)将△ABC绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′ C′ ,如图①所示,∠BAB′ =θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n] .(1得到△AB′ C′ ,则'AB C S ''∆:ABC S ∆ =_______ ;直线BC 与直线B′C′所夹的锐角为_______度;(2)如图②,△ABC中,∠BAC=30° ,∠ACB=90° ,对△ABC作变换[θ,n]得到△AB′ C′ ,使 点B 、C 、C '在同一直线上,且四边形ABB′C′为矩形,求θ和n 的值;(3)如图③ ,△ABC中,AB=AC,∠BAC=36° ,BC=1,对△ABC作变换[θ,n]得到△AB′C′ , 使点B 、C 、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n 的值.22.(本题12分)某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式。
河南省三门峡市中考数学试卷
河南省三门峡市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)2.﹣的绝对值是(),的算术平方根是().A . - ;B . ;-C . - ;-D . ;2. (2分)空气的密度是1.293×10﹣3g/cm3 ,用小数把它表示出来是()A . 0.1293g/cm3B . 0.01293g/cm3C . 0.001293g/cm3D . 1293g/cm34. (2分)计算(- ab2)3的结果,其中正确的是()A . a2b4B . a3b6C . - a3b6D . - a3b55. (2分)(2017·石家庄模拟) 如图,∠1=40°,如果CD∥BE,那么∠B的度数为()A . 160°B . 140°C . 60°D . 50°6. (2分) (2018九上·邗江期中) 下列命题中,真命题的个数是()①经过三点一定可以作圆;②平分弦的直径必定垂直于这条弦;③在同圆或等圆中,相等的圆心角所对的弧相等;④三角形的外心到三角形三边的距离相等.A . 4个B . 3个C . 2个D . 1个7. (2分)甲、乙两名学生在参加今年体育考试前各做了5次立定跳远测试,两人的平均成绩相同,其中甲所测得成绩的方差是0.005,乙所测得的成绩如下:2.20 m,2.30 m,2.30 m,2.40 m,2.30 m,那么甲、乙的成绩比较()A . 甲的成绩更稳定B . 乙的成绩更稳定C . 甲、乙的成绩一样稳定D . 不能确定谁的成绩更稳定8. (2分) (2016九上·广饶期中) 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A . ②③B . ①②C . ③④D . ②③④9. (2分)(2017·上城模拟) 如图是二次函数y=﹣x2+2x+4的图象,使y≤1成立的x的取值范围是()A . ﹣1≤x≤3B . x≤﹣1C . x≥1D . x≤﹣1或x≥310. (2分)已知点A的坐标为(A,B),O为坐标原点,连结OA,将线段OA绕点O按逆时针方向旋转90°得OA1 ,则点A1的坐标为()A . (-a,b)B . (a,-b)C . (-b,a)D . (b,-a)11. (2分)①若a+b+c=0,则b2-4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2-4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A . 只有①②③B . 只有①③④C . 只有①④D . 只有②③④.12. (2分)(2017·平房模拟) 一件商品的进价为80元,七折售出仍可获利5%.若标价为x元,则可列方程为()A . 80(1+5%)=0.7xB . 80×0.7(1+5%)=xC . (1+5%)x=0.7xD . 80×5%=0.7x二、填空题 (共6题;共6分)13. (1分)(2011·绍兴) 因式分解:x2+x=________.14. (1分) (2019八上·海港期中) 若分式方程有增根,则m的值是________15. (1分)已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)×m+(cd)2018的值为________.16. (1分)(2019·洞头模拟) 如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE 折叠后得到△AFE.延长AF交边BC于点G,则CG为________.17. (1分)(2017·岳阳) 如图,⊙O为等腰△ABC的外接圆,直径AB=12,P为弧上任意一点(不与B,C重合),直线CP交AB延长线于点Q,⊙O在点P处切线PD交BQ于点D,下列结论正确的是________.(写出所有正确结论的序号)①若∠PAB=30°,则弧的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6 ;④无论点P在弧上的位置如何变化,CP•CQ为定值.18. (1分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为________三、解答题 (共7题;共92分)19. (10分)如图,已知一次函数y=k1x+b的图象与反比例函数y= 的图象交于A(1,-3),B(3,m)两点,连接OA、OB.(1)求两个函数的解析式;(2)求△AOB的面积.20. (10分)(2018·云南模拟) 已知如图,点 C 在以 AB 为直径的⊙O 上,点 D 在 AB 的延长线上,∠BCD =∠A.(1)求证:CD 为⊙O 的切线;(2)过点 C 作CE⊥AB 于点 E.若 CE = 2,cos D = ,求 AD 的长.21. (7分)(2018·遵义模拟) 在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后________(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为________;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?22. (15分)(2017·东莞模拟) 如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.(1)求证:△ABE∽△ADB;(2)求tan∠ADB的值;(3)延长BC至F,连接FD,使△BDF的面积等于8 ,求证:DF与⊙O相切.23. (15分)如图,已知函数y1=2x+b和y2=ax﹣3的图象交于点P (﹣2,﹣5),这两个函数的图象与x轴分别交于点A、B.