(完整word版)八年级数学上册几何添辅助线专题

合集下载

八年级上册几何辅助线专题讲解和练习

八年级上册几何辅助线专题讲解和练习

八上数学辅助线的添加浅谈一、添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线;2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”这样可防止乱添线,添辅助线也有规律可循;举例如下:1平行线是个基本图形:当几何中出现平行线时添辅助线的关键,是添与二条平行线都相交的等第三条直线2等腰三角形是个简单的基本图形:出现一点发出的二条相等线段时,往往要连结已知点补完整等腰三角形;3等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点,添底边上的中线;4直角三角形斜边上中线基本图形出现直角三角形斜边上的中点,往往添斜边上的中线;出现线段倍半关系且倍线段是直角三角形的斜边,要添直角三角形斜边上的中线;5全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个相等角关于某一直线成轴对称,就可以添加辅助线构造轴对称形全等三角形;或添对称轴,对应点连线的中垂线即为对称轴;当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加辅助线构造中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线6特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明二、基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:倍长中线法;有关三角形中线的题目,常将中线倍长构造全等三角形;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质定理和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用角平分线、垂直平分线的性质定理进行转换;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法进行转换,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.三、作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、角平分线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;四、三角形中作辅助线的常用方法举例一、在证明三角形中多条线段的不等量关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:法一将DE 两边延长分别交AB 、AC 于M 、N,在△AMN 中,AM +AN > MD +DE +NE;1 在△BDM 中,MB +MD >BD ; 2 在△CEN 中,CN +NE >CE ; 3 由1+2+3得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC法二:如图1-2, 延长BD 交 AC 于F,延长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF 三角形两边之和大于第三边1 GF +FC >GE +CE 同上………………………………2 DG +GE >DE 同上……………………………………3 由1+2+3得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +EC;二、在证明三角形中某些角的不等量关系时,如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC;BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角,A BCDEN M 11-图ABCDEF G21-图AD E G∴∠BDC >∠DEC,同理∠DEC >∠BAC,∴∠BDC >∠BAC 证法二:连接AD,并延长交BC 于F ∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD,同理,∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF;分析:要证BE +CF >EF ,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同一个三角形中;证明:在DA 上截取DN =DB,连接NE,NF,则DN =DC, 在△DBE 和△DNE 中:∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法ED ED DB DN ∴△DBE ≌△DNE SAS∴BE =NE 全等三角形对应边相等 同理可得:CF =NF在△EFN 中EN +FN >EF 三角形两边之和大于第三边 ∴BE +CF >EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等;四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形; 例如:如图4-1:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 证明:延长ED 至M,使DM=DE,连接 CM,MF;在△BDE 和△CDM 中,AB CD E FN13-图1234ACE F1234∵⎪⎩⎪⎨⎧=∠=∠=)()(1)(辅助线的作法对顶角相等中点的定义MD ED CDM CD BD ∴△BDE ≌△CDM SAS又∵∠1=∠2,∠3=∠4 已知 ∠1+∠2+∠3+∠4=180°平角的定义 ∴∠3+∠2=90°,即:∠EDF =90° ∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中∵⎪⎩⎪⎨⎧=∠=∠=)()()(公共边已证辅助线的作法DF DF FDM EDF MD ED∴△EDF ≌△MDF SAS∴EF =MF 全等三角形对应边相等∵在△CMF 中,CF +CM >MF 三角形两边之和大于第三边 ∴BE +CF >EF注:上题也可加倍FD,证法同上;注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中;五、有三角形中线时,常延长加倍中线,构造全等三角形; 例如:如图5-1:AD 为 △ABC 的中线,求证:AB +AC >2AD;分析:要证AB +AC >2AD,由图想到: AB +BD >AD,AC +CD >AD,所以有AB +AC + BD +CD >AD +AD =2AD,左边比要证结论多BD +CD,故不能直接证出此题,而由2AD 想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去;证明:延长AD 至E,使DE=AD,连接BE,则AE =2AD ∵AD 为△ABC 的中线 已知 ∴BD =CD 中线定义 在△ACD 和△EBD 中⎪⎩⎪⎨⎧=∠=∠=)()()(辅助线的作法对顶角相等已证ED AD EDB ADC CD BD∴△ACD ≌△EBD SAS∴BE =CA 全等三角形对应边相等∵在△ABE 中有:AB +BE >AE 三角形两边之和大于第三边ABCDE15-图AEF∴AB +AC >2AD;练习:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD;六、截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任一点;求证:AB -AC >PB -PC;分析:要证:AB -AC >PB -PC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB -AC,故可在AB 上截取AN 等于AC,得AB -AC =BN, 再连接PN,则PC =PN,又在△PNB 中,PB -PN <BN,即:AB -AC >PB -PC;证明:截长法在AB 上截取AN =AC 连接PN , 在△APN 和△APC 中∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AC AN ∴△APN ≌△APC SAS∴PC =PN 全等三角形对应边相等∵在△BPN 中,有 PB -PN <BN 三角形两边之差小于第三边 ∴BP -PC <AB -AC证明:补短法 延长AC 至M,使AM =AB,连接PM, 在△ABP 和△AMP 中∵ ⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AM AB∴△ABP ≌△AMP SAS∴PB =PM 全等三角形对应边相等又∵在△PCM 中有:CM >PM -PC 三角形两边之差小于第三边 ∴AB -AC >PB -PC;七、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BCA BCDNMP 16-图12分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知 ∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等九、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长;证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知DAEFA BCD 18-图1234ABCDE17-图O∴∠BEF =∠BEC =90° 垂直的定义 在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE十、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D;证明:连接BC,在△ABC 和△DCB 中 ∵ ⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等十一、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中DCBA110-图ODAN∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;五、巧求三角形中线段的比值例1. 如图1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC;解:过点D作DG如图2,BC=CD,AF=FC,求EF:FD解:过点C作CG如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD;解:过点B作BG如图4,BD:DC=1:3,AF=FD,求EF:FC;解:过点D作DG如图5,BD=DC,AE:ED=1:5,求AF:FB;2. 如图6,AD:DB=1:3,AE:EC=3:1,求BF:FC;答案:1、1:10; 2. 9:1六、辅助线总结一、 由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边; 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍;如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件;如图1-2,ABAC;3.