八年级几何添加辅助线方法
八年级数学上册几何添辅助线专题
DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接那么成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一〞法:遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法〞或“补短法〞: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题,思维模式是全等变换中的“对折〞法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转〞 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,〔1〕可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折〞,所考知识点常常是角平分线的性质定理或逆定理.〔2〕可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
初中平面几何常见添加辅助线的方法
初中平面几何常见添加辅助线的方法平面几何是数学中的一个重要分支,通过在平面上描述和研究几何图形之间的关系和性质。
在解决平面几何问题中,添加辅助线是一种常见且有效的方法,可以帮助我们更好地理解和分析问题。
下面是初中平面几何常见的添加辅助线的方法:1.使用垂直辅助线:垂直辅助线是指与已知线段垂直的辅助线,可以用来分割和构造几何图形。
比如,在矩形中,可以通过连接矩形的对角线来构造一条垂直辅助线,从而将矩形分割为两个等腰直角三角形。
2.使用平行辅助线:平行辅助线是指与已知线段平行的辅助线,可以用来帮助构造平行线段和证明平行性质。
例如,在平行四边形中,可以通过连接相邻顶点和平行线段的端点来构造平行辅助线,从而证明平行四边形的对边相等。
3.使用角平分线:角平分线是指将一个角平分为两个等角的辅助线。
在解决涉及角的等分、相等或相似性质问题时,添加角平分线是非常有用的方法。
例如,在等腰三角形中,可以通过连结底边中点和顶角顶点的直线来构造角平分线,从而证明等腰三角形的顶角相等。
4.使用中线:中线是指连接一个几何图形的两边中点的辅助线。
在解决涉及几何图形的中点、平行四边形和三角形性质问题时,添加中线是一种常见的方法。
例如,在四边形中,可以通过连接相对边的中点来构造中线,从而证明中线互相平分。
5.使用高线:高线是指从多边形的一个顶点向对边所引的垂线。
在解决多边形的高、重心、垂心和外心问题时,添加高线是非常有用的方法。
例如,在三角形中,可以通过从一个顶点向对边引垂线来构造高线,从而证明高线汇聚于三角形的垂心。
6.使用辅助图形:有时,我们可以通过在平面上添加一些辅助图形来辅助解决几何问题。
例如,在求解平行四边形的面积时,可以通过添加一个垂直边和一个三角形来将平行四边形划分为两个高度相等的矩形,从而方便计算面积。
在实际应用中,我们可以根据具体问题的要求来灵活地选择合适的辅助线方法。
添加辅助线不仅可以帮助我们更好地理解和分析问题,还可以提高解题效率和准确性。
初二几何辅助线添加方法
初二几何辅助线添加方法几何辅助线是在解决几何问题时,通过添加额外的线段或线条来帮助我们更好地理解和解决问题。
在初二阶段的几何学中,辅助线的使用是非常重要的,可以帮助我们找到问题的关键点,简化问题的分析和解决过程。
下面将介绍几个常见的初二几何辅助线添加方法。
第一种方法是绘制垂直辅助线。
在解决一些关于垂直关系的问题时,我们可以通过添加垂直辅助线来辅助解题。
例如,在求两条平行直线之间的距离时,我们可以通过在两条直线上分别取一点,然后通过添加垂直辅助线来构建一个直角三角形,从而求出距离。
第二种方法是绘制平行辅助线。
在求两条直线平行或相交关系时,我们可以通过添加平行辅助线来辅助解题。
例如,在求两条平行线之间的距离时,我们可以通过添加一条与两条平行线相交的直线,然后构建一个平行四边形,从而求出距离。
第三种方法是绘制角平分线。
在解决涉及到角度的问题时,我们可以通过添加角平分线来辅助解题。
例如,在求一个角的角平分线时,我们可以通过画出这个角的两条边的延长线,然后通过它们的交点来构建角平分线。
第四种方法是绘制对称线。
在求对称形状或对称位置的问题时,我们可以通过添加对称线来辅助解题。
例如,在求一个图形的对称轴时,我们可以通过添加对称线来找到对称轴的位置。
除了上述介绍的四种常见的几何辅助线添加方法外,还有许多其他的方法。
例如,绘制中垂线来求三角形的垂心和外心,绘制角的角平分线来求多边形的内角和,等等。
每个问题都有其特定的解题方法和特定的辅助线添加方法。
总结起来,初二几何辅助线的添加方法是非常多样的。
通过合理地添加辅助线,可以帮助我们更好地理解和解决几何问题。
在解题过程中,我们应该根据问题的特点和要求,选择合适的辅助线添加方法。
同时,多进行几何练习,多掌握不同的辅助线添加方法,可以提高我们的解题能力和思维灵活性。
八年级上册数学几何加辅助线
八年级上册数学几何加辅助线一、三角形中线三角形中线是连接-个顶点和相对边的中点的线段。
在三角形中,共有三条中线。
中线可以将三角形分为两个面积相等的部分。
