3.3.1函数的单调性与导数第二课时

合集下载

函数的单调性与导数(第二课时)

函数的单调性与导数(第二课时)

§1.3.1 函数的单调性与导数(第二课时)【学习目标】1、进一步掌握函数的单调性与导数的关系;2、能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不定式;3、 会求函数的单调区间(其中多项式函数次数一般不超过三次)。

【自主学习】1、 函数的单调性与其导数的正负关系一般地,设函数y=f(x),在区间(a,b )上()0,()____________;(2)()0,()f x f x f x f x '>'<(1)如果则在该区间上如果则在该区间上_____________.2、 函数单调性与导数值大小的关系一般地,设函数y=f(x),在区间(a,b )上1(),(),f x a b f x a b ''()如果越大,函数在区间()上变化得_________,函数的图像就比较“陡峭”(向上或向下);(2)如果越小,函数在区间()上变化得_________,函数的图像就比较“平缓”(向上或向下).3、(f 'x)>0是f(x)在此区间为增函数的充要条件吗?4、怎样证明函数f(x)在一个区间上是增函数?5、求下列函数的单调区间:1ln ;y x x =-() (2).y =【质疑探究】探究一 证明函数ln ()x f x x=在区间(0,2)上是单调递增函数。

探究二 已知0,1,a a >≠且证明函数()ln - 0)x f x a x x =-∞在(,内是减函数。

3.(1)+(2)1+y x ax b y a y a =-+∞∞探究三 已知函数若函数在(1,)内是增函数,求的取值范围.若函数的一个单调递增区间为(,),求的值。

1,ln(1)x x x >>+探究四 已知证明:。

函数的单调性与导数[二]

函数的单调性与导数[二]

2°用“导数法” 求单调区间的步骤
注:单调区间不可以并起来。
一.应用导数求函数的单调区间
1.确定下列函数的单调区间:
1( fx ) 2 x 3 x 1 21 x )
3 2
(2) f(x)=sinx-x ; x∈(0,p)
x 3) f (x) sinx 2
尝试高考
函 数 y x c o s x s i n x 在 下 面 哪 个 区 间 内 是 增 函 数 ( B) p 3 p 3 p 5 p A .( , ) B . (, pp 2 )C .( , ) D .( 2 pp , 3 ) 22 22
b x 6 . 讨 论 函 数 f() x2 (1 x1 , b 0 ) 的 单 x 1 调 性 ;
(B)–1<a<1 (D) 0<a<1
3、当x∈(-2,1)时,f(x)=2x3+3x2-12x+1 是( B ) (A)单调递增函数 (B)单调递减函数 (B)(C)部份单调增,部分单调减 (C)(D) 单调性不能确定
3 2 4 .函 数 f(x )x a x b xc ,其 中 abc ,,为 常 数 ,
当 a 3 b0 时 , f(x ) 在上 R ( A)
2
(A ) 增 函 数 (B ) 减 函 数 (C ) 常 数 (D ) 既 不 是 增 函 数 也 不 是 减 函 数
1 3 2 5 . 求 fx a x x 1 a 0 的 ) ) 3 单 调 区 间 和 单 调 性 ;
附近几乎没有升降
试画出函数 f ( x ) 图象的大致形状。 解: f ( x ) 的大致形状如右图:
变化,切线平行x轴
y f ( x)

05《函数的单调性与导数》02

05《函数的单调性与导数》02

1 3 2 例题5:求函数f ( x) = − ax + x +1(a ≤ 0)的单调区间 3
练习 b 求函数f ( x) = x + (b > 0)的单调区间 x
y
y = f ( x)
1 2 x o
y
y = f ( x)
1 2 x
y
y = f '( x)
2 x
o
(A)
y
(B)
y
o
y = f ( x)
2 1 x
y = f ( x)
x
o
o 1 2
(C)
(D)
ቤተ መጻሕፍቲ ባይዱ
已知f (x)是f(x)的导函数 的导函数, 已知f/(x)是f(x)的导函数, (x)的图像如图所示 那么f(x) 的图像如图所示, f/(x)的图像如图所示,那么f(x) 的图像只可能是
1.3.1 函数的单调性与导数 第二课时
复习提问: 复习提问:
1.函数的导数与函数单调性的关系 1.函数的导数与函数单调性的关系
2.运用导数确定函数的单调性的方法步骤 2.运用导数确定函数的单调性的方法步骤
1.函数的导数与函数单调性的关系 函数的导数与函数单调性的关系
在某个区间( 在某个区间(a,b)内,如果 f ′( x) > 0 ,那么函数 在这个区间内单调递增 y = f (x)在这个区间内单调递增;; 如果 f ′( x) < 0,那 么函数 y = 在这个区间内单调递减. f (x)在这个区间内单调递减.
练习:求以下函数的单调区间: 练习 求以下函数的单调区间: 求以下函数的单调区间
1. f ( x) = 2 x + 3 x − 12 x + 1

数学:3.3.1函数的单调性与导数课件

数学:3.3.1函数的单调性与导数课件
3.3.1函数的单调性与导数
第一页,编辑于星期日:十二点 三十五分。
一、复习引入:
函数 y = f (x) 在给定区间 G 上,当 x 1、x 2 ∈G 且 x 1< x 2 时
1)都有 f ( x 1 ) < f ( x 2 ), 则 f ( x ) 在G 上是增函数;
2)都有 f ( x 1 ) > f ( x 2 ), 则 f ( x ) 在G 上是减函数;
的图象就“平缓”一些.
如图,函数 y f (x) 在 (0,b)或 (a,0)内的图 象“陡峭”,在(b,) 或(, a)
内的图象平缓.
第十二页,编辑于星期日:十二点 三十五分。
练习
函数 y f (x)的图象如图所示, 试画出导函数 f (x图) 象的
大致形状
第十三页,编辑于星期日:十二点 三十五分。
第二十页,编辑于星期日:十二点 三十五分。
• 解法二:(数形结合)
• 如图所示,f′(x)=(x-1)[x-(a-1)].若在 (1,4)内f′(x)≤0,(6,+∞)内f′(x)≥0,且f′(x)=0 有一根为1,则另一根在[4,6]上.
所以ff′′((46))≤≥00,, 即35((57--aa))≤≥00,, 所以 5≤a≤7.
总结
在某个区间上,f '(x)>0(或<0) ,f(x)在这个区间上单调递增 (递减);但由f(x)在这个区间上单调递增(递减)而仅 仅得到 f '(x)>0(或<0)是不够的。还有可能导数等于0也能使 f(x)在这个区间上单调,所以对于能否取到等号的问题需要 单独验证。
数.
第十六页,编辑于星期日:十二点 三十五分。
练习
1.判断下列函数的单调性, 并求出单调区间:

3.3.1函数的单调性与导数(二)

