表格 格子纸 平面直角坐标系 解析几何
平面直角坐标系
02
点在平面直角坐标系中的表示
点在平面直角坐标系中的表示方法
直角坐标法
在平面内选定一个原点O和x、y轴,对于平面内的任意一点P ,通过原点O作一直角与x轴正方向夹角为α,再作一直角与y 轴正方向夹角为β,两直角的交点即为点P的坐标。
极坐标法
以原点O为极点,x轴正方向为极轴,建立极坐标系。对于平 面内的任意一点P,通过原点O作一直线与极轴夹角为θ,再 作一直线与极轴夹角为α,两直线的交点即为点P的极坐标。
点的坐标与位置关系
点的横坐标
表示点在x轴上的投影距离 。
点的纵坐标
表示点在y轴上的投影距离 。
点的位置关系
通过比较点的坐标值,可 以确定点在平面直角坐标 系中的位置关系,如平行 、垂直、相交等。
点在平面直角坐标系中的变换
平移变换
将点沿着x轴或y轴方向移动一定的距离,点的坐 标值会相应地增加或减少。
几何图形的性质研究
利用平面直角坐标系,可以研究几何图形的性质和特点,例如对称性、中心对 称等。
04
平面直角坐标系与极坐标系的 关系
极坐标系的基本概念
1 2
极坐标系
在平面内,以一个固定点为极点,一个固定射线 为极轴,用来研究点的位置的一种坐标系。
极坐标表示
在极坐标系中,一个点的位置由一个实数r和一 个角度θ来确定,记作(r, θ)。
旋转变换
将点绕原点旋转一定的角度,点的坐标值会发生 变化。
缩放变换
将点在x轴或y轴方向上放大或缩小一定的倍数, 点的坐标值会相应地增加或减少。
03
平面直角坐标系的应用
解析几何问题
直线方程的求解
通过平面直角坐标系,可以确定 直线上任意两点的坐标,从而求 出直线的方程。
平面直角坐标系与几何图形的综合(解析版)
第14讲 平面直角坐标系与几何图形的综合【知识点睛】❖ 平面直角坐标系知识网络系统图各问题归纳总结若点()11y x A ,、()22y x B ,、()b a P ,问题一:若点P 在x 轴上,则b=0; 若点P 在y 轴上,则a=0;若点P 在第一象限,则a >0,b >0; 若点P 在第二象限,则a <0,b >0; 若点P 在第三象限,则a <0,b <0; 若点P 在第四象限,则a >0,b <0;问题二:若点A 、B 在同一水平线上,则21y y =; 若点A 、B 在同一竖直线上,则21x x =; 若点P 在第一、三象限角平分线上,则b a =;若点P 在第二、四象限角平分线上,则b a -=;问题三:点()b a P ,关于x 轴对称的点P 1坐标为()b a P -,1; 点()b a P ,关于y 轴对称的点P 2坐标为()b a P ,-2;点()b a P ,关于原点对称的点P 3坐标为()b a P --,3;问题四:点的平移口诀“左减右加,上加下减”; 问题五:线段AB 的中点公式:⎪⎭⎫⎝⎛++222121y y x x ,; 若点A 、B 在同一水平线上,则AB=21x x -;若点A 、B 在同一竖直线上,则AB=21y y -; 若点A 、B 所在直线是倾斜的,则AB=()()221221y y x x AB -+-=(两点间距离公式)问题六:点()b a P ,到x 轴的距离=|b|;点()b a P ,到y 轴的距离=|a|; 问题七:割补法,优先分割,然后才是补全 问题八:周期型:①判断周期数(一般3到4个);②总数÷周期数=整周期……余数(余数是谁就和每周期的第几个规律一样)注意横纵坐标的规律可能不同。
【类题训练】1.如图,A (8,0),B (0,6),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点C 的坐标为( )A .(10,0)B .(0,10)C .(﹣2,0)D .(0,﹣2)【分析】根据勾股定理求出AB ,根据坐标与图形性质解答即可. 【解答】解:由题意得,OB =6,OA =8, ∴AB ==10,则AC =10, ∴OC =AC ﹣OA =2, ∴点C 坐标为(﹣2,0), 故选:C .2.在平面直角坐标系中,点A 的坐标为(﹣1,3),点B 的坐标为(5,3),则线段AB 上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【分析】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解答】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.3.如图,在四边形ABCD中,AD∥BC∥x轴,下列说法中正确的是()A.点A与点D的纵坐标相同B.点A与点B的横坐标相同C.点A与点C的纵坐标相同D.点B与点D的横坐标相同【分析】根据与x轴平行的直线上点的坐标特征计算判断.【解答】解:∵平行四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.故选:A.4.如图,已知∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°,∠AOF=150°,若点B可表示为点B(2,30),点C可表示为点C(1,60),点E可表示为点E(3,120),点F可表示为点F(4,150),点B可表示为点B(2,30),则D点可表示为()A.D(0,90)B.D(90,0)C.D(90,5)D.D(5,90)【分析】根据题干得出规律,从而得出答案.