在解决几何问题时,添加三角形中线是一种常见的辅助线方法。
二、三角形的高三角形的高是从一个顶点垂直于相对边的线段。
在直角三角形中,高也称为直角边。
在解决几何问题时,通过添加或构造高来找到新的线段或证明某些性质是非常有用的。
三、三角形的角平分线三角形的角平分线是将一-个角平分为两个相等的小角的线段。
角平分线与相对边相交于-点, 这个点称为角的平分线点。
通过角平分线可以找到-些等长的线段或等大的角,这对于解决几何问题非常有帮助。
四、直角三角形斜边中线角三角形斜边中线是连接直角顶点与斜边中点的线段。
在直角三角形中,斜边中线等于斜边的一半。
通过添加斜边中线,可以证明一些性质或找到一些等长的线段。
五、平行线与截线平行线和截线是解决几何问题时常用的辅助线。
通过添加平行线和截线,可以证明一些性质或找到-些相等的角或线段。
在某些情况下,也可以使用平行线和截线来构诰新的三角形或平行四边形。
六、构造等腰三角形等腰三角形是两边相等的三角形。
在解决几何问题时,通过添加或构造等腰三角形,可以找到一等长的线段或等大的角。
在某些情况下,也可以使用等腰三角形的性质来证明一些结论。
七、三角形内外角三角形内外角是指三角形内部或外部的一些角。
通过研究三角形的内外角,可以找到一些等大的角或相等的角和。
在解决几何问题时,利用三角形内外角性质可以证明一些结论或找到一些有用的信息。
初中数学14种方法教会你给三角形加辅助线!
初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。
通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。
3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。
通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。
4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。
通过内切圆可以获得三个切点,进而使用切点的性质解决问题。
5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。
通过外切圆可以获得三个切点,进而使用切点的性质解决问题。
6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。
通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。
7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。
通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。
8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。
9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。
10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。
初中 几何 辅助线 思路
初中几何辅助线思路
在初中几何中,当我们遇到一些看似复杂的问题时,常常需要添加辅助线来帮助我们解决问题。
以下是一些常见的添加辅助线的思路:
1. 构造中点:通过构造中点,我们可以利用中点定理来解决问题。
中点定理告诉我们,如果一条线段的中点被找到,那么可以通过这条中点作一条垂线或平行线,将问题简化为一个更简单的问题。
2. 延长或截取:在某些情况下,通过延长或截取线段,我们可以使图形的形状更加明显,从而更容易找到解题思路。
3. 平行线构造:平行线的性质可以为我们提供很多有用的信息。
通过构造平行线,我们可以利用平行线的性质来解决问题。
4. 作垂线:在处理与矩形、菱形等四边形有关的问题时,我们可以通过作垂线来构造直角三角形,从而利用勾股定理等三角函数性质来解决问题。
5. 利用30度角:在一些与30度角有关的问题中,我们可以构造一条过30度角的线段,从而利用30度角的一些特殊性质来解决问题。
6. 连接两点:连接两点构造一条线段,可以通过这条线段找到一些与问题相关的信息,从而更容易解决问题。
7. 作平行四边形:通过作平行四边形,我们可以利用平行四边形的性质来解决问题。
8、在添加辅助线时,我们需要注意以下几点:
要明确添加辅助线的目的,不要为了添加而添加。
要根据题目的条件和要求,选择合适的方法添加辅助线。
在添加辅助线后,要仔细分析图形的形状和性质,从而找到解决问题的关键点。
总之,在初中几何中添加辅助线是一项非常重要的技能。
通过不断练习和掌握常见的辅助线方法,我们可以更好地解决各种几何问题,提高自己的数学水平。
八年级几何常见辅助线作法及例题(几何画板精确作图)
八年级几何常见辅助线作法及例题(几何画板精确作图)1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