(1)分别求出这两个函数的解析式;(2)求△ABP的面积;(3)根据图象直接写出不等式2x+b<ax﹣3的解集.24. (15分) (2017九上·郑州期中) 请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图①,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;(2)如图②,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF=EG(填“=”或“≠”);(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图③,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,DG=3,求的值.25. (20分) (2019八下·西湖期末)(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,并说明理由.(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.(3)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,并说明理由.(4)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.①判断EG与EH是否相等,并说明理由.②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共92分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、25-4、。
三门峡中考数学试题及答案
三门峡中考数学试题及答案一、选择题1. 已知三角形ABC,角A的度数为120°,则角B和角C的度数分别为()A. 60°,60°B. 30°,30°C. 120°,120°D. 90°,90°2. 如下图所示,已知直线l与直线m平行,h ⊥ l,h ⊥ m,则∠A 的度数为()A. 45°B. 60°C. 90°D. 120°3. 设直线l与x轴交于A点,与y轴交于B点,直线m与x轴交于C点,与y轴交于D点。
已知∠ABD = 105°,则∠CDB的度数为()A. 45°B. 60°C. 75°D. 90°4. 设甲的工资是乙的2/5,乙的工资是丙的7/10,丙的工资是丁的6/5,甲的工资为10万元,求丁的工资是多少万元()A. 5B. 6C. 7D. 85. 钢笔一支售价15元,墨水一瓶售价5元。
小明买了3支钢笔和x 瓶墨水,一共付出68元。
若每瓶墨水售价4元,则x的值为()A. 6B. 7C. 8D. 9二、填空题6. 已知在一个等比数列中,首项为3,公比为2,第5项是()。
7. 已知sinθ = 3/5,θ ∈ (0, π/2),则cosθ的值为()。
8. 如果a + b = 5,且2a + b = 8,则a = (),b = ( )。
9. 若4(x + 2)= 36 - 2x,则x的值为()。
10. 如果(a + b)^2 = 25,且a ≠ b,则a - b的值为()。
三、解答题11. 甲、乙两人合作完成一件工作,若甲单独工作需要7小时,乙单独工作需要10小时。
甲、乙两人一起工作了1小时后,又有丙加入合作,三人一起工作完成剩下的工作还需要5小时。
问丙完成这件工作需要多少小时?解:设丙单独工作需要x小时,则甲、乙、丙三人一起工作效率可以表示为:1/7 + 1/10 + 1/x = 1/510x + 7x + 70 = 14x70 = 14x - 17x70 = -3xx = -70/-3x = 23.33所以,丙完成这件工作需要23.33小时。
河南省三门峡市2019-2020学年中考数学模拟试题(1)含解析
河南省三门峡市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数2.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )A .B .C .D .3.下列运算正确的是( ) A .a 3•a 2=a 6 B .(2a )3=6a 3 C .(a ﹣b )2=a 2﹣b 2D .3a 2﹣a 2=2a 24.点A (a ,3)与点B (4,b )关于y 轴对称,则(a+b )2017的值为( ) A .0B .﹣1C .1D .720175.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .96.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市7.已知x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,下列结论一定正确的是( ) A .x 1≠x 2 B .x 1+x 2>0C .x 1•x 2>0D .x 1<0,x 2<08.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <.9.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D,E 分别在边AB,AC 上,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2= ( )A.70°B.110°C.130°D.140°10.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB 在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,2) B.(4,1) C.(4,3) D.(4,23)11.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm212.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于()A.50°B.60°C.55°D.65°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8的算术平方根是_____.14.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是_____.15.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 …则关于x的一元二次方程ax2+bx+c=-2的根是______.16.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.17.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。
河南省三门峡市中考数学试卷
B . 15×106
C . 1.5×106
D . 1.5×107
3. (2分) 下列计算正确的是( )
A . x6÷x3=x2
B . x2+x2=x4
C . 3a﹣a=2a
D . x2+x2=x6
4. (2分) (2018·牡丹江) 一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是( )
23. (15分) (2019·长春模拟) 已知:如图,△ABC为等边三角形,AB= ,AH⊥BC,垂足为点H,点D在线段HC上,且HD=2,点P为射线AH上任意一点,以点P为圆心,线段PD的长为半径作⊙P,设AP=x.