【解答】解:根据题意知:横坐标表示长度,纵坐标表示角度,从而得出D点可表示为(5,90),故选:D.5.在平面直角坐标系中,若A(m+3,m﹣1),B(1﹣m,3﹣m),且直线AB∥x轴,则m 的值是()A.﹣1B.1C.2D.3【分析】根据平行于x轴的直线上的点的纵坐标相等,建立方程求解即可求得答案.【解答】解:∵直线AB∥x轴,∴m﹣1=3﹣m,解得:m=2,故选:C.6.如图,在平面直角坐标系中,半径均为1个单位长度的半圆组成一条平滑的曲线,点P 从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2022,﹣1)C.(2021,﹣1)D.(2022,0)【分析】利用坐标与图形的关系,结合路程问题求解.【解答】解:一个半圆的周长是π,速度是每秒,所以走一个半圆需要2秒,2022秒正好可以走1011个半圆,故选:D.7.如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D(1,3),动点P 从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2022秒时,点P的坐标为()A.(1,1)B.(3,1)C.(3,3)D.(1,3)【分析】利用路程找规律,看最后的路脚点,再求解.【解答】解:由题意得:四边形ABCD是正方形,且边长是2,点P运动一周需要8秒,2022÷8商252余6,结果到点D处,故坐标为(1,3),故选:D.8.如图,在平面直角坐标系中,三角形ABC三个顶点A、B、C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值为()A.10B.11C.12D.14【分析】AB•CD可以联想到△ABC的面积公式,根据S△ABO+S△ACO=S△ABC即可求解.【解答】解:∵A(0,4),∴OA=4,∵B(﹣1,b),C(2,c),∴点B,C到y轴的距离分别为1,2,∵S△ABO+S△ACO=S△ABC,∴×4×1+×4×2=×AB•CD,∴AB•CD=12,故答案为:C.9.如图,在平面直角坐标系中,A,B,C三点坐标分别为(0,a),(0,3﹣a),(1,2),且点A在点B的下方,连接AC,BC,若在AB,BC,AC若所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,那么a的取值范围是()A.﹣1<a≤0B.﹣1≤a≤1C.1≤a<2D.0<a≤1【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【解答】解:∵点A(0,a),点B(0,3﹣a),且A在B的下方,∴a<3﹣a,解得:a<1.5,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,∵点A,B,C的坐标分别是(0,a),(0,3﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的5个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的4个都在线段AB上,∴3≤3﹣a<4.解得:﹣1<a≤0,故选:A.10.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB 上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.11.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.12.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D 在AB的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).13.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A (1,2)、点B(3,6),则线段AB的中点M的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于.【分析】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解答】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得:4a+b=4或0.故答案为:4或0.14.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|,例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q 的交点).已知点,B为y轴上的一个动点.(1)若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;(2)直接写出点A与点B的“非常距离”的最小值.【分析】(1)根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;(2)设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=.