勾股定理单元测试题及答案
人教新版八年级下册数学《第17章 勾股定理》单元测试卷和答案详解(PDF可打印)
人教新版八年级下册《第17章勾股定理》单元测试卷(1)一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.54.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c26.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25 7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高米.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了米.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成个直角三角形.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了米.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=,BC=,AC=;(2)试判断△ABC的形状,并说明理由.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?人教新版八年级下册《第17章勾股定理》单元测试卷(1)参考答案与试题解析一、选择题(本题共计7小题,每题3分,共计21分,)1.(3分)已知直角三角形的两条直角边的长分别为3和5,则斜边的长为()A.3B.4C.5D.【考点】勾股定理.【分析】直接利用勾股定理计算得出答案.【解答】解:∵直角三角形的两条直角边的长分别为3和5,∴斜边的长为:=.故选:D.2.(3分)下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若两个数互为相反数,他们的奇次幂也互为相反数;③面积相等的长方形周长也一定相等;④若a=b,则a2=b2.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分别写出各个命题的逆命题,逐项判断即可.【解答】解:①有两边相等的三角形是等腰三角形的逆命题是等腰三角形的两边相等,正确,有逆定理;②有两边相等的三角形是等腰三角形的逆命题是若两个数的奇次幂互为相反数,这两个数互为相反数,正确,有逆定理;③面积相等的长方形周长也一定相等的逆命题是周长相等的长方形面积也相等,为假命题,无逆定理;④若a=b,则a2=b2的逆命题是若a2=b2,则a=b,为假命题,无逆定理;故有逆定理的个数是2个,故选:B.3.(3分)如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.5【考点】勾股定理.【分析】根据勾股定理即可得到结论.【解答】解:AB==13,故选:A.4.(3分)下列给出的三条线段的长,其中能组成直角三角形的是()A.62、82、102B.6、8、9C.2、、D.、、【考点】勾股定理的逆定理.【分析】先找出两小边,求出两小边的平方和,求出大边的平方,再根据勾股定理的逆定理判断即可.【解答】解:A、(62)2+(82)2≠(102)2,即组成的三角形不是直角三角形,故本选项错误;B、62+82≠92,即组成的三角形不是直角三角形,故本选项错误;C、22+()2≠()2,即组成的三角形不是直角三角形,故本选项错误;D、()2+()2=()2,即组成的三角形是直角三角形,故本选项正确;故选:D.5.(3分)下列命题的逆命题不成立的是()A.如果a>b,那么a﹣b>0B.如果a+b=0,那么a2=b2C.等边对等角D.如果△ABC是直角三角形(两直角边为a,b,斜边为c),那么a2+b2=c2【考点】命题与定理.【分析】写出各个命题的逆命题,然后判断正误即可.【解答】解:A、逆命题为:如果a﹣b>0,那么a>b,逆命题成立;B、逆命题为:如果a2=b2,那么a+b=0,逆命题不成立;C、逆命题为:等角对等边,逆命题成立;D、逆命题为:如果三角形三边满足a2+b2=c2,那么该三角形是直角三角形,逆命题成立;故选:B.6.(3分)下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是()A.8,10,12B.3,4,5C.5,12,13D.7,24,25【考点】勾股定理的逆定理.【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【解答】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故A选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.7.(3分)在下列各组数中能组成直角三角形的有();(1)9、80、81(2)10、24、25(3)15、20、25(4)8、15、17.A.1组B.2组C.3组D.4组【考点】勾股数.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:(1)92+802≠812,根据勾股定理的逆定理,故不是直角三角形;(2)102+242≠252,根据勾股定理的逆定理,故不是直角三角形;(3)152+202=252,根据勾股定理的逆定理,故是直角三角形;(4)82+152=172,根据勾股定理的逆定理,故是直角三角形.故选:B.二、填空题(本题共计7小题,每题3分,共计21分,)8.(3分)如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是5cm.【考点】勾股定理的应用.【分析】由题意可知长方体对角线是最长的,当木条在盒子里对角放置的时候露在外面的长度最小,利用勾股定理求解即可.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.9.(3分)如图所示,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=5,S3=15,则S2=10.【考点】勾股定理.【分析】由勾股定理得AB2=BC2+AC2,再结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∠ACB=90°,∴AB2=BC2+AC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S3=15,S1=5,∴BC2=5,AB2=15,S3=S1+S2,则S2=S3﹣S1=15﹣5=10,故答案为:10.10.(3分)如图,一根旗杆于离地面3m处断裂,倒向地面,旗杆顶落于离旗杆底部4m处,旗杆断裂之前高8米.【考点】勾股定理的应用.【分析】如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB,根据勾股定理求出AB即可解决问题.【解答】解:如图,由题意,AC⊥BC,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB.在Rt△ACB中,∠C=90°,AC=3米,BC=4米,AB===5(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故答案为:8.11.(3分)如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了9米.【考点】勾股定理的应用.【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米,故答案为:9.12.(3分)如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成2个直角三角形.【考点】勾股定理的逆定理;勾股定理.【分析】由勾股定理求出线段AD、AC、AB、BC、BD、CD的平方,由勾股定理的逆定理即可得出结果.【解答】解:由勾股定理得:AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,∴能够组成2个直角三角形.故答案为:2.13.(3分)如图,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0.7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了 2.5米.【考点】勾股定理的应用.【分析】要求小猫在木板上爬动的距离,即求木板长,可以设CD=x,AB=DE=y,则根据木板长不会变这个等量关系列出方程组,即可求BC的长度,在直角△ABC中,根据BC,AC即可求AB.【解答】解:已知AE=1.3米,AC=0.7米,BD=0.9米,设CD=x,AB=DE=y,则BC=0.9+x则在直角△ABC中,y2=(0.9+x)2+0.72,在直角△CDE中,y2=x2+(1.3+0.7)2,解方程组得:x=1.5米,y=2.5米,故答案为 2.5.14.(3分)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.【考点】勾股定理.【分析】在直角三角形中,利用勾股定理得到a2+b2=c2,在等式两边同时乘以,变形后得到S2+S3=S1,将已知的S1与S2代入,即可求出S3的值.【解答】解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:三、解答题(本题共计7小题,共计78分,)15.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯足向外移0.8米,那么梯子的顶端沿墙下滑多少米?【考点】勾股定理的应用.【分析】在直角三角形ABC中,已知AB,BC根据勾股定理即可求AC的长度,根据EC =EB+BC即可求得EC的长度,在直角三角形DEC中,已知DE,EC即可求得DC的长度,根据AD=AC﹣DC即可求得AD的长度.【解答】解:在直角△ABC中,AC==2.4(m),∴EC=BC+BE=1.5m在直角△DEC中,DC===2(m),∴AD=AC﹣DC=0.4(m),答:梯子的顶端沿墙下滑0.4m.16.我校有两个课外小组的同学到校外去采集植物标本,已知第一组的速度为30米/分钟,第二组的速度为40米/分钟,且两组行走的路线为直线,半小时后,两组同学同时停下来,这时两组同学正好相距1500米.(1)请你判断一下两组同学行走的夹角是否为直角?并说明理由.(2)如果接下来两组同学以原来的速度相向而行,那么经过多长时间后才能相遇?【考点】勾股定理的逆定理.【分析】(1)先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;(2)根据路程和÷速度和=相遇的时间,列式计算即可求解.【解答】解:(1)第一组的路程:30×30=900(米),第二组的路程:40×30=1200(米),∵9002+12002=15002,∴两组同学行走的夹角是直角;(2)1500÷(30+40)=1500÷70=21(分钟).答:经过21分钟后才能相遇.17.已知图中的每个方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC 的顶点在格点上,称为格点三角形,请按要求完成下列各题(1)填空:AB=3,BC=2,AC=;(2)试判断△ABC的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】(1)根据勾股定理即可求得△ABC的三边的长;(2)由勾股定理的逆定理即可作出判断.【解答】解:(1)根据勾股定理即可得到:AB2=62+32=45,BC2=42+22=20,AC2=72+42=65,则AB=3,BC=2,AC=.故答案为3,2,;(2)△ABC是直角三角形,理由如下:∵AB2=45,BC2=20,AC2=65,AB2+BC2=45+20=65,∴AB2+BC2=AC2,∴△ABC是直角三角形.18.如图,台风过后,一颗白杨树在高地某处断裂,白杨树的顶部落在离白杨树根部8米处,已知白杨树高16米,你能求出白杨树在离根部多少米的位置断裂吗?【考点】勾股定理的应用.【分析】根据题意结合勾股定理求出答案.【解答】解:设白杨树在离根部x米的位置断裂,根据题意可得:x2+82=(16﹣x)2,解得:x=6.答:白杨树在离根部6米的位置断裂.19.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连接AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,=AC•CD=×5×12=30.∴S△ACD+S△ACD=6+30=36.∴四边形ABCD的面积=S△ABC20.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?【考点】勾股定理的应用.【分析】设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.【解答】解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,,∴CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∴该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.21.为了加强农村“疫情防控”知识,某镇政府采用了移动宣传的形式进行宣传:如图,笔直公路l的一侧有一村庄P,P到公路l的距离为1200米,宣传车M匀速在l上行驶,在车周围1300米以内能听到广播宣传,若至少连续宣传5分钟才有效果,宣传车最高时速是多少?【考点】勾股定理;一元一次不等式的应用.【分析】作PH⊥l,垂足为H,由勾股定理求出MH=500,则MM'=1000,由题意可得5x≤1000,解不等式可得出答案.【解答】解:作PH⊥l,垂足为H,∵PM=1300米,PH=1200米,∠PHM=90°,∴MH===500(米),根据对称性可知,M'H=MH,∴MM'=1000米,即宣传车能够让P点有效听到的距离为1000米,设宣传车时速是x米/分钟,由题意可得5x≤1000,∴x≤200,200米/分钟=12km/h.答:宣传车最高时速是12km/h.。
八年级下册数学第17章《勾股定理》单元测试题(含答案)
⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。
勾股定理单元测试卷及参考答案