4.垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形.7.角度数为30度、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8. 面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、等腰三角形“三线合一”法1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:2CE=BD.中考连接:(2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6二、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.ABC ∆例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.中考连接:(09崇文)以的两边AB 、AC 为腰分别向外作等腰Rt 和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.三、借助角平分线造全等1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD2、如图,已知点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN 上,且2AE=(AD+AB).问:∠1和∠2有何关系?中考连接:(2012年北京)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。
(完整)八年级数学上册几何添辅助线专题
DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
北师大版八年级上册做辅助线的技巧
北师大版八年级上册做辅助线的技巧做辅助线是解决几何问题时的常用技巧,它能够帮助我们在图形上找到有用的线段或角度,以便更好地解决问题。
下面是一些关于如何使用辅助线的技巧:1. 观察图形:在开始解题前,仔细观察给定的图形。
思考有哪些线段或角度可能对问题的解决有帮助。
2. 寻找平行线:如果你在题目中遇到了平行线,可以画上辅助线来更好地利用这一特性。
画一条与已知平行线相交的新线段,可以得到一对相似三角形或等腰三角形,从而导出更多信息。
3. 寻找直角:直角是几何问题中的常见形状。
如果你能够找到直角,可以通过画辅助线将其与其他线段相连,以便得到更多有用的信息。
4. 利用垂直角:垂直角是形成直角的两条相互垂直的线段之间的角。
如果你能够用辅助线将图形划分为垂直角,那么你可以利用垂直角的性质得到更多的信息。
5. 利用对称性:如果你在题目中遇到了对称图形,可以利用这一特性来画辅助线。
以对称中心为基准,将图形划分为对称部分,可以得到相等的线段或角度。
6. 运用相似三角形:相似三角形是几何问题中的关键概念之一。
通过寻找图中的相似三角形,可以利用辅助线来确定未知的长度或角度。
7. 定义新的中点或交点:如果题目中给定了几个点,但你需要找到其他点来连接或划分图形,可以通过画辅助线来定义新的中点或交点。
8. 反演法:有时,你可以通过反过来思考问题来更好地解决它。
如果你陷入困境,可以尝试找到一个新的角度或方法来解决问题。
综上所述,做辅助线是解决几何问题的重要方法之一。
通过观察图形,利用平行线、直角、垂直角、对称性等特点,结合相似三角形和运用新的点等技巧,我们能够更好地应用辅助线来解决问题,提高几何问题的解题能力。
几种证明全等三角形添加辅助线的方法
几种证明全等三角形添加辅助线的方法在几何证明中,证明两个三角形全等是常见的任务之一、为了证明两个三角形全等,可以利用几何性质和辅助线的方法。
以下是几种常见的证明全等三角形添加辅助线的方法。
方法一:辅助线连接两个三角形的顶点和中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和中点来添加辅助线。
例如,可以连接点A和B的中点M,以及连接点D和E的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法二:辅助线连接两个三角形的顶点和底边中点。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过在两个三角形中选择一对对应的顶点,然后通过连接这对顶点和底边的中点来添加辅助线。
例如,可以连接点A和D的中点M,以及连接点B和E 的中点N。
通过连接辅助线MN,我们可以观察到三角形AMN和DMN是全等的,因为它们具有相等的边MN和相等的边角(由三角形ABC和DEF的边和角的性质可得)。
由于三角形AMN和DNM的对应边和对应角也相等,我们可以得出结论,三角形ABC和DEF是全等的。
方法三:辅助线连接两个三角形的对应角的角平分线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形对应角的角平分线来添加辅助线。
通过连接辅助线,我们可以得到一些相似的三角形。
根据相似三角形的性质,我们可以得到一些相等的边和角。
通过观察这些相等的边和角,我们可以得出结论,三角形ABC和DEF是全等的。
方法四:辅助线连接两个三角形的中垂线。
假设有两个三角形ABC和DEF,我们要证明它们全等。
我们可以通过连接每个三角形的边的中点,然后连接这些中点的垂线来添加辅助线。
初中几何,辅助线的常见做法.