【解答】解:(1)∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠4,∴|0﹣y|=2,解得y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;∴点A与点B的“非常距离”的最小值为.故答案为:.15.如图,在平面直角坐标系中,已知三点的坐标分别为A(0,4),B(2,0),C(2,5),连接AB,AC,BC.(1)求AC,AB的长;(2)∠CAB是直角吗?请说明理由.【分析】(1 )过点A作AH⊥BC于点H,再利用勾股定理求解即可;(2 )利用勾股定理的逆定理即可得出结论.【解答】解:(1)如图,∵A(0,4),B(2,0),C(2,5),∴OA=4,OB=2,BC=5,过点A作AH⊥BC于点H,∴BH=OA=4,AH=OB=2,∴CH=BC﹣BH=5﹣4=1,在Rt△OAB中,AB=,在Rt△ACH中,AC=;(2)∠CAB是直角,理由:由(1)得,AC=,AB=2,BC=5,∵,∴AC2+AB2=BC2,∴∠CAB是直角.16.对于某些三角形或四边形,我们可以直接用面积公式或者用割补法来求它们的面积.下面我们再研究一种求某些三角形或四边形面积的新方法:如图1,2所示,分别过三角形或四边形的顶点A,C作水平线的铅垂线l1,l2,l1,l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B,D作水平线l3,l4,l3,l4之间的距离h叫做四边形的铅垂高.【结论提炼】容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知:如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为,所以△ABC面积的大小为.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索:(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是;用其它的方法进行计算得到其面积的大小是,由此发现:用“S=dh”这一方法对求图4中四边形的面积.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是,用其它的方法进行计算得到面积的大小是,由此发现:用“S=dh”这一方法对求图5中四边形的面积.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(﹣1,﹣5)四个点,得到了四边形ABCD.通过计算发现:用“S=dh”这一方法对求图6中四边形的面积.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到:当四边形满足某些条件时,可以用“S=dh”来求面积.那么,可以用“S=dh”来求面积的四边形应满足的条件是:.【分析】【结论应用】直接代入公式即可;【再探新知】(1)求出水平宽,铅垂高,代入公式求出面积,再利用矩形面积减去周围四个三角形面积可得答案;(2)(3)与(1)同理;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积.【解答】解:【结论应用】由图形知,铅垂高为4,S△ABC==20,故答案为:4,20;【再探新知】(1)∵四边形ABCD的水平宽为8,铅垂高为9,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=37.5,∴用“S=dh”这一方法对求图4中四边形的面积不合适,故答案为:36,37.5,不合适;(2)∵四边形ABCD的水平宽为9,铅垂高为8,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=36,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:36,36,合适;(3)∵四边形ABCD的水平宽为9,铅垂高为10,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为45,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为10×9﹣=45,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:合适;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积,故答案为:一条对角线等于水平宽或铅垂高.17.如图所示,在平面直角坐标系中,P(2,2),(1)点A在x的正半轴运动,点B在y的正半轴上,且P A=PB,①求证:P A⊥PB;②求OA+OB的值;(2)点A在x的正半轴运动,点B在y的负半轴上,且P A=PB,③求OA﹣OB的值;④点A的坐标为(8,0),求点B的坐标.【分析】(1)①过点P作PE⊥x轴于E,作PF⊥y轴于F,根据点P的坐标可得PE=PF=2,然后利用“HL”证明Rt△APE和Rt△BPF全等,根据全等三角形对应角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE=BF,再表示出OA、OB,然后列出方程整理即可得解;(2)③根据全等三角形对应边相等可得AE=BF,再表示出PE、PF,然后列出方程整理即可得解;④求出AE的长度,再根据全等三角形对应边相等可得AE=BF,然后求出OB,再写出点B的坐标即可.