【2018最新】中考数学专题复习系统训练及答案(200页可直接打印)
【中考复习】2018届甘肃中考数学《专题聚焦》总复习练习题含答案
题型一 规律探索类型一 数与式规律探索 1.(2017·百色)观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是(B )A .-121B .-100C .100D .121 2.(2017·武汉)按照一定规律排列的n 个数:-2、4、-8、16、-32、64、…,若最后三个数的和为768,则n 为(导学号 35694235)(B )A .9B .10C .11D .123.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…,第n 个三角形数记为x n ,则x n +x n+1=__(n +1)2__.4.若x 是不等于1的实数,我们把11-x 称为x 的差倒数,如2的差倒数是11-2=-1,-1的差倒数为11-(-1)=12,现已知x 1=-13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,以此类推,则x 2018=__34__.5.观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015=__1016064__.6.小明写出如下一组数:15,-39,717,-1533,…,请用你发现的规律,猜想第2014个数为__-22014-122015+1__.7.(2017·云南)观察下列各个等式的规律: 第一个等式:22-12-12=1,第二个等式:32-22-12=2,第三个等式:42-32-12=3,…请用上述等式反映出的规律解决下列问题: (1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的. 解:(1)第四个等式为:52-42-12=4;(2)第n 个等式为:(n +1)2-n 2-12=n;证明如下:∵(n +1)2-n 2-12=n 2+2n +1-n 2-12=2n 2=n ,∴左边=右边,等式成立.类型二 图形规律探索 1.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图①);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图②,图③…),则图⑥中挖去三角形的个数为(导学号 35694236)(C )A .121B .362C .364D .7292.如图,在△ABC 中,BC =1,点P 1,M 1分别是AB ,AC 边的中点,点P 2,M 2分别是AP 1,AM 1的中点,点P 3,M 3分别是AP 2,AM 2的中点,按这样的规律下去,P n M n 的长为__12n__(n 为正整数).3.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2016BC 和∠A 2016CD 的平分线交于点A 2017,则∠A 2017=__m22017__°.4.如图,是一组按照某种规律摆放成的图案,则图⑤中三角形的个数是(C )A .8B .9C .16D .17 5.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,依此规律,第11个图案需(B )根火柴.A .156B .157C .158D .1596.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有点的个数为__(n +1)2__(用含n 的代数式表示).(导学号 35694237)类型三 与坐标系结合的规律探索1.如图,在平面直角坐标系中,将△ABO 绕点A 顺指针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…,若点A (53,0),B (0,4),则点B 2016的横坐标为(D )A .5B .12C .10070D .100802.如图,在平面直角坐标系中有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,-1)…,根据这个规律探索可得第100个点的坐标为(D )A .(14,0)B .(14,-1)C .(14,1)D .(14,2)3.如图,已知菱形OABC 的两个顶点O (0,0),B (2,2),若将菱形绕点O 以每秒45°的速度逆时针旋转,则第2017秒时,菱形两对角线交点D 的坐标为.4.(2017·赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点P ′(-y +1,x +2),我们把点P ′(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为__(2,0)__.(导学号 35694238)5.如图,在平面直角坐标系中有一菱形OABC,且∠A=120°,点O、B在y轴上,OA =1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3…,连续翻转2017次,则B2017的坐标为__(1345.5,2)__.题型二尺规作图类型一作与两条直线距离有关的点1.(2017·陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)(导学号35694239)解:如解图,点P即为所求.2.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)解:如解图所示,作CD的垂直平分线,∠AOB的平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.3.(2017·绥化)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)解:如解图,连接AC,作线段AC的垂直平分线MN,直线MN交AB于点P.点P即为所求的点.4.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)解:如解图,点D即为所求.类型二作角平分线和垂直平分线1.(2017·福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D,求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.2.(2017·赤峰)已知平行四边形ABCD.(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:CE=CF.(1)解:如解图所示,AF即为所求;(2)证明:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠4.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠4,∴CE=CF.3.如图,△ABC中,AB=AC,∠A=40°.(1)作边AB的垂直平分线MN;(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连接BD,求∠DBC的度数.(导学号35694240)解:(1)如解图①即为所求垂直平分线MN;(2)如解图②,连接BD,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°,∵AB=AC,∴∠ABC =∠C =12(180°-∠A)=70°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°. 4.如图,已知△ABC 中,∠ABC =90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC 的垂直平分线l ,交AC 于点O ;②连接BO 并延长,在BO 的延长线上截取OD ,使得OD =OB ; ③连接DA 、DC ;(2)判断四边形ABCD 的形状,并说明理由. (1)①②③如解图所示; (2)四边形ABCD 是矩形,理由:∵在Rt △ABC 中,∠ABC =90°,BO 是AC 边上的中线, ∴BO =12AC ,∵BO =DO ,AO =CO ,∴AO =CO =BO =DO ,∴四边形ABCD 是矩形.类型三 作圆1.如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)解:如解图所示,⊙P 即为所作的圆.2.如图,已知在△ABC 中,∠A =90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B =60°,AB =3,求⊙P 的面积.解:(1)如解图所示, ⊙P 为所求作的圆; (2)∵∠B =60°, BP 平分∠ABC ,∴∠ABP =30°, ∵tan ∠ABP =AP AB, ∴AP =3, ∴S ⊙P =3π.3.(2017·舟山)如图,已知△ABC ,∠B =40°.(1)在图中,用尺规作出△ABC 的内切圆O ,并标出⊙O 与边AB ,BC ,AC 的切点D ,E ,F(保留痕迹,不必写作法);(2)连接EF ,DF ,求∠EFD 的度数. 解:(1)如解图①,⊙O 即为所求;(2)如解图②,连接OD ,OE , ∴OD ⊥AB ,OE ⊥BC , ∴∠ODB =∠OEB =90°, ∵∠B =40°,∴∠DOE =140°,∴∠EFD =70°.4.已知△ABC 中,∠A =25°,∠B =40°.(1)求作:⊙O ,使得⊙O 经过A 、C 两点,且圆心O 落在AB 边上(要求尺规作图,保留作图痕迹,不必写作法);(2)求证:BC 是(1)中所作⊙O 的切线. (1)解:作图如解图①;(2)证明:如解图②,连接OC ,∵OA =OC ,∠A =25°,∴∠BOC =50°, 又∵∠B =40°,∴∠BOC +∠B =90°, ∴∠OCB =90°,∴OC ⊥BC ,∴BC 是⊙O 的切线.5.如图,在直角三角形ABC 中,∠ABC =90°. (1)先作∠ACB 的平分线,设它交AB 边于点O ,再以点O 为圆心OB 为半径作⊙O(尺规作图,保留作图痕迹,不写作法);(2)证明:AC 是所作⊙O 的切线;(3)若BC =3,sin A =12,求△AOC 的面积.(1)解:作图如解图所示:(2)证明:过点O 作OE ⊥AC 于点E , ∵FC 平分∠ACB ,∴OB =OE ,∴AC 是所作⊙O 的切线;(3)解:∵sin A =12,∠ABC =90°,∴∠A =30°,∴∠ACO =∠OCB =12∠ACB =30°,∵BC =3,∴AC =23,BO =BC tan 30°=3³33=1, ∴S △AOC =12AC·OE =12³23³1= 3.题型三 与三角形、四边形有关的证明与计算类型一 与三角形有关的证明与计算 1.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM , ∴∠BAD =∠NAM , 在△BAD 和△NAM 中,⎩⎨⎧AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS ),∴∠B =∠ANM. 2.(2017·孝感)如图,已知AB =CD ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F ,BF =DE ,求证:AB ∥CD.证明:∵AE ⊥BD , CF ⊥BD ,∴∠AEB =∠CFD =90°, ∵BF =DE ,∴BF +EF =DE +EF , ∴BE =DF.在Rt △AEB 和Rt △CFD 中,⎩⎨⎧AB =CD ,BE =DF ,∴Rt △AEB ≌Rt △CFD(HL ), ∴∠B =∠D ,∴AB ∥CD. 3.(2017·连云港)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB 、AC 上,且AD =AE ,连接BE 、CD ,交于点F.(1)判断∠ABE 与∠ACD 的数量关系,并说明理由;(2)求证:过点A 、F 的直线垂直平分线段BC.(1)解:∠ABE =∠ACD ;理由如下:在△ABE 和△ACD 中,⎩⎨⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD(SAS ),∴∠ABE =∠ACD ; (2)证明:∵AB =AC , ∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD , ∴∠FBC =∠FCB , ∴FB =FC , ∵AB =AC ,∴点A 、F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC. 4.