3.3.1函数的单调性与导数(二)
8
• 解法二:(数形结合) • 如图所示,f′(x)=(x-1)[x-(a-1)].若在 (1,4) 内 f′(x)≤0 , (6 ,+ ∞ ) 内 f′(x)≥0 ,且 f′(x) =0有一根为1,则另一根在[4,6]上.
f′(4)≤0, 所以 f′(6)≥0,
3(5-a)≤0, 即 5(7-a)≥0,
x3
因为函数在(0,1]上单调递增
2 f '(x)>0,即a - 3 在x (0, 1]上恒成立 x 1 而g(x) 3 在(0, 1]上单调递增, x g(x)max g(1)=-1
a〉 -1
11
2 当a 1时,f '(x) 2 3 x 所以a的范围是[-1,+) 练习1 1 1
所以 5≤a≤7.
9
• 解法三:(转化为不等式的恒成立问题) • f′(x) = x2 - ax + a - 1. 因为 f(x) 在 (1,4) 内单调递减,所 以f′(x)≤0在(1,4)上恒成立.即a(x-1)≥x2-1在(1,4)上 恒成立,所以a≥x+1,因为2<x+1<5,所以当a≥5时, f′(x)≤0在(1,4)上恒成立, • 又因为f(x)在(6,+∞)上单调递增,所以f′(x)≥0在 (6,+∞)上恒成立,
象“陡峭”,在 (b, )
或 ( , a )
内的图象平缓.
5
练习
函数 y f 的大致形状
( x ) 的图象如图所示, 试画出导函数 f ( x )图象
6
题型:根据函数的单调性求参数的取值范围
例2:求参数的范围 若函数f(x) ax 3 - x 2 x - 5在(-,+)上单调递增, 求a的取值范围

3.3.1 函数的单调性与导数

3.3.1 函数的单调性与导数
活动与探究 1 (1)函数 y=xcos x-sin x 在下面哪个区间内是增函数( )
A.
π 2
,
3π 2
B.(π,2π)
C.
3π 2
,
5π 2
D.(2π,3π)
思路分析:只需判断在哪个区间上导函数的值大于零即可.
答案:B
解析:y'=cos x-xsin x-cos x=-xsin x,若 y=f(x)在某区间内是增
函数,只需在此区间内 y'恒大于零即可.
∴只有选项 B 符合题意,当 x∈(π,2π)时,y'>0 恒成立.
(2)求函数 f(x)=x2-ln x 的单调区间.
思路分析:求函数的单调区间,即求定义域上满足 f'(x)>0 或 f'(x)<0 的区间.
解:函数 f(x)的定义域为(0,+∞),
f'(x)=2x-1������ = (
∴当 t<0 时,f(x)的递增区间为
-∞,
������ 2
,(-t,+∞),递减区间为
������ 2
,-t
;
当 t>0 时,f(x)的递增区间为(-∞,-t),
������ 2
,
+

,递减区间为
-������,
������ 2
.
迁移与应用 已知函数 f(x)=12ax2+ln x(a∈R),求 f(x)的单调区间.
则(-9,0)是 3x2-2mx<0 的解集,
∴3×(-9)2-2×(-9)×m=0,m=-227.
∴a≤(2x3)min.∵x∈[2,+∞),y=2x3 是增函数,

高中数学必修二《3.3.1函数的单调性与导数》课件

高中数学必修二《3.3.1函数的单调性与导数》课件
高中数学课件
(金戈铁骑 整理制作)
教育部重点课题新教育子课题 《在高中数学教学中如何达到理想课堂的实践》
温州市瓯海区三溪中学 张明
一、复习回顾:基本初等函数的导数公式
(1).常函数:(C)/ 0, (c为常数);
(2).幂函数 : (xn)/ nxn1
(3).三角函数 :
(1)(sin x) cos x (2)(cos x) sin x
(3) f (x) sin x x, x (0, );
(4) f (x) 2x3 3x2 24x 1. (5)y=2x +2-x 解: (1) 因为 f (x) x3 3x , 所以
f (x) 3x2 3 3(x2 1) 0. 因此, 函数 f (x) x3 3x 在 x R 上单调递增.
(4).对数函数的导数:
(1) (ln x) 1 . x
(5).指数函数的导数:
(2)
(loga
x)

1. x ln a
(1) (e x ) e x .
(2) (a x ) a x ln a(a 0, a 1).
有限次四则运算的求导法则:
1 u v u v
2 uv uv uv 特殊情况:cu cu
3

v u


uv uv u2
特殊情况
:

1 u



u u2
(c为常数)
u 0
这是简化记忆公式。
5
二、复习引入:
函数 y = f (x) 在给定区间 G 上,当 x 1、x 2 ∈D 且 x 1< x 2 时1)都有 f ( x 1 ) < f ( x 2 ), 则 f ( x ) 在D 上是增函数; 2)都有 f ( x 1 ) > f ( x 2 ), 则 f ( x ) 在D 上是减函数;

【高中数学】第二课时 导数与函数的单调性(二)

【高中数学】第二课时 导数与函数的单调性(二)

