函数的单调性与导数(公开课)
说课:函数的单调性与导数 (3) 公开课一等奖课件PPT
应正确理解“某个区间”的含义,它必是 定义域 内的某个区间。
(三).知识应用 1.应用导数求函数的单调区间
基础训练:
(1).函数y=x-3在[-3,5]上为______函数
(填“增”或“减”)。 (学生口答)
(2).函数 y = x2-3x 在[2,+∞)上为______函数,
在(-∞,1]上为___函数,在[1,2]上为___ 函数 (填“增”或“减”或“既不是增函数,也不是减函 数”)。
三、说学法
为使学生积极参与课堂学习,我主要指导了以下的学习方法: 1.自主探究法:
让学生自己发现问题,自己归纳总结,自 己评析解题对 错,从而提高学生的 参与意识和数学表达能力。
2.比较法: 分组竞赛,对于同一个问题要求用不同方法,使学生从
中体验导数法的优越性。
四、说教学过程
(一).回顾与思考
提问引入: 1.判断函数的单调性有哪些方法? (引导学生回答“定义法”,“图象法”。)
2、 教学目标
知识目标:能探索并应用函数的单调性与导数的关系求单调 区间,能由导数信息绘制函数大致图象。
能力目标:培养学生的观察能力、归纳能力,增强数形结合 的思维意识。
情感目标:通过在教学过程中让学生多动手、多观察、勤思 考、善总结,引导学生养成自主学习的学习习惯。
3、重点与难点
重点:探索并应用函数单调性与导数的关系求单调区间。 难点:利用导数信息绘制函数的大致图象。
当x 3或x 2时,f '( x) 0;
当x 3或x 2时,f '( x) 0. 试画出函数 f ( x) 图象的大致形状。
(分析题意后让学生尝试画图,并就学生中出现的两类答案 进行投影分析。)
函数的单调性与导数 课件
【典型例题】
1.若函数f(x)=x3-ax2-x+6在(0,1)内单调递减,则实数a的取
值范围为( )
A.a≥1
B.a=1
C.a≤1
D.0<a<1
2.已知函数f(x)=x3-kx在区间(-3,-1)上不单调,则实数k的
取值范围是______.
3.(2013·天津高二检测)设函数f(x)=ax3+ 3 (2a-1)x2-6x
【解析】1.选A.因为f′(x)=3x2-2ax-1,f(x)在(0,1)内单调 递减,所以f′(0)≤0,f′(1)≤0,所以a≥1. 2.因为f′(x)=3x2-k.当k≤0时,f′(x)≥0,不合题意,舍 去,所以k>0. 令f′(x)=0,则 x k .
3
因为在(-3,-1)上函数不单调,
________,单调递增区间为_______.
3.讨论函数f(x)=x2-aln x(a≥0)的单调性.
【解题探究】1.解含有对数函数的问题,应注意什么?利用 导数求函数的单调区间,其实质是什么? 2.如何求多项式乘积形式函数的导数? 3.当函数的解析式中含有参数时,一般的处理思路是什么?
探究提示: 1.(1)要注意对数函数的定义域,即真数大于零.(2)求函数的单 调区间就是求不等式f′(x)>0(或f′(x)<0)的解集. 2.求多项式乘积式的导数,可以利用积的导数法则求解,也可以 把乘积式展开,利用和与差的导数法则求解. 3.当函数的解析式中含有参数时,一般的处理思路是对参数进 行分类讨论,然后在参数的不同情况下,分别求出结果.
x2
1 a
,
因为f(x)在(-∞,-3)上是增函数,即x<-3时,f′(x)>0恒成
函数的单调性与导数 公开课 ppt课件
所以函数f(x)=x3+3x在R上单调递增。 所以函数f(x)=x3+3x的单调增区间为R。
函数的单调性与导数 公开课
二、讲授新课-----典例精讲
例 3. 判断下列函数的单调性, 并求出单调区间:
(1) f(x)=x2-2x-3,
(2) f(x)=x2-2lnx
函数的单调性与导数 公开课
Байду номын сангаас
1.3.1函数的单调性与导数(第1课时)
函数的单调性与导数 公开课
一、新课导入------复旧知新
1.函数的单调性是怎样定义的?
一般地,设函数f(x)的定义域为I: 如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2, 当x1<x2时,都有f(x1)<f (x2),那么就说f(x)在区间D上是增函数; 当x1<x2时,都有f(x1)>f (x2),那么就说f(x)在区间D上是减函数;
致形状如右图所示.
O1
4
x
函数的单调性与导数 公开课
二、讲授新课-----牛刀小试
练习. 设导函数y=f '(x)的图象如图,则其原函数可能为
( C)
(A) y y=f(x) (B) y y=f(x) o 1 2x o 1 2x
y y f '(x)
(C) y
(D) y
o 2x
y=f(x)
y=f(x)
函数的单调性与导数 公开课
四、巩固练习
判断函数f(x)=3x-x3的单调性, 并求出单调区间:
解:
f '(x)=3x-x3=3-3x2=-3(x2-1)=-3(x-1)(x+1) 当f '(x)>0,即-1<x<1时,函数f(x)=3x-x3 单调递增; 当f '(x)<0,即x>1或x<-1时,函数f(x)=3x-x3 单调递减; 所以函数f(x)=3x-x3的单调增区间为 (-1,1),单调
高二数学-函数的单调性与导数公开课优秀课件(经典、值得收藏)
二、题型探究
3.利用导数求参数的取值范围
例.若函数f(x)=2x2+ln x-ax在定义域上单调递增,求实数a的取值范围.