已知:如图2-5, ∠BAC=∠CAD,AB>AD,CE ⊥AB,AE=21AB+AD.求证:∠D+∠B=180 ;4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE;求证:AF=AD+CF;图1-1BDBC已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB,垂足为D,AE 平分∠CAB 交CD 于F,过F 作FH 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,于M;求证:AM=ME;分析:由AD 、AE 是∠BAC AF,从而BF2121图4-2图4-1ABBG已知,如图,∠C=2∠A,AC=2BC;求证:△ABC 是直角三角形;2.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC ⊥ACCABA 图2-6ECD图3-2CE3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD 4.已知:如图在△ABC 中,∠A=90°,AB=AC,BD 是∠ABC 的平分线,求证:BC=AB+AD二、由线段和差想到的辅助线 口诀:线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去; 遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法: 1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段;对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明;在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:已知如图1-1:D 、E 为△ABC 内两点,求证:AB+AC>BD+DE+CE. 证明:法一将DE 两边延长分别交AB 、AC 于M 、N, 在△AMN 中,AM+AN>MD+DE+NE;1 在△BDM 中,MB+MD>BD ;2 在△CEN 中,CN+NE>CE ;3 由1+2+3得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+ECA BC D AEB D CABCD EN M 11-图AF法二:图1-2延长BD 交AC 于F,廷长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有: AB+AF>BD+DG+GF 三角形两边之和大于第三边…1 GF+FC>GE+CE 同上2 DG+GE>DE 同上3 由1+2+3得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC;在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC;BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接AD,并廷长交BC 于F,这时∠BDF 是△ABD 的 外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+ ∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF;BE+CF>EF,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同个三角形中;证明:在DN 上截取DN=DB,连接NE,NF,则DN=DC, 在△DBE 和△NDE 中: DN=DB 辅助线作法 ∠1=∠2已知 ED=ED 公共边AB CD E F G12-图ABCD E FN13-图1234∴△DBE ≌△NDESAS∴BE=NE 全等三角形对应边相等 同理可得:CF=NF在△EFN 中EN+FN>EF 三角形两边之和大于第三边 ∴BE+CF>EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素;截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB>AC,∠1=∠2,P 为AD 上任一点求证:AB-AC>PB-PC;要证:AB-AC>PB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB 上截取AN 等于AC,得AB-AC=BN,再连接PN,则PC=PN,又在△PNB 中,PB-PN<BN,即:AB-AC>PB-PC;证明:截长法在AB 上截取AN=AC 连接PN,在△APN 和△APC 中 AN=AC 辅助线作法 ∠1=∠2已知 AP=AP 公共边∴△APN ≌△APCSAS,∴PC=PN 全等三角形对应边相等 ∵在△BPN 中,有PB-PN<BN 三角形两边之差小于第三边∴BP-PC<AB-AC 证明:补短法延长AC 至M,使AM=AB,连接PM,在△ABP 和△AMP 中ABCDNMP 16 图12AB=AM 辅助线作法 ∠1=∠2已知 AP=AP 公共边 ∴△ABP ≌△AMPSAS∴PB=PM 全等三角形对应边相等又∵在△PCM 中有:CM>PM-PC 三角形两边之差小于第三边 ∴AB-AC>PB-PC;例1.如图,AC 平分∠BAD,CE ⊥AB,且∠B+∠D=180°,求证:AE=AD+BE;例2如图,在四边形ABCD 中,AC 平分∠BAD,CE ⊥AB 于E,AD+AB=2AE,求证:∠ADC+∠B=180º例3已知:如图,等腰三角形ABC 中,AB=AC,∠A=108°,BD 平分∠ABC;求证:BC=AB+DC;例4如图,已知Rt △ABC 中,∠ACB=90°,AD 是∠CAB 的平分线,DM ⊥AB 于M,且AM=MB;求证:CD=21DB;1.如图,AB ∥CD,AE 、DE 分别平分∠BAD 各∠ADE,求证:AD=AB+CD;DECB AE BCDCM BDCA2.如图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧,BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE三、由中点想到的辅助线 口诀:三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质直角三角形斜边中线性质、等腰三角形底边中线性质,然后通过探索,找到解决问题的方法;一中线把原三角形分成两个面积相等的小三角形即如图1,AD 是ΔABC 的中线,则S ΔABD =S ΔACD =S ΔABC 因为ΔABD 与ΔACD 是等底同高的;例1.如图2,ΔABC 中,AD 是中线,延长AD 到E,使DE=AD,DF 是ΔDCE 的中线;已知ΔABC 的面积为2,求:ΔCDF 的面积;解:因为AD 是ΔABC 的中线,所以S ΔACD =S ΔABC =×2=1,又因CD 是ΔACE 的中线,故S ΔCDE =S ΔACD =1,因DF 是ΔCDE 的中线,所以S ΔCDF =S ΔCDE =×1=;∴ΔCDF 的面积为;二由中点应想到利用三角形的中位线ED CB A例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD的中点为M,连结ME、MF,∵ME是ΔBCD的中位线,∴ME CD,∴∠MEF=∠CHE,∵MF是ΔABD的中位线,∴MF AB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,从而∠BGE=∠CHE;三由中线应想到延长中线例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长;解:延长AD到E,使DE=AD,则AE=2AD=2×2=4;在ΔACD和ΔEBD中,∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,从而BE=AC=3;在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线;求证:ΔABC是等腰三角形;证明:延长AD到E,使DE=AD;仿例3可证:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形;D CB A EDF CBA四直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.EDCB A中考应用09崇文二模以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变 并说明理由.14-图A B CD EFM1234A BCDE 15-图DMCE AB BA D C86B E CDA ABCD EF25-图 AB DC EFDAEDCBAP QCBA二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD3:如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠的角平分线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD =CD,BD 平分ABC ∠,求证:0180=∠+∠C ACDBAP 21DCBA5:如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC中考应用 08海淀一模三、平移变换为△ABC 的角平分线,直线MN ⊥AD 于为MN 上一点,△ABC 周长记为AP ,△EBC 周长记为BP .求证BP >AP .2:如图,在△ABC 的边上取两点D 、E,且BD=CE,求证:AB+AC>AD+AE.ED CB A四、借助角平分线造全等CBAFED CBA 1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD ∠BAC,DG ⊥BC 且平分BC,DE ⊥AB 于E,DF ⊥AC 于明BE=CF 的理由;2如果AB=a ,AC=b ,求AE 、BE 的长.中考应用06北京中考如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立 若成立,请证明;若不成立,请说明理由;五、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;当MDN ∠绕点D 转动时,求证DE=DF; 若AB=2,求四边形DECF 的面积;EDGFCBA第23题OPAMN EB CD FACEFBD图图图3.如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆的周长为 ;BCNM中考应用 07佳木斯已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立 若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系 请写出你的猜想,不需证明.西城09年一模已知2,PB=4,以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1如图,当∠APB=45°时,求AB 及PD 的长;2当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.图1A BC D E FMN 图2 A BC D E FMN 图3ABC D EF M N。