初中数学辅助线的添加人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线。
(2)等腰三角形是个简单的基本图形当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
几何辅助线的常见做法
初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中数学各类几何题辅助线添加技巧
初中数学各类几何题辅助线添加技巧►三角形中常见辅助线的添加1.与角平分线有关的(1)可向两边作垂线。
(2)可作平行线,构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形2.与线段长度相关的(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
(4)遇到中点,考虑中位线或等腰等边中的三线合一。
3.与等腰等边三角形相关的(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60°►四边形中常见辅助线的添加特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。
下面介绍一些辅助线的添加方法。
1.和平行四边形有关的辅助线作法平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。
(1)利用一组对边平行且相等构造平行四边形(2)利用两组对边平行构造平行四边形(3)利用对角线互相平分构造平行四边形2.与矩形有辅助线作法(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少.3.和菱形有关的辅助线的作法和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题.(1)作菱形的高(2)连结菱形的对角线4.与正方形有关辅助线的作法正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线5.与梯形有关的辅助线的作法和梯形有关的辅助线的作法是较多的.主要涉及以下几种类型:(1)作一腰的平行线构造平行四边形和特殊三角形(2)作梯形的高,构造矩形和直角三角形(3)作一对角线的平行线,构造直角三角形和平行四边形(4)延长两腰构成三角形(5)作两腰的平行线等►圆中常见辅助线的添加1.遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
初中几何添加辅助线的99条规律
初中几何添加辅助线的99条规律规律1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。
规律2平面上的n条直线最多可把平面分成〔n(n+1)/2+1〕个部分。
规律3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。
规律4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。
规律5有公共端点的n条射线所构成的角的个数一共有n(n-1)个。
规律6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n -1)个。
规律7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。
规律8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。
规律9互为邻补角的两个角平分线所成的角的度数为90°。
规律10平面上有n条直线相交,最多交点的个数为n(n-1)个。
规律11互为补角中较小角的余角等于这两个互为补角的角的差的一半。
规律12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。
规律13在证明直线和圆相切时,常有以下两种引辅助线方法:(1)当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可。
(2)如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可。
规律14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。
规律15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。
注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。
初中数学常见辅助线做法
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
八年级数学上册几何添辅助线专题
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明DCBA全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(完整版)初中数学添加辅助线的方法汇总
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
八年级数学上册几何添辅助线专题
欢迎共阅A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
角平分线平行线,等腰三角形来添。
线段垂直平分线,常向两端把线连。
三角形中两中点,连接则成中位线。