第二课时导数与函数的单调性(二) 课标要求素养要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性. 进一步理解函数的导数和其单调性的关系,提升数学运算素养与直观想象素养.题型一含参数函数的单调性【例1】讨论函数f(x)=12ax2+x-(a+1)ln x(a≥0)的单调性.解函数f(x)的定义域为(0,+∞),f′(x)=ax+1-a+1x=ax2+x-(a+1)x.①当a=0时,f′(x)=x-1 x,由f′(x)>0,得x>1,由f′(x)<0,得0<x<1.∴f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.②当a>0时,f′(x)=a⎝⎛⎭⎪⎫x+a+1a(x-1)x,∵a>0,∴a+1 a>0.由f′(x)>0,得x>1,由f′(x)<0,得0<x<1.∴f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.综上所述,当a≥0时,f(x)在(0,1)内为减函数,在(1,+∞)内为增函数.规律方法(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数的定义域内讨论,还要确定导数为0的点和函数的间断点.【训练1】求函数f(x)=1x2+a ln x(a∈R)的单调递减区间.解 易得函数f (x )的定义域是(0,+∞),f ′(x )=-2x 3+a x =ax 2-2x 3. ①当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, 故f (x )在(0,+∞)上单调递减. ②当a >0时,若0<x <2a ,则f ′(x )<0;若x >2a ,则f ′(x )>0,所以f (x )在⎝⎛⎭⎪⎫0,2a 上单调递减,在⎝⎛⎭⎪⎫2a ,+∞上单调递增. 综上可知,当a ≤0时,f (x )的单调递减区间为(0,+∞),当a >0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫0,2a . 题型二 根据函数的单调性求参数【例2】 (1)若函数f (x )=(x 2-cx +5)e x 在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,则实数c 的取值范围是( ) A.(-∞,2] B.(-∞,4] C.(-∞,8]D.[-2,4](2)已知函数f (x )=ln x +(x -b )22在⎣⎢⎡⎦⎥⎤12,2上存在单调递增区间,则实数b 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,94 B.(-∞,3) C.⎝ ⎛⎭⎪⎫-∞,32 D.(-∞,2)解析 (1)易得f ′(x )=[x 2+(2-c )x -c +5]e x .∵函数f (x )在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,等价于x 2+(2-c )x -c +5≥0对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立, ∴c ≤x 2+2x +5x +1对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立.∵x ∈⎣⎢⎡⎦⎥⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4.(2)易得f ′(x )=12x +x -b =2x 2-2bx +12x .根据题意,得f ′(x )>0在⎣⎢⎡⎦⎥⎤12,2上有解.令h (x )=2x 2-2bx +1,因为h (0)=1>0,所以只需h (2)>0或h ⎝ ⎛⎭⎪⎫12>0,解得b <94,故选A.答案 (1)B (2)A规律方法 (1)已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,利用分离参数或函数性质解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围,然后检验参数取“=”时是否满足题意.(2)若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解(需验证解的两侧导数是否异号).【训练2】 若函数f (x )=x 3-12x 在区间(k -1,k +1)上不单调,则实数k 的取值范围是( )A.(-∞,-3]∪[-1,1]∪[3,+∞)B.(-3,-1)∪(1,3)C.(-2,2)D.不存在这样的实数k解析 由题意得,f ′(x )=3x 2-12=0在区间(k -1,k +1)上至少有一个实数根. 又f ′(x )=3x 2-12=0的根为±2,且f ′(x )在x =2或-2两侧导数异号,而区间(k -1,k +1)的区间长度为2,故只有2或-2在区间(k -1,k +1)内, ∴k -1<2<k +1或k -1<-2<k +1, ∴1<k <3或-3<k <-1,故选B. 答案 B题型三 函数单调性的应用【例3】(1)已知f(x)为R上的可导函数,其导函数为f′(x),且对于任意的x∈R,均有f(x)+f′(x)>0,则()A.e-2 019f(-2 019)<f(0),e2 019f(2 019)>f(0)B.e-2 019f(-2 019)<f(0),e2 019f(2 019)<f(0)C.e-2 019f(-2 019)>f(0),e2 019f(2 019)>f(0)D.e-2 019f(-2 019)>f(0),e2 019f(2 019)<f(0)(2)已知f(x)的定义域为(0,+∞),f′(x)为f(x)的导函数,且满足f(x)<-xf′(x),则不等式f(x+1)>(x-1)·f(x2-1)的解集是()A.(0,1)B.(2,+∞)C.(1,2)D.(1,+∞)解析(1)构造函数h(x)=e x f(x),则h′(x)=e x f(x)+e x f′(x)=e x(f(x)+f′(x))>0,所以函数h(x)在R上单调递增,故h(-2 019)<h(0),即e-2 019f(-2 019)<e0f(0),即e-2 019f(-2 019)<f(0).同理,h(2 019)>h(0),即e2 019f(2 019)>f(0),故选A.(2)构造函数y=xf(x),x∈(0,+∞),则y′=f(x)+xf′(x)<0,所以函数y=xf(x)在(0,+∞)上单调递减.又因为f(x+1)>(x-1)f(x2-1),所以(x+1)f(x+1)>(x2-1)f(x2-1),所以x+1<x2-1,解得x>2或x<-1(舍).所以不等式f(x+1)>(x-1)f(x2-1)的解集是(2,+∞).故选B.答案(1)A(2)B【迁移1】把例3(1)中的条件“f(x)+f′(x)>0”换为“f′(x)>f(x)”,比较e2 019f(-2 019)和f(0)的大小.解令g(x)=f(x)e x,则g′(x)=f′(x)-f(x)e x,因为对任意的x∈R,都有f′(x)>f(x),所以g′(x)>0,即g(x)在R上单调递增,所以h(-2 019)<h(0),即f (-2 019)e-2 019<f (0)e 0,所以e 2 019f (-2 019)<f (0). 【迁移2】 把例3(2)中的条件“f (x )<-xf ′(x )”换为“f (x )<xf ′(x )”,解不等式(x 2+1)f (2x +1)>(2x +1)f (x 2+1).解 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,∵f (x )<xf ′(x ),∴g ′(x )>0,故g (x )在(0,+∞)上是增函数, 由(x 2+1)f (2x +1)>(2x +1)f (x 2+1)得 f (2x +1)2x +1>f (x 2+1)x 2+1即g (2x +1)>g (x 2+1),所以⎩⎨⎧2x +1>0,2x +1>x 2+1,解得0<x <2. 即不等式(x 2+1)f (2x +1)>(2x +1)f (x 2+1)的解集为(0,2).规律方法 用函数单调性比较大小或解不等式时常构造函数,常见的有: (1)对于f ′(x )>g ′(x ),构造h (x )=f (x )-g (x ). (2)对于f ′(x )+g ′(x )>0,构造h (x )=f (x )+g (x ). (3)对于f ′(x )+f (x )>0,构造h (x )=e x f (x ). (4)对于f ′(x )>f (x ),构造h (x )=f (x )e x . (5)对于xf ′(x )+f (x )>0,构造h (x )=xf (x ). (6)对于xf ′(x )-f (x )>0,构造h (x )=f (x )x .【训练3】 (多选题)已知定义在⎣⎢⎡⎭⎪⎫0,π2上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )sin x <0,则下列判断中正确的是( ) A.f ⎝ ⎛⎭⎪⎫π6<62f ⎝ ⎛⎭⎪⎫π4 B.f ⎝ ⎛⎭⎪⎫ln π3>0C.f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3 D.f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3解析 令g (x )=f (x )cos x ,x ∈⎣⎢⎡⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +f (x )sin xcos 2x,因为f ′(x )cos x +f (x )sin x <0,所以g ′(x )=f ′(x )cos x +f (x )sin x cos 2x <0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因此函数g (x )=f (x )cos x 在⎣⎢⎡⎭⎪⎫0,π2上单调递减, 又π6<π4,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cos π4, 即f ⎝ ⎛⎭⎪⎫π6>62f ⎝ ⎛⎭⎪⎫π4,故A 错;又f (0)=0,所以g (0)=f (0)cos 0=0,所以g (x )=f (x )cos x ≤0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因为ln π3∈⎣⎢⎡⎭⎪⎫0,π2,所以f ⎝ ⎛⎭⎪⎫ln π3<0,故B 错;又π6>π3,所以g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π3cos π3, 即f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,故C 正确; 又π4<π3,所以g ⎝ ⎛⎭⎪⎫π4>g ⎝ ⎛⎭⎪⎫π3,所以f⎝ ⎛⎭⎪⎫π4cos π4>f ⎝ ⎛⎭⎪⎫π3cos π3, 即f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3,故D 正确;故选CD.答案 CD一、素养落地1.通过学习导数与函数的单调性,提升数学运算与逻辑推理素养.2.对于含参数的导数的单调性,要清楚分类讨论的标准,做到不重不漏.3.利用函数的单调性求参数的取值范围的关键是转化为不等式的恒成立问题或存在性问题,再利用分离参数法或函数的性质求解. 二、素养训练1.设函数f (x )=2x +sin x ,则( ) A.f (1)>f (2)B.f (1)<f (2)C.f(1)=f(2)D.以上都不正确解析f′(x)=2+cos x>0,故f(x)是R上的增函数,故f(1)<f(2). 答案 B2.若f(x)=13x3-ax2的单调减区间是(0,2),则正数a的值是()A.1B.2C.3D.4解析f′(x)=x2-2ax,令f′(x)<0,由于a>0,故解得0<x<2a,故2a=2,即a=1. 答案 A3.已知f(x)=ln xx,则()A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)解析f(x)的定义域是(0,+∞),∵f′(x)=1-ln xx2,∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,故x=e时,f(x)max=f(e),又f(2)=ln 22=ln 86,f(3)=ln 33=ln 96,则f(e)>f(3)>f(2).