勾股定理章节测试(A 卷)(满分120分,考试时间120分钟)一、选择题(每题3分,共30分)第3题图 第6题图4. 满足下列条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3B .三边长的平方比为1:2:3C .三边长之比为3:4:5D .三内角之比为3:4:55. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( ) A .CD ,EF ,GH B .AB ,EF ,GH C .AB ,CD ,GH D .AB ,CD ,EF6. 若直角三角形的两直角边长为a ,b ,斜边c 上的高为h ,则下列各式一定成立的是( )A .B .2ab h =222a b h +=ABCDE F GHDC BA lA′BAC .D .7. 如图,A ,B 是直线l 同侧的两点,作点A 关于直线l 的对称点A′,连接A′B .若点A ,B到直线l 的距离分别为2和3,则线段AB 与A′B 之间的数量关系为( ) A .B .C .D .8. 如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点,点D 在BC 上,且AD =BD ,AD ,CE 相交于点F .若∠B =20°,则∠DFE 等于( ) A .70°B .60°C .50°D .40°9. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是( ) A .10B.C .10或D .10或10. 如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCDE ,设正方形的中心为O ,连接AO ,如果AB =4,AO=AC 的长为( ) A.6 B.7 C.8 D.9111a b h+=222111a b h+=2213A B AB '-=2224A B AB '-=2225A B AB '+=2226A B AB '+=FE D CBA432432ECABDO二、填空题(每题3分,共18分)11. 已知△ABC 的周长是26,M 是AB 的中点,MC =MA =5,则△ABC 的面积是__________.12. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B'处,点A 的对应点为A',且B'C =3,则CN =______,AM =______.则线段AD 的长为_________.第14题图 第15题图15. 如图,四边形A B C D 是正方形,直线l 1,l 2,l 3分别过A ,B ,C 三点,且l 1△l 2△l 3,若l 1与l 2之间的距离为4,l 2与l 3之间的距离为5,则正方形ABCD 的面积为________.16. 如图,在△ACB 中,AB =AC ,△BAC =90°,D 为AC 的中点,AE △BD 于N ,CM △AE 交AE 的延长线于点M ,连接DE .则下列结论:△△MAC =△DBA ;△BN -CM =MN ;△△ADB =△CDE ;△BD =AE +ED .其中正确的有______________(填写序号),并证明.EDC BA DCBAl 3l 2l 1NME D CBA三.解答题17. (5分)如图,在四边形ABCD 中,AB =3cm ,AD =4cm ,BC =13cm ,CD =12cm ,且∠A =90°,求四边形ABCD 的面积.18. (5分)如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处爬到树顶A 处,利用拉在A 处的滑绳AC 滑到C 处,另一只猴子从D 处滑到地面B 处,再由B 跑到C ,已知两只猴子所经路程都是15m ,求树高AB .19. (6分)如图,△ABC 和△CDE 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点.若AD =5,BD =12,求DE 的长.A BCDE DC AB20. (6分)如图,在直角三角形纸片ABC 中,AB =15cm ,AC =9cm ,BC =12cm ,现将直角边AC 沿过点A 的直线折叠,使它落在AB 边上.若折痕交BC 于点D ,点C 落在点E 处,你能求出BD 的长吗?请写出求解过程.21. (8分)如图,在三角形ABC 中,AC =BC ,点O 为AB 的中点,AC△BC ,△MON =45°,求证:CN+MN =AM .22. (8分)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA △AB 于A ,CB △AB 于B ,已知DA =15km ,CB =10km .现要在铁路AB 上建设一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在距A 多少千米处?23. 如图,△ABC 中,AB=AC,△ACB=90°,D 、E 在线段AB 上,且△DCE=45°,求证DE 2=AD 2+BE 2E DCBADCBA24. (12分)已知:如图,在△ABC 中,△A =90°,AB =AC ,BD 平分△ABC ,CE △BD 交BD 的延长线于点E .求证:CE 12BD .扩展结论:1.△AED=45°;2.BE=(1+2)EC25. (12分)如图,Rt △CEF 中,∠C =90°,∠CEF ,∠CFE 外角平分线交于点A ,过点A分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)∠EAF = °(直接写出结果不写解答过程); (2)若BE =EC =3,求DF 的长.(3)如图(2),在△PQR 中,∠QPR =45°,高PH =5,QH =2,则HR 的长度是EDCB A参考答案11.39 12.4 2 13.9 14.5cm 15.41 16.△△△△17.36cm2 18. 15m 19.13 20.7.5cm21.提示:连接OC,在AM上取点H,使AH=CN,证明△OMN≌△OMH可证.22.10km23.方法一:旋转将△ACD绕点C逆时针旋转90°至△ABG,连接EG,易知△ACD=△BCG,△ACD+△BCE=45°,得△BCG+△BCE=45°即△GCE=45°,同时CG=DE,CE=CE,故△CDE△△CGE,EG=DE,而△CBG=△A=45°得△GBE=90°,故EG2=BE2+BG2,即有DE2=AD2+BE2方法二:对称法取点A关于CD的对称点F,连接EF、CF,易知△ACD△△FCD,CF=CA,DF=AD,△CFD=△A=45°而AC=BC,得BC=CF,同时△ACD=△FCD,△ACD+△BCE=45°,△CDF+△FCE=45°得△ECB=△ECF,又CE=CE,故△BCE△△FCE,EF=BE,△CFE=△B=45°,得△DFE=90°,DE2=DF2+EF2,故DE2=AD2+BE21524.(1)45°(2)DF=2 (3)7。
第18章《勾股定理》单元检测试卷(含答案)
第18章勾股定理单元测试一、选择题1.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4C. 3、4、5D. 4、5、62.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A. 斜边长为25B. 三角形周长为25C. 斜边长为5D. 三角形面积为203.如图,已知O为圆锥的顶点,MN为圆锥底面的直径,一只蜗牛从M点出发,绕圆锥侧面爬行到N点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是()A. B.C. D.4.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A. 9mB. 7mC. 5mD. 3m5.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD= ,则BC的长为()A. ﹣1B. +1C. ﹣1D. +16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A. 0B. 1C.D.7.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2 ;④∠A=38°,∠B=52°.A. 1个B. 2个C. 3个D. 4个8.如图字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 1949.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A. 24cm2B. 36cm2C. 48cm2D. 60cm210.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.3211.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A处向B处爬行,所走最短路程是(◆)A. 40 cmB. cmC. 20 cmD. cm二、填空题12.如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是________ cm.13.请写出两组勾股数:________、________.14.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________.15. 北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是________16.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距________ km.17.一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为________18.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为________ .19.学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!20.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了________.21. 在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为________三、解答题22.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积.23.如图,四边形ABCD中,∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD的面积.24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.25.我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.参考答案一、选择题C CD D D C C C A B C二、填空题12.1013.3、4、5;6、8、1014.15.①④16.5km17.12米18.42或3219.420.8cm21.49三、解答题22.解:如图,连接AC.在△ACD中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积= ×5×12﹣×3×4=24(平方米).23.解:连结AC,在△ABC中,∵∠B=90°,AB=6,BC=8,∴AC= =10,S△ABC= AB•BC= ×6×8=24,在△ACD中,∵CD=24,AD=26,AC=10,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD= AC•CD= ×10×24=120.∴四边形ABCD的面积=S△ABC+S△ACD=24+120=144.24.解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S△ABC= BC•AD= ×14×12=8425.(1)解:S阴影=4×ab,S阴影=c2﹣(a﹣b)2,∴4×ab=c2﹣(a﹣b)2,即2ab=c2﹣a2+2ab﹣b2,则a2+b2=c2;(2)解:如图所示,大正方形的面积为x2+4y2+4xy,也可以为(x+2y)2,则(x+2y)2=x2+4xy+4y2.。
人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案
第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。
第一章 勾股定理单元测试题(含答案)
第一章 勾股定理单元测试题一、认真填一填 —— 要相信自己.1.如图1,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.S S S 321图1 图22.如果梯子的底端离建筑物5m ,那么13m 的消防梯可达建筑物的高度为 3.在△ABC 中,∠C =900, ∠A ,∠B ,∠C 所对的边分别为a ,b ,c . (1)若c =10,a ﹕b =3﹕4,则a =____,b =_____. (2)若a =b ,c 2=m ,则a 2=______. (3)若c =61,a =60,则b =______.4.将直角三角形的各边扩大相同的倍数,则得到的三角形一定是_______三角形(填“锐角”“直角”或“钝角”).5.在Rt △ABC 中,AC =8,在△ABE 中,DE 为AB 边上的高,DE =12,S △ABE =60,则BC 长为_______.6.小明把一根70cm 长的木棒放到一个长、宽、高分别为30cm 、40cm 、50cm 的木箱中,他能放进去吗?答: .(填“能”、或“不能”)7.如图2,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为8.如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm 现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上, 且与AE 重合,则CD 的长为.E DA9.观察下列表格:请你结合该表格及相关知识,求出b 、c 的值.即b = ,c =10.如图所示,将长方形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 上F 点处,已知CE =3厘米,AB =8厘米,则图中阴影部分的面积为_____平方厘米.二、细心选一选 —— 要认真考虑.11. 一个三角形的三边长分别为3,4,5,则这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上答案都不对12. 满足下列条件的△ABC ,不是直角三角形的是( )A .222b c a =- B .a ∶b ∶c=3∶4∶5 C .∠C=∠A -∠B D .∠A ∶∠B ∶∠C=12∶13∶15 13.下面说法正确的是( ) A .在Rt △ABC 中,a 2+b 2=c 2B .在Rt △ABC 中,a =3,b =4,那么c =5 C .直角三角形两直角边都是5,那么斜边长为10D .直角三角形中,斜边最长14.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A.1倍 B. 2倍 C. 3倍 D. 4倍15.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,12 16. 如图所示,在△ABC 中,三边a,b,c 的大小关系是( )A.a <b <cB. c <a <bC. c <b <aD. b <a <c17.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 3318.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D三、精心做一做 —— 要注意审题(共47分)19.一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm ,高为12cm ,吸管放进杯里(如图所示),杯口外面至少要露出4.6cm ,问吸管要做多长?20.如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出2AB =2、2CD =5、2EF =13这样的线段,并选择其中的一个说明这样画的道理.21.在一棵树的10米高处有两只猴子,其中一只爬下树直向离树20米的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?22.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km /h .如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?