解 ∵f(x)=2x2+ln x-ax的定义域为(0,+∞), 且在(0,+∞)上单调递增,
∴f′(x)=4x+1x-a≥0 在(0,+∞)上恒成立. ∴a≤4x+1x在(0,+∞)上恒成立.
单调性 割线斜率的符号 切线斜率的符号 导数
一、知识讲解:
函数单调性与导函数正负的关系
单调性 割线斜率的符号 切线斜率的符号 导数
观察下面函数的图象,探讨单调性与其导函数正负的关系:
yx
y y x3
y y 1
y
y
x
ya
x o
x o
x o
x o
导数值 >0 <0
切线的斜率 >0 <0
倾斜角 锐角 钝角
曲线的变化趋势 函数的单调性
上升
递增
下降
递减
一般地,设函数y f (x),在区间(a,b)上,思考: 若f x(x) (a0,,b)则, ff(( xx)) 在0该区函间数上f递( x增)在;区间(fa(,xb))为 0增是函f(数x)为增函数 若函f (数x)f(0x,)在则区 f(间x)(a在, b该)为区增间函上递数减。f ( x)的什0恒么成条立件(不?恒等于0)
二、题型探究
2.函数图象与导数图象的关系 (2)如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是
解析: 由原函数的单调性可以得到导函数的正负情况依次是正→负→正→负,故选A.
二、题型探究
2.函数图象与导数图象的关系
(1)函数的单调性与其导函数的正负的关系:在某个区间(a,b)内,若f′(x)>0,则y=f(x) 在(a,b)上单调递增;如果f′(x)<0,则y=f(x)在这个区间上单调递减;若恒有f′(x)=0, 则y=f(x)是常数函数,不具有单调性. (2)函数图象变化得越快,f′(x)的绝对值越大,不是f′(x)的值越大.
函数单调性课件(公开课)
定义法
总结词
通过函数定义判断单调性
详细描述
在区间内任取两个数$x_{1}$、$x_{2}$,如果$x_{1} < x_{2}$,都有$f(x_{1}) leq f(x_{2})$,则函数在这个区间内单调递增;如果$x_{1} < x_{2}$,都有$f(x_{1}) geq f(x_{2})$,则函数在这个区间内单调递减。
感谢您的观看
03 函数单调性的应用
单调性与最值
总结词
单调性是研究函数最值的重要工 具。
详细描述
单调性决定了函数在某个区间内的 变化趋势,通过单调性可以判断函 数在某个区间内是否取得最值,以 及最值的位置。
举例
对于函数f(x)=x^2,在区间(-∞,0) 上单调递减,因此在该区间上取得 最大值0。
单调性与不等式证明
单调递减函数的图像
在单调递减函数的图像上,随着$x$的增大,$y$的值减小,图像 呈现下降趋势。
单调性转折点
在单调性转折点上,函数的导数由正变负或由负变正,对应的函数 图像上表现为拐点或极值点。
02 判断函数单调性的方法
导数法
总结词
通过求导判断函数单调性
详细描述
求函数的导数,然后分析导数的符号,根据导数的正负判断函数的增减性。如 果导数大于0,则函数在该区间内单调递增;如果导数小于0,则函数在该区间 内单调递减。
总结词
单调性是证明不等式的重要手段。
详细描述
通过比较函数在不同区间的单调性,可以证明一些不等式。例如,如果函数f(x)在区间[a,b]上 单调递增,那么对于任意x1,x2∈[a,b],有f(x1)≤f(x2),从而证明了相应的不等式。
举例
利用函数f(x)=ln(x)的单调递增性质,可以证明ln(x1/x2)≤(x1-x2)/(x1+x2)。
高中数学《函数的单调性与导数》公开课优秀教学设计
高中数学《函数的单调性与导数》公开课优秀教学设计教学设计普通高中课程标准实验教科书《数学》选修1-1(人教A版)(第一课时)函数的单调性与导数《函数的单调性与导数》教学设计课题:函数的单调性与导数教材:人教A版《数学》选修1-1 课时:1课时教材分析:函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容. 《数学课程标准》中与本节课相关的要求是:结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.函数的单调性是函数的重要性质之一.在必修一中学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.在前几节课中,学生学习了平均变化率,瞬时变化率,导数的定义和几何意义等内容,在本节课中,学生将要在此基础上学习通过导数来研究函数的单调性,掌握研究函数单调性的更一般方法,进而为后面学习函数的极值,最值等作出知识铺垫,打下能力基础,进行方法指导,因此,本节课可以起到承上启下,完善建构,拓展提升的作用. 学生学情分析:课堂学生为高二年级的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性.