(2017·荆门)已知:如图,在Rt △ACB 中,∠ACB =90°,点D 是AB 的中点,点E 是CD 的中点,过点C 作CF ∥AB 交AE 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠DCF =120°,DE =2,求BC 的长.(1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF ,∴∠BAF =∠AFC , 在△ADE 与△FCE 中,⎩⎨⎧∠DAF =∠AFC ,∠AED =∠FEC ,DE =CE ,∴△ADE ≌△FCE(AAS ); (2)解:由(1)得,CD =2DE , ∵DE =2,∴CD =4.∵点D 为AB 的中点,∠ACB =90°, ∴AB =2CD =8,AD =CD =12AB.∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12³60°=30°,∴BC =12AB =12³8=4.5.(2017·重庆A )在△ABM 中,∠ABM =45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC.(1)如图①,若AB =32,BC =5,求AC 的长;(2)如图②,点D 是线段AM 上一点,MD =MC ,点E 是△ABC 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF.(导学号 35694241)(1)解:AC =13;(2)证明:如解图,延长EF 到点G ,使得FG =EF ,连接BG. ∵DM =MC ,∠BMD =∠AMC , BM =AM ,∴△BMD ≌△AMC(SAS ), ∴AC =BD ,又∵CE =AC ,∴BD =CE , ∵BF =FC ,∠BFG =∠CFE , FG =FE ,∴△BFG ≌△CFE(SAS ),∴BG =CE ,∠G =∠CEF ,∴BD =CE =BG ,∴∠BDG =∠G =∠CEF. 6.(2017·呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线. (1)求证:BD =CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.(1)证明:由题意得,AB =AC , ∵BD ,CE 分别是两腰上的中线, ∴AD =12AC ,AE =12AB ,∴AD =AE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠A =∠A ,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE ; (2)解:四边形DEMN 是正方形,证明:略7.△ABC 的三条角平分线相交于点I ,过点I 作DI ⊥IC ,交AC 于点D. (1)如图①,求证:∠AIB =∠ADI ;(2)如图②,延长BI ,交外角∠ACE 的平分线于点F. ①判断DI 与CF 的位置关系,并说明理由; ②若∠BAC =70°,求∠F 的度数.(1)证明:∵AI 、BI 分别平分∠BAC ,∠ABC , ∴∠BAI =12∠BAC ,∠ABI =12∠ABC ,∴∠BAI +∠ABI =12(∠BAC +∠ABC)=12(180°-∠ACB)=90°-12∠ACB ,∴在△ABI 中,∠AIB =180°-(∠BAI +∠ABI)=180°-(90°-12∠ACB)=90°+12∠ACB ,∵CI 平分∠ACB ,∴∠DCI =12∠ACB ,∵DI ⊥IC ,∴∠DIC =90°,∴∠ADI =∠DIC +∠DCI =90°+12∠ACB ,∴∠AIB =∠ADI ;(2)解:①结论:DI ∥CF.理由:∵∠IDC =90°-∠DCI =90°-12∠ACB ,∵CF 平分∠ACE ,∴∠ACF =12∠ACE =12(180°-∠ACB)=90°-12∠ACB ,∴∠IDC =∠ACF ,∴DI ∥CF ;②∵∠ACE =∠ABC +∠BAC ,∴∠ACE -∠ABC =∠BAC =70°, ∵∠FCE =∠FBC +∠F , ∴∠F =∠FCE -∠FBC ,∵∠FCE =12∠ACE ,∠FBC =12∠ABC ,∴∠F =12∠ACE -12∠ABC =12(∠ACE -∠ABC)=35°.8.(8分)(2017·北京)在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B 、C 不重合),连接AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M.(1)若∠PAC =α,求∠AMQ 的大小(用含α的式子表示);(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.(导学号 35694242)解:(1)∠AMQ =45°+α;理由如下:∵∠PAC =α,△ACB 是等腰直角三角形, ∴∠BAC =∠B =45°,∠PAB =45°-α, ∵QH ⊥AP , ∴∠AHM =90°, ∴∠AMQ =180°-∠AHM -∠PAB =45°+α;(2)PQ =2MB.理由如下:如解图,连接AQ ,作ME ⊥QB , ∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠PAC =α, ∴∠QAM =45°+α=∠AMQ ,∴AP =AQ =QM , 在△APC 和△QME 中,⎩⎨⎧∠MQE =∠PAC ,∠ACP =∠QEM ,AP =QM ,∴△APC ≌△QME(AAS ),∴PC =ME , ∴△MEB 是等腰直角三角形,∴12PQ =22MB ,∴PQ=2MB.类型二 与四边形有关的证明与计算1.在▱ABCD 中,点E 、F 分别在AB 、CD 上,且AE =CF. (1)求证:△ADE ≌△CBF ;(2)若DF =BF ,求证:四边形DEBF 为菱形.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =BC ,∠A =∠C , 在△ADE 和△CBF 中,⎩⎨⎧AD =BC ,∠A =∠C ,AE =CF ,∴△ADE ≌△CBF(SAS );(2)∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD , ∵AE =CF ,∴DF =EB ,∴四边形DEBF 是平行四边形,又∵DF =FB ,∴四边形DEBF 为菱形.2.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC.(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB =5,AD =6,求AC 的长. (导学号 35694243)(1)证明:∵AE ⊥AC ,BD 垂直平分AC , ∴AE ∥BD ,∵∠ADE =∠BAD , ∴DE ∥AB ,∴四边形ABDE 是平行四边形; (2)解:∵DA 平分∠BDE , ∴∠BAD =∠ADB , ∴AB =BD =5,设BF =x ,则52-x 2=62-(5-x)2, 解得x =75,∴AF =AB 2-BF 2=245,∴AC =2AF =485. 3.(2017·上海)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 和△CDE 中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE(SSS ), ∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE =∠CBD , ∴∠CDE =∠CBD ,∴BC =CD , ∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形; (2)∵BE =BC ,∴∠BCE =∠BEC , ∵∠CBE ∶∠BCE =2∶3, ∴∠CBE =180°³22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°, ∴∠ABC =90°,∴四边形ABCD 是正方形.4.如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°.(1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠DAF =∠F =45°.∵AE 是∠BAD 的平分线, ∴∠EAB =∠DAE =45°, ∴∠DAB =90°,又∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:如解图,过点B 作BH ⊥AE 于点H , ∵四边形ABCD 是矩形, ∴AB =CD ,AD =BC , ∠DCB =∠D =90°,∵AB =14,DE =8,∴CE =6. 在Rt △ADE 中,∠DAE =45°, ∴AD =DE =8,∴BC =8. 在Rt △BCE 中,由勾股定理得BE =BC 2+CE 2=10, 在Rt △AHB 中,∠HAB =45°, ∴BH =AB·sin 45°=72, ∵在Rt △BHE 中,∠BHE =90°, ∴sin ∠AEB =BH BE =7210.5.(2017·大庆)如图,以BC 为底边的等腰△ABC ,点D ,E ,G 分别在BC ,AB ,AC 上,且EG ∥BC ,DE ∥AC ,延长GE 至点F ,使得BE =BF.(1)求证:四边形BDEF 为平行四边形; (2)当∠C =45°,BD =2时,求D ,F 两点间的距离.(导学号 35694244) (1)证明:∵△ABC 是等腰三角形, ∴∠ABC =∠C ,∵EG ∥BC ,DE ∥AC , ∴∠AEG =∠ABC =∠C ,∴四边形CDEG 是平行四边形, ∴∠DEG =∠C , ∵BE =BF ,∴∠BFE =∠BEF =∠AEG =∠ABC , ∴∠F =∠DEG ,∴BF ∥DE , ∴四边形BDEF 为平行四边形; (2)解:∵∠C =45°,∴∠ABC =∠BFE =∠BEF =45°, ∴△BDE 、△BEF 是等腰直角三角形,∴BF =BE =22BD =2, 作FM ⊥BD 于点M ,连接DF ,如解图所示,则△BFM 是等腰直角三角形, ∴FM =BM =22BF =1, ∴DM =3,在Rt △DFM 中,由勾股定理得: DF =12+32=10,即D ,F 两点间的距离为10. 6.(2017·张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠AEG =∠BFG , ∵EF 垂直平分AB , ∴AG =BG ,在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF(AAS );(2)解:四边形AFBE 是菱形,理由如下: ∵△AGE ≌△BGF ,∴AE =BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形, 又∵EF ⊥AB ,∴四边形AFBE 是菱形.7.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =CO ,BO =DO ,且∠ABC +∠ADC =180°.(1)求证:四边形ABCD 是矩形.(2)若∠ADF ∶∠FDC =3∶2,DF ⊥AC ,则∠BDF 的度数是多少?(1)证明:∵AO =CO ,BO =DO∴四边形ABCD 是平行四边形, ∴∠ABC =∠ADC ,∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADC =90°,∴四边形ABCD 是矩形;(2)解:∵∠ADC =90°,∠ADF ∶∠FDC =3∶2, ∴∠FDC =36°,∵DF ⊥AC ,∴∠DCO =90°-36°=54°, ∵四边形ABCD 是矩形, ∴OC =OD ,∴∠ODC =54°,∴∠BDF =∠ODC -∠FDC =18°. 8.(2017·娄底)如图,在▱ABCD 中,各内角的平分线分别相交于点E ,F ,G ,H. (1)求证:△ABG ≌△CDE ;(2)猜一猜:四边形EFGH 是什么样的特殊四边形?