观测点23.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?24.我国明代有一位杰出的数学家程大位在所著的《直至算法统宗》里由一道“荡秋千”的问题:“平地秋千未起,踏板一尺立地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉,良工高士素好奇,算出索长有几?”参考答案1.169 ;2.12米;3.(1).6,8; (2).2m; (3).11; 4. 直角;5. 6;6.能;7. 49;8. CD =3cm . 提示:由题可知CD =DE ,AC =AE ,设CD =x cm ,在Rt △BDE 中,有42+ x 2= 8-x .2,解得x =3. 9. 85,86;10.30;11.B ; 12.D ; 13. D ; 14.B ; 15.C ; 16.D ; 17.D ; 18.C ; 19. 解:设吸管长x cm ,由勾股定理得:(x -4.6)2=122+(2.5×2)2,解得x =17.6,即吸管要做17.6cm 长. 20.画图略,结合勾股定理说明.21.分析 为了求解问题,将这个实际问题转化为数学问题,于是,根据题意画出图形,将问题转化到在直角三角形中来,从而可以运用勾股定理构建方程求解. 解 如图1,D 为树顶,AB =10m,C 为池塘,AC =20 m ,设BD 的长是x m ,则树高(x +10)m.因为AC +AB =BD +DC ,所以DC =20+10-x ,在△ACD 中,∠A =90°,所以AC 2+AD 2=DC 2.故202+(x +10)2=(30-x )2,解得x =5.所以x +10=15,即树高15米.说明 勾股定理的本身就是数形结合的体现,求解时它又与方程紧密相联.22.在Rt △ABC 中:BC 2=225030 =1600,∴BC =40,小汽车速度=40÷2=20米/秒=72千米/时>70千米/时. ∴这辆小汽车超速了23.解:如图,甲从上午8:00到上午10:00一共走了2小时,走了12千米,即OA =12.乙从上午9:00到上午10:00一共走了1小时,图1B走了5千米,即OB =5.在Rt △OAB 中,AB 2=122十52=169,∴AB =13, 因此,上午10:00时,甲、乙两人相距13千米.∵15>13, ∴甲、乙两人还能保持联系.答:上午10:00甲、乙两人相距13千米,两人还能保持联系. 24.分析 诗的意思告诉我们:当秋千静止在地上时,秋千的踏板离地的距离为一尺,将秋千的踏板往前推两步,这里的每一步合五尺,秋千的踏板与人一样高,这个人的身高为五尺,当然这是秋千的绳索是呈直线状态,要求这个秋千的绳索有多长?要解决这个古诗中的问题,我们可以先画出图形,再运用勾股定理求解.解 如图1,不妨设图中的OA 为秋千的绳索,CD 为地平面,BC 为身高5尺的人,AE 为两步,即相当于10尺的距离,A 处有一块踏板,EC 为踏板离地的距离,它等于一尺.设OA =x ,即OB =OA =x ,F A =BE =BC -EC =5-1=4尺,BF =EA =10尺.在Rt △OBF 中,由勾股定理,得OB 2=OF 2+BF 2,即x 2=(x -4)2+102, 解这个方程,得x =14.5(尺) 所以这个秋千的绳索长度为14.5尺.图2F OD ECB A。
勾股定理单元测试卷(附答案)
勾股定理单元测试卷(附答案)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).(A)30 (B)28 (C)56 (D)不能确定2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长(A)4 cm (B)8 cm (C)10 cm (D)12 cm3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是()(A)25 (B)14 (C)7 (D)7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )(A)13 (B)8 (C)25 (D)645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A)钝角三角形(B)锐角三角形(C)直角三角形(D)等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )(A) 25 (B) 12.5 (C) 9 (D) 8.58. 三角形的三边长为,则这个三角形是( )(A)等边三角形(B)钝角三角形(C)直角三角形(D)锐角三角形.9.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮元计算,那么共需要资金().(A)50元(B)600元(C)1200元(D)1500元10.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为().(A)12 (B)7 (C)5 (D)13(第10题)(第11题)(第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要__________米.12. 在直角三角形中,斜边=2,则=______.13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC中,∠C=90°,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是____________.(第15题)(第16题)(第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,则AC等于______________.17. 如图,四边形是正方形,垂直于,且=3,=4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
第17章《勾股定理》单元测试卷含答案解析
第17章《勾股定理》单元测试卷含答案解析参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A. 4 B.8 C.10 D.12分析:利用勾股定理即可解答.解答:解:设斜边长为x,则一直角边长为x﹣2,依照勾股定理列出方程:62+(x﹣2)2=x2,解得x=10,故选C.点评:本题考查了利用勾股定明白得直角三角形的能力.2.(3分)小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是()A.小丰认为指的是屏幕的长度B.小丰的妈妈认为指的是屏幕的宽度C.小丰的爸爸认为指的是屏幕的周长D.售货员认为指的是屏幕对角线的长度考点:勾股定理的应用.分析:依照电视机的适应表示方法解答.解答:解:依照29英寸指的是荧屏对角线的长度可知售货员的说法是正确的.故选D.点评:本题考查了勾股定理的应用,解题时了解一个常识:通常所说的电视机的英寸指的是荧屏对角线的长度.3.(3分)如图中字母A所代表的正方形的面积为()A. 4 B.8 C.16 D.64考点:勾股定理.分析:依照勾股定理的几何意义解答.解答:解:依照勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,因此A=289﹣225=64.故选D.点评:能够运用勾股定理发觉并证明结论:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.运用结论能够迅速解题,节约时刻.4.(3分)将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形考点:相似三角形的性质.分析:依照三组对应边的比相等的三角形相似,依据相似三角形的性质就能够求解.解答:解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形.故选C.点评:本题要紧考查相似三角形的判定以及性质.5.(3分)一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D. 25cm考点:勾股定理.分析:设另一条直角边是a,斜边是c.依照另一条直角边与斜边长的和是49cm,以及勾股定理就能够列出方程组,即可求解.解答:解:设另一条直角边是a,斜边是c.依照题意,得,联立解方程组,得.故选D.点评:注意依照已知条件结合勾股定理列方程求解.解方程组的方法能够把①方程代入②方程得到c﹣a=1,再联立解方程组.6.(3分)适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2个B.3个C.4个D. 5个考点:勾股定理的逆定理;三角形内角和定理.分析:运算出三角形的角利用定义判定或在明白边的情形下利用勾股定理的逆定理判定则可.解答:解:①,依照勾股定理的逆定理不是直角三角形,故不是;②a=6,∠A=45不是成为直角三角形的必要条件,故不是;③∠A=32°,∠B=58°则第三个角度数是90°,故是;④72+242=252,依照勾股定理的逆定理是直角三角形,故是;⑤22+22≠42,依照勾股定理的逆定理不是直角三角形,故不是.故选A.点评:本题考查了直角三角形的定义和勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判定.7.(3分)在△ABC中,若a=n2﹣1,b=2n,c=n2+1,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形考点:勾股定理的逆定理;完全平方公式.分析:依照勾股定理的逆定理:假如三角形有两边的平方和等于第三边的平方,那么那个是直角三角形判定则可.假如有这种关系,那个确实是直角三角形.解答:解:∵(n2﹣1)2+(2n)2=(n2+1)2,∴三角形为直角三角形,故选D.点评:本题利用了勾股定理的逆定理判定直角三角形,即已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8.(3分)直角三角形斜边的平方等于两条直角边乘积的2倍,那个三角形有一个锐角是()A.15° B.30° C.45°D.60°考点:勾股定理.分析:依照斜边的平方等于两条直角边乘积的2倍,以及勾股定理能够列出两个关系式,直截了当解答即可.解答:解:设直角三角形的两直角边是a、b,斜边是c.依照斜边的平方等于两条直角边乘积的2倍得到:2ab=c2,依照勾股定理得到:a2+b2=c2,因而a2+b2=2ab,即:a2+b2﹣2ab=0,(a﹣b)2=0∴a=b,则那个三角形是等腰直角三角形,因而那个三角形的锐角是45°.故选C.点评:已知直角三角形的边长问题,不要不记得三边的长,满足勾股定理.9.(3分)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D. 12cm2考点:勾股定理;翻折变换(折叠问题).分析:依照折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就能够求解.解答:解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,依照勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选C.点评:本题考查了利用勾股定明白得直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.10.(3分)已知,如图,一轮船以16海里/时的速度从港口A动身向东北方向航行,另一轮船以12海里/时的速度同时从港口A动身向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D. 40海里考点:勾股定理的应用;方向角.分析:依照方位角可知两船所走的方向正好构成了直角.然后依照路程=速度×时刻,得两条船分别走了32,24.再依照勾股定理,即可求得两条船之间的距离.解答:解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,依照勾股定理得:=40(海里).故选D.点评:熟练运用勾股定理进行运算,基础知识,比较简单.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2008•湖州)利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分闻名的定理,那个定理称为勾股定理,该定理的结论其数学表达式是a2+b2=c2.考点:勾股定理的证明.专题:证明题.分析:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.解答:解:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.那个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点评:本题是用数形结合来证明勾股定理,锤炼了同学们的数形结合的思想方法.12.(3分)如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为10.考点:勾股定理;等腰三角形的性质.分析:依照等腰三角形的三线合一得BD=8,再依照勾股定理即可求出AB的长.解答:解:∵等腰△ABC的底边BC为16,底边上的高AD为6,∴BD=8,AB===10.点评:注意等腰三角形的三线合一,熟练运用勾股定理.13.(3分)如图,某人欲横渡一条河,由于水流的阻碍,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为480m.考点:勾股定理的应用.专题:应用题.分析:从实际问题中找出直角三角形,利用勾股定明白得答.解答:解:依照图中数据,运用勾股定理求得AB===480米.点评:考查了勾股定理的应用,是实际问题但比较简单.14.(3分)小华和小红都从同一点O动身,小华向北走了9米到A点,小红向东走了12米到了B点,则AB为15米.考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形依照勾股定明白得答.解答:解:如图,在Rt△AOB中,∠O=90°,AO=9m,OB=12m,依照勾股定理得AB====15m.点评:本题专门简单,只要依照题意画出图形即可解答,表达了数形结合的思想.15.(3分)一个三角形三边满足(a+b)2﹣c2=2ab,则那个三角形是直角三角形.考点:勾股定理的逆定理.分析:化简等式,可得a2+b2=c2,由勾股定理逆定理,进而可得其为直角三角形.解答:解:(a+b)2﹣c2=2ab,即a2+b2+2ab﹣c2=2ab,因此a2+b2=c2,则那个三角形为直角三角形.故答案为:直角.点评:考查了勾股定理逆定理的运用,是基础知识比较简单.16.(3分)木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,那个桌面合格(填”合格”或”不合格”).考点:勾股定理的应用.分析:只要算出桌面的长为60cm,宽为32cm,对角线为68cm是否符合勾股定理即可,依照勾股定理直截了当解答.解答:解:==68cm,故那个桌面合格.点评:本题考查的是勾股定理在实际中的应用,需要同学们结合实际把握勾股定理.17.(3分)直角三角形一直角边为12cm,斜边长为13cm,则它的面积为30cm2.考点:勾股定理.分析:依照勾股定理求得其另一直角边的长,再依照面积公式即可求得其面积.解答:解:∵直角三角形一直角边为12cm,斜边长为13cm,∴另一直角边==5cm,∴面积=×5×12=30cm2.点评:解决本题的关键是依照勾股定理求得另一直角边的长.18.(3分)如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是那个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.