教学目标:结合实例,借助几何直观探索并了解函数的单调性与导数的关系:能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.难点:探索并了解函数的单调性与导数的关系.借助几何直观,通过实例探索并了解函数的单调性与导数的关系;理解并掌握利用导数判断函数单调性的方法,会用导数求函数的单调区间;体会导数方法在研究函数性质中的一般性和有效性,同时感受和体会数学发展的一般规律. 教学策略分析:根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索函数的单调性与导数的关系;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象.本节课的教学设计也是围绕这些目标,让学生自主探究,充分参与课堂,并从中体会学习的成功和快乐.本节课时学习过导数的概念和运算后,首次运用导数解决函数相关问题的一节课,如何激发学生的兴趣,使其探索和运用新的工具即导数解决单调性问题是本节课的关键,利用手边胡工具,更好的分析这个过程,运用信息技术确认加深理解.充分利用学生已有的基础,分析原函数的单调性与导数正负之间的关系,本着由形到数,由数到形,数形结合的思想. (一)创设情境,引发冲突.师:在北方,进入十月,就能感觉到阵阵寒意,今天我们就从一个气温的实际问题开始数学之旅.师:我市气象站对冬季某一天气温变化的数据统计显示,从2时到5时的C随C与时间 t可近似的用函数 C(t)?t?4lnt?1拟合,气温问:这段气温t的变化趋势如何?时间回答这个问题,我们需要了解这个函数的什么性质?生:函数的单调性.师:如何判断这个函数的单调性呢?生:画图象,用定义.师:有的同学说画图象,有的说用单调性的定义,我们动手来做一下吧生:动手操作.师:选择画图的同学们,可以画出图象么?生:不可以.师:哪位同学来说一下如何用单调性的定义来解决. 生:在区间2到5上,任意选取 t1,t2且 t1?t2,我们需要判断 C(t1)?C(t2)的符号,师:可以判断么?生:不可以.师:好,请坐,也就是我们已有的方法都遇到了困难,如何解决这个单调性问题呢?设计意图:通过学生熟悉的生活情景,激发学生迫切知晓函数单调性的欲望,尝试运用所学知识解决非初等函数的单调性,引发学生的认知冲突,思考如何将未知化为已知,激发了学生主动学习新知识的热情. (二)回归定义,寻求方法.师:追本溯源,我们重新回到定义.请一位同学回答单调性的定义.(a,b)内,满足对于任意的 x1,x2?(a,b)生:在函数f(x)的定义域内的某区f(x1)?f(x2),是增函数. 且 x1?x2,都有师:很好,也就是我们要需要判断 f(x 1)?f(x2)的符号,我们把这个形式变形,判断生:大于0.师:即函数值的改变量与自变量改变量的比值: 生:大于0师:函数f(x)在区间 (a,b)内是减函数,满足对于任意的 x1,x2?(a,b)且 x1?x2,都有 f(x1)?f(x2),也就是 f(x2)?f(x1)x2?x1生:小于0.即函数值的改变量与自变量改变量的比值:f(x2)?f(x1)x2?x1的符号,结果为:生:小于0.师:我们发现,函数的单调性与这样一个比值的符号相关,在本章的学习中,我们知道这叫做---- 生:函数的平均变化率.师:我们运用无限趋近于的方式,可以由平均变化率得到瞬时变化率,反过来,瞬时变化率可以刻画函数在该点附近的变化情况,我们知道瞬时变化率,即---- 生:导数.师:非常棒!我们这节课就试着用导数来研究函数的单调性. 板书:3.3.1函数的单调性与导数. 设计意图:注意到知识的联系,尝试在学生原有认知的基础上建立新知,通过回顾函数单调性的定义,将其形式改变,联想平均变化率,运用无限趋近于的方式,得到瞬时变化率,即导数,引发学生思考导数与单调性的关系,这个过程由浅入深,层层深入,合乎学生的逻辑思维. (三)观察发现,探索规律.师:要研究函数的单调性与导数的关系,我们来观察,函数单调递增时,平均变化率大于0,函数单调递减时,平均变化率小于0,那么,导数的符号是否与函数的单调性有关呢?师:我们从最熟悉的函数开始研究,我们都学过哪些基本初等函数呢?生:幂函数,指数函数,对数函数,三角函数.师:对于这些函数,我们都是通过函数的形,也就画出图像的方式来研究,同样的,导数的形,也就是导数的几何意义是什么呢?生:函数的图像在该点处切线的斜率.师:根据导数的几何意义,我们一起来看研究的方法.师:给出函数的图像,指出其单调区间,用牙签靠近图像,使其作为该点处的切线,移动牙签,观察斜率即导数的正负情况.师:拿出坐标纸,作出你研究的函数图像,利用牙签,得出结论,并填写下面的表格.师:可以进行讨论,到前面展示你的结果.师:我们一起来看同学们的展示,可以得到什么结论呢?生:导数为负数时函数单调递减,导数为正数时单调递增.师:熟悉的初等函数,得到这样的结论,数学来源于生活,我们再来看生活中的例子:t变化的函数,来研究运动员运动状态的给出高台跳水运动员的高 h随时间变化情况.