证明你的猜想; (3)若AB =6,BC =4,∠DAB =60°,求四边形EFGH 的面积.(1)证明:∵GA 平分∠BAD ,EC 平分∠BCD , ∴∠BAG =12∠BAD ,∠DCE =12∠DCB ,∵在▱ABCD 中,∠BAD =∠DCB ,AB =CD ,∴∠BAG =∠DCE ,同理可得,∠ABG =∠CDE ,∵在△ABG 和△CDE 中,⎩⎨⎧∠BAG =∠DCE ,AB =CD ,∠ABG =∠CDE ,∴△ABG ≌△CDE(ASA ); (2)解:四边形EFGH 是矩形.证明:∵GA 平分∠BAD ,GB 平分∠ABC , ∴∠GAB =12∠BAD ,∠GBA =12∠ABC ,∵在▱ABCD 中,∠DAB +∠ABC =180°,∴∠GAB +∠GBA =12(∠DAB +∠ABC)=90°,即∠AGB =90°,同理可得,∠DEC =90°,∠AHD =90°=∠EHG , ∴四边形EFGH 是矩形;(3)解:依题意得:∠BAG =12∠BAD =30°,∵AB =6,∴BG =12AB =3,AG =33=CE ,∵BC =4,∠BCF =12∠BCD =30°,∴BF =12BC =2,CF =23,∴EF =33-23=3,GF =3-2=1, ∴S 矩形EFGH 的面积=EF·GF = 3.题型四解直角三角形的实际应用1.(2017·镇江)如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15 m,求实验楼的垂直高度即CD长.(精确到1 m,参考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:作AE⊥CD于E,如解图,∵AB=15 m,∴DE=AB=15 m,∵∠DAE=45°,∴AE=DE=15 m,在Rt△ACE中,tan∠CAE=CE AE,则CE=AE·tan37°=15³0.75≈11 m,∴CD=CE+DE=11+15=26 m.答:实验楼的垂直高度CD长为26 m.2.(2017·宜宾)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边取两点B、C测得∠α=30°,∠β=45°,量得BC长为100米,求河的宽度.(结果保留根号)解:过点A作AD⊥BC于点D,如解图,∵∠β=45°,∠ADC=90°,∴AD=DC,设AD=DC=x m,则tan 30°=x x +100=33, 解得x =50(3+1).答:河的宽度为50(3+1) m . 3.(2017·宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A 处测得正前方小岛C 的俯角为30°,面向小岛方向继续飞行10 km 到达B 处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度.(结果保留根号)(导学号 35694245)解:过点C 作CD ⊥AB 于点D ,如解图,设CD =x , ∵∠CBD =45°, ∴BD =CD =x ,在Rt △ACD 中, ∵tan ∠CAD =CDAD,∴AD =CD tan ∠CAD =x tan 30°=x33=3x ,由AD +BD =AB 可得3x +x =10,解得x =53-5.答:飞机飞行的高度为(53-5) km . 4.(2016·菏泽)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B 处时,测得该岛位于正北方向20(1+3)海里的C 处,为了防止某国海巡警干扰,就请求我A 处的渔监船前往C 处护航,已知C 位于A 处的北偏东45°方向上,A 位于B 的北偏西30°的方向上,求A 、C 之间的距离.解:如解图,作AD ⊥BC ,垂足为D ,由题意得,∠ACD =45°, ∠ABD =30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=3x,又∵BC=20(1+3),CD+BD=BC,即x+3x=20(1+3),解得:x=20,∴AC=2x=202(海里).答:A、C之间的距离为20 2 海里.5.(2017·荆门)金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度.(计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73)解:如解图,过点C作CM⊥AB于M.则四边形MEDC是矩形,∴ME=DC=3,CM=ED,在Rt△AEF中,∠AFE=60°,设EF=x,则AF=2x,AE=3x,在Rt△FCD中,CD=3,∠CFD=30°,∴DF=33,在Rt △AMC 中, ∠ACM =45°,∴∠MAC =∠ACM =45°,∴MA =MC , ∵ED =CM ,∴AM =ED ,∵AM =AE -ME ,ED =EF +DF , ∴3x -3=x +33,解得x =6+33, ∴AE =3(6+33)=63+9,∴AB =AE -BE =9+63-1≈18.4米. 答:旗杆AB 的高度约为18.4米. 6.(2016·贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面10米处有一建筑物HQ ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC 的倾斜角∠BDC =30°,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数.参考数据:2≈1.414,3≈1.732)(导学号 35694246)解:由题意得,AH =10米,BC =10米, 在Rt △ABC 中,∠CAB =45°, ∴AB =BC =10,在Rt △DBC 中,∠CDB =30°, ∴DB =BCtan ∠CDB=103,∴DH =AH -AD =AH -(DB -AB)=10-103+10=20-103≈2.7(米), ∵2.7米<3米,∴该建筑物需要拆除.7.(2017·鄂州)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A 处,测得树顶端E 的仰角为30°,他又继续走下台阶到达C 处,测得树的顶端E 的仰角是60°,再继续向前走到大树底D 处,测得食堂楼顶N 的仰角为45°.已知A 点离地面的高度AB =2米,∠BCA =30°,且B 、C 、D 三点在同一直线上.(1)求树DE 的高度;(2)求食堂MN 的高度. 解:(1)如解图,设DE =x ,∵AB =DF =2,∴EF =DE -DF =x -2, ∵∠EAF =30°, ∴AF =EFtan ∠EAF =x -233=3(x -2),又∵CD =DE tan ∠DCE =x 3=33x ,BC =AB tan ∠ACB =233=23,∴BD =BC +CD =23+33x , 由AF =BD 可得3(x -2)=23+33x , 解得:x =6,∴树DE 的高度为6米;(2)延长NM 交DB 延长线于点P ,如解图,则AM =BP =3, 由(1)知CD =33x =33³6=23,BC =23, ∴PD =BP +BC +CD =3+23+23=3+43,∵∠NDP =45°,且MP =AB =2, ∴NP =PD =3+43,∴NM =NP -MP =3+43-2=1+43, ∴食堂MN 的高度为1+4 3 米.题型五 与圆有关的证明与计算类型一 与切线判定有关的证明与计算1.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC 、AC 交于点D 、E ,过点D 作DF ⊥AC 于点F.(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为2,BC =22,求DF 的长. (导学号 35694247)(1)证明:连接OD ,如解图,∵OB =OD ,∴∠ABC =∠ODB , ∵AB =AC ,∴∠ABC =∠ACB , ∴OD ∥AC ,∵DF ⊥AC ,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)解:连接AD ,如解图, ∵AB 是⊙O 的直径, ∴AD ⊥BC ,又∵AB =AC ,∴BD =DC =2,∴AD =AB 2-BD 2=42-(2)2=14, ∵DF ⊥AC ,∴△ADC ∽△DFC ,∴AD DF =AC DC ,∴14DF =42,∴DF =72. 2.如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点D ,∠ABD =∠ACB. (1)求证:AB 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =4,tan ∠AEB =53,AB ∶BC =2∶3,求⊙O 的直径.(1)证明:∵BC 是直径, ∴∠BDC =90°,∴∠ACB +∠DBC =90°,∵∠ABD =∠ACB , ∴∠ABD +∠DBC =90°, ∴∠ABC =90°, ∴AB ⊥BC , ∴AB 是⊙O 的切线;(2)解:在Rt △AEB 中,tan ∠AEB =53,∴AB BE =53,即AB =53BE =203, 在Rt △ABC 中,AB BC =23,∴BC =32AB =10,∴⊙O 的直径为10.3.如图,AB 为⊙O 的直径,C 为⊙O 上一点,点D 是BC ︵的中点,DE ⊥AC 于点E ,DF ⊥AB 于点F.(1)求证:DE 是⊙O 的切线; (2)若OF =2,求AC 的长度.(导学号 35694248)(1)证明:如解图①,连接OD 、AD , ∵点D 是BC ︵的中点,∴BD ︵=CD ︵,∴∠DAO =∠DAC , ∵OA =OD ,∴∠DAO =∠ODA ,图①∴∠DAC =∠ODA ,∴OD ∥AE , ∵DE ⊥AE ,∴∠AED =90°, ∴∠AED =∠ODE =90°, ∴OD ⊥DE , ∴DE 是⊙O 的切线;图②(2)解:如解图②,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥AE,∴∠DOB=∠EAB,∵∠DFO=∠ACB=90°,∴△DFO∽△BCA,∴OFAC=ODAB=12,即2AC=12,∴AC=4.4.(2017·张家界)在等腰△ABC中,AC=BC,以BC为直径的⊙O分别与AB,AC相交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)分别延长CB,FD,相交于点G,∠A=60°,⊙O的半径为6,求阴影部分的面积.(1)证明:连接OD,如解图所示,∵AC=BC,OB=OD,∴∠ABC=∠A,∠ABC=∠ODB,∴∠A=∠ODB,∴OD∥AC,∵DF⊥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线;(2)解:∵AC=BC,∠A=60°,∴△ABC是等边三角形,∴∠ABC=60°,∵OD=OB,∴△OBD是等边三角形,∴∠BOD =60°,∵DF ⊥OD ,∴∠ODG =90°,∴∠G =30°, ∴DG =3OD =63,∴S 阴影部分=S △ODG -S 扇形OBD =12³6³63-60π³62360=183-6π.5.(2017·安顺)如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连接BE.(1)求证:BE 与⊙O 相切;(2)设OE 交⊙O 于点F ,若DF =1,BC =23,求阴影部分的面积.(1)证明:连接OC ,如解图, ∵CE 为切线,∴OC ⊥CE , ∴∠OCE =90°,∵OD ⊥BC ,∴CD =BD , 即OD 垂中平分BC , ∴EC =EB ,在△OCE 和△OBE 中,⎩⎨⎧OC =OB ,OE =OE ,EC =EB ,∴△OCE ≌△OBE ,∴∠OBE =∠OCE =90°, ∴OB ⊥BE ,∴BE 与⊙O 相切;(2)解:设⊙O 的半径为r ,则OD =r -1, 在Rt △OBD 中,BD =CD =12BC =3,∴(r -1)2+(3)2=r 2,解得r =2, ∵tan ∠BOD =BDOD =3,∴∠BOD =60°,∴∠BOC =2∠BOD =120°, 在Rt △OBE 中,BE =3OB =23, ∴S 阴影部分=S 四边形OBEC -S 扇形BOC =2S △OBE -S 扇形BOC=2³12³2³23-120π³22360=43-43π.