(1) 当x=3时,求⊙P的半径长;
(2) 如图1,如果⊙P与线段AB相交于E、F两点,且EF=y,求y关于x的函数解析式,并写出它的定义域;
A . 没有实根
B . 有两个不等实根
C . 有两个相等实根
D . 无法确定
8. (2分) (2019·合肥模拟) 不等式组 的解集,在数轴上表示正确的是( )
A .
B .
C .
D .
9. (2分) 已知P(x1 , 1),Q(x2 , 2)是一个函数图象上的两个点,其中x1<x2<0,则这个函数图象可能是( )
15. (1分) (2020九上·泰兴期末) 对于一个函数,当自变量x取n时,函数值y等于4-n,我们称n为这个函数的“二合点”,如果二次函数y=mx2+x+1有两个相异的二合点x1 , x2 , 且x1<x2<1,则m的取值范围是________.
三、 解答题 (共9题;共76分)
16. (5分) (2018·长宁模拟) 计算: .
三门峡市中考数学试卷
三门峡市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2017·昌平模拟) 如图,点A,B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A . ﹣3B . ﹣2C . ﹣1D . 32. (2分)(2020·石家庄模拟) 计算:﹣a2+2a2=()A . a2B . ﹣a2C . 2a2D . 03. (2分)如图是一个正六棱柱的主视图和左视图,则图中的a=()A .B .C .D .4. (2分)已知关于x的方程2x=8与x+2=-k的解相同,则代数式的值是()A . -B .C . -D .5. (2分)如图,⊙A,⊙B的半径分别为1cm,2cm,圆心距AB为5cm.如果⊙A由图示位置沿直线AB向右平移2cm,则此时该圆与⊙B的位置关系是()A . 外离B . 相交C . 外切D . 内含6. (2分)若函数y=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A . m>-2B . m<-2C . m>2D . m<27. (2分)甲、乙、丙、丁四名射击运动员参加了预选赛,他们射击成绩的平均环数及方差s2如表所示.如果选出一个成绩较好且状态稳定的运动员去参赛,那么应选()A . 甲B . 乙C . 丙D . 丁8. (2分)(2019·邹平模拟) 如图,在ΔABC中,,,作的内切圆,分别与、、相切于点、、,设,ΔABC的面积为,则关于的函数图象大致为()A .B .C .D .二、填空题 (共10题;共11分)9. (1分) (2019八下·鹿角镇期中) 的算术平方根是________.10. (1分) (2018七上·衢州期中) 煤气费的收费标准为每月用气若不超过60m3 ,按每立方米0.8元收费;如果超过60m3 ,超过部分按每立方米1.2元收费.已知某住户某个月用煤气xm3(x>60),则该住户应交煤气费________元.11. (1分)下列事件:①检查生产流水线上的一个产品,是合格品;②三条线段组成一个三角形;③a是实数,则|a|<0;④一副扑克牌中,随意抽出一张是红桃K;⑤367个人中至少有2个人生日相同;⑥一个抽奖活动的中奖率是1%,参与抽奖100次,会中奖.其中属于确定事件的是________.(填序号)12. (1分)地球绕太阳转动每小时经过的路程约为1.1×105km,声音在空气中每小时传播1.2×103km,地球绕太阳转动的速度与声音传播的速度哪个快?________13. (1分)若m=3,则的值等于________14. (1分) (2019八上·香坊月考) 如图,把一张矩形的纸沿对角线折叠,若AB=4cm,BM=5cm,则△BMD 的面积S=________cm2 .15. (1分) (2017八下·钦北期末) 如图,梯形ABCD中,AB∥CD,AD=BC,AC⊥BC,且AC平分∠DAB,∠B=60°,梯形的周长为40cm,则AC=________.16. (2分)(2020·河北模拟) 如图,△ABC中,∠C=90°,AC=BC,AD=16cm,BE=12cm,点P是斜边AB的中点.有一把直角尺MPN,将它的顶点与点P重合,将此直角尺绕点P旋转,与两条直角边AC和CB分别交于点D 和点E.则线段PD和PE的数量关系为________,线段DE=________ cm。
河南三门峡实验中学2019初三第一次重点考试-数学
河南三门峡实验中学2019初三第一次重点考试-数学数学试卷1、本试卷共8页,三大题,总分值120分,考试时间、100分钟、请用钢笔或圆珠笔直截了当答在试卷上、2、答卷前将密封线内的项目填写清晰,【一】选择题〔每题3分,总分值18分〕以下各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填人题后括号内1.2018的倒数是()A、12012B、12012-C、2012-D、20122.2017年我国国内生产总值(CDP)为471564亿元、471564用科学记数法表示为()A.4.71564×l05B.4.71564×l04C.47.1564×l04D.0.471564×l063、四张背面完全相同的卡片,正面分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画图形恰好是轴对称图形的概率为()A、1B、34C、12D、144、在一次“献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:那么在这次活动中,该班同学捐款金额的众数和中位数是()A、30,35B、50,35C、50,50D、15,505、如图,△MBC中,LB=900,LC=600,MB=2万,点A在MB上,,以AB为直径作00与MC相切于点D,那么CD的长为()C、2D、36.下图的长方体是由A,B,C、D四个选项中所示的四个几何体拼接而成的,而且这四个几何体基本上出4个同样大小的小正方体组成的+那么长方体中,第四部分对应的几何体应是()【二】填空题《每题3分,总分值27分〕7、分解因式:a 3—4a=___________.8、函数12y x =-中,自变量x 的取值范围是___________. 9.如图,将三角板的直角顶点放置在直线AB 上的点0处。
使斜边CD ∥AB ,那么La 的余弦值为_______10.如图,AB 为00的直径,弦CDlAB ,垂足为点E ,连结OC ,假设OC=10,CD=16,那么AE=_____.11、假设关于x 的一元二次方程2210kx x -+=有实数根,赠k 的取值范围是____________.12、写出一个函数表达式,使其图象与直线y=x 没有交点。
三门峡市中考数学试卷
三门峡市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10小题,每小题3分,共30分。