【解答】(1)①证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(2,2),∴PE=PF=2,在Rt△APE和Rt△BPF中,,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;②解:∵Rt△APE≌Rt△BPF,∴BF=AE,∵OA=OE+AE,OB=OF﹣BF,∴OA+OB=OE+AE+OF﹣BF=OE+OF=2+2=4;(2)解:③如图2,∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣2,BF=OB+OF=OB+2,∴OA﹣2=OB+2,∴OA﹣OB=4;④∵PE=PF=2,PE⊥x轴于E,作PF⊥y轴于F,∴四边形OEPF是正方形,∴OE=OF=2,∵A(8,0),∴OA=8,∴AE=OA﹣OE=8﹣2=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣2=4,∴点B的坐标为(0,﹣4).18.如图,在平面直角坐标系xOy中,点B(1,0),点C(5,0),以BC为边在x轴的上方作正方形ABCD,点M(﹣5,0),N(0,5).(1)点A的坐标为;点D的坐标为;(2)将正方形ABCD向左平移m个单位,得到正方形A'B'C'D',记正方形A'B'C'D'与△OMN重叠的区域(不含边界)为W:①当m=3时,区域内整点(横,纵坐标都是整数)的个数为;②若区域W内恰好有3个整点,请直接写出m的取值范围.【分析】(1)先求出正方形的边长为BC=4,再求点的坐标即可;(2)①画出正方形A'B'C'D',结合图形求解即可;②在△OMN中共有6个整数点,在平移正方形ABCD,找到恰好有3个整数解的情况即可.【解答】解:(1)∵点B(1,0),点C(5,0),∴BC=4,∵四边形ABCD是正方形,∴A(1,4),D(5,4),故答案为:(1,4),(5,4);(2)①如图:共有3个,故答案为:3;②在△OMN中共有6个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1),∵区域W内恰好有3个整点,∴2<m≤3或6≤m<7.19.类比学习是知识内化的有效途径,认真读题是正确审题的第一步:对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(其中k为常数,且k≠0),则称点P'为点P的“k系好友点”;例如:P(1,2)的“3系好友点”为即.请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P'的坐标为.(2)若点P在y轴的正半轴上,点P的“k系好友点”为P'点,若在三角形OPP'中,pp′=3OP,求k的值.(3)已知点A(x,y)在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.【分析】(1)根据“k系好友点”的定义列式计算求解;(2)设P(0,t)(t>0),根据定义得点P′(kt,t),则PP′=|kt|=3OP=3t,即可求解;(3)点A是点B(m,n)的“﹣2系好有点”,可得点A(m﹣2n,n﹣),由xy=﹣8得到(m﹣2n)2=16,即可求解.【解答】解:(1)点P(﹣3,1),根据“k系好友点”的求法可知,k=2,∵﹣3+2×1=﹣1,1+=﹣,∴P′的坐标为(﹣1,﹣),故答案为(﹣1,﹣);(2)设P(0,t)其中t>0,根据“k系好友点”的求法可知,P′(kt,t),∴PP'∥x轴,∴PP'=|kt|,又∵OP=t,PP'=3OP,∴|kt|=3t,∴k=±3;(3)∵B(m,n)的﹣3系好有点A为(m﹣2n,n﹣),∴x=m﹣2n,y=n﹣,又∵xy=﹣8,∴(m﹣2n)•(n﹣)=﹣8,∴m﹣2n=±4,∵点A在第四象限,∴x>0,即m﹣2n=4.20.如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线运动(回到O为止).(1)直接写出点A,B,C的坐标;(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为t个单位长度的情况.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB 上且AP=3,写出P的坐标即可;作PE∥AO.利用平行线的性质证明即可;(3)由t≠0得点P可能运动到AB或BC或OC上.再分类讨论列出一元一次方程解得t即可.【解答】解:(1)∵|a﹣3|+=0且|a﹣3|≥0,≥0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,作PE∥AO.∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP;(3)存在.∵t≠0,∴点P可能运动到AB或BC或OC上.①当点P运动到AB上时,2t≤7,∵0<t≤,P A=2t﹣OA=2t﹣3,∴2t﹣3=t,解得:t=2,∴P A=2×2﹣3=1,∴点P的坐标为(3,1);②当点P运动到BC上时,7≤2t≤10,即≤t≤5,∵点P到x轴的距离为4,∴t=4,解得t=8,∵≤t≤5,∴此种情况不符合题意;③当点P运动到OC上时,10≤2t≤14,即5≤t≤7,∵PO=OA+AB+BC+OC﹣2t=14﹣2t,∴14﹣2t=t,解得:t=,∴PO=﹣2×+14=,∴点P的坐标为(0,).综上所述,点P运动t秒后,存在点P到x轴的距离为t个单位长度的情况,点P的坐标为(3,1)或(0,).2122。