类型二 与切线性质有关的证明与计算 1.(2017·绵阳)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的⊙O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1)求证:CA =CN ;(2)连接OF ,若cos ∠DFA =45,AN =210,求⊙O 的直径的长度.(1)证明:连接OF ,则∠OAF =∠OFA ,如解图①所示, ∵ME 与⊙O 相切, ∴OF ⊥ME. ∵CD ⊥AB ,∴∠M +∠FOH =180°.∵∠BOF =∠OAF +∠OFA =2∠OAF ,∠FOH +∠BOF =180°, ∴∠M =2∠OAF. ∵ME ∥AC ,∴∠M =∠C =2∠OAF.∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°, ∴∠ANC =90°-∠OAF ,∠BAC =90°-∠C =90°-2∠OAF , ∴∠CAN =∠OAF +∠BAC =90°-∠OAF =∠ANC , ∴CA =CN ;(2)解:连接OC ,如解图②所示. ∵cos ∠DFA =45,∠DFA =∠ACH , ∴CH AC =45. 设CH =4a ,则AC =5a ,AH =3a , ∵CA =CN ,∴NH =a ,∴AN =AH 2+NH 2=(3a )2+a 2=10a =210, ∴a =2,AH =3a =6,CH =4a =8. 设⊙O 的半径为r ,则OH =r -6,在Rt △OCH 中,OC =r ,CH =8,OH =r -6, ∴OC 2=CH 2+OH 2,r 2=82+(r -6)2, 解得:r =253,∴⊙O 的直径的长度为2r =503.2.(2017·大连)如图,AB 是⊙O 直径,点C 在⊙O 上,AD 平分∠CAB ,BD 是⊙O 的切线,AD 与BC 相交于点E.(1)求证:BD =BE ;(2)若DE =2,BD =5,求CE 的长. (导学号 35694249)(1)证明:设∠BAD =α,∵AD 平分∠BAC ,∴∠CAD =∠BAD =α,∵AB 是⊙O 的直径,点C 在⊙O 上,∴∠ACB =90°, ∴∠ABC =90°-2α,∵BD 是⊙O 的切线,∴BD ⊥AB ,∴∠DBE =2α,∠BED =∠BAD +∠ABC =90°-α, ∴∠D =180°-∠DBE -∠BED =90°-α, ∴∠D =∠BED ,∴BD =BE ;(2)解:设AD 交⊙O 于点F ,CE =x ,则AC =2x ,连接BF ,如解图, ∵AB 是⊙O 的直径, ∴∠AFB =90°,∵BD =BE ,DE =2,∴FE =FD =1,∵BD =5,∴BF =2, ∵∠BAD +∠D =90°,∠D +∠FBD =90°, ∴∠FBD =∠BAD =α,∴tan α=FD BF =12,∴AB =BF sin α=255=25,在Rt △ABC 中,由勾股定理可知(2x)2+(x +5)2=(25)2, 解得x =-5(舍去)或x =355,∴CE =355.3.(2017·南京)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D.(1)求证:PO 平分∠APC ; (2)连接DB ,若∠C =30°,求证:DB ∥AC.证明:(1)如解图,连接OB , ∵PA ,PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , 又OA =OB ,∴PO 平分∠APC ;(2)∵OA ⊥AP ,OB ⊥BP , ∴∠CAP =∠OBP =90°,∵∠C =30°, ∴∠APC =90°-30°=60°, ∵PO 平分∠APC ,∴∠OPC =12∠APC =12³60°=30°,∴∠POB =90°-∠OPC =90°-30°=60°,又∵OD =OB ,∴△ODB 是等边三角形, ∴∠OBD =60°,∴∠DBP =∠OBP -∠OBD =90°-60°=30°, ∴∠DBP =∠C ,∴DB ∥AC.4.如图,直线l 经过点A(4,0),B(0,3).(1)求直线l 的函数表达式;(2)若圆M 的半径为2,圆心M 在y 轴上,当圆M 与直线l 相切时,求点M 的坐标.(1)∵A(4,0),B(0,3),∴直线l 的解析式为:y =-34x +3;(2)作MH ⊥AB ,垂足为H ,如解图所示, ∵M 在y 轴上,∴设M(0,t),2S △ABM =BM·AO =AB·MH , ∴|3-t|³4=5³2, 解得t 1=12,t 2=112,∴M 1(0,12),M 2(0,112).题型六 二次函数与几何图形综合题类型一 探究特殊三角形的存在性问题 1.(2017·乌鲁木齐)如图,抛物线y =ax 2+bx +c(a ≠0)与直线y =x +1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.①当PE =2ED 时,求P 点坐标;②是否存在点P ,使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(导学号 35694250)解:(1)∵点B(4,m)在直线y =x +1上, ∴m =4+1=5,∴B(4,5),把A 、B 、C 三点坐标代入抛物线解析式可得 ⎩⎨⎧a -b +c =0,16a +4b +c =5,25a +5b +c =0, 解得⎩⎨⎧a =-1,b =4,c =5,∴抛物线的解析式为y =-x 2+4x +5;(2)①设P(x ,-x 2+4x +5),则E(x ,x +1),D(x ,0),则PE =|-x 2+4x +5-(x +1)|=|-x 2+3x +4|,DE =|x +1|, ∵PE =2ED ,∴|-x 2+3x +4|=2|x +1|,当-x 2+3x +4=2(x +1)时,解得x =-1或x =2,但当x =-1时,P 与A 重合不合题意,舍去,∴P(2,9);当-x 2+3x +4=-2(x +1)时,解得x =-1或x =6,但当x =-1时,P 与A 重合,不合题意,舍去,∴P(6,-7);综上可知,P 点坐标为(2,9)或(6,-7);②点P 的坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5)时,△BEC 为等腰三角形.2.(2017·阜新)如图,抛物线y =-x 2+bx +c 的图象与x 轴交于A(-5,0),B(1,0)两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D.(1)求抛物线的函数表达式;(2)如图①,点E(x ,y)为抛物线上一点,且-5<x<-2,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x 轴于点H ,得到矩形EHDF ,求矩形EHDF 周长的最大值;(3)如图②,点P 为抛物线对称轴上一点,是否存在点P ,使以点P ,A ,C 为顶点的三角形是直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)把A(-5,0),B(1,0)代入y =-x 2+bx +c ,得到⎩⎨⎧-25-5b +c =0,-1+b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =5.∴抛物线的函数表达式为y =-x 2-4x +5;(2)如解图①,∵抛物线的对称轴为直线x =-2,E(x ,-x 2-4x +5), ∴EH =-x 2-4x +5, EF =-2-x ,∴矩形EFDH 的周长=2(EH +EF)=2(-x 2-5x +3)=-2(x +52)2+372,∵-2<0,∴x =-52时,矩形EHDF 的周长最大,最大值为372;(3) 如解图②,设P(-2,m),①当∠ACP =90°时, AC 2+PC 2=PA 2,∴(52)2+22+(m -5)2=32+m 2, 解得m =7, ∴P 1(-2,7).②当∠CAP =90°时, AC 2+PA 2=PC 2,∴(52)2+32+m 2=22+(m -5)2, 解得m =-3,∴P 2(-2,-3).③当∠APC =90°时,PA 2+PC 2=AC 2,∴32+m 2+22+(m -5)2=(52)2, 解得m =6或m =-1,∴P 3(-2,6),P 4(-2,-1),综上所述,满足条件的点P 坐标为(-2,7)或(-2,-3)或(-2,6)或(-2,-1). 3.(2017·重庆A )如图,在平面直角坐标系中,抛物线y =33x 2-233x -3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线y =33x 2-233x -3沿x 轴正方向平移得到抛物线y′,y ′经过点D ,y ′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q ,使得△FGQ为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.解:(1)直线AE 的解析式为y =33x +33.(2)设直线CE 的解析式为y =mx -3, ∴直线CE 的解析式为y =233x - 3. 过点P 作PF ∥y 轴,交CE 于点F.如解图①, 设点P 的坐标为(x ,33x 2-233x -3), 则点F(x ,233x -3),则FP =-33x 2+433x.∴△EPC 的面积=-233x 2+833x.∴当x =2时,△EPC 的面积最大.∴P(2,-3).如解图②,作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 于N 、M.∵K 是CB 的中点,∴K(32,32).∴tan ∠KCP =33.∵OD =1,OC =3, ∴tan ∠OCD =33. ∴∠OCD =∠KCP =30°. ∴∠KCD =30°.∵K 是BC 的中点,∠OCB =60°, ∴OC =CK.∴点O 与点K 关于CD 对称. ∴点G 与点O 重合. ∴点G(0,0).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,-332).∴KM +MN +NK =MH +MN +GN.当点G 、N 、M 、H 在一条直线上时,KM +MN +NK 有最小值,最小值=GH. ∴GH =(32)2+(332)2=3. ∴KM +MN +NK 的最小值为3.(3)点Q 的坐标为(3,-43+2213)或(3,-43-2213)或(3,23)或(3,-235).类型二 探究特殊四边形的存在性问题1.(2017·宜宾)如图,抛物线y =-x 2+bx +c 与x 轴分别交于A(-1,0),B(5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值;(3)在(2)的条件下,当点C 第一次落在抛物线上记为点E ,点P 是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q ,使以点B 、E 、P 、Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(导学号 35694251)解:(1)抛物线的解析式为y =-x 2+4x +5; (2)∵AD =5,且OA =1,∴OD =6, 又∵CD =8,∴C(-6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=-x 2+4x +5,解得x =1或x =3,∴C ′点的坐标为(1,8)或(3,8), ∵C(-6,8),∴当点C 落在抛物线上时,向右平移了7或9个单位,∴m 的值为7或9;(3)Q 点的坐标为(-2,-7)或(6,-7)或(4,5)时,以点B 、E 、P 、Q 四点为顶点的四边形为平行四边形.。
2018年中考数学专题复习题及答案
2018年中考数学专题复习第一章 数与式 第一讲 实数【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数, 722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】 三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:⎪ ⎪ ⎪⎪ ⎩⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪⎨ ⎧ 正无理数无理数 负分数 零 正整数 整数 有理数 无限不循环小数 ⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数(a >0)(a <0) 0 (a=0)一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