) (共10题;共30分)1. (3分) (2019八上·成都开学考) 下列说法正确的是()A . 169 的平方根是 13B . - 没有立方根C . 正数的两个平方根互为相反数D . -(-13)没有平方根2. (3分)(2020·牡丹江) 下列图形是中心对称图形的是()A .B .C .D .3. (3分)(2011·绍兴) 明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为()A . 1.25×105B . 1.25×106C . 1.25×107D . 1.25×1084. (3分) (2019七上·安庆期中) 绝对值小于5的所有数的和是()A . 15B . 10C . 0D . -105. (3分)已知正比例函数y=(m﹣1)x的图象上两点A(x1 , y1),B(x2 , y2),当x1<x2时,有y1>y2 ,那么m的取值范围是()A . m<1B . m>1C . m<2D . m>06. (3分)菱形一个内角是120°,一边长是8,那么它较短的对角线长是()A . 3B . 4C . 8D . 87. (3分)一组数据3,5,7,m , n的平均数是6,则m , n的平均数是().A . 6B . 7C . 7.5D . 158. (3分) (2020八下·扶风期末) 如图,在ΔABC中,AD是角平分线,DE⊥AB于点E ,ΔABC的面积为10,AB=6,DE=2,则AC的长是()A . 6B . 5C . 4D . 39. (3分)如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A .B .C .D .10. (3分) (2019八上·景县期中) 一辆模型赛车,先前进1m,然后沿原地逆时针方向旋转,旋转角为a(0<a<90°),被称为一次操作,若五次操作后,发现赛车回到出发点,则旋转角a为()A . 108°B . 120°C . 72 °D . 36°二、填空题(本大题共8小题,每小题3分,共24分。
三门峡义马2019年初三上年中考试数学试题含解析.doc.doc.doc
三门峡义马2019年初三上年中考试数学试题含解析九年级数学试卷【一】选择题〔每题3分,共24分〕1、关于x 的一元二次方程0122=-+x kx 有两个不相等实数根,那么k 的取值范围是〔〕A 、1->kB 、1-≥kC 、0≠kD 、1->k 且0≠k 2、一个等腰三角形的两条边长分别是方程x 2﹣7x+10=0的两根,那么该等腰三角形的周长是〔〕A 、 12B 、 9C 、 13D 、 12或93、以下图形中,既是中心对称图形又是轴对称图形的是〔〕A 、角B 、等边三角形C 、平行四边形D 、圆4、对于二次函数y=﹣x 2+2x 、有以下四个结论:①它的对称轴是直线x=1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,那么当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是〔0,0〕和〔2,0〕;④当0<x <2时,y >0、其中正确的结论的个数为〔〕A 、1B 、2C 、3D 、45、如图,把⊿ABC 经过一定的变换得到△A′B′C′,如果△ABC 上点P 的坐标为〔x ,y 〕,那么这个点在△A′B′C′中的对应点P′的坐标为〔〕A 、〔﹣x ,y ﹣2〕B 、〔﹣x ,y+2〕C 、〔﹣x+2,﹣y 〕D 、〔﹣x+2,y+2〕6、如图,四边形ABCD 内接于⊙O,四边形ABCO 是平行四边形,那么=∠ADC 〔〕A 、45°B 、50°C 、60°D 、75°7、如图,AC 是⊙O 的直径,点B 在圆周上〔不与A 、C 重合〕,点D 在AC 的延长线上,连接BD 交⊙O 于点E 。
假设ADB AOB ∠=∠3,那么〔〕A 、DE=EBB 、EB DE =2C 、DO DE =3D 、OB DE =8、假设抛物线y=〔x ﹣m 〕2+〔m+1〕的顶点在第一象限,那么m 的取值范围为〔〕 A 、m >1 B 、m >0 C 、m >﹣1 D 、 ﹣1<m <0【二】填空题〔每题3分,共21分〕9、二次函数y=x 2+4x+3的图象的对称轴为。
三门峡市中考数学试卷
三门峡市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019九上·乐山月考) 实数中,无理数的个数是()A . 2B . 3C . 4D . 52. (2分)从正面观察如图的两个物体,看到的是()A .B .C .D .3. (2分) (2015八下·孟津期中) 若M(﹣2,y1),N(﹣1,y2),P(2,y3)三点都在函数y= (k<0)的图像上,则y1 , y2 , y3的大小关系是()A . y3>y1>y2B . y3>y2>y1C . y1>y2>y3D . y2>y1>y34. (2分) (2017八上·盂县期末) 下列运算正确的是()A . x3+x3=x6B . x2x3=x6C . (x2)3=x6D . x6÷x3=x25. (2分)甲、乙二人在相同条件下各射靶10次,每次射靶成绩如图所示,经计算得:=1,S =1.2,S =5.8,则下列结论中不正确的是()A . 甲、乙的总环数相等B . 甲的成绩稳定C . 甲、乙的众数相同D . 乙的发展潜力更大6. (2分) (2018九上·丹江口期末) 如图,在△ABC中,AC=6,BC=8,AB=10,D,E分别是AC,BC的中点,则以DE为直径的圆与AB的位置关系是()A . 相切B . 相交C . 相离D . 无法确定7. (2分) (2019九上·綦江期末) 已知二次函数 y=ax2+bx+c(a≠0)的图象如图,有下列 5 个结论:①4a+2b+c >0;②abc<0;③b<a+c;④3b>2c;⑤a+b<m(am+b),(m≠1 的实数);其中正确结论的个数为()A . 2 个B . 3 个C . 4 个D . 5 个8. (2分) (2017八上·丛台期末) 图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A . abB . (a+b)2C . (a﹣b)2D . a2﹣b2二、填空题 (共9题;共9分)9. (1分) (2019八下·长春月考) ________.10. (1分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________ .11. (1分) (2016七下·沂源开学考) 已知一次函数的图象经过两点A(1,1),B(3,﹣1),则这个函数的解析式是________.12. (1分)如图,有一圆锥形粮堆,其主视图是边长为6 m的正三角形ABC,母线AC的中点P处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是________ m.(结果不取近似数)13. (1分)(2017·永康模拟) 函数的自变量x的取值范围是________.14. (1分)一次数学测试中,某学习小组5人的成绩分别是120、100、135、100、125,则他们成绩的中位数是________.15. (1分) (2018九上·茂名期中) 已知关于x的方程x2+kx+6=0的一个根为x=1,则实数k的值为________.16. (1分)(2020·上饶模拟) 直线y= x+3与两坐标轴交于A、B两点,以AB为斜边在第二象限内作等腰Rt△ABC ,反比例函数y= (x<0)的图象过点C ,则m=________.17. (1分)(2012·河南) 如图,点A、B在反比例函数y= (k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.三、解答题 (共11题;共90分)18. (10分)计算:(1)﹣()﹣1+20140;(2)(x+1)2﹣(x+2)(x﹣2).19. (10分)综合题。