考点:平面展开-最短路径问题.分析:先将图形平面展开,再用勾股定理依照两点之间线段最短进行解答.解答:解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.点评:本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要依照题意判定出长方形的长和宽即可解答.三、解答题(共46分)19.(6分)如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米(先画出示意图,然后再求解).考点:勾股定理的应用.专题:应用题.分析:依照题意画出图形,构造出直角三角形,利用勾股定理求解.解答:解:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB﹣BE=AB﹣CD=13﹣8=5∴在Rt△ADE中,DE=BC=12∴AD2=AE2+DE2=122+52=144+25=169∴AD=13(负值舍去)答:小鸟飞行的最短路程为13m.点评:本题考查正确运用勾股定理.善于观看题目的信息是解题以及学好数学的关键.20.(6分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC2的值.考点:勾股定理.分析:∵AD⊥BC于D,∴可得到两个直角三角形△ABD和△ADC,可利用勾股定理求得AD长,进而求得AC2的值.解答:解:∵AD⊥BC于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.点评:本题需注意最后求的是AC2,因此在运算过程中都保持线段的平方即可.21.(8分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要运算那个矩形鱼池的周长,你能关心小明算一算吗?考点:勾股定理的应用;二元一次方程组的应用;矩形的性质.专题:运算题.分析:依照矩形的面积公式得到长与宽的积,再依照勾股定理得到长与宽的平方和.联立解方程组求得长与宽的和可.解答:解:设矩形的长是a,宽是b,依照题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,因此矩形的周长是14×2=28m.点评:注意依照题意结合勾股定理联立解方程组,只需求得长与宽的和即可.22.(10分)如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范畴内是受台风阻碍的区域.(1)A城是否受到这次台风的阻碍?什么缘故?(2)若A城受到这次台风阻碍,那么A城遭受这次台风阻碍有多长时刻?考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC >200则A城不受阻碍,否则受阻碍;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范畴内差不多上受台风阻碍,再依照速度与距离的关系则可求时刻.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,因此A城要受台风阻碍;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,因此△ADG是等腰三角形,因为AC⊥BF,因此AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,则DG=2DC=240千米,遭受台风阻碍的时刻是:t=240÷40=6(小时).点评:此题要紧考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时刻的关系等,较为复杂.四、创新探究题23.一只蚂蚁假如沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?已知长方体的长2cm、宽为1cm、高为4cm.考点:平面展开-最短路径问题.分析:要求长方体中两点之间的最短路径,最直截了当的作法,确实是将正方体展开,然后利用两点之间线段最短解答.解答:解:如图:依照题意,如上图所示,最短路径有以下三种情形:(1)沿AA′,A′C′,C′B′,B′B剪开,得图(1)AB′2=AB2+BB′2=(2+1)2+42=25;(2)沿AC,CC′,C′B′,B′D′,D′A′,A′A剪开,得图(2)AB′2=AC2+B′C2=22+(4+1)2=4+25=29;(3)沿AD,DD′,B′D′,C′B′,C′A′,AA′剪开,得图(3)AB′2=AD2+B′D2=12+(4+2)2=1+36=37;综上所述,最短路径应为(1)所示,因此AB′2=25,即AB′=5cm.点评:此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.。
第3章《勾股定理》单元测试(含答案)
第3章《勾股定理》单元测试(满分100分时间90分钟)一、单选题(共8题;共24分)1.要登上某建筑物,靠墙有一架梯子,底端离建筑物3m,顶端离地面4m,则梯子的长度为()A.2mB.3mC.4mD.5m2.若直角三角形的两边长分别为a,b,且满足a2-6a+9+|b﹣4|=0,则该直角三角形的第三边长为()A.5B.7C.4D.5或73.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或334.一直角三角形两边分别为3和5,则第三边为()A、4B、C、4或D、25.两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm,另一只朝东面挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.100cmB.50cmC.140cmD.80cm6.如图,阴影部分是一个长方形,它的面积是()A、3cm2B、4cm2C、5cm2D、6cm27. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()A.3cm²B.4cm²C.6cm² D.12cm²8.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于________.A.3πB.2πC.6πD.4π二、填空题(每题3分,共30分)9. 如果三角形三边长分别为3,4,5,那么最长边上的中线长为.10.若一个三角形的三边长之比为5:12:13,且周长为60 cm,则它的面积为cm2.11.一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为______12.如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则x的长为___厘米.13.一个直角三角形,两直角边长分别为3和2,则三角形的周长为________.14.在RT△ABC中,∠ACB=90°,且c+a=9,c-a=4,则b=。
勾股定理单元测试题及答案
勾股定理单元测试题1、如图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为().A.16πB.12πC.10πD.8π2、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+7C.12或7+7D.以上都不对3、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m4、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm5、在Rt△ABC中,∠C=90°,且2a=3b,c=213,则a=_____,b=_____.6、如图,矩形零件上两孔中心A、B的距离是_____(精确到个位).7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.9、如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.(1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,a 4,……,a n ,请求出a 2,a 3,a 4的值;(2)根据以上规律写出a n 的表达式.10、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A 的仰角为30°,已知侧角仪高DC =1.4m ,BC =30米,请帮助小明计算出树高AB .(3取1.732,结果保留三个有效数字) 150o 20米30米11、如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?12、去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2.732km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)参考答案与提示1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=21πR 2=21π×(28)2=8π.故选D );2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,故选D ).5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有(3k )2+(2k )2=(213)2,解得a =b ,b =4.);6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);7.3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8);8、150a .9、解析:利用勾股定理求斜边长.(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC =22BC AB +=2211+=2.同理:AE =2,EH =22,…,即a 2=2,a 3=2,a 4=22.(2)a n =12-n (n 为正整数).10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D 作DE ⊥AB 于点E ,则ED =BC =30米,EB =DC =1.4米.设AE =x 米,在Rt △ADE 中,∠ADE =30°,则AD =2x .由勾股定理得:AE 2+ED 2=AD 2,即x 2+302=(2x )2,解得x =103≈17.32.∴AB =AE +EB ≈17.32+1.4≈18.7(米).答:树高AB 约为18.7米.11、解析:本题要注意判断角的大小,根据题意知:∠1=∠2=45°,从而证明△ABC 为直角三角形,这是解题的前提,然后可运用勾股定理求解.B 在O 的东南方向,A 在O 的西南方向,所以∠1=∠2=45°,所以∠AOB =90°,即△AOB 为Rt △.BO =16×23=24(海里),AB =30海里,根据勾股定理,得AO 2=AB 2-BO 2=302-242=182,所以AO =18.所以乙船的速度=18÷23=18×32=12(海里/时). 答:乙船每小时航行12海里.12、解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732, ∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7,∴计划修筑的这条公路不会穿过公园.。
勾股定理单元测试卷(含答案)
勾股定理单元测试卷一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 任意三角形2. 勾股定理中的两个直角边的平方和等于斜边的平方,斜边被称为:A. 勾B. 股C. 斜边D. 高3. 在直角三角形中,若直角边的长度分别为3和4,则斜边的长度是:A. 5B. 6C. 7D. 84. 勾股定理的发现者是谁?A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 哥白尼A. a² + b² = c²B. c² = a² + b²C. a² b² = c²D. c² a² = b²二、填空题(每题2分,共10分)6. 勾股定理的公式是:__________。
7. 在直角三角形中,若直角边的长度分别为5和12,则斜边的长度是__________。
8. 勾股定理在中国被称为__________。
9. 勾股定理的发现时间大约在公元前__________年。
10. 勾股定理的发现者毕达哥拉斯是__________国人。
三、解答题(每题5分,共20分)11. 已知直角三角形的两个直角边长度分别为8和15,求斜边的长度。
12. 在直角三角形中,若斜边的长度为17,且一个直角边的长度为8,求另一个直角边的长度。
13. 勾股定理的证明方法有很多种,请简述其中一种证明方法。
14. 请举例说明勾股定理在实际生活中的应用。
答案部分一、选择题答案1. B2. C3. A4. A5. C二、填空题答案6. a² + b² = c²7. 138. 勾三股四弦五9. 50010. 希腊三、解答题答案11. 斜边长度为17。
12. 另一个直角边的长度为15。
13. 勾股定理的证明方法有很多种,其中一种是通过面积证明。
将直角三角形分为两个小直角三角形和一个矩形,分别计算它们的面积,然后通过面积关系推导出勾股定理。
数学勾股定理单元测试含答案