中考数学复习《特殊的平行四边形》专题练习(含答案)
三、解答题
31. (2018·湘西州)如图,在矩形 中, 是 的中点,连接 .
(1)求证: ;
(2)若 ,求 的周长.
32. (2018连云港)如图,在矩形 中, 是 的中点,延长 交于点 ,连接 .
(1)求证:四边形 是平行四边形;
A. B. C. D.
二、填空题
13. (2018·株洲)如图,矩形 的对角线 与 相交点 , 分别为 的中点,则 的长度为.
14.(2018·成都)如图,在矩形 中,按以下步骤作图:①分别以点 和 为圆心,以大于 的长为半径作弧,两弧相交于点 和 ;②作直线 交 于点 .若 ,则矩形的对角线 的长为.
38. (2018·乌鲁木齐)如图,在四边形 中, , 是 的中点, , , 于点 .
(1)求证:四边形 是菱形;
(2)若 ,求 的长.
39. (2018·广安)如图,四边形 是正方形, 为 上一点,连接 ,延长 至点 ,使得 ,过点 作 ,垂足为 ,求证: .
40. (2018·盐城)如图,在正方形 中,对角线 所在的直线上有两点 满足 ,连接 .
(2)在(1)的条件下,连接 ,求 的度数.
36.(2018·娄底)如图,在四边形 中,对角线 相交于点 ,且
,过点 作 ,分别交 于点 .
(1)求证: ;
(2)判断四边形 的形状,并说明理由.
37. (2018·南京)如图,在四边形 中, , . 是四边形 内一点,且 .求证:
(1) ;
(2)四边形 是菱形.
9. (2018·宿迁)如图,菱形 的对角线 相交于点 , 为边 的中点.若菱
2018年中考数学专题《平面直角坐标系》复习试卷含答案解析
2018年中考数学专题复习卷: 平面直角坐标系一、选择题1.在平面直角坐标系中,点P(-1,2)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.点P(x﹣1,x+1)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.5.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为()A.(4,-3)B.(-4,3)C.(-3,4)D.(-3,-4)6. 抛物线(m是常数)的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 在平面直角坐标系中,点关于原点的对称点的坐标是()A. B. C. D.8. 已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法判断9.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A. 横坐标相等B. 纵坐标相等C. 横坐标的绝对值相等D. 纵坐标的绝对值相等10.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是()A. B. ﹣ C. D. ﹣11. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A. (﹣2,1)B. (﹣1,1)C. (1,﹣2)D. (﹣1,﹣2)12.如图,小手盖住的点的坐标可能为()A. (-4,-5)B. (-4,5)C. (4,5)D. (4,-5)二、填空题13.如果在y轴上,那么点P的坐标是________ .14.平面直角坐标系内,点P(3,-4)到y轴的距离是________15.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=________.16.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。
【精品】2018年最新全国各地中考数学真题汇编集锦(完美打印版)
2018年最新全国各地中考优秀数学真题汇编集锦目录中考数学真题汇编:不等式 .............................................................................................................. - 1 - 中考数学真题汇编:代数式 ............................................................................................................ - 11 - 中考数学真题汇编:因式分解、分式及二次根式 ........................................................................ - 24 - 中考数学真题汇编:实数 ................................................................................................................ - 33 - 中考数学真题汇编:平面直角坐标系与函数 ................................................................................ - 40 - 中考数学真题汇编:方程与不等式 ................................................................................................ - 46 - 中考数学真题汇编:有理数 ............................................................................................................ - 68 - 中考数学真题汇编:一次函数 ........................................................................................................ - 73 - 中考数学真题汇编:二次函数 ........................................................................................................ - 84 - 中考数学真题汇编:分式 .............................................................................................................. - 102 - 中考数学真题汇编:反比例函数 .................................................................................................. - 106 - 中考数学真题汇编:四边形(填空+选择40题) ............................................................................ - 118 - 中考数学真题汇编:因式分解 ...................................................................................................... - 130 - 中考数学真题汇编:图形的相似 .................................................................................................. - 133 - 中考数学真题汇编:圆(填空+选择46题) .................................................................................... - 143 - 中考数学真题汇编:实数与代数式(解答题21题) ...................................................................... - 156 - 中考数学真题汇编:平移与旋转 .................................................................................................. - 163 - 中考数学真题汇编:整式(31题) ................................................................................................... - 174 - 中考数学真题汇编:轴对称变换 .................................................................................................. - 180 - 中考数学真题汇编:锐角三角函数 .............................................................................................. - 194 -中考数学真题汇编:不等式一、单选题1.若a<b,则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【来源】江苏省宿迁市2018年中考数学试卷【答案】D2.不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【来源】浙江省嘉兴市2018年中考数学试题【答案】A【解析】分析:求出已知不等式的解集,表示在数轴上即可.详解:不等式1﹣x≥2,解得:x≤-1.表示在数轴上,如图所示:故选A.点睛:本题考查了在数轴上表示不等式的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.不等式的解在数轴上表示正确的是()A. B.C. D.【来源】2018年浙江省舟山市中考数学试题【答案】A【解析】【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式的解集,解一元一次不等式,解题的关键是解不等式.4.不等式3x+2≥5的解集是()A. x≥1B. x≥C. x≤1D. x≤﹣1【来源】浙江省衢州市2018年中考数学试卷【答案】A5.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【来源】湖北省孝感市2018年中考数学试题【答案】B6.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7.不等式组的最小整数解是()A. -1B. 0C. 1D. 2【来源】湖南省娄底市2018年中考数学试题【答案】B【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.【详解】,解不等式①得,x≤2,解不等式②得,x>-1,所以不等式组的解集是:-1<x≤2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键. 8.不等式组有3个整数解,则的取值范围是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】B9.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题10.不等式的解集是___________.【来源】安徽省2018年中考数学试题【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键. 11.不等式组的解是________.【来源】浙江省温州市2018年中考数学试卷【答案】x>412.若不等式组的解集为,则________.【来源】四川省凉山州2018年中考数学试题【答案】-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.13.