(完整)八年级数学上册几何添辅助线专题

(完整)八年级数学上册几何添辅助线专题

DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

八上几何辅助线专题讲解和练习

八上几何辅助线专题讲解和练习

八上数学辅助线的添加浅谈、添辅助线有二种情况:1 按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键,是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:出现一点发出的二条相等线段时,往往要连结已知点补完整等腰三角形;(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点,添底边上的中线;(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点,往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边,要添直角三角形斜边上的中线。

(5)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等。

如果出现两条相等线段或两个相等角关于某一直线成轴对称,就可以添加辅助线构造轴对称形全等三角形;或添对称轴,对应点连线的中垂线即为对称轴。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加辅助线构造中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(6)特殊角直角三角形当出现30,45,60,135,150 度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1: 1:V2; 30度角直角三角形三边比为1: 2:V3 进行证明二、基本图形的辅助线的画法1. 三角形问题添加辅助线方法方法1:倍长中线法。

有关三角形中线的题目,常将中线倍长构造全等三角形。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质定理和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

八年级数学期末专题复习二:八年级数学上册几何图形添辅助线例谈

八年级数学期末专题复习二:八年级数学上册几何图形添辅助线例谈

八年级数学上册期末专题复习资料二: 八年级数学上册几何图形添辅助线例谈延长BA 和CE 交于点F 使“残缺”的图形“补全”通过证明△ BECCF BD ,所以就把问题就转化证明 CF 2CE 了,根据题中条件问题可以解决 略证:延长BA 和CE 交于点F .编制:赵化中学 郑宗平 新人教版八年级数学上册前面三个单元都是几何内容,有些同学说感觉学起来有些吃力,我 想除了推理入门是个难关,还因为有部分几何题需添加辅助线;在几何题中,添加辅助线往往 是为了变更题中某些图形的位置 (特别是线段和角),使得已知条件与结论的之间关系在图形中 能清楚的显现出来,从而找到破题的方法,辅助线在其中起到铺路和架桥的作用 •下面给同学们 提供一些例子进行解析,部分例子还形成“口诀”(顺口溜),目的是加深印象!希望对同学们有帮助•(请同学们利用课外时间事先完善例题证明过程,并完成例题后面的追踪练习 .) •/ DA CA 于 A , CEBD 的延长线于E3 45 6 90°1 F2F 90°12BD 是 ABC 的平分线 •••1 CBE在△ BEC 和△ BEF 中一.连结 例.如图,已知AC 分析:要证明 C BD, AD BC ;求证: C D D 可考虑化在两个三角形,通过证明其全等使问题获得解决 形结构来看要直接证明△ AOC 和厶BOC 全等缺少条件;但连接AB 后,AB 就成了 △ABC C•但从本题图EC EF 二 CF 2CE和厶BAD 的公共边,相当于使隐含条件显现出来,证明 略证:连结AB△ ABC 和△ BAD 全等即可• 追踪练习: 1.如图,已知 AB AD,CB CD .求证: B D . 2.如图,五边形 ABCDE 中,AB AE, B E,CB DE AF CD 垂足为F ;求证:点F 为边CD 的中点. C又在△ ABD 和厶CAF 中CF 二 BD 2CE二•延长 如图,DA E .求证:BD 2CE分析:从本题条件来看要直接证明BD 2CE ,我们需要找一条线段来替代CA 于A , AB AC ; BD 是 ABC 的平分线,过C 作CE BD 的延长线于 BD ;本题若我们追踪练习:如图,已知,四边形ABCD 中, 求CD 的长?90°,C D1,三.作高线例.已知△ ABC 中AB AC ; D 、E 为边BC 的两点,且 AD AE . 求证: 分析: 解决, 合一”BD CE 虽然要证明 BD CE 可以通过证明两个全等三角形来 但作△ ABC 的底边的高线,利用等腰三角形的“三线 过程会变得更为简捷 .略证:过点A 作AF BC ,垂足为F••• AB AC , AD AE••• BF CF ,DF EF ( “三线合一”) ,即 BD CE 口诀:底边作高线,解答更方便 • 追踪练习:| 如右上图,在 △ ABC 中, A 30°, AC 8, AB 9 ;求△ ABC 的面积.• AB AC (垂直平分线的性质) 同理 • AB AD•/ AB AC, AD AC12BCD四.作垂线•连端点 例1.如图,四边形 AC 平分 DAB ,且CD CB 求证: B D 180°分析: BAD B D BCD 4 2 180° 360°,• BAD ° 114° 114°口诀:分角两边作垂线,垂直平分连端点, BCD 114°°.注:求 BAD 的度数的途径不止一种. 线段相等好转换D——CMBBC 中点,DM 平分 ADC .略证:过 [:点C 作CE AB ,垂足为E ;作CF AD 的延长线与 F . • CEB CFD 90°F 又 ••• AC 平分 DAB |__ __• CE CF D A 1 \ C•在Rt72△ CEB 和 Rt △ 中:\h\ • Rt △ CEB 也 Rt △ CFD HL AEB1 B••• 1 2 180° • B 180° 即 B D 180°要证明 B D 180°,我们通常会想到一个平角就等于 180,所以我们可以想办法把 B 、 D “搬”在一起组成一个平角.通过构造全等三角形可以解决这个问题;角平分线上的 点到两边距离相等可以为证明全等提供条件 .若过点C 作 DAB 两边的垂线可以构造满足需要 的两个全等三角形. 例2.如图,在四边形 ABCD 中,点E 是边BC 的中点,点F 是边CD 的中点,且EC3.如图,在△ ABC 中,BC 30°; 点D 是边AB 的or D中点,点F 是边AC 的中点,且 分别为D 、F .追踪练习:1. 如图, B C 90°,点M 是 求证 AM 平分 DAB .2. 如图所示, AOB 30°, OC 平分 AOB , CD OA, CE // OA ,BCE 4.求CD 的长.ED AB,GF AC ,垂足 求证:BE EG GC ;五.作平行线AE BC,AF CD . ⑴.求证:AB AD ; ⑵.若 BCD 114° ,求 BAD 的度数. 例.如图,在△ ABC 中,AB AC , E 、D 分别在AB 和AC 的延长线上,连接 DE 交BC 于F ;若点F 是ED 的中点. 求证:BE CD .分析:要证明BE 分析:本题主要是⑴问,要证明 AB AD 关键是抓住 AE 垂直平 分BC 和AF 垂直平分CD ,所以连接AC 后利用垂直平分 线的性质得出 AB AC, AD AC ,所以AB AD . 略解: CD 我们的主要思路还是要化归贵在两个三角 B形中,通过证明其全等使问题获得解决;但本题的条件“不足” 根据△ ABC 是一个等腰三角形和点 F 是ED 的中点,我们可 以构造一对等腰三角形来解决这个难题.通常在有中点的况下,通过情构造辅助平行线能够得到两个全等三角形 ⑴.连结AC •••点E 是边BC 的中点,AE BC略证:过点E 作EG // AD 交BC 于点G .• 3 D ,•••点F 是ED 的中点 4 ACB• EF DFABD又在△ EGF和厶DCF中S• EG CD•/ AB AC / B ACB又:4 ACB ■■- B 4 ■■- BE GE追踪练习:1.将本例已知中的“点F是ED的中点”和求证中的“ BE CD ”对调后加以证明;2.叙述并证明三角形的内角和定理.六.截长补短例.如图,AD // BC,点E在CE上,AE、BE分别平分DAB、CBA. 求证:AD BC AB .分析:•BF BC (全等三角形,对应边相等)又AF AB•AF BF AB CD 即AD BC AB . 口诀:线段和差要证好,截长补短不可少追踪练习:求证:BC AC BD .七.倍长中线:例.如图。