一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )A .0.8米B .2米C .2.2米D .2.7米3.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .984.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( )A .AB 的中点B .BC 的中点 C .AC 的中点D .C ∠的平分线与AB 的交点5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .66.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形7.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .10C .326+D .128.已知三组数据:①2,3,4;②3,4,5;③1,25三角形的三边长,能构成直角三角形的是( )A .②B .①②C .①③D .②③9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°10.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .111,4,5222 C .3,4,5 D .114,7,822二、填空题11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.12.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.13.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.14.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为_______________.15.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.16.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.17.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.18.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°19.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.20.四边形ABCD 中AB =8,BC =6,∠B =90°,AD =CD =52ABCD 的面积是_______.三、解答题21.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,22.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.23.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.24.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.25.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .(1)根据题意用尺规作图补全图形(保留作图痕迹);(2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求m n的值.26.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.27.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD .(1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.28.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.29.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.30.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题.【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,即 25cm AF BF A B '+==,延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=-=-=, ∴该圆柱底面周长为:20240cm ⨯=,故选D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.D解析:D【分析】先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】解:如图,由题意可得:AD 2=0.72+2.42=6.25,在Rt △ABC 中,∵∠ABC=90°,BC=1.5米,BC 2+AB 2=AC 2,AD=AC ,∴AB 2+1.52=6.25,∴AB=±2,∵AB >0,∴AB=2米,∴小巷的宽度为:0.7+2=2.7(米).故选:D.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.3.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.4.A解析:A【分析】先计算AB 2=2890000,BC 2=640000,AC 2=2250000,可得BC 2+AC 2=AB 2,那么△ABC 是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P 点的位置.【详解】解:如图∵AB 2=2890000,BC 2=640000,AC 2=2250000∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∴活动中心P 应在斜边AB 的中点.故选:A .【点睛】本题考查了勾股定理的逆定理.解题的关键是证明△ABC 是直角三角形.5.C解析:C【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .考点:勾股定理的证明.6.C解析:C【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理. 7.B解析:B【分析】将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB =.故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.8.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③2221+2=5=5 , 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 9.D解析:D【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【详解】选项A 中如果∠A ﹣∠B =∠C ,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;选项B 中如果∠A :∠B :∠C =1:2:3,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;选项C 中如果 a 2:b 2:c 2=9:16:25,满足a 2+b 2=c 2,那么△ABC 是直角三角形,选项正确;选项D 中如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠B =90°,选项错误; 故选D .【点睛】考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.10.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A、22272425+=,能组成直角三角形,故正确;B、22211145222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误;C、222345+=,能组成直角三角形,故正确;D、2221147822⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确;故选:B.【点睛】本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.二、填空题11.8【解析】如图作点B关于AC的对称点B′,连接B′A交DC于点E,则BM+MN的最小值等于的最小值作交于,则为所求;设,,由,,h+5=8,即BM+MN的最小值是8.点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M点与N点的位置是解题的关键.12.7【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,22∴-=OC CF OF322BC=OB +OC =7∴, 故答案为:7. 【点睛】 本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.13.163.【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==,2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,2243AE BE AB ∴=-=.在Rt DEC ∆中,30E ∠=︒,43CD =,283CE CD ∴==,2212DE CE CD ∴=-=,∴1443832ABE S ∆=⨯⨯=, 143122432CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形.故答案为:163.【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.14.32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222=-=-=,CD AC AD13125∵∠D=90°,AB=15,AD=12,∴2222=-=-=,BD AB AD15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222=-=-=,CD AC AD13125∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,BD AB AD15129∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC 的周长是32或42,故答案为:32或42.【点睛】此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键. 15.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180° 所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键. 16.258【分析】 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.【详解】∵Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC=2222AB+BC=3+4=5;∵DE垂直平分AC,垂足为F,∴FA=12AC=52,∠AFD=∠B=90°,∵AD∥BC,∴∠A=∠C,∴△AFD∽△CBA,∴ADAC=FABC,即AD5=2.54,解得AD=258;故答案为258.【点睛】本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.17.222【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【详解】如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴2,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠ABC=45°,∴∠B=45°,∵2,∴即,∴△PEB 的周长的最小值是.故答案为【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置.18.①②③【解析】【详解】解:∵△ABC 是等边三角形,60ABC ∴∠=,∵△BQC ≌△BPA ,∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,∴△BPQ 是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确.36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.19.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512+=169.故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.20.49【解析】连接AC ,在Rt △ABC 中,∵AB =8,BC =6,∠B =90°,∴AC =22AB BC + =10. 在△ADC 中,∵AD =CD =52,∴AD 2+CD 2=(52)2+(52)2=100.∵AC 2=102=100,∴AD 2+CD 2=AC 2,∴∠ADC =90°,∴S 四边形ABCD =S △ABC +S △ACD =12AB •BC +12AD •DC =12×8×6+12×52×52=24+25=49.点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.三、解答题21.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG中,AD ===故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.22.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.23.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.24.(1)12;(2)t=12.5s时,13 cm;(3)11s或12s或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ).故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(,解得:t =252.∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6,∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.25.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.26.(1)①详见解析;(2)222222CD n n =+-(1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34EAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+-又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22 CD=222222n n=+-(1n>)(2)AD、BD、CD的数量关系为:2AD BD CD-=,理由如下:如图②,过点C作CF⊥CD交BD的延长线于点F,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD∆和BCF∆中97AC BCACD BCF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD≌△BCF∴CD=CF,AD=BF又∵∠DCF=90°∴由勾股定理得222DF CD CF CD=+=又DF=BF-BD=AD-BD∴2AD BD CD-=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.27.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE=【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可;(3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD ,且∠EAD=α,∴∠AED=45°,∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,∴∠AED=∠AEB=45°,BE=DE ,∴∠BED=90°,∴△BED 是等腰直角三角形,∴22222BD BE DE DE =+=,∴2BD DE =.【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.28.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD 2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--, 化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M ,②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.29.(1)1(491)2-;1(491)2+;(2)21(1)2n -;21(1)2n +;(3)21m -;21m +;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35.【详解】解:(1)依据规律可得,如果勾为7,则股24=1(491)2-, 弦25=1(491)2+; 故答案为:1(491)2-;1(491)2+; (2)如果勾用n (n≥3,且n 为奇数)表示时,则股=21(1)2n -, 弦=21(1)2n +; 故答案为:21(1)2n -;21(1)2n +; (3)根据规律可得,如果a ,b ,c 是符合同样规律的一组勾股数,a=2m (m 表示大于1的整数),则b=m 2-1,c=m 2+1;故答案为:m 2-1,m 2+1;(4)依据柏拉图公式,若m 2-1=24,则m=5,2m=10,m 2+1=26;若m 2+1=37,则m=6,2m=12,m 2-1=35;故答案为:10、26;12、35.【点睛】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足a 2+b 2=c 2,则△ABC 是直角三角形.30.(1)AB =2)见解析;(3)CD +CF 的最小值为.。