不等式组1<x﹣2≤2的所有整数解的和为_____.【来源】四川省宜宾市2018年中考数学试题【答案】1514.不等式组的解集为__________.【来源】江苏省扬州市2018年中考数学试题【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题15.解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.【来源】江苏省盐城市2018年中考数学试题【答案】x≥-1,在数轴上表示见解析.16.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【来源】天津市2018年中考数学试题【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.17.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【来源】湖北省孝感市2018年中考数学试题【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50-x)≤98000,解得:x≤40.W=(2500-2000)x+(2180-1800)(50-x)-ax=(120-a)x+19000,∵当70<a<80时,120-a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120-a)×40+19000=23800-40a,∴W的最大值是(23800-40a)元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.18.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【来源】山东省泰安市2018年中考数学试题【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.19.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)20.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【来源】四川省凉山州2018年中考数学试题【答案】至少涨到每股6.06元时才能卖出.21.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买两种设备的方案;(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【来源】湖南省娄底市2018年中考数学试题【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.22.先化简,再求值:,其中是不等式组的整数解.【来源】山东省德州市2018年中考数学试题【答案】.【解析】分析:原式利用除法法则变形,约分后计算得到最简结果,求出x的值,代入计算即可求出值.详解:原式=•﹣=﹣=,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式=.点睛:本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.23.解不等式组:【来源】浙江省金华市2018年中考数学试题【答案】不等式组的解集为3<x≤5.【解析】分析:首先分别解出两个不等式的解集,再求其公共解集即可.详解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x-1),得:x≤5,∴不等式组的解集为3<x≤5.点睛:此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.学科&网24.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)40千米;(2)10.25.某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【来源】贵州省安顺市2018年中考数学试题【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.26.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【来源】广东省深圳市2018年中考数学试题【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键. 27.解不等式组:【来源】江苏省连云港市2018年中考数学试题【答案】﹣3≤x<228.如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【来源】江苏省南京市2018年中考数学试卷【答案】(1).(2)B.中考数学真题汇编:代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则( )A.B.C. D. 【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a 万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是( )A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是( )A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A 卷)【答案】C11.下列运算正确的是( )A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是( )A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……。
2018中考数学复习题,答案很详细
6.如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,大正方形面积为49,小正方形面积为4,假设用X、Y表示直角三角形的两直角边〔X>Y〕,请观察图案,指出以下关系式中不正确的选项是〔 〕
A.X2+Y2=49B.X﹣Y=2C.2XY+4=49D.X+Y=13
20.抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于C点,其中﹣2<h<﹣1,﹣1<xB<0,以下结论①abc<0;②〔4a﹣b〕〔2a+b〕<0;③4a﹣c<0;④假设OC=OB,那么〔a+1〕〔c+1〕>0,正确的为〔 〕
A.①②③④B.①②④C.①③④D.①②③
21.如图,正方形ABCD的边AB=1, 和 都是以1为半径的圆弧,那么无阴影两局部的面积之差是〔 〕
A. B.1﹣ C. ﹣1D.1﹣
22.如图是武汉某座天桥的设计图,设计数据如下图,桥拱是圆弧形,那么桥拱的半径为〔 〕
A.13mB.15mC.20mD.26m
23.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,那么它们之间的关系是〔 〕
9.如图,半圆的直径CB=4,动点P从圆心A出发到B,再沿半圆周从B到C,然后从C回到A,按1单位/秒的速度运动.设运动时间为t〔秒〕,PA的长为y〔单位〕,y关于t的函数图象大致是〔 〕
A. B. C. D.
10.设关于x的方程ax2+〔a+2〕x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是〔 〕
解得,BD= ,CD= ,
(完整word版)2018年中考数学试题分类汇编:全套考点专题汇编(Word版,含答案)
2018中考数学试题分类汇编:考点1 有理数一.选择题(共28小题)1.(2018•连云港)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.2.(2018•泰州)﹣(﹣2)等于()A.﹣2 B.2 C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.3.(2018•青岛)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.4.(2018•海南)2018的相反数是( )A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.5.(2018•自贡)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.6.(2018•柳州)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.7.(2018•呼和浩特)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.8.(2018•铜仁市)计算+++++……+的值为()A.B.C. D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.9.(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.10.(2018•台州)比﹣1小2的数是( )A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.11.(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.12.(2018•临安区)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.13.(2018•淄博)计算的结果是()A.0 B.1 C.﹣1 D.【分析】先计算绝对值,再计算减法即可得.【解答】解: =﹣=0,故选:A.14.(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.15.(2018•宿迁)2的倒数是()A.2 B.C.﹣D.﹣2【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:2的倒数是,故选:B.16.(2018•贵港)﹣8的倒数是( )A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.17.(2018•通辽)的倒数是()A.2018 B.﹣2018 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,×2018=1即可解答.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.18.(2018•宜宾)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6。
2018年中考数学专题复习 最短路径专题 PDF含答案
是 Rt
‸ 斜边
的中点.
重合时, ‴ 与 ′ 的位置关系是
上一动点(不与 , 重合),分别过 , 向直线 ‸ 作垂线, , ‴ 与 ′ 的数量关系
(2)如图 ,当点 明;
在线段
上不与点
重合时,试判断 ‴ 与 ′ 的数量关系,并给予证
(3)如图 ,当点
在线段
(或
)的延长线上时,此时( )中的结论是否成立?请画出
cm,底面直径 周 cm,在圆柱下底面的
点有一只蚂蚁,它想吃到上底面上
8. 如图 ,是一个长方体盒子,长
h 周,宽 ‸ h ,高 ‸ h .
(1)一只蚂蚁从盒子下底面的点 9. 如图, ‸ 中, h ‸, ‴
沿盒子表面爬到点 ,求它所行走的最短路线的长. ‸ 于点 ‴ , ‴ ‸ 于点 ‴ , ‴ h 周 , ‴ 与 ‴ 交于
cm.蜘蛛沿圆柱爬到
点吃苍蝇,请你算出蜘蛛爬行的
h
cm,在
6. 一只蜘蛛在一个正方体的顶点 路线有几条?
处,一只蚊子在正方体的顶点
处,如图所示,假设蚊子不动,
现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短
7. 如图,圆柱的高为 与 点相对的
点处的食物,它需要爬行的最短路程是多少厘米? π
16. 已知圆锥的底面半径为
(2)若 ‴ h ,′ 为 ‴ 的中点,求 发.在侧面上爬行一周又回到
(1)求证:‸′ 与
相切; 的长. h 高 cm ,现在有一只蚂蚁从底边上一点 出 h 高 cm ,高
点,求蚂蚁爬行的最短距离.