人教版八年级上册数学专题全等三角形中辅助线添加

人教版八年级上册数学专题全等三角形中辅助线添加

全等三角形中辅助线的添加一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。

二.知识要点:1、添加辅助线的方法和语言表述(1)作线段:连接……;(2)作平行线:过点……作……∥……;(3)作垂线(作高):过点……作……⊥……,垂足为……;(4)作中线:取……中点……,连接……;(5)延长并截取线段:延长……使……等于……;(6)截取等长线段:在……上截取……,使……等于……;(7)作角平分线:作……平分……;作角……等于已知角……;(8)作一个角等于已知角:作角……等于……。

2、全等三角形中的基本图形的构造与运用常用的辅助线的添加方法:(1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。

(2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。

①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。

(3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。

(4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。

(5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。

(6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。

三、基本模型:(1)△ABC中AD是BC边中线方式1:延长AD到E,使DE=AD,连接BEFED CBA方式2:间接倍长,作CF⊥AD于F,作BE⊥AD的延长线于E,连接BENDCBAM方式3:延长MD到N,使DN=MD,连接CD(2)由△ABE≌△BCD导出由△ABE≌△BCD导出由△ABE≌△BCD导出BC=BE+ED=AB+CD ED=AE-CD EC=AB-CD(3)角分线,分两边,对称全等要记全角分线+垂线,等腰三角形必呈现(三线合一)(4)①旋转:方法:延长其中一个补角的线段(延长CD到E,使ED=BM ,连AE或延长CB到F,使FB=DN ,连AF )结论:①MN=BM+DN②ABCCMN2=∆③AM、AN分别平分∠BMN和∠DNM②翻折:思路:分别将△ABM和△ADN以AM和AN 为对称轴翻折,但一定要证明M、P、N三点共线.(∠B+∠D=0180且AB=AD)(5)手拉手模型①△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC;(2)∠B0E=∠BAE=60°(“八字型”模型证明);(3)OA平分∠EOF拓展:条件:△ABC和△CDE均为等边三角形结论:(1)、AD=BE(2)、∠ACB=∠AOB(3)、△PCQ为等边三角形(4)、PQ∥AE(5)、AP=BQ(6)、CO平分∠AOE(7)、OA=OB+OC (8)、OE=OC+OD((7),(8)需构造等边三角形证明)②△ABD和△ACE均为等腰直角三角形结论:(1)、BE=CD (2)BE⊥CD③ABEF和ACHD均为正方形结论:(1)、BD⊥CF(2)、BD=CF变形一:ABEF和ACHD均为正方形,AS⊥BC交FD于T,求证:①T为FD的中点. ②.ADF ABCSS∆∆=方法一:方法二:方法三:变形二:ABEF 和ACHD 均为正方形,M 为FD 的中点,求证:AN ⊥BC④当以AB 、AC 为边构造正多边形时,总有:∠1=∠2=n360180.PFEDIHG BA21P G FEDKJIHAB四、典型例题:EDFCBAD CBA考点一:倍长中线(或类中线)法:核心母题已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.练习:1、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.2、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBA3、如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC,求证:CD=2CE。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题SANY 标准化小组#QS8Q HH-HHGX8Q8-GNHHJ8-HHMHGN#总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等, 构造二个角之间的相等【三角形辅助线做法】也可将图对折看,对称以后关系现。

角平分线加垂线,三线合一试试看。

要证线段倍与半,延长缩短可试验。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2. 倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线4. 垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直 角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条 边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

&计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以 得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间 的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间 的相等,二个角之间的相等。