生:可以画出这个二次函数的图像,得到高度的变化情况,从(0,a)时刻,高度上升,(a,b)时刻高度下降.师:也就是高度函数先单调递增,而后单调递减,运动状态除了高度,还有速度,我们进一步研究.师:给出导函数即速度函数的图像,有什么结论?生:导函数即速度图像在x轴的上方时高度函数单调递增,导函数图像在x轴下方时函数单调递减. 设计意图:从基本初等函数入手,让学生动手操作,通过观察、归纳,提炼,激发学生的自主探究欲望.让学生发现导数的符号与函数的单调性之间的联系.培养学生共同解决问题、探讨问题的能力和合作意识,从而培养学生的探究意识和探究能力.引导学生从形的角度来验证,降低了学生的思维难度,又能体会导数研究单调性的一般性.生活实例高台跳水是我们从导数概念就开始使用,把抽象的概念与物理背景结合,能迅速的突破难点,高度函数的单调性与速度函数的关系,再次确认了结论. (四)结论总结,揭示本质.师:我们一起来总结一下函数的单调性与导数的关系. 一般地,函数y?f(x)在某个区间(a,b)内 1) 如果恒有 f?(x)>0,那么y?f(x) 在这个区间(a,b)内单调递增; 2) 如果恒有 f?(x)<0,那么 y?f(x)在这个区间(a,b)内单调递减.导函数值的正负与单调性之间存在这样的关系,这个结论也印证了我们本节课一开始的思考和分析. 若恒有f?(x)=0呢?思考一下板书:结论内容师:有结果了么?生:常函数. 设计意图:由观察、猜想到归纳、总结,让学生体会知识的发现的过程,使学生的思维、行动积极主动地参与课堂教学.从猜想到验证的发现过程,使自主探究成为学生的一种学习习惯. (五)自主分析,多维验证.师:这里我们分析了我们熟悉的函数,其他的函数呢?我们不妨来分析一下我们遇到困难的函数f(x).师:运用我们探究出的结论,求出函数f(x)的单调区间,如何运用导数知识来解决呢?生:先给出定义域,求出导函数,导函数大于0的部分为增区间,小于0的部分为减区间.感谢您的阅读,祝您生活愉快。
函数的单调性(公开课课件)
04 函数单调性的应用举例
利用函数单调性求最值问题
极值问题
通过判断函数在某一点的单调性 ,可以确定该点是否为极值点, 从而求得函数的最值。
最值问题
利用函数在整个定义域上的单调 性,可以确定函数在定义域上的 最大值和最小值。
利用函数单调性解不等式问题
单调性比较法
通过比较两个函数的单调性,可以确定它们的大小关系,从而解决一些不等式问题。
02
建议学生多参与数学建模和数学竞赛等活动,提高数学应用发展
03
学生可以通过阅读数学期刊、参加学术会议等方式,了解数学
学科的最新发展动态和前沿研究领域。
THANKS FOR WATCHING
感谢您的观看
单调性分析法
利用函数的单调性,可以分析不等式的解集和边界情况。
利用函数单调性解决实际问题
优化问题
在经济学、金融学等领域中,经常需要解决一些优化问题,如最优化生产、最优化投资等。利用函数 单调性可以找到最优解或近似最优解。
决策问题
在企业管理、市场营销等领域中,经常需要做出一些决策,如选择最佳的营销策略、确定最优的产品 价格等。利用函数单调性可以分析不同决策方案的效果,从而做出更好的决策。
03 函数单调性的判定方法
导数法判定函数单调性
总结词
通过求导数判断函数的单调性
详细描述
求函数的导数,然后分析导数的符号,如果导数大于0,则函数在该区间内单调递增;如 果导数小于0,则函数在该区间内单调递减。
举例
对于函数$f(x) = x^3$,其导数$f'(x) = 3x^2$,在$x > 0$时,$f'(x) > 0$,因此函数 $f(x)$在$x > 0$时单调递增。
《导数与函数的单调性》示范公开课教学课件
状态有什么区别? y
y
y
y
O
x
O
x
(1)
(2)
O
x
(3)
(3)函数y=x3的定义域为R,在定义域上为增函数; 而y′=3x2,若x≠0,其导数y′=3x2>0,当x=0时,其导数y′=3x2=0.
Ox (4)
新知探究
导入新课
问题 5.函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的 增与减、增减的快慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数 的这些性质,我们可以对数量的变化规律有一个基本的了解. 函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的 导数是否有着某种内在的联系呢?
问题2 通过观察图像,小物体从起点到最高点,以及从最高点到2 s这段时间的运动
状态有什么区别? y
y
y
y
O
x
O
x
O
x
Ox
(1)
(2)
(3)
(4)
(4)函数y= 1 的定义域为(-∞,0)∪(0,+∞),在(-∞,0)上单调递减,在 x
(0,+∞)上单调递减;
而y′=
1 x2
,因为x≠0,所以y′<0.