平面直角坐标系平面直角坐标系
感谢您的观看
THANKS
性质
平面直角坐标系是一个正交坐标系,它具有唯一性和可数性 。
平面直角坐标系的建系的中心点 。
确定x轴与y轴
根据定义,x轴是一条与y轴垂直的数轴,y轴是 一条与x轴垂直的数轴。
确定单位长度
选择一个单位长度,通常选择一个合适的长度单 位,如毫米或厘米。
坐标系中的点与坐标
方向向量的计算
方向向量的计算可以通过两个点的坐标进行计算,得到一个向量,该向量的模等于两点之间的距离,方向与连 接两点的线段一致。
三维空间中的坐标系
三维空间中的坐标系定义
三维空间中的坐标系使用三个参数,x、y 、z,来定义空间中的任意一点。
VS
三维空间中的坐标系扩展
三维空间中的坐标系可以扩展到更高维度 的空间中,例如四维空间、五维空间等。
计算机图形学中的应用
像素坐标
在计算机图形学中,每个像素点都有其在平面直角坐标系中的位 置,通过坐标可以方便地对像素点进行操作。
渲染算法
通过平面直角坐标系可以设计各种渲染算法,如阴影算法、反射 算法等。
三维建模
在三维建模中,平面直角坐标系是基础,可以通过它来建立三维模 型的空间关系。
05
平面直角坐标系的扩展
平移平面直角坐标系中的点,其坐标值会相应地发生变化。平移过程中,点 的坐标值沿横轴或纵轴方向移动,移动距离等于平移方向上的坐标增量。
点的旋转
旋转平面直角坐标系中的点,其坐标值不会发生变化,但会围绕旋转中心转 动。旋转过程中,点的坐标值相对于旋转中心转动,旋转角度等于旋转角度 的弧度值。
距离与角度的计算
平面直角坐标系
2023-11-04
目 录
• 平面直角坐标系的基本概念 • 平面直角坐标系中的基本运算 • 平面直角坐标系中的图形变换 • 平面直角坐标系的应用 • 平面直角坐标系的扩展
Excel表格中如何制作平面直角坐标系
Excel表格中如何制作平面直角坐标系
1、打开EXCEL表格,输入数据,如下图所示。
2、选择数据区域中任一单元格,依次点击“插入”、“图
表”“散点图”,选择“仅带数据标记的散点图”选项,创建散点图。
3、在散点图中分别选择水平和垂直的网格线,删除网格线。
4、在图表中双击横轴打开“设置坐标轴格式”窗格,在“坐标
轴选项”栏中根据需要设置“最大值”、“最小值”和主要刻度单位,如图4所示。
5、设置横轴的线条宽度,“箭头末端类型”修改为向右的箭头,设置纵轴箭头为向右(即向上)。
6、在图表单击右键选择数据系列,在“设置数据系列格式”窗
格中单击“填充线条”按钮,选择“标记”选项后点击“数据标记
选项”栏,选择“无”单选按钮。
7、最后形成了完整的平面直角坐标系效果图。
猜你喜欢:。
平面直角坐标系
平面直角坐标系平面直角坐标系是解决平面几何问题的基础。
它通过两条相互垂直的轴线来定位平面上的点,一条轴线称为横轴或X轴,另一条轴线称为纵轴或Y轴。
本文将介绍平面直角坐标系的定义、特点及其应用。
定义及特点平面直角坐标系由两条相互垂直的轴线和一个坐标原点组成。
横轴和纵轴相交于坐标原点,并且原点的坐标为(0, 0)。
根据笛卡尔坐标系的规定,横轴向右为正方向,纵轴向上为正方向。
坐标轴上的刻度表示具体的数值,刻度之间的等距离表示单位长度,一般称为“单位距离”。
在平面直角坐标系中,横轴和纵轴上的刻度可以表示实数。
每一个点都可以用一个有序数对(x, y)来表示,其中x表示横轴上的刻度,y表示纵轴上的刻度。
平面直角坐标系可用于表示平面上的点、直线、曲线等几何对象。
通过坐标系,可以方便地计算两个点之间的距离、两条直线的交点等几何性质。
在平面直角坐标系中,直线可以由一个方程表示,常见的直线方程有斜率截距方程和一般式方程。
平面直角坐标系的应用平面直角坐标系在几何学、代数学以及物理学等学科中都有广泛的应用。
下面将介绍一些典型的应用场景。
1. 几何形状的表示:平面直角坐标系可以用于表示任意几何形状。
通过将图形中的各个点的坐标表示在坐标系中,可以直观地观察图形的性质和关系。
例如,可以用平面直角坐标系表示矩形、圆、椭圆等几何形状,便于计算它们的面积、周长等几何特征。
2. 直线和曲线的方程表示:平面直角坐标系可以用于表示直线和曲线的方程。
例如,对于直线,可以根据已知点和斜率确定直线的方程,或者通过已知两点求解直线的方程。
对于曲线,可以通过解析几何方法将曲线转化为方程,从而研究曲线的特性和性质。
3. 空间位置的定位:平面直角坐标系也可以扩展到三维空间,用于表示点、直线和平面的位置。
通过添加垂直于平面的第三条轴线,可以构建三维直角坐标系,用于表示三维几何对象的位置和性质。
三维直角坐标系在物理学、工程学等领域中有着广泛的应用。
4. 函数的表示和计算:平面直角坐标系可以用于表示数学函数,如直线函数、二次函数等。
平面直角坐标系
胡茂恒
如图是某市旅游景 点的示意图。
1、你是怎样确定各 个景点的位置的?