17. 已知,点
(1)如图 ,当点 是 ;
垂足分别为 ‴,′, 为斜边 与点
【中考复习】2018年 九年级数学中考实际问题 专项复习(含答案)
2018年九年级数学中考实际问题专项复习1.为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:如果两所学校分别单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.2.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?3.情境:试根据图中的信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元;(2)小红比小明多买2根,付款时小红反而比小明少5元.你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.4.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.5.某班去体育用品商店购买羽毛球和羽毛球拍,每只羽毛球2元,每副羽毛球拍25元.甲商店说:“羽毛球拍和羽毛球都打9折优惠”,乙商店说:“买一副羽毛球拍赠2只羽毛球”.(1)该班如果买2副羽毛球拍和20只羽毛球,问在甲、乙两家商店各需花多少钱?(2)该班如果准备花90元钱全部用于买2副羽毛球拍和若干只羽毛球,请问到哪家商店购买更合算?(3)该班如果必须买2副羽毛球拍,问当买多少只羽毛球时到两家商店购买同样合算?6.某商厦进货员预测一种应季衬衫能畅销市场,就用0.8万元购进这种衬衫,面市后果然供不应求.于是,商厦又用1.76万元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了4元,商厦销售这种衬衫时每件预定售价都是58元.(1)求这种衬衫原进价为每件多少元?(2)经过一段时间销售,根据市场饱和情况,商厦经理决定对剩余的100件衬衫进行打折销售,以提高回款速度,要使这两批衬衫的总利润不少于6300元,最多可以打几折?7.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?8.某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A 品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A 品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?9.为提高学校的机房条件,学校决定新购进一批电脑,经了解某电脑公司有甲、乙两种型号的电脑销售,已知甲电脑的售价比乙电脑高1000元,如果购买相同数量的甲、乙两种型号的电脑,甲所需费用为10万元,乙所需费用为8万元.(1)问甲、乙两种型号的电脑每台售价各多少元?(2)学校决定购买甲、乙两种型号的电脑共100台,且购买乙型号电脑的台数超过甲型号电脑的台数,但不多于甲型号电脑台数的4倍,则当购买甲、乙两种型号的电脑各多少台时,学校需要的总费用最少?并求出最少的费用.10.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?11.如图,九年级学生要设计一幅幅宽20cm、长30cm的图案,其中有宽度相等的一横两竖的彩条.如果要使彩条所占的面积是图案的一半.求彩条的宽度.12.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?13.如图是中北居民小区某一休闲场所的平面示意图.图中阴影部分是草坪和健身器材安装区,空白部分是用做散步的道路.东西方向的一条主干道较宽,其余道路的宽度相等,主干道的宽度是其余道路的宽度的2倍.这块休闲场所南北长18m,东西宽16m.已知这休闲场地中草坪和健身器材安装区的面积为168m2,请问主干道的宽度为多少米?14.如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为x米,则a= (用含x的代数式表示);(2)若塑胶运动场地总占地面积为2430平方米.请问通道的宽度为多少米?15.如图,利用一面足够长的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏),设矩形ABCD的宽AD为x米,矩形的长为AB(且AB>AD).(1)若所用铁栅栏的长为40米,用含x的代数式表示矩形的长AB;在(1)的条件下,若使矩形场地面积为192平方米,则 AD、AB 的长应分别为多少米?16.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.17.某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:设从甲养殖场调运鸡蛋x斤,总运费为W元(1)试写出W与x的函数关系式.(2)怎样安排调运方案才能使每天的总运费最省?18.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.19.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096(1)(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?20.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?21.某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图所示.(1)图中点P所表示的实际意义是;销售单价每提高1元时,销售量相应减少件;(2)请直接写出y与x之间的函数表达式:;自变量x的取值范围为;(3)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?22.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(元)与售价x(元/件)之间的函数关系式;(2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.23.某中学广场上有旗杆如图①所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米,参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).24.如图,某大楼顶部有一旗杆AB,甲乙两人分别在相距6米的C、D两处测得B点和A点的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数)(参考数据:sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)25.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米).参考答案1.解:(1)5 000-92×40=1 320(元).答:两所学校联合起来购买服装比各自购买服装共可以节省1 320元.(2)设甲、乙两所学校各有x名、y名学生准备参加演出,由题意,得x+y=92,50x+60y=5000. 解得x=52,y=40.答:甲、乙两校各有52名、40名学生准备参加演出.(3)∵甲校有10人不能参加演出,∴甲校参加演出的人数为52-10=42(人).若两校联合购买服装,则需要50×(42+40)=4 100(元),此时比各自购买服装可以节约(42+40)×60-4 100=820(元).但如果两校联合购买91套服装,只需40×91=3 640(元),此时又比联合购买服装可节约4 100-3 640=460(元),因此,最省钱的购买服装方案是两校联合购买91套服装(即比实际人数多购9套).2.解:(1)设该店有客房x间,房客y人;根据题意得:7x+y=y,9(x-1)=y解得:x=8,y=63.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性定客房18间,则需付费20×18×0.8=288千<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.3.略4.解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解得:.答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=,∵a、b都是正整数,∴或或.答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.5.解:(1)甲商店:(25×2+2×20)×0.9=81(元);乙商店:25×2+2×(20﹣4)=82(元).答:在甲商店需要花81元,在乙商店需要花82元.(2)设在甲商店能买x只羽毛球,在乙商店能买y只羽毛球.由题意,得:,解得:x=25,y=24,∵25>24,∴到甲商店购买更合算.(3)设买m只羽毛球时到两家商店购买同样合算.由题意,得:(25×2+2m)×0.9=25×2+2(m﹣4),解得m=15.答:当买15只羽毛球时到两家商店购买同样合算.6.解:7.解:8.解:9.解:10.解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程: +=,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.11.解:设彩条的宽为xcm,则有(30﹣2x)(20﹣x)=20×30÷2,解得x1=5,x2=30(舍去).答:彩条宽5cm.12.解:设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意13.解:设主干道的宽度为2xm,则其余道路宽为xm依题意得:(16-4x)(18-4x)=168整理,得,当时,16-4x<0,不符题意,故舍去x=1时,2x=2答:主干道的宽度为2米。
【2018最新】中考数学复习专题训练精选试题及答案(可直接打印)
中考数学复习专题训练优选试题附参照答案目录实数专题训练 (3)实数专题训练答案. (7)代数式、整式及因式分解专题训练 (8)代数式、整式及因式分解专题训练答案 (11)分式和二次根式专题训练 (12)分式和二次根式专题训练答案. (15)一次方程及方程组专题训练 . (16)一次方程及方程组专题训练答案 (20)一元二次方程及分式方程专题训练 (21)一元二次方程及分式方程专题训练答案 (25)一元一次不等式及不等式组专题训练 (26)一元一次不等式及不等式组专题训练答案. (29)一次函数及反比率函数专题训练 (30)一次函数及反比率函数专题训练答案. (34)二次函数及其应用专题训练 . (35)二次函数及其应用专题训练答案 (39)立体图形的认识及角、订交线与平行线专题训练 (40)立体图形的认识及角、订交线与平行线专题训练答案 (44)三角形专题训练 (45)三角形专题训练答案. (49)多边形及四边形专题训练 (50)多边形及四边形专题训练答案. (53)圆及尺规作图专题训练 (54)圆及尺规作图专题训练答案 (58)轴对称专题训练 (59)轴对称专题训练答案. (63)平移与旋转专题训练 (64)平移与旋转专题训练答案. (69)相像图形专题训练 (70)相像图形专题训练答案. (74)图形与坐标专题训练 (75)图形与坐标专题训练答案. (80)图形与证明专题训练 (81)图形与证明专题训练答案. (84)概率专题训练 (85)概率专题训练答案. (89)统计专题训练 (90)统计专题训练答案. (94)实数专题训练一、填空题:(每题 3 分,共 36 分)1、-2 的倒数是____。
2、 4 的平方根是____。
3、-27 的立方根是____。
4、 3 -2的绝对值是____。
5、 2004 年我外国汇贮备3275.34 亿美元,用科学记数法表示为____亿美元。
6、比较大小:-1 ____-1。
2018年中考数学专题复习基础训练及答案(49页)
目录
第一部分数与代数第一章数与式
第1讲实数
第2讲代数式
第3讲整式与分式
第1课时整式
第2课时因式分解
第3课时分式
第4讲二次根式
第二章方程与不等式
第1讲方程与方程组
第1课时一元一次方程与二元一次方程组
第2课时分式方程
第3课时一元二次方程
第2讲不等式与不等式组
第三章函数
第1讲函数与平面直角坐标系
第2讲一次函数
第3讲反比例函数
第4讲二次函数
第二部分空间与图形第四章三角形与四边形
第1讲相交线和平行线
第2讲三角形
第1课时三角形
第2课时等腰三角形与直角三角形
第3讲四边形与多边形
第1课时多边形与平行四边形
第2课时特殊的平行四边形
第3课时梯形
第五章圆
第1讲圆的基本性质
第2讲与圆有关的位置关系
第3讲与圆有关的计算
第六章图形与变换
第1讲图形的轴对称、平移与旋转
第2讲视图与投影
第3讲尺规作图