全等三角形问题中常见的辅助线的作法(有答案)图中有角平分线, 角平分线平行线, 线段垂直平分线,可向两边作垂线。

等腰三角形来添。

常向两端把线连。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1) 遇到等腰三模式是全华2) 遇到三角刃角形,利戶3) 遇到角平夕角的两边/ 知识点常乍 点作该角円 在该角的卩 点再向角円4) 过图形上多等变换中tl5) 截长法与木等,或是水关性质加P 目.6) 已知某线电个端点作卫 特殊方法:点的线段连接葩一、倍长中线t 例1、( “希望 值范围是 ___________解:延长AD 至 AB-BE <2AD<AB- 例2、如图,△ BE+CF与 EF 的 7 解:(倍长中线, EG,显然BG=FC,故:EF<BE+FC例3、如图,ZXABC中,BD二DC二AC, E是DC的中点,求证:AD平分ZBAE.解:延长AE至G使AG=2AE,连BG, DG,显然DG=AC, ZGDC=ZACD由于DC二AC,故ZADC=ZDAC在AADB与AADG中,BD=AC二DG, AD=AD,Z ADB= Z ADC+ Z ACD= Z ADC+ Z GDC = ZADG故厶ADBΔADG,故有ZBAD=ZDAG,即AD 平分ZBAE二、截长补短1、如图,ΔA3C中,AB二2AC, AD 平分ZBAC,且AD二BD,求证:CD丄AC 解:(截长法)在AB上取中点F,连FD△ADB是等腰三角形,F是底AB中点,由三线合一知DF丄AB,故ZAFD = 90°ZACD=ZAFD = 90°即:CD丄AC2、如图,AD/7BC, EA, EB 分别平分ZDAB, ZCBA, CD 过点E,求证;ABA r--------------- D=AD÷BC YV \解:(截长法)在AB上取点F,使AF=AD,连FE ∖E△ ADE幻Z∖AFE (SAS) ∖ZADE=Z AFE, \ /ZADE+ZBCE = 180oPB-PC = PF-PC < CF=AF-AC=AB-AC 应用: 分析:此题连接力G 把梯形的问题转化成等边三角形的问题,然后利用已 知条件和等边三角形的性质通过证明三角形全等解决它们他问甄 证明:取BC 中,解:^BC = AD+ AE 连接过疋作£F 〃Bc 并M 于尸点 则可证为等边三角形 ^AE = EF , ZAEF = ZAra = 60。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题2345EDF CBA例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 解:(倍长中线,等腰三角形“三线合一”法)延长FD 至G 使FG =2EF ,连BG ,EG, 显然BG =FC , 在△EFG 中,注意到DE ⊥DF ,由等腰三角形的三线合一知 EG =EF 在△BEG 中,由三角形性质知EG<BG+BE 故:EF<BE+FC例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.E D CBA解:延长AE 至G 使AG =2AE ,连BG ,DG, 显然DG =AC , ∠GDC=∠ACD由于DC=AC ,故 ∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG 故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE 二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC解:(截长法)在AB 上取中点F ,连FD △ADB 是等腰三角形,F 是底AB 中点,由三线合一知DF ⊥AB ,故∠AFD =90°△ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC6EDCBADCBAPQCBA2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 解:(截长法)在AB 上取点F ,使AF=AD ,连FE△ADE ≌△AFE (SAS ) ∠ADE =∠AFE , ∠ADE+∠BCE =180°∠AFE+∠BFE =180°故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC∠的角平分线。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明DCBA全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

欢迎共阅A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

1.等腰三角形“三线合一”法:线合一”的性质解题2.倍长中线:3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 长,6.图形补全法:有一个角为60度或7.角度数为30、60度的作垂线法:角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

.法构造全等三角形. (1)可以自角平分线上的某一点向角2)可以在角平分线上的一点作3)可以在该然后从这两点再向再利用三角形全等的有关性质 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答CCBA一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD<AB+BE 故AD 的取值范围是例2、如图,△ABC 中,E 、F 分别在AB 、与EF 的大小.解:(倍长中线,显然BG =FC ,在△EFG 中,注意到DE ⊥DF EG =EF在△BEG 中,由三角形性质知 EG<BG+BE 故:EF<BE+FC例3、如图,△ABC 中,BD=DC=AC ,E 是解:延长AE 至G 使AG =2AE ,连BG ,显然DG =AC , ∠GDC=∠ACD 由于DC=AC ,故 ∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 解:(截长法)在AB 上取中点F ,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知DF ⊥AB ,故∠AFD =90°△ADF ≌△ADC (SAS )DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC =AD ,连FE,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

初二几何中常用辅助线的添加

初二几何中常用辅助线的添加

初二几何中常用辅助线的添加初二几何中常用辅助线的添加一. 教学内容:寒假专题——初二几何中常用辅助线的添加【典型例题】(一)添加辅助线构造全等三角形例1. 已知:AB∥CD,AD∥BC。

求证:AB=CD分析:证明线段相等的方法有:(1)中线的定义;(2)全等三角形的对应边相等;(3)等式的性质。

在本题中,我们可通过连结AC,构造全等三角形来证明线段相等。

证明:连结AC∵AB∥CD,AD∥BC∴∠1=∠3,∠2=∠4在△ABC和△CDA中∴△ABC≌△CDA(ASA)∴AB=CD(二)截长补短法引辅助线当已知或求证中涉及到线段a、b、c有下列情况时:,如直接证不出来,可采用截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等,这两种方法放在一起叫截长补短法。

通过线段的截长补短,构造全等把分散的条件集中起来。

例2. 如图,△ABC中,∠ACB=2∠B,∠1=∠2。

求证:AB=AC+CD证法一:(补短法)延长AC至点F,使得AF=AB在△ABD和△AFD中∴△ABD≌△AFD(SAS)∴∠B=∠F∵∠ACB=2∠B∴∠ACB=2∠F而∠ACB=∠F+∠FDC∴∠F=∠FDC∴CD=CF而AF=AC+CF∴AF=AC+CD∴AB=AC+CD证法二:(截长法)在AB上截取AE=AC,连结DE在△AED和△ACD中∴△AED≌△ACD(SAS)例3. 如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于E,证明:BD=2CE。

分析:这是一道证明一条线段等于另一条线段的2倍的问题,可构造线段2CE,转化为证两线段相等的问题,分别延长BA,CE交于F,证△BEF≌△BEC,得,再证△ABD≌△ACF,得BD=CF。

证明:分别延长BA、CE交于点F∵BE⊥CF∴∠BEF=∠BEC=90°在△BEF和△BEC中∴△BEF≌△BEC(ASA)∵∠BAC=90°,BE⊥CF∴∠BAC=∠CAF=90°,∠1+∠BDA=90°,∠1+∠BFC=90°∴∠BDA=∠BFC在△ABD和△ACF中∴△ABD≌△ACF(AAS)∴BD=CF∴BD=2CE(三)加倍法和折半法证明一条线段是另一条线段的两倍,常用如下方法:将较短线段延长一倍,然后证明它和较长线段相等,或将较长线段折半,然后证明它和较短线段相等,这种方法称为加倍法和折半法。