1.等腰三角形“三线合一”法:线合一”的性质解题2.倍长中线:3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 长,6.图形补全法:有一个角为60度或7.角度数为30、60度的作垂线法:角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
.法构造全等三角形. (1)可以自角平分线上的某一点向角2)可以在角平分线上的一点作3)可以在该然后从这两点再向再利用三角形全等的有关性质 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答CCBA一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD<AB+BE 故AD 的取值范围是例2、如图,△ABC 中,E 、F 分别在AB 、与EF 的大小.解:(倍长中线,显然BG =FC ,在△EFG 中,注意到DE ⊥DF EG =EF在△BEG 中,由三角形性质知 EG<BG+BE 故:EF<BE+FC例3、如图,△ABC 中,BD=DC=AC ,E 是解:延长AE 至G 使AG =2AE ,连BG ,显然DG =AC , ∠GDC=∠ACD 由于DC=AC ,故 ∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 解:(截长法)在AB 上取中点F ,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知DF ⊥AB ,故∠AFD =90°△ADF ≌△ADC (SAS )DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC =AD ,连FE,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
初二几何辅助线添加方法
初中数学辅助线1.三角形问题添加辅助线方法方法1:有关三角形中线的题目,常将中线加倍;含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法梯形是一种特殊的四边形;它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决;辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:1在梯形内部平移一腰;2梯形外平移一腰3梯形内平移两腰4延长两腰5过梯形上底的两端点向下底作高6平移对角线7连接梯形一顶点及一腰的中点;8过一腰的中点作另一腰的平行线;9作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的;通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键;作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、分角线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:造角、平、相似,和、差、积、商见;如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关;在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移;故作歌诀:“造角、平、相似,和差积商见;”五:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;初中几何常见辅助线口诀人说几何很困难,难点就在辅助线;辅助线,如何添把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;四边形平行四边形出现,对称中心等分点;梯形问题巧转换,变为△和□;平移腰,移对角,两腰延长作出高;如果出现腰中点,细心连上中位线;上述方法不奏效,过腰中点全等造;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片;三角形中作辅助线的常用方法举例一.倍长中线1:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD; 二、截长补短法作辅助线;在△ABC 中,AD 平分∠BAC,∠ACB =2∠B,求证:AB =AC +CD; 三、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BC 分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角; 证明:分别延长DA,CB,它们的延长交于E 点,∵AD ⊥AC BC ⊥BD 已知∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件; 四、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中 ∵⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等五、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长; 证明:分别延长BA,CE 交于点F;∵BE ⊥CF 已知∴∠BEF =∠BEC =90° 垂直的定义在△BEF 与△BEC 中,ABC DEF25-图19-图DCBA E F 12A BCD18-图1234ABCD E17-图O∵⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE 