初二几何中常用辅助线的添加
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 教学内容:
寒假专题——初二几何中常用辅助线的添加
【典型例题】
(一)添加辅助线构造全等三角形
例1. 已知:AB∥CD,AD∥BC。
求证:AB=CD
分析:证明线段相等的方法有:(1)中线的定义;(2)全等三角形的对应边相等;(3)等式的性质。
在本题中,我们可通过连结AC,构造全等三角形来证明线段相等。
证明:连结AC
∵AB∥CD,AD∥BC
∴∠1=∠3,∠2=∠4
在△ABC和△CDA中
∴△ABC≌△CDA(ASA)
∴AB=CD
(二)截长补短法引辅助线
当已知或求证中涉及到线段a、b、c有下列情况时:,如直接证不出来,可采用截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等,这两种方法放在一起叫截长补短法。
通过线段的截长补短,构造全等把分散的条件集中起来。
例2. 如图,△ABC中,∠ACB=2∠B,∠1=∠2。
求证:AB=AC+CD
证法一:(补短法)
延长AC至点F,使得AF=AB
在△ABD和△AFD中
∴△ABD≌△AFD(SAS)
∴∠B=∠F
∵∠ACB=2∠B
∴∠ACB=2∠F
而∠ACB=∠F+∠FDC
∴∠F=∠FDC
∴CD=CF
而AF=AC+CF
∴AF=AC+CD
∴AB=AC+CD
证法二:(截长法)
在AB上截取AE=AC,连结DE
在△AED和△ACD中
∴△AED≌△ACD(SAS)
例3. 如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于E,证明:BD=2CE。
分析:这是一道证明一条线段等于另一条线段的2倍的问题,可构造线段2CE,转化为证两线段相等的问题,分别
延长BA,CE交于F,证△BEF≌△BEC,得,再证△ABD≌△ACF,得BD=CF。
证明:分别延长BA、CE交于点F
∵BE⊥CF
∴∠BEF=∠BEC=90°
在△BEF和△BEC中
∴△BEF≌△BEC(ASA)
∵∠BAC=90°,BE⊥CF
∴∠BAC=∠CAF=90°,∠1+∠BDA=90°,∠1+∠BFC=90°
∴∠BDA=∠BFC
在△ABD和△ACF中
∴△ABD≌△ACF(AAS)
∴BD=CF
∴BD=2CE
(三)加倍法和折半法
证明一条线段是另一条线段的两倍,常用如下方法:将较短线段延长一倍,然后证明它和较长线段相等,或将较长线段折半,然后证明它和较短线段相等,这种方法称为加倍法和折半法。
例4. 已知:如图,AD是△ABC的中线,AE是△ABD的中线,AB=DC,∠BAD=∠BDA。
求证:AC=2AE
分析:欲证AC=2AE,只要取AC的中点,证其一半与AE相等,或延长AE至等长,证其与AC相等,由于AE 是△ABD的中线,故考虑延长AE至F,使EF=AE,证AF=AC。(此种方法我们又称为中线倍长法)只要证△ABF≌△ADC,观察图形发现,可以证明△ADE≌△FBE,则可得出BF=AD,尚需条件∠ADC=∠FBA,而这可由外角的性质推出。
证明:延长AE至F,使EF=AE,连结BF
∵AE是△ABD的中线
∴BE=ED
在△BEF和△DEA中
∴△BEF≌△DEA
∴∠EBF=∠BDA,BF=DA
∵∠BAD=∠BDA
∴∠EBF=∠BAD
在△ADC和△FBA中
∴△ADC≌△FBA
∴AC=AF
又∵AF=2AE
∴AC=2AE
(四)利用角平分线的性质来添加辅助线
有角平分线(或证明是角平分线)时,常过角平分线上的点向角两边作垂线段,利用角平分线上的点到角两边的距离相等证题。
例5. 已知:△ABC的∠B、∠C的外角平分线交于点P。
求证:AP平分∠BAC
证明:过P点作PD⊥AC于D点,PF⊥AB于F点,PE⊥BC于E点
∵PC,BP为△ABC的∠B、∠C的外角平分线
PD⊥AC,PE⊥BC
∴PD=PE(角平分线性质)
同理:PF=PE
∴PD=PF(等量代换)
∴AP平分∠BAC(角平分线性质逆定理)
例6. 已知:如图,∠1=∠2,P为BN上一点,且PD⊥BC于D,AB+BC=2BD。
求证:∠BAP+∠BCP=180°
分析:要证∠BAP+∠BCP=180°,而由图可知∠BAP+∠EAP=180°,故只要证∠EAP=∠BCP即可。由∠1=∠2,PD⊥BC,想到过P点向BA作垂线PE,有PE=PD,BE=BD,又由,得AE=CD,故△APE≌△CPD,从而有∠EAP=∠BCP,问题得证。
证明:过点P作PE⊥BA于E
∵PD⊥BC,∠1=∠2
∴PE=PD(角平分线的性质)
在Rt△BPE和Rt△BPD中
∴Rt△BPE≌Rt△BPD(HL)
∴BE=BD
∴∠PEB=∠PDC=90°
在△PEA和△PDC中
∴△PEA≌△PDC
∴∠PCB=∠EAP
∵∠BAP+∠EAP=180°
∴∠BAP+∠BCP=180°
【模拟试题】(答题时间:40分钟)
1. 已知,如图,AB=AE,BC=ED,,垂足为F,求证:CF=DF
2. 在四边形ABCD中,BC>BA,AD=DC,BD平分,求证:
3. 已知AD是△ABC的中线,E在BC的延长线上,CE=AB,,求证:AE=2AD
4. 已知,M是BC中点,DM平分,求证:①AM平分;②