典例分析
小结:如果一个函数具有相同单调性的区间不止一个,在表 示这些区间时不能用“∪”连接,只能用“,”或“和”字 隔开.
典例分析
例3 求函数f(x)=xex的单调区间.
解:根据题意有 f′(x)=ex+xex=(x+1)ex.
令f′(x)>0,可得(x+1)ex>0,因为ex>0恒成立, 所以x+1>0,因此x>-1, 令f′(x)<0,可得(x+1)ex>0,解不等式可得x<-1. 因此,可知函数f(x)的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].
函数单调性课件(公开课)ppt
目录
• 函数单调性的定义与性质 • 判断函数单调性的方法 • 单调性在解决实际问题中的应用 • 函数单调性的深入理解 • 函数单调性的实际案例分析
01 函数单调性的定义与性质
函数单调性的定义
函数单调性是指函数在某个区间内的增减性。如果函数在某个区间内单调递增, 则表示函数值随着自变量的增加而增加;如果函数在某个区间内单调递减,则表 示函数值随着自变量的增加而减小。
的计算过程。
单调性与微分方程的关系
要点一
单调性决定了微分方程解的稳定 性
对于一阶线性微分方程,如果其系数函数在某区间内单调 递增(或递减),则该微分方程的解在此区间内是稳定的 。
要点二
单调性是研究微分方程的重要工 具
通过单调性可以判断微分方程解的存在性和唯一性,以及 研究解的动态行为。
05 函数单调性的实际案例分 析
总结词
利用单调性证明或解决不等式问题
详细描述
单调性在解决不等式问题中起到关键作用。通过分析函数的单调性,我们可以证明不等式或解决与不等式相关的 问题。例如,利用单调性可以证明数学归纳法中的不等式,或者在比较大小的问题中利用单调性进行判断。
单调性在函数极值问题中的应用
总结词
利用单调性求解函数的极值
详细描述
函数单调性的定义可以通过函数的导数来判断。如果函数的导数大于0,则函数在该 区间内单调递增;如果函数的导数小于0,则函数在该区间内单调递减。
函数单调性的性质
函数单调性具有传递性,即如果函数在区间I上单调递增,且 在区间J上单调递增,则函数在区间I和J的交集上也是单调递 增的。
函数单调性具有相对性,即如果函数在区间I上单调递增,且 另一个函数在区间J上单调递增,则这两个函数在区间I和J的 交集上也是单调递增的。
函数单调性与导数教学方案(公开课)
函数单调性与导数教学方案(公开课)简介本公开课将介绍函数的单调性与导数的相关概念和性质。
通过讲解和示例演示,学生将了解如何确定函数的单调性以及如何求解函数的导数。
本课程旨在帮助学生巩固和提升对函数的理解和运用能力。
教学目标1. 理解函数的单调性概念和定义;2. 掌握函数单调性判定方法;3. 掌握函数的导数概念;4. 学会通过求导计算函数的导数;5. 理解函数单调性与导数之间的关系。
教学内容1. 函数的单调性- 单调递增和单调递减的定义和判定方法;- 单调性与函数图像的关系。
2. 导数的概念与计算- 导数的定义及其几何意义;- 导数的计算方法;- 导数的规则和性质。
3. 函数单调性与导数关系- 函数单调性与导数的关系;- 利用导数判断函数的单调性;- 利用单调性判断函数的导数。
教学方法1. 讲解与示例演示:通过讲解理论知识和展示示例问题的解决过程,帮助学生理解和掌握相关概念和方法。
2. 练与讨论:提供一定数量的练题,鼓励学生积极参与讨论,巩固所学知识。
3. 案例分析:通过真实的案例问题,引导学生运用所学知识解决实际问题,提升问题解决能力。
教学评估1. 小测验:通过简单的选择题和计算题,测试学生对函数单调性和导数的理解程度。
2. 作业:布置一些练题和思考题,要求学生独立完成并提交,以检验他们的掌握程度。
3. 互动讨论:通过课堂互动,了解学生对函数单调性与导数教学的理解和反馈。
参考资料- 课本:《数学教材名》以上是本公开课的教学方案,希望能够帮助学生更好地理解和掌握函数的单调性与导数的相关概念与应用。
函数的单调性(公开课课件)
单调减函数是指函数在某个区间内,对于任意两个自变量$x_1$和$x_2$($x_1 < x_2$),如果$x_1$和$x_2$ 都在这区间内,那么函数值$f(x_1) geq f(x_2)$。也就是说,函数的图像随着$x$的增加而下降。
严格单调函数的定义
总结词
严格单调函数是指函数在某个区间内,严格满足单调增或单调减条件的函数。
利用单调性解方程
利用函数的单调性,可以求解方程。
通过分析函数的单调性,可以确定方程解的范围,从而求解方程。例如,对于一元二次方程$ax^2 + bx + c = 0$,如果$a > 0$,则函数$f(x) = ax^2 + bx + c$在区间$(-infty, -frac{b}{2a})$上单调递减,在区间$(-frac{b}{2a}, +infty)$上单调递增 ,因此方程的解必定落在$(-frac{b}{2a}, +infty)$区间内。
函数单调性的反例
04
单调增函数的反例
总结词
非严格单调增函数
详细描述
有些函数在其定义域内并非严格单调递增,即存在某些区间内函数值先减小后 增大。例如,函数$f(x) = x^3$在区间$(-2, -1)$内是单调减函数。
单调减函数的反例
总结词
非严格单调减函数
详细描述
有些函数在其定义域内并非严格单调递减,即存在某些区间 内函数值先增大后减小。例如,函数$f(x) = frac{1}{x}$在区 间$(1, +infty)$内是单调增函数。
详细描述