河南省三门峡市2019-2020学年中考第二次质量检测数学试题含解析
河南省三门峡市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.下列计算或化简正确的是()A.234265+=B.842=C.2(3)3-=-D.2733÷=3.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为()A.8米B.米C.米D.米4.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A.50 B.0.02 C.0.1 D.15.-2的绝对值是()A.2 B.-2 C.±2 D.1 26.下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)37.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.8.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x-对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差9.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在0 5 0.2 10 5 15 0.4 2050.1根据表中已有的信息,下列结论正确的是( ) A .共有40名同学参加知识竞赛B .抽到的同学参加知识竞赛的平均成绩为10分C .已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D .抽到同学参加知识竞赛成绩的中位数为15分 10.下列运算正确的是( ) A .4 =2B .43﹣27=1C .182÷=9D .233⨯=2 11.平面直角坐标系中的点P (2﹣m ,12m )在第一象限,则m 的取值范围在数轴上可表示为( ) A .B .C .D .12.如图,在⊙O 中,O 为圆心,点A ,B ,C 在圆上,若OA=AB ,则∠ACB=( )A .15°B .30°C .45°D .60°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.14.如图,线段AB 两端点坐标分别为A (﹣1,5)、B (3,3),线段CD 两端点坐标分别为C (5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.15.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为_________________.16.如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan∠DBE的值是_____.17.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.18.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x 台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?20.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.22.(8分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.23.(8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?24.(10分)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.25.(10分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;26.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.27.(12分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若AD=2,AE=6,求EC的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.2.D【解析】解:A.不是同类二次根式,不能合并,故A错误;B.822=,故B错误;C.2-=,故C错误;(3)3D.27327393÷=÷==,正确.故选D.3.C【解析】此题考查的是解直角三角形如图:AC=4,AC⊥BC,∵梯子的倾斜角(梯子与地面的夹角)不能>60°.∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.4.D【解析】所有小组频数之和等于数据总数,所有频率相加等于1. 5.A【解析】【分析】根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.此题考查绝对值,难度不大 6.C 【解析】 【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得. 【详解】A 、a 2•a 3=a 5,此选项不符合题意;B 、a 12÷a 2=a 10,此选项不符合题意;C 、(a 2)3=a 6,此选项符合题意;D 、(-a 2)3=-a 6,此选项不符合题意; 故选C . 【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则. 7.D 【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D . 考点:D. 8.A 【解析】 【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A. 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键. 9.B根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.【详解】∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同学参加知识竞赛的平均成绩为:0505030010050++++=10,故选项B正确;∵0分同学10人,其频率为0.2,∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;∵第25、26名同学的成绩为10分、15分,∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.