勾股定理单元测试及解析
一、选择题1.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DG QM 的值为( )A .32B .53C .45D .31-2.如图,将一个等腰直角三角形按图示方式依次翻折,若DE a =,则下列说法正确的是( )①DC '平分BDE ∠;②BC 长为()22a +;③BCD 是等腰三角形;④CED 的周长等于BC 的长.A .①②③B .②④C .②③④D .③④3.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .14.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .5.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的个数是( )A .1B .2C .3D .46.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)7.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =8.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .89.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .45 10.如图,BD 为ABCD 的对角线,45,DBC DE BC ︒∠=⊥于点E ,BF ⊥DC 于点F ,DE 、BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①12CE BE = ;②A BHE ∠=∠;③AB=BH;④BHD BDG ∠=∠;⑤222BH BG AG +=;其中正确的结论有( )A .①②③B .②③⑤C .①⑤D .③④二、填空题11.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.12.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)13.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.14.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.15.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.16.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.17.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.18.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线l AB ,F 是l 上的一点,且AB AF =,则FC =__________.19.如图,在△ABC 中,AB =AC =10,BC =12,BD 是高,则点BD 的长为_____.20.四个全等的直角三角形按图示方式围成正方行ABCD ,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM 为Rt △ABM 的较长直角边,AM =7EF ,则正方形ABCD 的面积为_______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.26.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.27.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)28.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .29.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,312PQ =,所以32QM QP PM =+=;易证Rt △ACB ≌Rt △DCG (HL),从而得DG AB ==然后代入所求数据即可得DG QM的值. 【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠,∴△EAB ≌△CAM (SAS ),∴30EBA CMA ==︒∠∠,∴60BPQ APM ==︒∠∠,∴90BQP ∠=︒,12PQ PB =, 设1AP =,则AM =2PM=,1PB =,12PQ =,∴2QM QP PM =+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BC AC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴DG AB ==∴1DG GM==. 故选D .【点睛】 本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.2.B解析:B【分析】根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC 和DE 的关系.【详解】解:根据折叠的性质知,△C ED CED '≅∆,且都是等腰直角三角形,∴90BDE ∠<︒,45C DE ∠'=︒, ∴12C DE BDE ∠'≠∠ ∴DC '不能平分BDE ∠①错误;45DC E DCE ∴∠'=∠=︒,C E CE DE AD a '====,CD DC ='=,AC a ∴=,2)BC a ==,∴②正确;2ABC DBC ∠=∠,22.5DBC ∴∠=︒,45DCB ∠=︒,112.5BDC ∴∠=︒,BCD ∴∆不是等腰三角形,故③错误;CED ∴∆的周长(2CE DE CD a a a BC =++=+==,故④正确.故选:B .【点睛】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.3.D解析:D【分析】作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C ,此时△ABC 周长最小,根据题意及作图可得出△OAD 是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE 是直角三角形,然后设AB=x ,则OB=3+x ,根据周长最小值可表示出BE=6-x ,最后在Rt △OBE 中,利用勾股定理建立方程求解即可.【详解】解:作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C , 此时△ABC 周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE ,∵△ABC 周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD ⊥OM ,∴△OAD 是等腰直角三角形,∠OAD=45°,由作图可知OM 垂直平分AE ,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.4.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A 中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确; B 中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C 中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D 中,根据A 可得,C 可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A 、B 、C 选项的等式中需理解等式的各个部分表示的几何意义,对于D 选项是由A 、C 选项联立得出的. 5.C解析:C【解析】试题分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE . ∵在△BAD 和△CAE 中,AB=AC ,∠BAD=∠CAE ,AD=AE ,∴△BAD ≌△CAE (SAS ).∴BD=CE .本结论正确.②∵△BAD ≌△CAE ,∴∠ABD=∠ACE .∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°. ∴BD ⊥CE .本结论正确.③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE ,∴∠ACE+∠DBC=45°.本结论正确.④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得:BE 2=BD 2+DE 2.∵△ADE 为等腰直角三角形,∴DE=2AD ,即DE 2=2AD 2.∴BE 2=BD 2+DE 2=BD 2+2AD 2.而BD 2≠2AB 2,本结论错误.综上所述,正确的个数为3个.故选C .6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.7.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.8.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A 的面积等于100-64=36;故选:B .【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.9.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt △ABC 中,AB 2=BC 2+AC 2,∵S 1=AB 2,S 2=BC 2,S 3=AC 2,∴S 1=S 2+S 3.∵S 2=7,S 3=2,∴S 1=7+2=9.故选:A .【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.B解析:B【分析】根据直角三角形的意义和性质可以得到解答.【详解】解:由题意,90BHE HBE C HBE A C ∠+∠=∠+∠=︒∠=∠,∴A BHE C ∠=∠=∠,②正确;∵∠DBC=45°,DE ⊥BC ,∴∠EDB=∠DBC=45°,∴BE=DE∴Rt BEH Rt DEC ≅,∴BH=CD=AB ,③正确;∵AB CD BF CD ⊥,,∴AB ⊥CD ,∴222AB BG AG +=即 222BH BG AG +=,⑤正确,∵没有依据支持①④成立,∴②③⑤正确故选B .【点睛】本题考查直角三角形的意义和性质,灵活应用有关知识求解是解题关键.二、填空题11.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.12.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),222021+=29(尺).答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.13.5【分析】在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =, ∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒ ∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.14.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值. 1510【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-= ∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+ ∴33417OE = ∴221234EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90° ∴16342FG EC ==∴2034BE BO OE =+=∴17342GO GE OE BE OE =-=-= ∴22=10OF GO GF -=【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.162【分析】连接CE .根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE ,【详解】解:(1)如图,连接CD 、CF.∵Rt △ABC 中,∠ACB=90°,AC=BC ,D 为AB 边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF ,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC ,∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,∴GC=GF ,∴EG+CG=EG+GF=EF=BE ,∴△ECG 的周长2, 2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..17.310232【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y 223332+=;当x=9时,x 、y 2293310+=;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:310,62或32.【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.18.31+或31-【解析】如图,l AB ,2AC =,作AD l ⊥于点D ,∴1AD =,∵222AF AB ===,且F 有2个, ∴2212213DF DF ==-=∵1DC AD ==, ∴1113CF CD DF =+= 2231CF DF CD =-=.