单调增函数是指函数在某个区间内,对于任 意两个自变量$x_1$和$x_2$($x_1 < x_2$ ),如果$x_1$和$x_2$都在这区间内,那么 函数值$f(x_1) leq f(x_2)$。也就是说,函数 的图像随着$x$的增加而上升。
函数单调性与导数教学指导(公开课)
函数单调性与导数教学指导(公开课)函数单调性与导数教学指导(公开课)介绍该公开课旨在教导学生关于函数单调性和导数的基础知识。
本文档提供了一个教学指导,以帮助教师有效地传授这些概念。
目标1. 理解单调性的概念,并能够判断函数在给定区间上的单调性。
2. 理解导数的概念,并能够计算函数在给定点的导数。
3. 掌握函数单调性与导数的关系。
教学内容1. 函数单调性基础知识- 介绍函数的定义和图像表示。
- 解释函数的单调性以及增减性。
- 展示如何快速判断函数在给定区间上的单调性。
- 提供一些常见函数的单调性示例。
2. 导数基础知识- 解释导数的定义和意义。
- 展示如何计算函数在给定点的导数。
- 介绍导数的几何意义。
3. 函数单调性与导数关系- 解释函数单调性与导数的关系。
- 讨论函数在增减性变化的时候导数的变化情况。
- 引导学生通过导数的信息来判断函数的单调性。
教学策略- 使用图表、图像和实例来展示概念,帮助学生更好地理解和记忆。
- 鼓励学生积极参与课堂讨论,提出问题,并互相分享解决方法。
- 设计练和作业,以帮助学生巩固所学知识。
- 提供额外研究资源,如教学视频、练册等,以便学生能够自主研究和复。
评估方式- 设计小组讨论或个人演示任务,要求学生应用所学知识判断函数的单调性或计算函数的导数。
- 给予学生作业或小测验,检验他们对函数单调性和导数的理解程度。
参考资料- 高等数学教科书,如《高等数学》(下册),作者:李建平等。
- 在线研究资源,如Khan Academy和Coursera提供的相关课程。
以上是关于函数单调性与导数教学指导(公开课)的文档,希望对教师有效传授这一概念起到帮助作用。
任何时候,您都可以根据您自己的经验和需要来进行调整和改进。
函数的单调性(公开课课件)
VS
单调性与极值大小的关系
单调性可以用来比较不同区间上的极值大 小。
单调性与最值的关系
单调性与最值点的关系
单调性可以用来判断函数在某点是否为最值 点。
单调性与最值大小的关系
单调性可以用来比较不同区间上的最值大小 。
THANKS FOR WATCHING感Biblioteka 您的观看CHAPTER 03
函数单调性的应用
利用单调性求参数范围
通过函数的单调性,我们可以确定参数的取值范围,进而解决一些数学问题。
在函数中,如果函数在某区间内单调递增或递减,那么我们可以根据函数值的变化趋势,确定参数的取值范围。例如,如果 函数$f(x)$在区间$(a, b)$内单调递增,且$f(x_0) = 0$,那么对于任意$x in (a, b)$,都有$f(x) > 0$,从而可以得出参数的 取值范围。
单调性可以通过函数的导数来判断,如果函数的导数大于等于0,则函数在该区 间内单调递增;如果函数的导数小于等于0,则函数在该区间内单调递减。
单调增函数和单调减函数
01
单调增函数是指函数在某个区间 内随着自变量的增加而增加。
02
单调减函数是指函数在某个区间 内随着自变量的增加而减少。
函数单调性的几何意义
导数与函数单调性
总结词
导数可以判断函数的单调性,当导数大于0时,函数单调递增;当导数小于0时 ,函数单调递减。
详细描述
导数表示函数在某一点的切线斜率。如果导数大于0,说明切线斜率为正,函数 在该区间内单调递增;如果导数小于0,说明切线斜率为负,函数在该区间内单 调递减。
复合函数的单调性
总结词
复合函数的单调性取决于内外层 函数的单调性以及复合方式。
函数的单调性公开课课件
在函数值比较中的应用
1 2
利用单调性比较函数值大小
对于同一区间内的两个函数值,如果函数在该区 间内单调,则可以直接比较它们的大小。
确定函数值的范围
通过判断函数的单调性,可以确定函数在某个区 间内的取值范围。
3
举例
比较sin(π/4)和sin(π/6)的大小。由于正弦函数 在[0, π/2]区间内单调递增,因此sin(π/4) > sin(π/6)。
06
复合函数的单调性
复合函数的定义和性质
复合函数的定义
设函数$y=f(u)$的定义域为$D_f$, 函数$u=g(x)$的定义域为$D_g$, 且$g(D_g) subseteq D_f$,则称函 数$y=f[g(x)]$为$x$的复合函数。
复合函数的性质
复合函数保持原函数的定义域、值域 、周期性、奇偶性等基本性质。
以直观地判断函数在各个 区间内的单调性。
判断单调区间
根据图像的形状和走势, 确定函数在各个区间内的 单调性。
图像的绘制
通过描点法、图像变换法 等方法,绘制出函数的图 像。
04
常见函数的单调性
一次函数
一次函数单调性
一次函数$f(x) = ax + b$($a neq 0$)在其定 义域内单调增加或减少,取决于系数$a$的正负。
总结与展望
课程总结
函数的单调性定义
详细解释了函数单调性的定义,包括增函数、减函数以及常数函 数的特性。
判断函数单调性的方法
介绍了如何通过导数、二阶导数以及函数的图像来判断函数的单调 性。
函数单调性的应用
举例说明了函数单调性在解决实际问题中的应用,如优化问题、经 济学中的边际分析等。
1.1-导数与函数的单调性(公开课)
探究点1 导数与函数单调性之间的关系
实例1:看下面几个函数的导数及其单调性.