故选:B.【点睛】本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.10.A【解析】【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=2,所以A选项正确;B、原式B选项错误;C、原式=3,所以C选项错误;D、原式,所以D选项错误.故选A.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.B【详解】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征12.B【解析】【分析】根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【详解】解:∵OA=AB,OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,故选B.【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是58.故答案为58.结果,那么事件A 的概率P (A )=m n. 14.()1,1或()4,4 【解析】 【分析】分点A 的对应点为C 或D 两种情况考虑:①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,点E 即为旋转中心;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,点M 即为旋转中心.此题得解. 【详解】①当点A 的对应点为点C 时,连接AC 、BD ,分别作线段AC 、BD 的垂直平分线交于点E ,如图1所示:A Q 点的坐标为()1,5-,B 点的坐标为()3,3, E ∴点的坐标为()1,1;②当点A 的对应点为点D 时,连接AD 、BC ,分别作线段AD 、BC 的垂直平分线交于点M ,如图2所示:A Q 点的坐标为()1,5-,B 点的坐标为()3,3, M ∴点的坐标为()4,4.综上所述:这个旋转中心的坐标为()1,1或()4,4.本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键. 15.-4<x <1【解析】将P (1,1)代入解析式y 1=mx ,先求出m 的值为12,将Q 点纵坐标y=1代入解析式y=12x ,求出y 1=mx 的横坐标x=-4,即可由图直接求出不等式kx+b >mx >-1的解集为y 1>y 1>-1时,x 的取值范围为-4<x <1.故答案为-4<x <1.点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x 轴的交点坐标是解题的关键.16.1.【解析】【分析】求出AD=AB ,设AD=AB=5x ,AE=3x ,则5x ﹣3x=4,求出x ,得出AD=10,AE=6,在Rt △ADE 中,由勾股定理求出DE=8,在Rt △BDE 中得出tan ,DE DBE BE ∠=代入求出即可, 【详解】解:∵四边形ABCD 是菱形,∴AD=AB ,∵cosA=35,BE=4,DE ⊥AB , ∴设AD=AB=5x ,AE=3x ,则5x ﹣3x=4,x=1,即AD=10,AE=6,在Rt △ADE 中,由勾股定理得: 8DE ==,在Rt △BDE 中,8tan 2,4DE DBE BE ∠=== 故答案为:1.【点睛】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE 的长.17.(y ﹣1)1(x ﹣1)1.【解析】解:令x+y=a ,xy=b ,则(xy ﹣1)1﹣(x+y ﹣1xy )(1﹣x ﹣y )=(b ﹣1)1﹣(a ﹣1b )(1﹣a )=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案为(y﹣1)1(x﹣1)1.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.18.60°【解析】【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.【解析】【分析】(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;(2)解不等式求出x的范围,根据一次函数的性质计算即可.【详解】解:(1)由题意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由题意得,35﹣x≤2x,解得,x≥353,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.【点睛】本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.20.(1) 14;(2)112.【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.21.(1) y=﹣x2+2x+3;(2)见解析.【解析】【分析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),∴,得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),∴抛物线的对称轴为直线x=1,∴点A的坐标为(﹣1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,当AC为斜边时,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t2﹣6t+10,解得,t=,∴点Q的坐标为(1,),当CQ时斜边时,t2﹣6t+10=4+t2+10,解得,t=,∴点Q的坐标为(1,﹣),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.22.(1)m<2;(2)m=1.【解析】【分析】(1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值.【详解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有两个不相等的实数根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m 为非负整数,∴m=3 或m=1,当m=3 时,原方程为x2-2x-3=3,解得x1=3,x2=﹣1(不符合题意舍去),当m=1 时,原方程为x2﹣2=3,解得x1x2=,综上所述,m=1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.23.(1)甲80件,乙20件;(2)x≤90【解析】【分析】(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.