点睛:本题考查了勾股定理的运用,通过添加辅助线,可将问题转化到直角三角形中,利用勾股定理解答,考查了学生的空间想象能力.19.485【解析】试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485. 20.32【分析】由题意设AM=2a ,BM=b ,则正方形ABCD 的面积=224a b +,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,由此分析即可.【详解】解:设AM=2a .BM=b .则正方形ABCD 的面积=224a b +由题意可知EF=(2a-b)-2(a-b)=2a-b-2a +2b=b ,∵AM 7EF ,2,,2a a ∴== ∵正方形EFGH 的面积为4,∴24b =,∴正方形ABCD 的面积=2224+832.a b b ==故答案为32.【点睛】本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM 22=3BD BM BM -,∴)3x y x y +=-,整理,得(23y x =.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)出发2秒后,线段PQ 的长为2132)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【分析】(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.【详解】(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,∵∠B=90°,由勾股定理得:22224652213BQ BP +=+==∴出发2秒后,线段PQ 的长为13(2)BQ=2t ,BP=8−t由题意得:2t=8−t解得:t=83∴当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴2268+=10.①当CQ=BQ 时(图1),则∠C=∠CBQ ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC时(如图2),则BC+CQ=12∴t=12÷2=6秒③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以CE=22BC BE-=185=3.6,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒.由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.【点睛】本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.23.(1) 出发10s后,△BMN为等边三角形;(2)出发6s或15s后,△BMN为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15, 答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=综上所述,DE的值为.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以22228373AC OA +=+所以73在Rt △BCD 中,()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.26.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.27.(1)∠CBD=20°;(2)AD=164;(3) △BCD的周长为m+2【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;(3)根据三角形ACB的面积可得11 2AC CB m=+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB ,设CD=x ,则AD=BD=8-x ,在Rt △CDB 中,CD 2+CB 2=BD 2,x 2+62=(8-x )2,解得:x=74, AD=8-74=164; (3)∵△ABC 的面积为m+1, ∴12AC •BC=m+1, ∴AC •BC=2m+2, ∵在Rt △CAB 中,CA 2+CB 2=BA 2,∴CA 2+CB 2+2AC •BC=BA 2+2AC •BC ,∴(CA+BC )2=m 2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB ,∴CD+DB+BC=m+2.即△BCD 的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.28.(1)见解析;(2)BC =.【分析】(1)由等边三角形的判定定理可得△ABD 为等边三角形,又由平行进行角度间的转化可得出结论.(2)连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF 是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC ,BC 的长.【详解】(1)证明:∵AB AD =,=60A ∠︒,∴△ABD 是等边三角形.∴60ADB ∠=︒.∵CE ∥AB ,∴60CED A ∠=∠=︒.∴CED ADB ∠=∠.(2)解:连接AC 交BD 于点O ,∵AB AD =,BC DC =,∴AC 垂直平分BD .∴30BAO DAO ∠=∠=︒.∵△ABD 是等边三角形,8AB =∴8AD BD AB ===,∴4BO OD ==.∵CE ∥AB ,∴ACE BAO ∠=∠.∴6AE CE ==, 2DE AD AE =-=.∵60CED ADB ∠=∠=︒.∴60EFD ∠=︒.∴△EDF 是等边三角形.∴2EF DF DE ===,∴4CF CE EF =-=,2OF OD DF =-=.在Rt △COF 中, ∴2223OC CF OF =-=.在Rt △BOC 中, ∴22224(23)27BC BO OC =+=+=【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.29.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333-.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,。
5.第17章 《勾股定理》单元测试及答案
第3题图HC第4题图第5题图17章《勾股定理》单元测试(时限:100分钟满分100分)一、选择题(本大题共12小题,每小题2分,共24分)1.下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a、b、c是Rt△ABC的三边,∠C=90°,则a2+b2=c22.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.等边三角形每个内角都等于60°D.如果a=b那么a2=b23.如图,在单位正方形组成的网格图中标有四条线段,其中能构成一个直角三角形三边的线段是()A. CD,EF,GHB. AB,EF,GHC. AB,CD,GHD. AB,CD,EF4.在一个由16个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是()A. 3︰4B. 5︰8C. 9︰16D. 1︰25.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别为3、5、2、3,则最大正方形E的面积是()A. 13B. 26C. 47D. 946.分别以下列四组数为一个三角形的边长:①3,4,5;②5,12,13;③8,15,17;④4,5,6. 其中能够构成直角三角形的有()A.4组B. 3组C. 2组D. 1组7.三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定8.等腰直角三角形三边长度之比为()A. 1︰1︰2B.1︰1︰C. 1︰2︰D. 不能确定第10题图DCBA 第12题图A64100第18题图E D C BA 第19题图 9.三角形的三边长a 、b 、c 满足(a +b )2=c 2+2ab ,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 锐角三角形 D. 直角三角形10.一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,∠B =90°,木板的面积为( )A. 60B. 30C. 24D. 12 11.已知三角形的三边长为a 、b 、c , 如果a -9)2++(c -15)2=0,则△ABC 是( ) A. 以a 为斜边的直角三角形 B. 以b 为斜边的直角三角形B. 以c 为斜边的直角三角形 D. 不是直角三角形12.三个正方形的面积如图立,正方形A 的边长为( ) A. 8 B. 36 C. 64 D. 6二、填空题(本大题分8小题,每小题3分,共24分)13.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜 边长为 . 14.已知直角三角形的两边长为3、5,则另一边长是 . 15.若一个三角形的三边之比为5︰12︰13,则它为 三角形.16.在△ABC 中,若a 2+b 2=25,a 2-b 2=7,c =5,则△ABC 为 三角形.17.一个长方形土地面积为48m 2,对角线长为10m ,则此长方形的周长为 . 18.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且BE ︰AE=12︰5,则河堤的高BE 为 米.19.如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 .20.直角三角形的一条边直角边为11,另两边均为自然数,则周长是 . 三、解答题(本大题共52分)21.(本题分2个小题,每小题3分共6分)(1)若△ABC 的三边a 、b 、c ,满足a ︰b ︰c =1︰1︰,试判断△ABC 的形状.(2)若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,试判断△ABC 的形状第22题图D CB 第23题图O NMPBA第24题图c b aCA 第25题图D C BA 22.(10分)如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13, 求四边形ABCD 的面积.23.(10分)如图,∠AOB =60°,P 为∠AOB 内一点,P 到OA 、OB 的距离PM 、PN分别为2和11,求OP 的长.24.(10分)在△ABC 中,∠C =135°,a =,b =2,求c 的长.25.(10分)如图,四边形ABCD 中,AB =AD =8,∠A =60°,∠D =150°, 四边形的周长为32,求BC 和CD 的长.图图②①cc c b ac b a E 图④c cccb bbbaaaa图③cc bb aa DCBA 四、阅读与证明(6分)26. 如图①是用硬纸片做成的两个全等的直角三角形,两直角边分别为a 和b ,斜边为c ,图②是以c 为直角边的等腰直角三角形,将它们拼成一个能证明勾股定理的图形.⑴ 将图①、图②拼成一个直角梯形,如图③.⑵ 假设图①中直角三角形有若干个,可拼成边长为(a +b )的正方形.如图④证明⑴.由图③可得===++=++∴=++ ∴ a 2+b 2=c 2 由图④你能验证勾股定理吗?试一试:参考答案:一、1.D;2.D;3.B;4.B;5.C;6.B;7.A;8.B;9.D;10.C;11.C;12.D;二、13.;14. 4或;15.直角;16.直角;17. 28cm;18. 12;19.20cm2;20. 132. 解:设所求直角三角形的斜边为x,另一直角边为y,则:X2-y2=112,∴(x+y)(x-y)=121∵x>y,∴x+y>x-y,且x+y、x-y都为自然数,∴解之∴直角三角形三边长为11、60、61.∴直角三角形的周长为132.三、21.略;22.连接AC,其他略;23.延长NP交OB于C,其他略;24.作BD⊥AC交AC的延长线于点D,其他略;25.连接BD,其他略;26.略.。
完整版)勾股定理测试题(含答案)
完整版)勾股定理测试题(含答案)18.2勾股定理的逆定理达标训练一、基础巩固1.下列条件满足不是直角三角形的三角形是()A。
三内角之比为1∶2∶3B。
三边长的平方之比为1∶2∶3C。
三边长之比为3∶4∶5D。
三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值)。
图18-2-43.如图18-2-5,以直角三角形ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________。
图18-2-54.如图18-2-6,已知正方形ABCD的边长为4,E为AB 中点,F为AD上的一点,且AF=√10,则BE的长为_________。
图18-2-65.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12,BC=13,这个零件符合要求吗?试判断△XXX的形状。
图18-2-76.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形。
二、综合应用7.已知a、b、c是直角三角形ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD。
求证:△ABC是直角三角形。
图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论。
图18-2-910.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△XXX的形状。
解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形。
勾股单元测试题及答案
勾股单元测试题及答案一、选择题1. 勾股定理描述的是直角三角形中哪两个边的关系?A. 两条直角边B. 斜边和一条直角边C. 斜边和两条直角边D. 三条边2. 如果直角三角形的两条直角边分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 以下哪个选项不是勾股数?A. 3, 4, 5B. 5, 12, 13C. 7, 24, 25D. 8, 15, 17二、填空题4. 直角三角形的两条直角边长分别为6和8,根据勾股定理,斜边的长度是________。
5. 如果一个三角形的三边长分别为a, b, c,其中c是斜边,那么勾股定理可以用公式表示为________。
6. 一个直角三角形的斜边长为10,一条直角边长为6,求另一条直角边的长度。
7. 已知直角三角形的两条直角边长分别为x和y,且x^2 + y^2 = 49,如果x=3,求y的值。
四、解答题8. 某建筑物的高为20米,从地面到建筑物顶端的直线距离为26米,求从地面到建筑物底部的水平距离。
9. 一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边的长度,并说明这个三角形是否为勾股数。
答案一、选择题1. C2. A3. D二、填空题4. 105. a^2 + b^2 = c^2三、计算题6. 另一条直角边的长度为8。
7. y = √(49 - 3^2) = √(49 - 9) = √40 = 2√108. 水平距离为24米。
9. 另一条直角边的长度为12,这个三角形是勾股数,因为5^2 + 12^2 = 13^2。
勾股定理单元测试题及答案