2、“大成殿”在 “中心广场”的西、 南各多少格?碑林 在“中心广场”的 东、北各多少格?
3、如果中心广场处定为(0,0)一个小格的 边长为1,你能表示“碑林”的位置吗?
你知道吗
早在1637年以前,法国数学家、解析几何的创始人 笛卡尔受到了经纬度的启发,地理上的经纬度是以 赤道和本初子午线为标准的,这两条线从局部上可 以看成是平面内互相垂直的两条直线。所以笛卡尔 的方法是在平面内画两条互相垂直的数轴,其中水 平的数轴叫x轴(或横轴),取向右为正方向,铅直 的数轴叫y轴(或纵轴),取向上为正方向,它们的 交点是原点,这个平面叫坐标平面。
1
-4 -3 -2 -1 0 -1
原点 -2
第Ⅲ象限 -3
-4
1 2 3 4 5 x 横轴
第Ⅳ象限
注 意:坐标轴上的点不属于任何象限。
纵轴 y
5
4
B(-4,1) 3
2
B·
1
-4 -3 -2 -1 0 -1 -2 -3
-4
A点在x 轴上的坐标为4 A点在y 轴上的坐标为2 A点在平面直角坐标系中的坐标为(4, 2)
数轴上的点A表示表示 数1.反过来,数1就是点A 的位置。我们说点1是点A 在数轴上的坐标。
一一对应的关系。 同理可知,点B在数轴
上的坐标是-3;点C在数轴
上的坐标是2.5;点D在数
轴上坐标是0.
黎明 讲台
行
10
8
m(4,6)
6
·
4
2
0 1 2 3 4 5列
纵轴 y 5
第Ⅱ象限 4 3 2
解析几何中平面直角坐标系方程的求法
解析几何中平面直角坐标系方程的求法几何以及物理都离不开向量、坐标系等一系列计算方法。
其中,平面直角坐标系是基本的坐标系,在解析几何中应用广泛。
平面直角坐标系的基本概念是坐标轴、坐标和坐标点,因此求平面直角坐标系的方程也是解析几何的基本内容之一。
本文将围绕着此主题展开,探讨几种求平面直角坐标系方程的方法。
一、直线的一般式在平面直角坐标系中,一般式具有形如 Ax + By + C=0 的形式。
其中,A、B、C为常数,x和y分别为平面直角坐标系中点的坐标。
这种形式可以通过斜率截距式进行转换。
斜率截距式中,一条直线方程可以写成y=kx+b的形式。
其中,k是斜率,b是截距。
在平面直角坐标系中,如果过点(x1,y1)和(x2,y2)的直线的斜率为 k, 则它的一般式为:k(x1-x2)+y2-y1=0具体地,如果 A=x1-x2, B=y2-y1, C=(-A)x1-Bx2,则一般式为Ax+By+C=0。
二、两点式两点式适用于已知通过两点的一条直线,其公式为:(y-y1)=(y2-y1)/(x2-x1)(x-x1)其中,(x1, y1)和(x2,y2)是直线上两个点。
将两点式化简后,可以得到一般式。
三、截距式截距式适用于已知直线在x轴或y轴上的截距的情况。
在截距式中,直线的方程为 y=kx+b,其中b是在y轴上的截距,k是斜率。
当直线穿过点(0,b)时,截距式的形式是 y=kx+b。
当直线穿过点(b,0)时,截距式的形式为 x=ky+b。
由于直线的斜率和截距可以通过两点来表示,所以截距式也可以转换为两点式或一般式。
四、点斜式点斜式用于已知直线在坐标系中的一个点以及直线在这一点的斜率的情况。
该式子的形式为:y-y1=k(x-x1)其中,(x1, y1)是直线上的点,k是直线在该点的斜率。
类似于两点式,点斜式也可以通过化简得到一般式。
综上所述,这四种方法都是解析几何中求解平面直角坐标系方程的基本方法。
在实际应用中,应根据实际问题选择合适的方法,提高解析几何的实际应用能力。
平面直角坐标系_图文共30页
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得在明眼的跛子肩上。——叔本华
谢谢!
30
平面直角坐标系_图文
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比