【详解】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(100﹣x )件,根据题意得30x+20(100﹣x )=2800,解得x=80,则100﹣x=20,答:甲种奖品购买了80件,乙种奖品购买了20件;(2)设甲种奖品购买了x 件,乙种奖品购买了(100﹣x )件,根据题意得:30x+20(100﹣x )≤2900,解得:x≤90,【点睛】本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.24.(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32.【解析】【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (1,4m ),D (1,4n ),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论.【详解】(1)①如图1,4m =Q ,∴反比例函数为4y x=, 当4x =时,1y =,()4,1B ∴,当2y =时, 42x∴=, 2x ∴=,()2,2A ∴,设直线AB 的解析式为y kx b =+,∴ 2241k b k b +=⎧⎨+=⎩, ∴ 123k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为132y x =-+; ②四边形ABCD 是菱形, 理由如下:如图2,由①知,()4,1B ,//BD y Q 轴,()4,5D ∴,Q 点P 是线段BD 的中点,()4,3P ∴,当3y =时,由4y x =得,43x =, 由20y x =得,203x =, 48433PA ∴=-=,208433PC =-=, PA PC ∴=,PB PD =Q ,∴四边形ABCD 为平行四边形,BD AC ⊥Q ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,BD AC ∴=,当4x =时,4m m y x ==,4n n y x == 4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫ ⎪⎝⎭, 4,8m n P +⎛⎫∴ ⎪⎝⎭, 8(m A m n ∴+,)8m n +,8(n C m n +,)8m n + AC BD =Q ,∴ 8844n m n m m n m n -=-++, 32m n ∴+=.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.25.(1)P=12;(2)P=14. 【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.试题解析:(1)甲、乙两名学生到A 、B 两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB 、BA 共2种,所以甲乙两名学生在不同书店购书的概率P (甲、乙2名学生在不同书店购书)=41=82; (2)甲、乙、丙三名学生AB 两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=21 = 84.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】【分析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC 进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=mx的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8x,把A(﹣4,n)代入y=﹣8x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.27.(1)证明见解析;(2)1.【解析】试题分析:(1)取BD的中点0,连结OE,如图,由∠BED=90°,根据圆周角定理可得BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,再证明OE∥BC,得到∠AEO=∠C=90°,于是可根据切线的判定定理判断AC是△BDE的外接圆的切线;(2)设⊙O的半径为r,根据勾股定理得62+r2=(r+2)2,解得r=2,根据平行线分线段成比例定理,由OE∥BC得,然后根据比例性质可计算出EC.试题解析:(1)证明:取BD的中点0,连结OE,如图,∵DE⊥EB,∴∠BED=90°,∴BD为△BDE的外接圆的直径,点O为△BDE的外接圆的圆心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圆的切线;(2)解:设⊙O的半径为r,则OA=OD+DA=r+2,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+2)2,解得r=2,∵OE∥BC,∴,即,∴CE=1.考点:1、切线的判定;2、勾股定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三门峡市2019年中考数学试题与答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.﹣的绝对值是()A.﹣B.C.2 D.﹣22.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣53.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°4.下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=25.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元8.已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.49.如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.10.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)二、填空题(每小题3分,共15分。