六、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D; 证明:连接BC,在△ABC 和△DCB 中∵⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等七、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB; 分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中 ∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB; 二 由角平分线想到的辅助线D BA110-图O 111-图D CBAM N口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种; ①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边;通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件; 与角有关的辅助线 一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍; 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件; 1-2,AB 21如图图1-2ADBCEF图2-1ABCDE F图示3-1ABCD HE如图所示,在直角梯形ABC D 中,∠A =90°,AB ∥DC,AD =15,AB =16,BC =17. 求CD 的长. 解:过点D 作DE ∥BC 交AB 于点E.又AB ∥CD,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8.所以BE =AB -AE =16-8=8. 即CD =8.例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围;解:过点B作BM)(2121CH BGBC GH EF --==512=⨯=BE ED BD DH 6251252DHBC)(AD ABCD =⨯=⨯+=∴梯形S 25252522222100)25()25(AE CE AC ==+=+15cm20cm12cmDCEACD ABD S S S ∆∆∆==DBEABCD S S ∆=梯形2222DH AC DH DE EH -=-=9121522=-=1612202222=-=-=DH BD BH )(15012)169(21212cm DH BE S DBE =⨯+⨯=⋅=∆150cA B DC E Hm 如图所示,四边形ABCD 中,AD 不平行于BC,AC =BD,AD =BC. 判断四边形ABCD 的形状,并证明你的结论.解:四边形ABCD 是等腰梯形. 证明:延长AD 、BC 相交于点E,如图所示. ∵AC =BD,AD =BC,AB =BA, ∴△DAB ≌△CBA. ∴∠DAB =∠CBA. ∴EA =EB.又AD =BC,∴DE =CE,∠EDC =∠ECD.而∠E +∠EAB +∠EBA =∠E +∠EDC +∠ECD =180°, ∴∠EDC =∠EAB,∴DC ∥AB.又AD 不平行于BC,∴四边形ABCD 是等腰梯形. 三、作对角线即通过作对角线,使梯形转化为三角形;例9如图6,在直角梯形ABCD 中,AD//BC,AB ⊥AD,BC=CD,BE ⊥CD 于点E,求证:AD=DE; 解:连结BD,由AD//BC,得∠ADB=∠DBE ; 由BC=CD,得∠DBC=∠BDC; 所以∠ADB=∠BDE;又∠BAD=∠DEB=90°,BD=BD, 所以Rt △BAD ≌Rt △BED, 得AD=DE;四、作梯形的高 1、作一条高例10如图,在直角梯形ABCD 中,AB//DC,∠ABC=90°,AB=2DC,对角线AC ⊥BD,垂足为F,过点F 作EF//AB,交AD 于点E,求证:四边形ABFE 是等腰梯形;证:过点D 作DG ⊥AB 于点G,则易知四边形DGBC 是矩形,所以DC=BG; 因为AB=2DC,所以AG=GB;从而DA=DB,于是∠DAB=∠DBA;又EF//AB,所以四边形ABFE 是等腰梯形; 2、作两条高例11、在等腰梯形ABCD 中,AD//BC,AB=CD,∠ABC=60°,AD=3cm,BC=5cm, 求:1腰AB 的长;2梯形ABCD 的面积.解:作AE ⊥BC 于E,DF ⊥BC 于F,又∵AD ∥BC, ∴四边形AEFD 是矩形, EF=AD=3cm ∵AB=DC∵在Rt △ABE 中,∠B=60°,BE=1cmA B C D A B C D E A B C D E F∴AB=2BE=2cm,cm BE AE 33==∴2342)(cm AEBC AD S ABCD =⨯+=梯形例12如图,在梯形ABCD 中,AD 为上底,AB>CD,求证:BD>AC;证:作AE ⊥BC 于E,作DF ⊥BC 于F,则易知AE=DF; 在Rt △ABE 和Rt △DCF 中, 因为AB>CD,AE=DF;所以由勾股定理得BE>CF;即BF>CE; 在Rt △BDF 和Rt △CAE 中 由勾股定理得BD>AC 五、作中位线1、已知梯形一腰中点,作梯形的中位线;例13如图,在梯形ABCD 中,AB//DC,O 是BC 的中点,∠AOD=90°,求证:AB +CD=AD;证:取AD 的中点E,连接OE,则易知OE 是梯形ABCD 的中位线,从而OE=21AB +CD ①在△AOD 中,∠AOD=90°,AE=DE 所以AD OE 21=②由①、②得AB +CD=AD;2、已知梯形两条对角线的中点,连接梯形一顶点与一条对角线中点,并延长与底边相交,使问题转化为三角形中位线;例14如图,在梯形ABCD 