(1)y=f(x)=x
f (x) 1
(2)y=f(x)=2x+5
f (x) 2
(3)y=f(x)=-3x+4
f (x) 3
函数(1)(2)的导数都是正的,函数(1)(2)
在定义域上都是增加的,函数(3)的导数是负
的,这个函数在定义域上是减少的.
实例2:再看指数函数、对数函数的导数及其单调性
(1) y f (x) 2x
(2) y f (x) (1)x 2
(3) y f (x) log 3 x (4) y f (x) log 1 x
2
f (x) 2x ln 2
x
解析:(1)由 f (x) 1 0得函数f (x) 1 在定义
x2
x
域的两个区间上是减少的.
(2)由 f (x) 3x2 3 0得函数f (x) x3 3x
在定义域R上是增加的.
根据导数和函数的单调性的关系,我们就可以利用导数 讨论函数的单调性.
探究点2 利用导数讨论函数单调性
1)上是减少的,在(0,
1 e
)上是增加的
4.在下列函数中,在(0,+∞)上增加的是( B )
A.sin2x
B.xe3x
C.x3-x
D.-x+ln(1+x)
解析:y=xe3x,则y′=e3x+3x·e3x=e3x(1+3x),
又因为x>0,所以y′>0,故选B.
5.(2016·全国卷 I)若函数 f(x)=x- ������sin2x+asinx
函数单调性与导数教学要点(公开课)
函数单调性与导数教学要点(公开课)本次公开课的主题是函数单调性与导数教学要点。
在本文档中,我们将讨论这个主题,并提供一些教学重点。
1. 函数单调性的概念和判断方法函数的单调性指的是函数在定义域上的增减性质。
我们可以通过以下几种方法来判断函数的单调性:- 数列法:通过构造数列并观察函数值之间的变化来判断函数的单调性。
- 导数法:通过求函数的导数来判断函数的单调性。
当导数大于0时,函数为增函数;当导数小于0时,函数为减函数。
- 二阶导数法:通过求函数的二阶导数来判断函数的单调性。
当二阶导数大于0时,函数为凸函数;当二阶导数小于0时,函数为凹函数。
2. 导数的定义和计算方法导数是函数在某一点的变化率,表示了函数的斜率。
导数的定义及计算方法如下:- 导数的定义:若函数$f(x)$在点$x_0$的某一领域内有定义,当$x$趋近于$x_0$时,若极限$\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x) -f(x_0)}{\Delta x}$存在,则称此极限为函数$f(x)$在点$x_0$处的导数,记作$f'(x_0)$或$\frac{df}{dx}(x_0)$。
- 导数的计算方法:常见的导数计算方法包括基本函数求导法、乘积法则、商法则、链式法则等。
3. 函数单调性与导数之间的关系函数的单调性与导数之间有着密切的关系,可以通过导数的符号来确定函数的单调性。
具体关系如下:- 当函数的导数大于0时,函数在该区间上单调增加。
- 当函数的导数小于0时,函数在该区间上单调减少。
- 当函数的导数恒为0时,函数在该区间上为常数函数。
- 当函数的导数不存在时,函数在该区间上存在极值点。
4. 教学重点总结在教学过程中,我们应该重点关注以下几个方面:- 函数单调性的概念和判断方法。
- 导数的定义和计算方法。
- 函数单调性与导数之间的关系。
- 单调性与函数图像的关系。
通过本次公开课的研究,希望能够加深对函数单调性和导数的理解,能够正确判断函数的单调性,并应用导数来解决实际问题。
函数的单调性公开课课件
目录
• 引言 • 函数单调性的判断方法 • 函数单调性的性质 • 函数单调性的应用 • 典型例题分析 • 课堂小结与思考题
CHAPTER 01
引言
函数的单调性定义
增函数
对于函数$f(x)$,如果在其定义域内的任意两个数$x_1$和 $x_2$($x_1 < x_2$),都有$f(x_1) leq f(x_2)$,则称$f(x)$ 在该定义域内是增函数。
导数非正 如果一个函数在其定义域内的导数存在且非正,则该函数 在该定义域内单调减少。
单调函数的周期性
周期函数与非周期函数
单调函数可以是周期函数,也可以是非周期函数。周期函数具有重复出现的特性,而非 周期函数则不具有这种特性。
周期函数的单调性
如果一个周期函数在一个周期内单调增加(或减少),则在每个周期内都具有相同的单 调性。这意味着周期函数的图像在每个周期内都会重复相同的上升或下降趋势。
利用单调函数的性质,如增减性、连续性等,对函数值进行比较和估算。