答案 D4.若函数y=x2-2bx+6在(2,8)内是增函数,则实数b的取值范围是________. 解析由题意得y′=2x-2b≥0在(2,8)内恒成立,即b≤x在(2,8)内恒成立,所以b≤2.答案(-∞,2]5.若f(x)=-12x2+b ln(x+2)在(-1,+∞)上是减函数,则b的取值范围是________.解析∵f(x)在(-1,+∞)上为减函数,∴f′(x)≤0在(-1,+∞)上恒成立.∵f′(x)=-x+bx+2,∴-x+bx+2≤0在(-1,+∞)上恒成立,即b≤x(x+2)在(-1,+∞)上恒成立. 设g(x)=x(x+2)=(x+1)2-1,则当x>-1时,g(x)>-1,∴b≤-1.答案(-∞,-1]基础达标一、选择题1.已知函数f(x)=e xx,当1<x<3时,下列关系正确的是()A.f(x)<f(x)<f2(x)B.f(x)<f(x)<f2(x)C.f2(x)<f(x)<f(x)D.f2(x)<f(x)<f(x)解析由题意得f′(x)=(x-1)e xx2,当1<x<3时,f′(x)>0,所以f(x)在(1,3)上单调递增.又1<x<x<3,所以f(x)<f(x).由f(x)在(1,3)上单调递增,可知当x∈(1,3)时,f(x)>f(1)=e,所以f2(x)>f(x).综上f(x)<f(x)<f2(x).答案 A2.已知函数f(x),g(x)对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且当x>0时,有f′(x)>0,g′(x)>0,则当x<0时,有()A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0解析由已知,得f(x)为奇函数,g(x)为偶函数.∵当x>0时,f′(x)>0,g′(x)>0,∴f(x),g(x)在(0,+∞)上均单调递增,∴f(x)在(-∞,0)上单调递增,g(x)在(-∞,0)上单调递减,∴当x<0时,f′(x)>0,g′(x)<0.答案 B3.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-a ln x在(1,2)上为增函数,则a=()A.1B.2C.0D. 2解析∵函数f(x)=x2-ax+3在(0,1)上为减函数,∴a2≥1,得a≥2.g′(x)=2x-a x ,依题意g ′(x )≥0在(1,2)上恒成立,即2x 2≥a 在x ∈(1,2)时恒成立,有a ≤2,∴a =2. 答案 B4.已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A.(-∞,-3]∪[3,+∞)B.[-3,3]C.(-∞,-3)∪(3,+∞)D.(-3,3)解析 f ′(x )=-3x 2+2ax -1,由题意,可知f ′(x )=-3x 2+2ax -1≤0在R 上恒成立,∴(2a )2-4×(-3)×(-1)≤0,解得-3≤a ≤ 3. 答案 B5.若函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎣⎢⎡⎭⎪⎫1,32 D.⎝ ⎛⎭⎪⎫1,32 解析 由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x .令f ′(x )=0,解得x =12或x =-12(舍去).当0<x <12时,f ′(x )<0,函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上单调递减;当x >12时,f ′(x )>0,函数f (x )在区间⎝ ⎛⎭⎪⎫12,+∞上单调递增.因为函数f (x )在区间(k -1,k +1)上不是单调函数,所以k -1<12<k +1,解得-12<k <32.又k -1≥0,所以1≤k <32.故选C. 答案 C 二、填空题6.若函数f (x )=(x 2+mx )e x 的单调递减区间是⎣⎢⎡⎦⎥⎤-32,1,则实数m 的值为________.解析 f ′(x )=[x 2+(m +2)x +m ]e x .因为f (x )的单调减区间是⎣⎢⎡⎦⎥⎤-32,1,所以f ′(x )=0的两个根分别为x 1=-32,x 2=1,即⎩⎪⎨⎪⎧f ′⎝ ⎛⎭⎪⎫-32=0,f ′(1)=0,解得m =-32.答案 -327.函数f (x )=13x 3-12(2a +1)x 2+(a 2+a )x +4的单调减区间是________.解析 f ′(x )=x 2-(2a +1)x +a 2+a =[x -(a +1)](x -a ),令f ′(x )<0,得a <x <a +1,故f (x )的减区间是(a ,a +1). 答案 (a ,a +1)8.已知f (x )是定义在R 上的奇函数,且f (2)=0,若当x >0时,xf ′(x )+f (x )>0,则不等式xf (x )>0的解集是________. 解析 由题意设g (x )=xf (x ), 则g ′(x )=xf ′(x )+f (x ).∵当x >0时,xf ′(x )+f (x )>0,∴g (x )在(0,+∞)上单调递增. ∵f (x )是定义在R 上的奇函数, ∴g (x )是定义在R 上的偶函数. 又f (2)=0,则g (2)=2f (2)=0, ∴不等式xf (x )>0等价于g (x )>0=g (2), ∴|x |>2,解得x <-2或x >2,∴不等式xf (x )>0的解集是(-∞,-2)∪(2,+∞). 答案 (-∞,-2)∪(2,+∞) 三、解答题9.已知函数f (x )=x 3+ax 2-a 2x +2.(1)若a =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a >0,求函数f (x )的单调区间. 解 (1)∵a =1,∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴f ′(1)=4.又f (1)=3,∴切点坐标为(1,3),∴所求切线方程为y -3=4(x -1),即4x -y -1=0. (2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ),由f ′(x )=0得x =-a 或x =a3. 又a >0,由f ′(x )<0,得-a <x <a3, 由f ′(x )>0,得x <-a 或x >a3,故f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a ,a 3,单调递增区间为()-∞,-a 和⎝ ⎛⎭⎪⎫a 3,+∞.10.试讨论函数f (x )=kx -ln x 的单调区间. 解 函数f (x )=kx -ln x 的定义域为(0,+∞), f ′(x )=k -1x =kx -1x .当k ≤0时,kx -1<0,∴f ′(x )<0, 则f (x )在(0,+∞)上单调递减. 当k >0时,由f ′(x )<0,即kx -1x <0, 解得0<x <1k ; 由f ′(x )>0,即kx -1x >0,解得x >1k. ∴当k >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1k ,单调递增区间为⎝ ⎛⎭⎪⎫1k ,+∞.综上所述,当k ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间; 当k >0时,f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,1k ,单调递增区间为⎝ ⎛⎭⎪⎫1k ,+∞.能力提升11.已知函数f (x )=x ln x +x (x -a )2(a ∈R ).若存在x ∈⎣⎢⎡⎦⎥⎤12,2,使得f (x )>xf ′(x )成立,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫94,+∞ B.⎝ ⎛⎭⎪⎫32,+∞ C.(2,+∞)D.(3,+∞)解析 由f (x )>xf ′(x )成立,可得⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2<0.设g (x )=f (x )x =ln x +(x -a )2,则存在x ∈⎣⎢⎡⎦⎥⎤12,2,使得g ′(x )=1x +2(x -a )<0成立,即a >⎝ ⎛⎭⎪⎫x +12x min .又x +12x ≥2x ·12x =2,当且仅当x =12x ,即x =22时取等号,所以a > 2.故选C. 答案 C12.已知函数f (x )=x 3+ax 2+x +1,a ∈R . (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围.解 (1)f ′(x )=3x 2+2ax +1,Δ=4(a 2-3). 当Δ>0,即a >3或a <-3时, 令f ′(x )>0,即3x 2+2ax +1>0,解得x >-a +a 2-33或x <-a -a 2-33;令f ′(x )<0,即3x 2+2ax +1<0, 解得-a -a 2-33<x <-a +a 2-33.故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a -a 2-33,⎝ ⎛⎭⎪⎫-a +a 2-33,+∞; 单调递减区间是⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33. 当Δ<0,即-3<a <3时,对所有的x ∈R 都有f ′(x )>0,故f (x )在R 上单调递增.当Δ=0,即a =±3时,f ′⎝ ⎛⎭⎪⎫-a 3=0,且对所有的x ≠-a 3都有f ′(x )>0,故f (x )在R上单调递增.(2)由(1),知只有当a >3或a <-3时, f (x )在⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33内是减函数,所以⎩⎪⎨⎪⎧-a -a 2-33≤-23,-a +a 2-33≥-13.解得a ≥2.故a 的取值范围是[2,+∞).创新猜想13.(多选题)已知函数f (x )的导函数为f ′(x ),且f ′(x )<f (x ),对任意的x ∈R 恒成立,则( ) A.f (ln 2)<2f (0) B.f (2)<e 2f (0) C.f (ln 2)>2f (0)D.f (2)>e 2f (0)解析 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x <0,故g (x )在R 上单调递减,而ln 2>0,2>0,故g (ln 2)<g (0),g (2)<g (0),即f (ln 2)2<f (0)1,f (2)e 2<f (0)1,所以f (ln 2)<2f (0),f (2)<e 2f (0). 答案 AB14.(多空题)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,则实数a 的取值范围是________; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,则实数a 的取值范围是________. 解析 (1)由题知h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.由h (x )在(0,+∞)上存在单调递减区间,可得当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x (x >0),所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.因为a ≠0,所以-1<a <0或a >0.(2)由h (x )在[1,4]上单调递减,得当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.设H (x )=1x 2-2x ,x ∈[1,4],所以a ≥H (x )max ,而H (x )=⎝ ⎛⎭⎪⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以H (x )max =-716(此时x =4). 因为a ≠0,所以-716≤a <0或a >0.答案 (1)(-1,0)∪(0,+∞) (2)⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞)高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