中,AD//BC,E 、F 分别是BD 、AC 的中点,求证:1EF//AD ;2)(21AD BC EF -=;证:连接DF,并延长交BC 于点G,易证△AFD ≌△CFG则AD=CG,DF=GF由于DE=BE,所以EF 是△BDG 的中位线 从而EF//BG,且BG EF 21=因为AD//BG,AD BC CG BC BG -=-=所以EF//AD,EF )(21AD BC -=3、在梯形中出现一腰上的中点时,过这点构造出两个全等的三角形达到解题的目的;例15、在梯形ABCD 中,AD ∥BC, ∠BAD=900,E 是DC 上的中点,连接AE 和BE,求∠AEB=2∠CBE;解:分别延长AE与BC ,并交于F点∵∠BAD=900且AD∥BC∴∠FBA=1800-∠BAD=900又∵AD∥BC∴∠DAE=∠F两直线平行内错角相等∠AED=∠FEC 对顶角相等DE=EC E点是CD的中点∴△ADE≌△FCE AAS∴ AE=FE在△ABF中∠FBA=900且AE=FE∴ BE=FE直角三角形斜边上的中线等于斜边的一半∴在△FEB中∠EBF=∠FEB∠AEB=∠EBF+ ∠FEB=2∠CBE例16、已知:如图,在梯形ABCD中,AD//BC,AB⊥BC,E是CD中点,试问:线段AE和BE之间有怎样的大小关系解:AE=BE,理由如下:延长AE,与BC延长线交于点F.∵DE=CE,∠AED=∠CEF,∠DAE=∠F∴△ADE≌△FCE∴AE=EF∵AB⊥BC, ∴BE=AE.ABDCEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精锐教育学科教师辅导讲义(A)直线AB和CD垂直吗(B)过线段AB的中点C画AB的垂线(C)同旁内角不互补,两直线不平行(D)连结A,B两点2.下列四个命题中,属于真命题的是().(A)互补的两角必有一条公共边(B)同旁内角互补(C)同位角不相等,两直线不平行(D)一个角的补角大于这个角3.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为().(A)4:3:2 (B)3:2:4 (C)5:3:1 (D)3:1:54.如图1,点D,E分别是AB,AC上的点,连结BE,CD.若∠B=∠C,则∠AEB与∠ADC的大小关系是().(A)∠AEB>∠ADC (B)∠AEB=∠ADC;(C)∠AEB<∠ADC (D)不能确定(1) (2) (3)5.如图2,在锐角△ABC中,CD和BE分别是AB和AC边上的高,且CD和BE交于点P,若∠A=50°,则∠BPC的度数是().(A)150°(B)130°(C)120°(D)100°6.如图3,如果AB∥CD,那么角α,β,γ之间的关系式为().(A)α+β+γ=360°(B)α-β+γ=180°;(C)α+β+γ=180°(D)α+β-γ=180°7.命题“直角都相等”的题设是________,结论是____________.8.如图4,AD,AE分别是△ABC的角平分线和高,∠B=50°,∠C=•70•°,•则∠EAD=______.(4) (5) (6)9.如图5,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=________.10.如图6,已知DB平分∠ADE,DE∥AB,∠CDE=82°,则∠EDB=_____,∠A=____二.常见辅助线添置方法训练【例1】如图1,已知AB∥CD,求证:∠BED=∠B+∠D.A BEC 图1 D分析:题中有平行条件,由此联想到平行线的性质,想到它所对应的图形.经对照发现,图中没有截AB、CD 的线,所以我们要添置辅助线.方法1:延长BE交CD于F,如图2所示.方法2:延长DE交AB于F,如图3所示.方法3:连结BD,如图4所示.方法4:过E点任作一线交AB于M、交CD于N,如图5所示.方法5:以EB为一边在∠BED内部作∠BEF=∠B,或过E点作EF∥AB,如图6所示.有些几何题目条件比较分散,条件与结论难于联系,这时往往需要巧妙地添置辅助线,将条件加以集中,便于利用.倍长中线法:【例2】已知:在∆ABC中,AD是中线,BE交AD于点F,AE=EF.求证:AC=BF5 已知D 为EC 的中点,EF ∥AB ,且EF=AC ,求证:AD 平分∠BAC.6 已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD7 如图所示,已知ABC ∆中,21∠=∠,AD=DB ,AC DC ⊥.求证:AB AC 21=.8 已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CDADBC1 2ABCD五回家作业:A1 如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE ,求证:AD=AB+CD 。
2 如图,AC 平分∠BAD ,CE ⊥AB ,且∠B+∠D=180°,求证:AE=AD+BE 。
3 已知∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,使AE=BD ,联结CE ,DE求证:CE=DE4 已知:如图示,ABC ∆中,AD 平分BAC ∠,//DE AC ,过E 作EF AD ⊥于点O ,交BC 的延长线于点F ,联结AF ;求证:AF DF =。