在函数图像分析中的应用
利用函数的单调性判断函数图像的趋势
通过函数的单调性可以判断函数图像在某个区间内的上升或下降趋势,从而了解函数的整体性质。
单调函数的性质在函数图像分析中的应用
利用单调函数的性质,如拐点、极值点等,对函数图像进行进一步的分析和研究,如确定函数的最大值、 最小值等。
3
导数非负 如果一个函数在其定义域内的导数存在且非负, 则该函数在该定义域内单调增加。
单调减函数的性质
函数值随自变量增大而减小 对于任意两个自变量的值x1和x2(x1 < x2),如果函数 f(x)在区间[x1, x2]内单调减少,则有f(x1) ≥ f(x2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
画出函数 f ( x ) 图象的大致形状 变化,切线平行x轴
yA
解: f ( x ) 的大致形状如右图: y f (x)
称 A,B两 点 为 “ 临 界 点 ”
B
o 试画导函数 f′(x)图象的大致形状.
注:图象形状不唯一
试一试 我能行
如f(x)=x3,x∈(-1,1)
不一定,应是
结论 若函数f′单(x调)≥递增0. ,则
若函数单调递减,则
已知 ,函数
在区间
上是增函数,求实数 的取值范围.
求下列函数的单调区间
(1)f(x)x22x4
(2)f(x)3xx3
(3 )f(x) six nx,x (0 ,)
(4)f(x)=x+ln x
(5) f (x) lnx x
设 f '( x )是函数 f ( x ) 的导函数,y f '(x)的图象如
右图所示,则 y f (x) 的图象最有可能的是( C )
y
y f (x)
y
y f (x)
y
y f '(x)
o 1 2x o 1 2x
o
2x
(A)
(B)
y y f (x)
y y f (x)
2
o1
x o 12
x
(C)
函数的单调性与导数
2020/3/25
yx3 3x?
定义法
你是如何去判断函数 y x 2 的单调性? 图象法
如图:
函数在 ( , 0)上为_减___函数,
y
y x2
在 (0, 上) 为__增__函数.
o
x
2020/3/25
函数及图象
单调性
导数的正负
y
f (x) x 在(,)上
o
x
递增
(D)
类型二 利用导数求函数的单调区间
求函数 y3x2 3x 的单调区间.
解: Qy'6x3
令 y'0 得 x1, 令 y'0 得 x1
2
2
y3x23x的单调递增区间为 ( 1 , )
2
单调递减区间为 ( , 1 )
2
变1:求函数 y3x33x2 的单调区间.
解: Q y' 9 x 2 6 x 3 x (3 x 2 )
水以匀速注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h与时间t的函 数关系图象.
(1)→B (2)→A (3)→D (4)→C
试从导数的角度解释变化的快慢 在某一范围内|f'(x)|越大,在这个范围内变化
越快,图象就越“陡峭”;反之,就“平缓”.
2020/3/25
问题 若函数f(x)在区间(a,b)内单调递增, 那么f′(x)一定大于零吗?
a
b
如果在某个区间内恒有 f(x)0,则 f (x)为?
2020/3/25
类型一 利用导数确定函数大致图象
已知导函数的下列信息:
分析:
当2 x 3时,f '(x) 0; f(x )在 此 区 间 递 减
当x 3或x 2时,f '(x) 0; f(x )在 此 区 间 递 增
当x 3或x 2时,f '(x) 0. f ( x)图象在此两处
2020/3/25
2020/3/25
令y'0得x2或x0 32
归纳小结
1.“导数法” 求单调区间的步骤:
①求函数定义域
②求 f '( x )
③令f'(x)0 解 不 等 式 f(x)的 递 增 区 间
f'(x)0 解 不 等 式 f(x)的 递 减 区 间
2.如果函数具有相同单调性的单调区间不止一个
,如何表示单调区间?
不能用“∪”连接,应用“,”隔开
y
f (x)x 在(,)上
o
x
递减
f '(x) 10 f '(x)10
y
f ( x) x2
在 (,0)上 递 减f '(x)2x0
o 2020/3/25
x
在 (0,)上 递 增f '(x)2x0
在 某 个 区 间 (a,b)内 ,
f '(x) 0 f(x ) 在 (a ,b ) 内 单 调 递 增 f '(x) 0 f(x )在 (a ,b ) 内 单 调 递 减