函数的单调性与导数教案第二课时

函数的单调性与导数教案第二课时

《函数的单调性与导数》教案第二课时一、教学目标了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.二、教学重点利用导数判断一个函数在其定义区间内的单调性.教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.三、教学过程(一)复习1.确定下列函数的单调区间:(1)y =x 3-9x 2+24x ;(2)y =x -x 3.(3)f (x )=2x 3-9x 2+12x -32.讨论二次函数y =ax 2+bx +c (a >0)的单调区间.3.在区间(a , b )内f'(x )>0是f (x )在(a , b )内单调递增的 ( A )A .充分而不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件(二)举例例1.求下列函数的单调区间(1) f (x )=x -ln x (x >0);(2)(3) .(4)(b>0)(5)判断的单调性.分三种方法:(定义法)(复合函数)(导数) 例2.(1)求函数的单调减区间.(2)讨论函数的单调性. )253log()(2-+=x x x f 32)1)(12(x x y --=)3ln()(b x x f -=)lg()(2x x x f -=3223211()32y x a a x a x a =-+++2()(11,0)1bx f x x b x =-<<≠-(3)设函数f (x ) = ax – (a + 1) ln (x + 1),其中a ≥–1,求f (x )的单调区间.(1)解:y ′ = x 2 – (a + a 2) x + a 3 = (x – a ) (x – a 2),令y ′<0得(x – a ) (x – a 2)<0.(1)当a <0时,不等式解集为a <x <a 2此时函数的单调减区间为(a , a 2);(2)当0<a <1时,不等式解集为a 2<x <a 此时函数的单调减区间为(a 2, a );(3)当a >1时,不等式解集为a <x <a 2此时函数的单调减区间为(a , a 2);(4)a = 0,a = 1时,y ′≥0此时,无减区间.综上所述:当a <0或a >1时的函数的单调减区间为(a , a 2); 当0<a <1时的函数的单调减区间为(a 2, a ); 当a = 0,a = 1时,无减区间.(2)解:∵,∴f (x )在定义域上是奇函数. 在这里,只需讨论f (x )在(0, 1)上的单调性即可.当0<x <1时,f ′ (x ) ==. 若b >0,则有f ′ (x )<0,∴函数f (x )在(0, 1)上是单调递减的; 若b <0,则有f ′ (x )>0,∴函数f (x )在(0, 1)上是单调递增的. 由于奇函数在对称的两个区间上有相同的单调性,从而有如下结论: 当b >0时,函数f (x )在(–1, 1)上是单调递减的;当b <0时,函数f (x )在(–1, 1)上是单调递增的.(3)解:由已知得函数f (x )的定义域为 (–1, +∞),且(a ≥–1). (1)当–1≤a ≤0时,f ′ (x )<0,函f (x )在(–1, +∞)上单调递减.(2)当a >0时,由f ′ (x ) = 0,解得.f ′ (x )、f (x )随x 的变化情况如下表:3223211()32y x a a x a x a =-+++3223211()32y x a a x a x a =-+++22()()()11bx bx f x f x x x --==-=----2222222221(1)21()1(1)(1)x x x x x x b b b x x x '-----'==---2221(1)x b x +--1()1ax f x x -'=+从上表可知, 当x ∈时,f ′ (x )<0,函数f (x )在上单调递减. 当x ∈时,f ′(x )>0,函数f (x )在上单调递增. 综上所述,当–1≤a ≤0时,函数f (x )在(–1, +∞)上单调递减; 当a >0时,函数f (x )在上单调递减,函数f (x )在上单调递增.1(1,)a -1(1,)a -1(,)a +∞1(,)a +∞1(1,)a -1(,)a +∞。