D AE CBABEC DA EBD COEDAB CF 5 已知ABC∆中,AB=2AC,AD平分,BAC∠AD=BD,求证:ACDC⊥6已知:如图,在△ABC中,CD是△ABC的角平分线,BC=AC+AD.,求证:∠A=2∠B.回家作业B一.填空题1.把命题“两个角对应相等的两个三角形相似”改写成“如果…那么…”的形式.2.把命题“同角的余角相等”改写成“如果…那么…”的形式______________________________________________ _____.3.把命题:“等腰三角形的两个底角相等”改写为“如果----那么-------”.4.判断命题的真假:命题“同位角相等”是________命题.5.判断下列命题的真假(1)合数一定是偶数(2) 三个连续自然数的和是3的倍数 (3) 如果1xy>,那么x y > (4) 如果0ab =,那么0a = (5) 如果7x >,那么2x > (6) 如果2x x =,那么0x >(7) 若a =b ,则a 2=b 2; (8) 如果a 2=ab ,则a =b ;6、如图所示,已知AB//CD ,AD 和BC 相交于点O ,若∠=∠=A C 4258°,°,则∠=AOB __________。
7、如图所示,∠=∠∠=∠=123804,°,那么_____________。
8. 如图所示,∠=⊥∠=ABC DE BC DF AB F D 3640°,,于,则'//___________。
9 如图所示,AB//CD ,∠=∠=∠=111531402°,°,_____________。
10.如图1所示,12180+=o∠∠,若350=o∠,则4=∠ .二.选择题 1.下列命题中,真命题的个数是( ).(1)等角对等边 (2)有两边及一角对应相等的两个三角形全等 (3)两锐角之和是锐角 (4)钝角减去锐角得锐角 (5)钝角大于它的补角 (6)锐角小于它的余角 A 、1个; B 、2个;C 、3个;D 、4个.2.若 ∠1 和 ∠2 是同旁内角,有 ∠1=30°,则 ∠2 为( )A 、30°B 、150°C 、30°或 150°D 、无法确定3.下列命题中,是真命题的有( )A 、内错角相等B 、平行四边形不是中心对称图形C 、相等的圆心角所对的弧相等D 、平行于同一条直线的两直线平行 4、下列语句不是命题的是( )A 、两点之间,线段最短B 、不平行的两条直线有一个交点C 、x 与y 的和等于0吗D 、对顶角不相等。
5.下列命题中是真命题的是:A . 同位角都相等B . 内错角都相等C . 同旁内角都互补D . 凡直角都相等 6.下列命题正确的是:A . 等边三角形都相似.B .直角三角形都相似.C .等腰梯形都相似.D . 矩形都相似. 7.已知ABC △的三个内角度数比为2∶3∶4,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形8.如图5,下列条件中,不能判定直线AB CD ∥的是( ) A .BAD ADC =∠∠ B .AEC ADC =∠∠ C .AEF GCE =∠∠D . 180AEC GCE +=o∠∠9.如图6,AB EF∥,90C=o∠,则α,β,γ的关系为()A.βαγ=+B.180αβγ++=oC.90βγα+-=o D.90αβγ+-=o10、如图7所示,AB EF CD EF F⊥⊥∠=∠=,,°130,那么与∠FCD相等的角有()A. 1个B. 2个C. 3个D. 4个图7 图811、如图8所示,∠B=∠C,则∠ADC与∠AEB的大小关系是()A. ∠>∠ADC AEB B. ∠=∠ADC AEB C. ∠<∠ADC AEB D. 大小关系不能确定12. 如图,若直线a∥b,且分别交直线c于点A、B,∠1=70°,则∠2=()cA 1 ab32 BA. 70°B. 20°C. 110°D. 40°13. 如图,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是()ca3b21456 78A. ∠2+∠3=180°B. ∠1+∠5=180°C. ∠4=∠7D. ∠1=∠814. 如图,用两个相同的三角板按照如图方式作平行线,能解释其中道理的定理是()A. 同位角相等两直线平行B. 同旁内角互补,两直线平行C. 内错角相等两直线平行D. 平行于同一条直线的两直线平行三.判断下列命题的真假,若是假命题,请举出反例。
1、两条直线相交,有且只有一个公共点。
2、有一个角为60°的等腰三角形是等边三角形。
3、正数和负数的和是正数。
4、一对对顶角的平分线构成一条直线。
5、两个锐角的和是锐角。
6、凡是能被5整除的数,个位数字一定是5。
四、完成以下证明,并在括号内填写理由(1)如右图,已知AB∥CD,MN与AB、CD分别相交于E、F,PQ与AB、CD 分别相交于E、G,∠PEM=27°,∠DGQ=63°。
求证:MN⊥CD。
证明:∵AB∥CD()∴_________=________=63°()又∵∠GEF=∠PEM=27°()∴∠BEF=∠BEG+∠GEF=63°+27°=90°,∴________⊥AB()∴________⊥CD()(2)如图,在Rt△ABC中,CD是斜边AB的高,求证:∠BCD=∠A证明:∵Rt△ABC(已知)∴∠A+∠B=90°()∵CD⊥AB(已知)∴∠CDB=90°∴∠BCD+∠B=90°()∴∠A=∠BCD()五、证明NMQPGFED CB ACA D B(1)如图,在Rt △ABC 中,CD 是斜边AB 的高,求证:∠BCD =∠ACA D B(2)如图所示,∠1=∠2,AE//BC ,求证:△ABC 是等腰三角形。
(3)已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .(4)如右图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:CB=ED(4)如图10,=A C ∠∠.求证:=ADB CEB ∠∠.(6)如图12,AEF B =∠∠,=FEC GHB ∠∠,HG AB ⊥于G .求证:CE AB ⊥.。