(word完整版)八年级数学期末专题复习二:八年级数学上册几何图形添辅助线例谈

(word完整版)八年级数学期末专题复习二:八年级数学上册几何图形添辅助线例谈

八年级数学上册期末专题复习资料二:八年级数学上册几何图形添辅助线例谈编制:赵化中学 郑宗平新人教版八年级数学上册前面三个单元都是几何内容,有些同学说感觉学起来有些吃力,我想除了推理入门是个难关,还因为有部分几何题需添加辅助线;在几何题中,添加辅助线往往是为了变更题中某些图形的位置(特别是线段和角),使得已知条件与结论的之间关系在图形中能清楚的显现出来,从而找到破题的方法,辅助线在其中起到铺路和架桥的作用.下面给同学们提供一些例子进行解析,部分例子还形成 “口诀”(顺口溜),目的是加深印象!希望对同学们有帮助.(请同学们利用课外时间事先完善例题证明过程,并完成例题后面的追踪练习.)一.连结例.如图,已知,AC BD AD BC ==;求证:C D ∠=∠分析:要证明C D ∠=∠可考虑化在两个三角形,通过证明其全等使问题获得解决.但从本题图形结构来看要直接证明△AOC 和△BOC 全等缺少条件;但连接AB 后,AB 就成了△ABC 和△BAD 的公共边,相当于使隐含条件显现出来,证明△ABC 和△BAD 全等即可. 略证:连结AB2.如图,五边形ABCDE 中,,,=∠=∠=AB AE B E CB DE ,⊥AF CD 垂足为F ;求证:点F 为边CD 的中点.二.延长如图,DA CA ⊥于A , AB AC =;BD 是ABC ∠的平分线,过C 作CE BD ⊥的延长线于E .求证:BD 2CE =分析:从本题条件来看要直接证明BD 2CE =,我们需要找一条线段来替代BD ;本题若我们延长BA 和CE 交于点F 使“残缺”的图形“补全”=CF BD ,所以就把问题就转化证明=CF 2CE 了,根据题中条件问题可以解决. 略证:延长BA 和CE 交于点F .()追踪练习:如图, 已知,四边形ABCD 中, ,,B 90A 30ADC 120AD 4BC 1∠=∠=∠===o o o,,,求CD 的长?三.作高线例.已知△ABC 求证:=BD CE 分析:虽然要证明解决,但作△ABC 的底边的高线,利用等腰三角形的“三线合一”过程会变得更为简捷.略证:过点A 作⊥AF BC ,垂足为F∵=AB AC ,=AD AEBAB∴,==BF CF DF EF (“三线合一”)∴()()()()-=- ,即=BD CE 口诀:底边作高线,解答更方便. 追踪练习:如右上图,在△ABC 中,,,∠===o A 30AC 8AB 9 ;求△ABC 的面积.四.作垂线·连端点例1. 如图,四边形AC 平分∠DAB ,且=CD CB 求证: ∠+∠=o B D 180要证明∠+∠=oB D 180,我们通常会想到一个平角就等于180,所以我们可以想办法把∠∠B D 、“搬”在一起组成一个平角.通过构造全等三角形可以解决这个问题;角平分线上的点到两边距离相等可以为证明全等提供条件.若过点C 作∠DAB 两边的垂线可以构造满足需要的两个全等三角形.略证:过点C 作⊥CE AB ,垂足为E ;作⊥CF AD 的延长线与F . ∴∠=∠=oCEB CFD 90又∵AC 平分∠DAB ∴=CE CF∴在Rt △CEB 和Rt △CFD 中 =⎧⎪⎨=⎪⎩∴Rt △CEB ≌Rt △CFD ()HL∴∠=∠1B∵∠+∠=o12180 ∴()∠+=o B 180 即∠+∠=o B D 180例2.如图,在四边形中,点 是边的中点,点是边的中点,且AE BC,AF CD ⊥⊥ . ⑴.求证:AB AD =;⑵.若BCD 114∠=o,求BAD ∠的度数. 分析:本题主要是⑴问,要证明AB AD =关键是抓住AE 垂直平 分BC 和AF 垂直平分CD ,所以连接AC 后利用垂直平分 线的性质得出,==AB AC AD AC ,所以AB AD =.略解:⑴.连结AC∵点E 是边BC 的中点,AE BC ⊥∴AB AC = (垂直平分线的性质) 同理()()=∴=AB AD⑵.∵AB AC,AD AC == ∴()()∠=∠=B ,D ∴()()∠+∠=+B D 即B D BCD ∠+∠=∠∵()()BAD B D BCD 42180360∠+∠+∠+∠=-⋅=o o ,BCD 114∠=o∴()()∠=--=o o o oBAD 114114. 注:求BAD ∠ 的度数的途径不止一种.追踪练习:1. 如图,B C 90∠=∠=o,点M 是BC 中点,DM 平分ADC ∠. 求证 AM 平分DAB ∠. 2. 如图所示,AOB 30∠=o,OC 平分AOB ∠,,CD OA ⊥CE ∥OA , CE 4=.求CD 的长.3.如图,在△ABC 中,∠=∠=oB C 30;点D 是边AB 的中点,点F 是边AC 的中点,且⊥⊥ED AB ,GF AC ,垂足 分别为D F 、. 求证:==BE EG GC ;五.作平行线例.如图,在△ABC 中,=AB AC ,E D 、 分别在AB 和 AC 的延长线上,连接DE 交BC 于F ;若点F 是ED 的中点.求证:=BE CD . 分析:要证明=BE CD 我们的主要思路还是要化归贵在两个三角形中,通过证明其全等使问题获得解决;但本题的条件“不足”,根据△ABC 是一个等腰三角形和点F 是ED 的中点,我们可 以构造一对等腰三角形来解决这个难题.通常在有中点的况下,通过情构造辅助平行线能够得到两个全等三角形.略证:过点E 作EG ∥AD 交BC 于点G . ∴∠=∠3D ,∠=∠4ACB∵点F 是ED 的中点 ∴=EF DFAFE B CD CAE DB C BD EDF A21FE DABCDACF EB CA D4321G FE B CAD分析:要证明AD BC AB+=可以从两个方面考虑:一是想办法在AD或BC所在的直线线为基础截取一条一条线段来等于BC或AD,相当于把+AD BC转成一条线段通过全等三角形直接证明;二是在线段BC上截取一条来等于+AD BC的其中一条,通过证明截取BC余下的线段余下+AD BC中一线段相等,从而使问题得以解决.前面一种途径可以称为“补短法”,后面一种途径可以称为“截长法”.()追踪练习:已知,如右上图△ABC中,,=∠=oAB AC A108 ,CD平分∠BCA交AB于D.求证:=+BC AC BD .七.倍长中线:例.如图。

(完整版)初二数学辅助线常用做法及例题(含答案)

(完整版)初二数学辅助线常用做法及例题(含答案)