勾股定理单元测试题一、选择题1、下列各组数中,能构成直角三角形的是()A:4,5,6 B:1,1,C:6,8,11 D:5,12,232、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为()A:26 B:18 C:20 D:213、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A:3 B:4 C:5 D:4、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为()A:5 B:C:D:5、等边三角形的边长为2,则该三角形的面积为()A、B、C、D、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为()A、6B、7C、8D、97、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A、3cmB、4cmC、6cmD、12cm8、若△ABC中,,高AD=12,则BC的长为()A、14B、4C、14或41. 下列说法正确的是()A.若 a、b、c是△ABC的三边,则a+b=c;B.若 a、b、c是Rt△ABC的三边,则a+b=c;C.若 a、b、c是Rt△ABC的三边,,则a+b=c;D.若 a、b、c是Rt△ABC的三边,,则a+b=c.2. Rt△ABC的三条边长分别是、、,则下列各式成立的是()A. B. C. D.3.如果Rt△的两直角边长分别为k-1,2k(k >1),那么它的斜边长是()A、2kB、k+1C、k-1D、k+14. 已知a,b,c为△ABC三边,且满足(a-b)(a+b-c)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121 B.120 C.90 D.不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42 或 32 D.37 或 337.直角三角形的面积为,斜边上的中线长为,则这个三角形周长为()(A)(B)(C)(D)8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A:3 B:4 C:5 D:9.若△ABC中,AB=25cm,AC=26cm高AD=24,则BC的长为()A.17 B.3 C.17或3 D.以上都不对二、填空题1、若一个三角形的三边满足,则这个三角形是。
勾股定理单元测试含答案
一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.棱长分别为86cm cm ,的两个正方体如图放置,点A ,B ,E 在同一直线上,顶点G 在棱BC 上,点P 是棱11E F 的中点.一只蚂蚁要沿着正方体的表面从点A 爬到点P ,它爬行的最短距离是( )A .(3510)cm +B .513cmC .277cmD .(2583)cm +3.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A .22d S d ++B .2d S d --C .22d S d ++D .()22d S d ++ 4.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB 230=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( )A .6B .8C .10D .125.如图,A、B两点在直线l的两侧,点A到直线l的距离AC=4,点B到直线l的距离BD=2,且CD=6,P为直线CD上的动点, 则PA PB的最大值是()A.62B.22C.210D.66.有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5 B.7C.5D.5或77.以下列各组数为边长,不能构成直角三角形的是( )A.3,4,5 B.1,1,2C.8,12,13 D.2、3、58.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.245B.5 C.6 D.89.在四边形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,则EDC的面积为()A.2 2 B.2﹣2 C.22D2﹣110.如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为()A.332cm B.4cm C.32cm D.6cm二、填空题11.如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2018A2019,则点A2019的坐标为________.12.将一副三角板按如图所示摆放成四边形ABCD,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD=32,则AB的长为__________.13.如图,在四边形ABCD中,AB =AD,BC=DC,点E为AD边上一点,连接BD、CE,CE 与BD交于点F,且CE∥AB,若 A =60°,AB=4,CE=3,则BC的长为_______.14.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.15.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.16.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.17.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD的值为____________.18.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°19.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.20.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则2________BD =.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O .(1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.24.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.25.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.26.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠︒,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .(1)求证:CED ADB ∠=∠;(2)若=8AB ,=6CE . 求BC 的长 .27.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =52,求点B 的坐标; (2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 1(2,2),P 2(2,22),P 3(2+2,2﹣2),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)28.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.29.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.30.如图,在△ABC 中,D 是边AB 的中点,E 是边AC 上一动点,连结DE,过点D 作DF ⊥DE 交边BC 于点F(点F 与点B 、C 不重合),延长FD 到点G,使DG=DF,连结EF 、AG.已知AB=10,BC=6,AC=8.(1)求证:△ADG ≌△BDF ;(2)请你连结EG,并求证:EF=EG ;(3)设AE=x ,CF=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(4)求线段EF 长度的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题.【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,即 25cm AF BF A B '+==,延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=--=, ∴该圆柱底面周长为:20240cm ⨯=,故选D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.C解析:C【分析】当E 1F 1在直线EE 1上时,,得到AE=14,PE=9,由勾股定理求得AP 的长;当E 1F 1在直线B 2E 1上时,两直角边分别为17和6,再利用勾股定理求AP 的长,两者进行比较即可确定答案【详解】① 当展开方法如图1时,AE=8+6=14cm ,PE=6+3=9cm , 由勾股定理得2222149277AP AE PE cm =+=+=② 当展开方法如图2时,AP 1=8+6+3=17cm ,PP 1=6cm , 由勾股定理得222211176325AP AP PP cm =+=+= 277<325277cm,【点睛】此题考察正方体的展开图及最短路径,注意将正方体沿着不同棱线剪开时得到不同的平面图形,路径结果是不同的3.D解析:D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章勾股定理单元测试题
一、相信你的选择
1、如图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ).
A .16π
B .12π
C .10π
D .8π
2、已知直角三角形两边的长为3和4,则此三角形的周长为( ).
A .12
B .7+7
C .12或7+7
D .以上都不对
3、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的
距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m .同
时梯子的顶端B 下降至B ′,那么BB ′( ).
A .小于1m
B .大于1m
C .等于1m
D .小于或等于1m
4、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷
子露在杯子外面的长度为h cm ,则h 的取值范围是( ).
A .h ≤17cm
B .B .h ≥8cm
C .15cm ≤h ≤16cm
D .7cm ≤h ≤16cm
二、试试你的身手
5、在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.
6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位).
7、如图,△ABC 中,AC =6,AB =BC =5,则BC 边上的高AD =______.
8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.
三、挑战你的技能
9、如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.
(1)记正方形ABCD 的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a 3,
a 4,……,a n ,请求出a 2,a 3,a 4的值;
(2)根据以上规律写出a n 的表达式.
150
o
20
米30米
10、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,BC=30米,请帮助小明计算出树高AB.(3取1.732,结果保留三个有效数字)
11、如图,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少海里?
12、去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2.732km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)
参考答案与提示
一、相信你的选择
1、D (提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=
21πR 2=21π×(28)2=8π.故选D );
2、C (提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7,故选C );
3、A (提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O =44,6<B ′O <7,则O <BB ′<1.故应选A );
4、D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,故选D ).
二、试试你的身手
5.a =b ,b =4(提示:设a =3k ,b =2k ,由勾股定理,有
(3k )2+(2k )2=(213)2,解得a =b ,b =4.);
6.43(提示:做矩形两边的垂线,构造Rt △ABC ,利用勾股定理,AB 2=AC 2+BC 2=192+392=1882,AB ≈43);
7.3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8);
8、150a .
三、挑战你的技能
9、解析:利用勾股定理求斜边长.
(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC =
22BC AB +=2
211+=2.同理:AE =2,EH =22,…,即a 2=2,a 3=2,a 4=22.
(2)a n =12-n (n 为正整数). 10、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D 作DE ⊥AB 于点E ,则ED =BC =30米,EB =DC =1.4米.设AE =x 米,在Rt △ADE 中,∠ADE =30°,则AD =2x .由勾股定理得:AE 2+ED 2=AD 2,即x 2+302=(2x )2,解得x =103≈17.32.∴AB =AE +EB ≈17.32+1.4≈18.7(米).
答:树高AB 约为18.7米.
11、解析:本题要注意判断角的大小,根据题意知:∠1=∠2=45°,从而证明△ABC 为直角三角形,这是解题的前提,然后可运用勾股定理求解.B 在O 的东南方向,A 在O 的西南方向,所以∠1=∠2=45°,所以∠AOB =90°,即△AOB 为Rt △.BO =16×23=24(海里),AB =30海里,根据勾股定理,得AO 2=AB 2-BO 2=302-242=182,所以AO =18.所以乙船的速度=18÷23=18×3
2=12(海里/时).
答:乙船每小时航行12海里.
12、解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =
x ,∴AC =2x .由勾股定理
得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732, ∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7,
∴计划修筑的这条公路不会穿过公园.。