)11.计算:﹣2﹣1=.12.不等式组的解集是.13.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是.14.如图,在扇形AOB中,∠AOB=120°,半径OC交弦AB于点D,且OC⊥OA.若OA=2,则阴影部分的面积为.15.如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=α.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x=.17.(9分)如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,则DF的长为;②取的中点H,当∠EAB的度数为时,四边形OBEH为菱形.18.(9分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.19.(9分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)20.(9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.21.(10分)模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=;由周长为m,得2(x+y)=m,即y=﹣x+.满足要求的(x,y)应是两个函数图象在第象限内交点的坐标.(2)画出函数图象函数y=(x>0)的图象如图所示,而函数y=﹣x+的图象可由直线y=﹣x平移得到.请在同一直角坐标系中直接画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象①当直线平移到与函数y=(x>0)的图象有唯一交点(2,2)时,周长m的值为;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m的取值范围为.22.(10分)在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.23.(11分)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x﹣2经过点A,C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.①当△PCM是直角三角形时,求点P的坐标;②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b的解析式.(k,b可用含m 的式子表示)参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.B 2.C 3.B 4.D 5.A 6.A 7.C 8.D 9.A 10. D二、填空题(每小题3分,共15分。
)11. 1. 12. x≤﹣2. 13.. 14.+π. 15.或.三、解答题(本大题共8个小题,满分75分)16.解:原式=(﹣)÷=•=,当x=时,原式==.17.解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=FD∵=sin∠ABD=sin45°=,∴,即BF=FD∵AB=4,∴BD=4cos45°=2,即BF+FD=2,(+1)FD=2∴FD==4﹣2故答案为.②连接OE,EH,∵点H是的中点,∴OH⊥AE,∵∠AEB=90°∴BE⊥AE∴BE∥OH∵四边形OBEH为菱形,∴BE=OH=OB=AB∴sin∠EAB==∴∠EAB=30°.故答案为:30°18.解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).19.解:∵∠ACE=90°,∠CAE=34°,CE=55m,∴tan∠CAE=,∴AC==≈82.1m,∵AB=21m,∴BC=AC﹣AB=61.1m,在Rt△BCD中,tan60°==,∴CD=BC≈1.73×61.1≈105.7m,∴DE=CD﹣EC=105.7﹣55≈51m,答:炎帝塑像DE的高度约为51m.20.解:(1)设A的单价为x元,B的单价为y元,根据题意,得,∴,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,由题意可知,z≥(30﹣z),∴z≥,W=30z+15(30﹣z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;21.解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,答案为:一;(2)图象如下所示:(3)①把点(2,2)代入y=﹣x+得:2=﹣2+,解得:m=8;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=和y=﹣x+并整理得:x2﹣mx+4=0,△=m2﹣4×4≥0时,两个函数有交点,解得:m≥8;(4)由(3)得:m≥8.22.解:(1)如图1中,延长CP交BD的延长线于E,设AB交EC于点O.∵∠PAD=∠CAB=60°,∴∠CAP=∠BAD,∵CA=BA,PA=DA,∴△CAP≌△BAD(SAS),∴PC=BD,∠ACP=∠ABD,∵∠AOC=∠BOE,∴∠BEO=∠CAO=60°,∴=1,线BD与直线CP相交所成的较小角的度数是60°,故答案为1,60°.(2)如图2中,设BD交AC于点O,BD交PC于点E.∵∠PAD=∠CAB=45°,∴∠PAC=∠DAB,∵==,∴△DAB∽△PAC,∴∠PCA=∠DBA,==,∵∠EOC=∠AOB,∴∠CEO=∠OABB=45°,∴直线BD与直线CP相交所成的小角的度数为45°.(3)如图3﹣1中,当点D在线段PC上时,延长AD交BC的延长线于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,设AD=a,则DC=AD=a,PD=a,∴==2﹣.如图3﹣2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD=AD=a,PD=a,∴PC=a﹣a,∴==2+.23.解:(1)当x=0时,y=﹣x﹣2=﹣2,∴点C的坐标为(0,﹣2);当y=0时,﹣x﹣2=0,解得:x=﹣4,∴点A的坐标为(﹣4,0).将A(﹣4,0),C(0,﹣2)代入y=ax2+x+c,得:,解得:,∴抛物线的解析式为y=x2+x﹣2.(2)①∵PM⊥x轴,∴∠PMC≠90°,∴分两种情况考虑,如图1所示.(i)当∠MPC=90°时,PC∥x轴,∴点P的纵坐标为﹣2.当y=﹣2时,x2+x﹣2=﹣2,解得:x1=﹣2,x2=0,∴点P的坐标为(﹣2,﹣2);(ii)当∠PCM=90°时,设PC与x轴交于点D.∵∠OAC+∠OCA=90°,∠OCA+∠OCD=90°,∴∠OAC=∠OCD.又∵∠AOC=∠COD=90°,∴△AOC∽△COD,∴=,即=,∴OD=1,∴点D的坐标为(1,0).设直线PC的解析式为y=kx+b(k≠0),将C(0,﹣2),D(1,0)代入y=kx+b,得:,解得:,∴直线PC的解析式为y=2x﹣2.联立直线PC和抛物线的解析式成方程组,得:,解得:,,点P的坐标为(6,10).综上所述:当△PCM是直角三角形时,点P的坐标为(﹣2,﹣2)或(6,10).②当y=0时,x2+x﹣2=0,解得:x1=﹣4,x2=2,∴点B的坐标为(2,0).∵点P的横坐标为m(m>0且m≠0),∴点P的坐标为(m,m2+m﹣2),∴直线PB的解析式为y=(m+4)x﹣(m+4)(可利用待定系数求出).∵点B,B′关于点C对称,点B,B′,P到直线l的距离都相等,∴直线l过点C,且直线l∥直线PB,∴直线l的解析式为y=(m+4)x﹣2.。