使 AE = AF,
求证: EF⊥BC
证明:延长 BE到 N,使 AN= AB,连结 CN,则 AB= AN= AC
N
∴∠ B = ∠ ACB, ∠ACN = ∠ ANC ∵∠ B+∠ ACB+∠ ACN+∠ ANC = 180o ∴ 2∠BCA+ 2∠ ACN = 180o ∴∠ BCA+∠ ACN = 90o 即∠ BCN = 90o
7. 角度数为 30、 60 度的作垂线法: 遇到三角形中的一个角为 30 度或 60 度,可
以从角一边上一点向角的另一边作垂线,目的是构成
30-60-90 的特殊直角三角形,然后计
算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三
角形创造边、角之间的相等条件。
8. 计算数值法: 遇到等腰直角三角形,正方形时,或 30-60-90 的特殊直角三角形,或
40-60-80 的特殊直角三角形 , 常计算边的长度与角的度数,这样可以得到在数值上相等的二
条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个
角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变
A
∵ BD⊥AC ∴∠ DBC+∠ ACB = 90o
DBC (方法二)过 A 作 AE⊥ BC于 E(过程略)
B
E
C
(方法三)取 BC中点 E,连结 AE(过程略)
⑵有底边中点时,常作底边中线
例:已知,如图,△ ABC中, AB = AC,D为 BC中点, DE⊥ AB于 E,DF⊥ AC于 F,
B

(完整word版)初二辅助线专题1

(完整word版)初二辅助线专题1

辅助线专题一、找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

二、三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

精解名题一、截长补短法截长补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

1、如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.方法提炼:遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。

2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。

二、中线倍长法若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

2、已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是().3、如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。

求证:ΔABC是等腰三角形。

方法提炼:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

(word完整版)初中数学中考几何如何巧妙做辅助线大全,推荐文档

(word完整版)初中数学中考几何如何巧妙做辅助线大全,推荐文档

人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初二几何辅助线添加方法(16页)

初二几何辅助线添加方法(16页)

初二数学辅助线1. 三角形问题添加辅助线方法方法1 :有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2 :含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3 :结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4 :结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2. 平行四边形中常用辅助线的添法平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5 )过顶点作对角线的垂线,构成线段平行或三角形全等.3. 梯形中常用辅助线的添法梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。

(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰(5)过梯形上底的两端点向下底作高(6)平移对角线(7)连接梯形一顶点及一腰的中点。

(8)过一腰的中点作另一腰的平行线。

(9)作中位线当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。

(word版)初二全等三角形辅助线方法()

(word版)初二全等三角形辅助线方法()

三角形辅助线专题常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题,思维模式是全等变换中的“对折〞.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转〞.遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折〞,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移〞或“翻转折叠〞;〔遇垂线及角平分线时延长垂线段,构造等腰三角形〕截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、中线问题1:〔“希望杯〞试题〕,如图△ABC中,AB=5,AC=3,那么中线AD的取值范围是_________.AC2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.AEFBD3:如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.AB D E C1中考应用〔09崇文二模〕以Rt ABC的两边AB、AC为腰分别向外作等腰Rt ABD和等腰Rt ACE,BADCAE90 ,连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.〔1〕如图①当ABC为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;〔2〕将图①中的等腰RtABD绕点A沿逆时针方向旋转(0<<90)后,如图②所示,〔1〕问中得到的两个结论是否发生改变?并说明理由.二、截长补短1.如图,ABC中,AB=2AC,AD平分BAC,且AD=BD,求证:CD⊥ACACBD2:如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC A DEBC23:如图,在 ABC内,BAC 60, C 400,P,Q分别在BC,CA上,并且AP,BQ分别是 BAC,ABC 的角平分线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD<AB+BE 故AD 的取值范围是1<AD<4EDFCBACCBA例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.解:(倍长中线,等腰三角形“三线合一”法)延长FD 至G 使FG =2EF ,连BG ,EG, 显然BG =FC ,在△EFG 中,注意到DE ⊥DF ,由等腰三角形的三线合一知 EG =EF在△BEG 中,由三角形性质知 EG<BG+BE 故:EF<BE+FC例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.E D CB A解:延长AE 至G 使AG =2AE ,连BG ,DG, 显然DG =AC , ∠GDC=∠ACD 由于DC=AC ,故 ∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE 二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 解:(截长法)在AB 上取中点F ,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知 DF ⊥AB ,故∠AFD =90°△ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 解:(截长法)在AB 上取点F ,使AF =AD ,连FE △ADE ≌△AFE (SAS ) ∠ADE =∠AFE , ∠ADE+∠BCE =180°∠AFE+∠BFE =180°故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BQ+AQ=AB+BP 解:(补短法, 计算数值法)延长AB 至D ,使BD =BP ,连DP 在等腰△BPD 中,可得∠BDP =40°BA从而∠BDP =40°=∠ACP △ADP ≌△ACP (ASA ) 故AD =AC又∠QBC =40°=∠QCB 故 BQ =QC BD =BP从而BQ+AQ=AB+BP4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0180=∠+∠C A解:(补短法)延长BA 至F ,使BF =BC ,连FD △BDF ≌△BDC (SAS )故∠DFB =∠DCB ,FD =DC 又AD =CD故在等腰△BFD 中 ∠DFB =∠DAF故有∠BAD+∠BCD =180°5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC解:(补短法)延长AC 至F ,使AF =AB ,连PD△ABP ≌△AFP (SAS ) 故BP =PF 由三角形性质知PB -PC =PF -PC < CF =AF -AC =AB -AC 应用:分析:此题连接AC ,把梯形的问题转化成等边三角形的问题,然后利用已知条件和等边三角形的性质通过证明三角形全等解决它们的问题。

三、平移变换例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .CBA解:(镜面反射法)延长BA 至F ,使AF =AC ,连FE AD 为△ABC 的角平分线, MN ⊥AD 知∠FAE =∠CAE 故有△FAE ≌△CAE (SAS ) 故EF =CE在△BEF 中有: BE+EF>BF=BA+AF=BA+AC 从而P B =BE+CE+BC>BF+BC=BA+AC+BC=P A例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.证明:取BC 中点M,连AM 并延长至N,使MN=AM,连BN,DN.∵BD=CE,∴DM=EM,∴△DMN ≌△EMA(SAS), ∴DN=AE, 同理BN=CA.延长ND 交AB 于P,则BN+BP>PN,DP+PA>AD, 相加得BN+BP+DP+PA>PN+AD, 各减去DP,得BN+AB>DN+AD, ∴AB+AC>AD+AE 。

四、借助角平分线造全等1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD ,DC+AE =AC证明 (角平分线在三种添辅助线,计算数值法)∠B=60度, 则∠BAC+∠BCA=120度; AD,CE 均为角平分线,则∠OAC+∠OCA=60度=∠AOE=∠COD; ∠AOC=120度.在AC 上截取线段AF=AE,连接OF. 又AO=AO;∠OAE=∠OAF .则⊿OAE ≌ΔOAF(SAS),OE=OF;AE=AF;∠AOF=∠AOE=60度.则∠COF=∠AOC-∠AOF=60度=∠COD; 又CO=CO;∠OCD=∠OCF. 故⊿OCD ≌ΔOCF(SAS), OD=OF;CD=CF. OE=ODDC+AE=CF+AF=AC.2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长. 解:(垂直平分线联结线段两端)连接BD ,DC DG 垂直平分BC ,故BD =DC由于AD 平分∠BAC , DE ⊥AB 于E ,DF ⊥AC 于F ,故有 ED =DF故RT △DBE ≌RT △DFC (HL ) 故有BE =CF 。