函数的单调性与导数

函数的单调性与导数
x f′(x)= a ln a
(a>0)
f′(x)= ex
1 f′(x)= xln a (a>0 且 a≠1) 1 f′(x)= x
探究点一 函数的单调性与导函数正负的关系 问题 1 观察高台跳水运动员的高度 h 随时间 t 变化的函数 h(t)=-4.9t2+6.5t+10 的图象, 及 h′(t)=-9.8t+6.5 的 图象,思考运动员从起跳到最高点,从最高点到入水的运 动状态有什么区别.
3.3.1
小结 一般地,函数的单调性与其导函数的正负有如下关系:
在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这 个区间内单调递增;如果 f′(x)<0,那么函数 y=f(x)在这个 区间内单调递减.
问题 3
若恒有 f′(x) =0,则函数 f(x)有什么特性?
答 函数 f(x)是常函数,不具有单调性
(3) f ( x) sin x x, x (0, );
(4) f ( x) 2 x3 3x2 24 x 1.
3.3.1 例 2 求函数 f(x)=3x2-2ln x 的单调区间: 3 3 ∴f(x)的单调递增区间为( , +∞), 单调递减区间为(0, ). 3 3
3.3.1
(2,+∞) ,减区间为 4.(1) 函数 y = x2 - 4x + a 的增区间为 _________ (-∞,2) __________.
解析 y′=2x-4,令 y′>0,得 x>2;令 y′<0,得 x<2,
所以 y=x2-4x+a 的增区间为(2,+∞),
减区间为(-∞,2).
3.3.1
随堂检测
1.函数 f(x)=x+ln x 在(0,6)上是 A.单调增函数 B.单调减函数 1 1 C.在0, 上是减函数,在 ,6 上是增函数 e e 1 1 D.在0, 上是增函数,在 ,6 上是减函数 e e 1 解析 ∵f′(x)=1+ >0, x ∴函数在(0,6)上单调递增. ( A )

教学设计5:3.3.1 利用导数判断函数的单调性

教学设计5:3.3.1 利用导数判断函数的单调性

3.3.1 利用导数判断函数的单调性一、教学设计: 内容和内容解析:该部分的内容主要讲述的是函数的单调性与导数之间的关系,为函数的单调性研究提供了一个更为便捷的方法.在学习本节课之前,学生在必修1的《函数性质》内容中学习了函数单调性的定义以及利用图像得出单调区间的方法,另外还学习了导数的几何意义就是函数图象上的点所在的切线斜率.在函数单调性定义中提到:在定义域中的某个区间内任取两个不相等的自变量12,x x ,通过求1()f x 与2()f x 的大小关系可以判断函数的单调性.同时注意到导数的定义中的描述:000()()'()limx x f x f x f x x x →-=-.将导数的定义结合1212()()0f x f x x x ->-时,()f x 为增函数; 1212()()0f x f x x x -<-时,()f x 为减函数.可以判定()f x 在某个区间上如果满足'()0f x >,则()f x 在该区间上为增函数;反之,如果'()0f x <,则()f x 在该区间上为减函数.另外,相比于利用单调性定义判定1()f x 与2()f x 的大小关系来确定函数单调性的繁琐运算,求导函数的过程要简洁许多,这就为学生判断一些相对比较复杂的函数的单调性提供一个有力的方法. 目标和目标解析: 1.知识与技能目标:(1)了解函数的单调性与导函数之间的关系;(2)能利用导数研究简单函数的单调性,并掌握原函数与导函数之间的关系; (3)掌握函数单调性的求法,用以解决一些简单的问题. 2.过程与方法目标:(1)利用函数1()f x x x=+回顾单调性的定义和利用图象求单调区间的方法; (2)利用一个函数作为引入,让学生明确本节课学习之后将要达到的学习效果; (3)借助一个函数图象和几何画板让学生体验单调区间与导函数之间的关系; (4)利用所得的结论,让学生研究三个函数的单调区间;(5)利用三个函数图像,作出相应的原函数与导函数的图像草图,让学生体会原函数与导函数之间的图象联系;(6)利用引入中的例题,对本节课所学的内容进行应用并作适当的拓展、总结. 3.情感、态度与价值观目标:通过例题的设计培养学生的阅读与理解能力,在图象的研究中培养学生的观察能力,鼓励学生之间的相互协作,培养学生友善的社会主义核心价值观.教学过程 例1:已知1()(0)f x x x x=+>, (1)用单调性的定义,求()f x 的单调递增区间;(2)作出()f x 的图象,并写出()f x 的单调区间.解:(1)任取120x x >>,则12()()f x f x -=121211()()x x x x +-+ 得121212121()()()()x x f x f x x x x x --=- 由120x x >>,得120x x ->,120x x >故当121x x >>时,1210x x ->恒成立 得到12()()0f x f x -> 即()f x 在(1,)+∞上为增函数. (2)作出()f x 的图象如图所示,由图可得,()f x 的增区间为(,1)-∞-,(1,)+∞,减区间为(1,0)-,(0,1)例2:已知函数()f x 的图象如图所示,且'()f x 是()f x 的导函数.(1)写出()f x 的单调增区间;(2)在你所写出的单调增区间中任选五点作切线.观察所得切线的斜率,归纳出相应的规律,并与你的组员分享你的结论;(3)写出()f x 的单调减区间; (4)在你所写出的单调减区间中任选五点作切线.观察所得切线的斜率,归纳出相应的规律,并与你的组员分享你的 结论;(5)结合切线的斜率与导数的关系,求'()0f x >与'()0f x <的解集;(6)观察单调区间与(5)的解集之间的关系,并总结单调区间和导函数之间的关系.解:(1)增区间是:(1,1)-; (2)增区间上的点所对应的切线斜率为正数;(3)减区间是:(,1),(1,)-∞-+∞;如果出于教学进度的考虑,教师可以直接用几何画板向学生演示()f x 图象中各个点的切线斜率特征,并给出相应的结论.但是这样只能使学生成为课堂教学的旁观者.通过让学生自己在纸上作出几条切线观察,进行归纳后与其他组员分享,能极大的提高 学生课堂的参与度,即使自己不会也会被其他组员感染而参与研究.若其他同学与他有相同的结教师一条条的放映处题目,让学生依序解答每道题,切忌一次性将所有的问题投影出来,使学生产生畏难心理.然后观察学生的活动情况,根据学生的反应作出是否放映下一个问题的判断.同时对学生学习过程中存在的问题及时给予点拨.在学生得出猜想之后,教师再利用几何画板多次演示切点所在的单调区间对斜线斜率的符号的影响. 最后再总结函数的单调区间与导函数之间的关系,让学生对所给出的结论有更好的理解.学生通过阅读题目要求,对图象进行独立研究,将所得到的结果与其他组员分享,并根据所得结论的异同进行及时的纠正或讨论.学情预设:学生在此处会出现端点处作切线,得到导函数在单调区间上可以等于0的结论,对于这个问题可以放到后续的图象中一句话带过,教师不必纠缠.(1,)+∞;f x为增时,则()()x为减函:求下列函数的单调区间:教学实践心得《函数的单调性与导数》的教学价值的挖掘与思考导数部分的内容在高中数学教学中占据着举足轻重的地位,这从对导数时常作为压轴题进行考察就可见一斑.而在压轴题中时常都是以探究式的出题方式要求学生在摸索中找到解题的方法,这既要求学生对相关知识点有较为熟练的基本解题能力,还需要有较为扎实的探究问题的技能.这就要求在本阶段的教学绝对不能依靠以教师为主体的精英化教育时代留下的经验,用绝对量的题目和不断加大的题目难度进行教学,并要求学生如法炮制的在解题过程中应用.它可以综合应用高中阶段所有的知识点进行命题,同时内容本身的解题步骤就比较复杂,如果教师在课堂上以讲为主,时常会发现学生心不在焉,甚至在课堂上睡觉.那么应该用怎样的方法来启发学生对问题进行探究呢?在解答这个问题之前,先分析一下当前时代下人们学习方式的转变.在工业时代,人们的学习方式主要还是以口口相传或者经验传授的方式进行学习.而在网络时代,人们在学习的过程中更加注重主体参与、体验式的学习方式,因为所有的信息都能够信手拈来为我所用.那么面对杂乱无章的海量信息,教师更多的应该扮演引导者的角色,把探究过程中的操作步骤留给学生,让学生在合作探究的过程中慢慢去体会知识的形成与应用的过程.以软件为例,现在的软件首先会用step by step的方式对你进行指导,让你能够尽快了解软件的基本功能和操作方式.客户在了解了产品的基本功能之后,就可以在熟练操作的基础上对该软件的功能进行进一步的开发,另外对于复杂的软件则可以不断通过搜索引擎找到相关的案例进行手把手的操作,提升自我的应用能力,让软件更好的为我服务.这给导数的探究式教学提供了宝贵的借鉴.1.设置问题必须低起点.将导数应用在函数的研究中,学生之前从来没有使用过.所以在课程学习的最初阶段,教师应当努力维护学生对新鲜事物所拥有的本能的好奇,努力避免用复杂的问题瞬间将学生的学习热情扼杀在萌芽的状态.华罗庚先生曾经说过:“(数学教育)要尽可能的退,退到数学最本质的内容.”而这种“退”主要是要让学生能够在学习的最初阶段能够较好的抓住所学内容的本质.图象作为函数研究中的重要工具有着直观与便捷的特点,在《导数与函数单调性》的例题中先用图象作为探究的切入点,可以让学生直接开始对所给的图象作切线,尽可能靠近学生的“最近发展区”,可操作性比较强.2.一步一步引导最初学习.学生刚开始接触将导数作为方法研究函数的内容,教师不能要求学生一下就直接懂得探究的方法,应当对探究中的每一步都进行指点,让学生将自己的“最近发展区”在教师的指导下不断的向前推进并逐步形成自己的方法.另外结合心理学研究的结果:相比于耳朵听到的内容,眼睛看到的内容在记忆中留下的印象要更为深刻.教师可以在课堂的一开始将学生的基础定位定位尽可能低,以便于让尽可能多的学生能够参与到课堂的学习.3.便捷化的操作.操作越简单越能激起学习者的探究热情.在最初的引入阶段利用单调性的定义探究函数的单调性需要的步骤和技巧极多.而在学习导数的内容之后,学生可以对比两种解法,导数所具备的的明显的便捷性与普适性将会引导学生不断深入的学习下去.在得到导数与函数单调性的代数上的意义之后,紧接着又能够得到导数与函数单调性在图象上的相互关系. 4.建立学生智能的概念.学生是一个具有主观能动性的人,教师其实并不需要一开始就将复杂的题目向学生进行传授,而更应该回归到本源,将原本复杂的题目进行分解,让学生通过自主探究完成简单的问题,接着再慢慢的熟练掌握知识的内涵与作用.这时他就能对这些知识和技能进行重构,最终完成复杂的任务,这是大脑进行思考的基本顺序.所以在设置《导数和函数单调性》的问题时,在文字或者语言提示中不断的为学生铺路,尽可能让学生自主的解答学习过程中所存在的问题,不断挖掘知识的潜在价值,这甚至可以为后续的研究提供借鉴.当教师在后续的课程中设置同样的语言可以触发学生相同的思考,为后续的学习铺路.本节课由于是第一课时,所以教学的过程中依然停留在课堂内的学习.在网络化的时代,甚至可以鼓励学生在课堂上使用手机搜索自己存在的问题,还可以将自己在学习过程中的体会发布到网络上与其他同学进行分享,将课堂内的学习延伸到网络上,提高学生的学习乐趣和应用手机解决实际问题的能力.。