AB+AC =2AE AE =(a+b )/2 BE=(a-b)/2 应用:1、如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:EDGFC BA(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系; (2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

解:(1)FE 与FD 之间的数量关系为FD FE = (2)答:(1)中的结论FD FE =仍然成立。

证法一:如图1,在AC 上截取AE AG =,连结FG ∵21∠=∠,AF 为公共边, ∴AGF AEF ∆≅∆∴AFG AFE ∠=∠,FG FE =∵︒=∠60B ,AD 、CE 分别是BAC ∠、BCA ∠∴︒=∠+∠6032∴︒=∠=∠=∠60AFG CFD AFE ∴︒=∠60CFG∵43∠=∠及FC 为公共边 ∴CFD CFG ∆≅∆ ∴FD FG = ∴FD FE =证法二:如图2,过点F 分别作AB FG ⊥于点G ,BC FH ⊥于点H ∵︒=∠60B ,AD 、CE 分别是BAC ∠、BCA ∠的平分线 ∴可得︒=∠+∠6032,F 是ABC ∆的内心∴160∠+︒=∠GEF ,FG FH = 又∵1∠+∠=∠B HDF ∴HDF GEF ∠=∠ ∴可证DHF EGF ∆≅∆ ∴FD FE =有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC ,BD ⊥AC 于D ,求证:∠BAC = 2∠DBC证明:(方法一)作∠BAC 的平分线AE ,交BC 于E ,则∠1 = ∠2 =12∠BAC 又∵AB = AC ∴AE ⊥BC∴∠2+∠ACB = 90o∵BD ⊥AC∴∠DBC +∠ACB = 90o ∴∠2 = ∠DBC∴∠BAC = 2∠DBC(方法二)过A 作AE ⊥BC 于E (过程略) (方法三)取BC 中点E ,连结AE (过程略)⑵有底边中点时,常作底边中线例:已知,如图,△ABC 中,AB = AC ,D 为BC 中点,DE⊥AB 于E ,DF ⊥AC 于F ,求证:DE = DF 证明:连结AD.∵D 为BC 中点,∴BD = CD 又∵AB =AC ∴AD 平分∠BAC ∵DE ⊥AB ,DF ⊥AC ∴DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC 中,AB = AC ,在BA 延长线和AC 上各取一点E 、F ,使AE = AF ,求证:EF ⊥BC证明:延长BE 到N ,使AN = AB,连结CN,则AB = AN = AC∴∠B = ∠ACB, ∠ACN = ∠ANC ∵∠B +∠ACB +∠ACN +∠ANC = 180o∴2∠BCA +2∠ACN = 180o21E D B A F E D C B A NF EC B A(第23题图)OP AMNEBCD F AEFBD图①图② 图③图 1图 2∴∠BCA +∠ACN = 90o 即∠BCN = 90o ∴NC ⊥BC ∵AE = AF∴∠AEF = ∠AFE又∵∠BAC = ∠AEF +∠AFE ∠BAC = ∠ACN +∠ANC ∴∠BAC =2∠AEF = 2∠ANC ∴∠AEF = ∠ANC ∴EF ∥NC ∴EF ⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC 中,AB = AC ,D 在AB 上,E 在AC 延长线上,且BD =CE ,连结DE 交BC 于F 求证:DF = EF 证明:(证法一)过D 作DN ∥AE ,交BC 于N ,则∠DNB = ∠ACB ,∠NDE = ∠E , ∵AB = AC ,∴∠B = ∠ACB ∴∠B =∠DNB∴BD = DN又∵BD = CE ∴DN = EC在△DNF 和△ECF 中 ∠1 = ∠2∠NDF =∠E DN = EC∴△DNF ≌△ECF ∴DF = EF(证法二)过E 作EM ∥AB 交BC 延长线于M,则∠EMB =∠B (过程略)⑸常过一腰上的某一已知点做底的平行线 例:已知,如图,△ABC 中,AB =AC ,E 在AC 上,D 在BA 延长线上,且AD = AE ,连结DE求证:DE ⊥BC证明:(证法一)过点E 作EF ∥BC 交AB 于F ,则 ∠AFE =∠B∠AEF =∠C∵AB = AC ∴∠B =∠C ∴∠AFE =∠AEF ∵AD = AE∴∠AED =∠ADE又∵∠AFE +∠AEF +∠AED +∠ADE = 180o∴2∠AEF +2∠AED = 90o即∠FED = 90o ∴DE ⊥FE 又∵EF ∥BC ∴DE ⊥BC(证法二)过点D 作DN ∥BC 交CA 的延长线于N ,(过程略) (证法三)过点A 作AM ∥BC 交DE 于M ,(过程略)⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形例:已知,如图,△ABC 中,AB = AC ,∠BAC = 80o ,P 为形内一点,若∠PBC = 10o ∠PCB = 30o 求∠PAB 的度数. 解法一:以AB 为一边作等边三角形,连结CE则∠BAE =∠ABE = 60oAE = AB = BE∵AB = AC∴AE = AC ∠ABC =∠ACB ∴∠AEC =∠ACE∵∠EAC =∠BAC -∠BAE = 80o -60o = 20o∴∠ACE = 12(180o-∠EAC)= 80∵∠ACB=12(180o -∠BAC)= 50o ∴∠BCE =∠ACE -∠ACB = 80o -50o = 30o ∵∠PCB = 30o ∴∠PCB = ∠BCE21NF E DC B A 21M FED C B A N M FE DC B A PE CBA∵∠ABC =∠ACB = 50o, ∠ABE = 60o ∴∠EBC =∠ABE-∠ABC = 60o-50o =10o∵∠PBC = 10o∴∠PBC = ∠EBC在△PBC和△EBC中∠PBC = ∠EBCBC = BC∠PCB = ∠BCE∴△PBC≌△EBC∴BP = BE∵AB = BE∴AB = BP∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o∴∠PAB = 12(180o-∠ABP)= 70o解法二:以AC为一边作等边三角形,证法同一。

相关文档
最新文档