高中数学选修1课件1-3.3.1函数的单调性与导数

高中数学选修1课件1-3.3.1函数的单调性与导数

解析:方法一:f′(x)=x2-ax+a-1,由 f′(x)=0 得 x=1 或 x=a-1.
当 a-1≤1,即 a≤2 时,对于任意的 x∈(1,+∞),f′(x)>0, 即函数 f(x)在[1,+∞)上单调递增,不符合题意; 当 a-1>1,即 a>2 时,函数 f(x)在(-∞,1]和[a-1,+∞) 上单调递增,在[1,a-1]上单调递减, 依题意[1,4]⊆[1,a-1]且[6,+∞)⊆[a-1,+∞),从而 4≤a -1≤6,故 5≤a≤7. 综上,实数 a 的取值范围为[5,7].
(3)要特别注意函数的定义域.
跟踪训练 2 求下列函数的单调区间. (1)y=(1-x)ex; (2)y=x3-2x2+x;
(3)y=12x+sin x,x∈(0,π).
解析:(1)∵y=(1-x)ex, ∴y′=-xex,∴y′>0 时 x<0,y′<0 时 x>0, ∴函数 y=(1-x)ex 的增区间为(-∞,0),减区间为(0,+∞). (2)∵y=x3-2x2+x,∴y′=3x2-4x+1,x∈R, ①令 3x2-4x+1>0,得 x>1 或 x<13. ②令 3x2-4x+1<0,得13<x<1.
状元随笔
如图,函数 y=f(x)的图象在(0,a)内“陡峭”,在(a,+∞)内 “平缓”.
说明:通过函数图象,不仅可以看出函数的增减,还可以看出 函数增减的快慢.从导数的角度研究了函数的单调性及增减快慢 后,我们就能根据函数图象大致画出导函数的图象,反之也可行.
[小试身手]
1.已知函数 f(x)=x3-3x2-9x,则函数 f(x)的单调递增区间是
状元随笔 先求导数,再利用二次函数知识求 a.
3.函数 f(x)=2x-sin x 在(-∞,+∞)上( ) A.是增函数 B.是减函数 C.有最大值 D.有最小值

1.3.1函数的单调性与导数第2课时课件

1.3.1函数的单调性与导数第2课时课件

当 a 0时,令 f (x) 0 ,解得 x 1 ,( x 1 不在定义域内,舍去),则当x (0, 1 ) 时,
a
2
a
f (x) 0 ,当 x ( 1 ,) 时, f (x) 0 ,故 f (x) 在(0, 1 ) 单调递减,在( 1 ,) 单调递
a
f (x) 0 ,则 F(x)
f (x) x
在 (0,) 单调递减,由于 y f (x), y x 为奇函数,则 F(x) f (x) 为偶函数,所 x
以 F(x) f (x) 在(,0) 单调递增,因为 f (1) 0 ,则 F(1) F(1) 0 ,则函数 x
f (x) ;
(3) F (x) x2 f (x) , F(x) 2xf (x) x2 f (x) x(2 f (x) xf (x)) ;
(4) F(x)
f
(x) x2

F
(
x)

f
( x)

x2 x4
f
(x)

2x

f (x) x 2 f (x) ; x3
(5) F (x) ex f (x) , F(x) ex ( f (x) f (x)) ;
(6) F(x)
f
(x) ex

F
(
x)

f (x) ex f (x) ex e2x

f (x) ex
f (x)
.
题型二:利用导数运算法则和单调性构造函数
变式 3:设 f (x) 是定义在 R 上的奇函数,且 f (1) 0 ,当 x 0 时,有 xf (x) f (x) 0 恒

高中数学1.3.1 函数的单调性与导数(第二课时)优秀课件

高中数学1.3.1 函数的单调性与导数(第二课时)优秀课件

又∵-2<x<3,∴e-2<ex<e3,∴a≥e3.
即f(x)在(-2,3)上为减函数,∴a≥e3.
故存在实数a≥e3,使函数f(x)在(-2,3)上为减函
数.
栏目
导引
栏目 导引
若a≤0 ,则 f′(x)>0,
第一章 导数及其应用
f/(x)(2x1)(ax1) x
所以 f(x)在(0,+∞)上单调递增.(7 分)
若a>0 ,则由 f′(x)=0 得 x=1a,
且当 x∈0,1a时,f′(x)>0;当 x>1a时,f′(x)<0, 所以 f(x)在0,1a上单调递增.(10 分) 综上所述,当 a≤0 时,f(x)的单调递增区间为(0,+∞);
函数 f(x)exax1
(1)求f(x)的单调增区间;
解:f(x)的定义域 为R , f′(x)=ex-a, (1)假设a≤0,那么f′(x)=ex-a>0, 即f(x)在R上递增, 假设a>0,ex-a>0,∴ex>a,x>ln a. 因此当a≤0时,f(x)的单调增区间为R, 当a>0时,f(x)的单调增区间是(ln a,+∞).
2x 在12,+∞上为减函数,∴ymax<112-2×12=3.∴a≥3. 2
栏目 导引
第一章 导数及其应用
2.含有参数的函数的单调性的导数解法
(本题满分 12 分)已知函数 f(x)=ln x-ax2+(2-a)x, 讨论 f(x)的单调递增区间. 【解】 f(x)的定义域为(0,+∞). (2 分) f′(x)=1x-2ax+(2-a) =-(2x+1)x(ax-1).(4 分)
第一章 导数及其应用
1.函数的单调性求参数的取值范围
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型二 已知函数单调性求参数的取值范围 a 【例 3】 已知函数 f(x)=x + (x≠0,常数 a∈R).若函数 f(x)在 x x
2
∈[2,+∞)上是单调递增的,求 a 的取值范围. [思路探索]
3 a 2x -a 解 f′(x)=2x-x2= x2 .
要使 f(x)在[2, +∞)上是单调递增的, 则 f′(x)≥0 在 x∈[2, +∞) 时恒成立, 2x3-a 即 x2 ≥0 在 x∈[2,+∞)时恒成立. ∵x2>0,∴2x3-a≥0, ∴a≤2x3 在 x∈[2,+∞)上恒成立. ∴a≤(2x3)min.
x<x,
∴sin
2x
x 2,∴g′(x)<0, < 2 2
π ∴g(x)在0,2上单调递减,
1 3 ∴g(x)<g(0)=0,∴x-sin x< x . 6
通过这堂课的研究,你明确了
Байду номын сангаас

你的收获与感受是
你存在的疑惑之处有


(课本) P99 B组第2——4题
《世纪金榜》相应内容
3.3.1函数的单调性与导数(二)
一、复习回顾: 1.基本初等函数的导数公式 (1).常函数:(C)/ 0, (c为常数); (2).幂函数 : (xn)/ nxn1
(3).三角函数 :
(cos x) sin x ( 1) (sin x) cos x (2)
1 (log a x) . x ln a
题型一 利用导数判断函数的单调性 ln x 【例 1】 证明:函数 f(x)= 在区间(0,e)上是增函数. x [思路探索] 利用函数单调性与导数间的关系进行判断. 1 x· -ln x 1-ln x x ln x 证明 ∵f(x)= x ,∴f′(x)= x2 = x2 . 又 0<x<e,∴ln x<ln e=1. 1-ln x ∴f′(x)= x2 >0,故 f(x)在区间(0,e)上是单调递增函数.
注意: (1)在某个区间内f′(x)>0(f′(x)<0)是函数f(x)在 此区间内为增 ( 减 ) 函数的充分条件,而不是必要 条件. (2)可导函数f(x)在(a,b)上是增(减)函数的充 要条件是:对任意的x∈(a,b),都有 f′(x)≥0(f′(x)≤0),且f′(x)在(a,b)的任何子区间内都 不恒等于零.
1 2 [规范解答] 令 f(x)=ln(x+1)-x+ x , 2 1 x2 则 f′(x)= -1+x= . 1+x 1+x 当 x∈(0,+∞)时,f′(x)>0, ∴f(x)在(0,+∞)上是增函数. 于是当 x>0 时,f(x)>f(0)=0, 1 2 ∴当 x>0 时,不等式 ln(x+1)>x-2x 成立.
【变式 3】(1)已知函数 f(x)=x3+bx2+cx+d 的单调减区间为[-1,2], 求 b,c 的值. (2)设 f(x)=ax3+x 恰好有三个单调区间,求实数 a 的取值范围. 解 (1)∵函数 f(x)的导函数 f′(x)=3x2+2bx+c,由题设知- 1<x<2 是不等式 3x2+2bx+c<0 的解集. ∴-1,2 是方程 3x2+2bx+c=0 的两个实根, 2 c ∴-1+2=-3b,(-1)×2=3,
(4 分) (6 分)
(8 分)
(12 分)
π 1 3 【变式 4】 当 0<x<2时,求证:x-sin x<6x .
π 1 3 证明 设 g(x)=x-sin x-6x ,x∈0,2, x 1 2 2x g′(x)=1-cos x-2x =2sin 2-22 . π ∵x∈0,2,∴0<sin
3 即 b=-2,c=-6. (2)∵f′(x)=3ax2+1,且 f(x)有三个单调区间, ∴方程 f′(x)=3ax2+1=0 有两个不等的实根, ∴Δ=02-4×1×3a>0,∴a<0. ∴a 的取值范围为(-∞,0).
题型四 用单调性与导数关系证不等式 1 2 【例 4】 当 x>0 时,证明不等式 ln(x+1)>x- x . 2 利用导数证明不等式,首先要构造函数 f(x)= 1 2 ln(x+1)-x+2x ,证明 f(x)在(0,+∞)上单调增,由 f(x)>f(0)=0 证得.
x x
(1) (e ) e .
x x
(4).对数函数的导数: 1 (1) (ln x ) . (2) x (5).指数函数的导数:
(2) (a ) a ln a(a 0, a 1).
2.定理:
• 一般地,函数y=f(x)在某个区间D内: • 如果恒有 f′(x)>0,则 f(x)在区间D内 上是增函数。 • 如果恒有 f′(x)<0,则f(x) 在区间D上 是减函数。 • 如果恒有 f′(x)=0,则f(x) 是常数函数。
π sin x 【变式 1】 试证明:函数 f(x)= x 在区间2,π上单调递减.
证明
π xcos x-sin x f′(x)= ,又 x∈2,π, x2
则 cos x<0,∴xcos x-sin x<0,
π ∴f′(x)<0,∴f(x)在2,π上是减函数.
相关文档
最新文档