第4讲图形的相似
第5讲解直角三角形。
数学中考考点专题复习训练及答案解析15:等腰三角形与直角三角形
考点15 等腰三角形与直角三角形一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.学-科网3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是 A .35°B .20°C .35°或20°D .无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35°,70°是底角,顶角是40°,它的一腰上的高与底边所夹的角的度数是20°,故选C .典例2 如图,等腰三角形ABC 中,∠BAC =90°,在底边BC 上截取BD =AB ,过D 作DE ⊥BC 交AC 于E ,连接AD ,则图中等腰三角形的个数是A .1B .2C .3D .4【答案】D【名师点睛】此题考查了等腰三角形的性质和判定以及三角形的内角和定理,由已知的条件利用相关的性质,求得各个角的度数是正确解题的关键.1.等腰三角形的周长为15 cm,其中一边长为3 cm.则该等腰三角形的腰长为A.3 cm B.6 cm C.3 cm或6 cm D.3 cm或9 cm考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.学_科网【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,△ABC是等边三角形,P为BC上一点,在AC上取一点D,使AD=AP,且∠APD=70°,∠PAB的度数是A.10°B.15°C.20°D.25°【答案】C【解析】因为AD=AP,所以∠APD=∠ADP,因为∠APD=70°,所以∠ADP=70°,所以∠PAD=180°-70°-70°=40°,因为∠BAC=60°,所以∠PAB=60°-40°=20°,故选C.3.如图,四边形ABCD是正方形,△PAD是等边三角形,则∠BPC等于A.20°B.30°C.35°D.40°考向四等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a2+b2=c2时,斜边只能是c.若b为斜边,则关系式是a2+c2=b2;若a为斜边,则关系式是b2+c2=a2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2-1,2n,n2+1(n)(n是大于1的整数),其中是勾股数的有A.1组B.2组C.3组D.4组【答案】D【解析】①∵62+82=100=102,∴6、8、10是勾股数;②∵72+242=252,∴7,24,25是勾股数;③∵92+122=152,∴9,12,15是勾股数;④∵(n2-1)2+(2n)2=(n2+1)2,∴n2-1,2n,n2+1(n)(n是大于1的整数)是勾股数,故选D.【名师点睛】本题考查了勾股数的判断,解题的关键是根据勾股数的定义分别对每一组数进行分析.6.如图,一圆柱高8 cm,底面半径为6πcm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是A.12 cm B.10 cm C.8 cm D.6 cm1.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形2.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于A.30°B.40°C.45°D.36°3.下列长度的线段中,能构成直角三角形的一组是A.3,4,5B.6,7,8C.12,25,27 D.23,25,424.如图,在△ABC中,AB=AC,∠B=30°,AD⊥AB,交BC于点D,AD=4,则BC的长为A.8 B.4 C.12 D.65.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A∶∠B∶∠C=3∶4∶56.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17 C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5 C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A.8个B.9个C.10个D.11个9.如图,Rt△ABC中,∠B=90〬,AB=9,BC=6,,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于A.5 B.6 C.4 D.310.将一个有45°角的三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A.6 B.32C.42D.6211.等腰三角形的一腰的中线把三角形的周长分成16 cm和12 cm,则等腰三角形的底边长为______.12.如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为__________.学科_网13.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE 的长为__________.14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且CG =CD ,DF =DE ,则∠EFD =__________°.17.如图,在矩形ABCD 中,AB =5,BC =7,点E 是AD 上的一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,CA 1的长为__________.18.如图,在等腰三角形ABC 中,AC =BC ,分别以BC 和AC 为直角边向上作等腰直角三角形△BCD 和△ACE ,AE 与BD 相交于点F ,连接CF 并延长交AB 于点G .求证:CG 垂直平分AB .19.如图,一架2.5 m长的梯子斜立在竖直的墙上,此时梯足B距底端O为0.7 m.(1)求OA的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.如图,△ABC是等边三角形,点D、E分别在边BC、AC上,AE=BD,连接DE,过点E作EF⊥DE,交线段BC的延长线于点F.(1)求证:CE=CF;(2)若BD=12CE,AB=9,求线段DF的长.21.已知:如图,有人在岸上点C的地方,用绳子拉船靠岸,开始时,绳长CB=10米,CA⊥AB,且CA=6米,拉动绳子将船从点B沿BA方向行驶到点D后,绳长CD=62米.(1)试判定△ACD的形状,并说明理由;(2)求船体移动距离BD的长度.1.(2018·南通)下列长度的三条线段能组成直角三角形的是 A .3,4,5 B .2,3,4 C .4,6,7D .5,11,122.(2018·滨州)在直角三角形中,若勾为3,股为4,则弦为 A .5 B .6 C .7D .83.(2018·湖州)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则 ∠ACE 的度数是A .20°B .35°C .40°D .70°4.(2018·宿迁)若实数m 、n 满足|2|40m n -+-=,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 A .12 B .10 C .8D .65.(2018·绥化)已知等腰三角形的一个外角为130︒,则它的顶角的度数为__________.6.(2018·青海)如图,将Rt ABC △绕直角顶点C 顺时针旋转90°,得到DEC △,连接AD ,若∠BAC =25°,则∠BAD =__________.7.(2018·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__________.8.(2018·桂林)如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,则图中等腰三角形的个数是__________.9.(2018·襄阳)已知CD 是△ABC 的边AB 上的高,若CD =3,AD =1,AB =2AC ,则BC 的长为__________. 10.(2018·嘉兴)已知,在ABC △中,AB AC =,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E F ,,且DE DF =.求证:ABC △是等边三角形.11.(2018·广安)下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:(1)画一个直角边长为4,面积为6的直角三角形. (2)画一个底边长为4,面积为8的等腰三角形. (3)画一个面积为5的等腰直角三角形.(4)画一个边长为22,面积为6的等腰三角形.1.【答案】B【解析】当3 cm 是底时,则腰长是(15-3)÷2=6(cm ),此时能够组成三角形;当3 cm 是腰时,则底是15-3×2=9(cm ),此时3+3<9,不能组成三角形,应舍去,故选B . 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】B【解析】∵四边形ABCD 是正方形,△PAD 是等边三角形, ∴9060150BAP BAD PAB ∠=∠+∠=︒+︒=︒. ∵PA =AD ,AB =AD ,∴PA =AB , ∴180150152ABP ︒-︒∠==︒,∴901575PBC ABC ABP ∠=∠-∠=︒-︒=︒,同理:75PCB ∠=︒,∴180757530BPC ∠=︒-︒-︒=︒.故选B . 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5. 6.【答案】B【解析】如图,底面圆周长为2πr ,底面半圆弧长为πr ,即半圆弧长为:12×2π×6π=6(cm ),展开得:变式拓展∵BC=8 cm,AC=6 cm,根据勾股定理得:AB=2268+=10(cm),故选B.1.【答案】C【解析】∵原式可化为a2+b2=c2,∴此三角形是直角三角形,故选C.2.【答案】D【解析】∵AD=BD,∴∠A=∠ABD,∴∠BDC=2∠A.∵BD=BC,∴∠C=∠BDC=2∠A.∵AB=AC,∴∠ABC=∠C=2∠A,由三角形内角和定理,得∠A+2∠A+2∠A=180°,即∠A=36°.故选D.4.【答案】C【解析】∵AB=AC,∴∠B=∠C=30°,∵AB⊥AD,∴BD=2AD=2×4=8,∠B+∠ADB=90°,∴∠ADB=60°,∵∠ADB=∠DAC+∠C=60°,∴∠DAC=30°,∴∠DAC=∠C,∴DC=AD=4,∴BC=BD+DC=8+4=12,故选C.5.【答案】D【解析】A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A∶∠B∶∠C=3∶4∶5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形.故选D.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD22AB BD-=4.故选C.考点冲关8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt△ACH中,∵AH=3,∠AHC=90°,∠ACH=30°,∴AC=2AH=6,在Rt△ABC中,AB22226662AC BC+=+=D.11.【答案】203cm或12 cm【解析】设等腰三角形的腰长是x,底边是y,根据题意得162122xxxy⎧+=⎪⎪⎨⎪+=⎪⎩或122162xxxy⎧+=⎪⎪⎨⎪+=⎪⎩,解得323203xy⎧=⎪⎪⎨⎪=⎪⎩或812xy=⎧⎨=⎩,经检验,均符合三角形的三边关系.因此三角形的底边是203cm或12 cm.故答案为:203cm或12 cm.12.【答案】60°【解析】∵△ABC是等边三角形,∴∠A=∠B=60°,∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=360°−∠A−∠AED−∠AFD=360°−60°−150°−90°=60°,故答案为:60°.13.【答案】4【解析】∵△BDE是正三角形,∴∠DBE=60°.∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°,∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=4,∴BE=DE=4,故答案为:4.14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10.16.【答案】15【解析】∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.17.【答案】32或42【解析】如图,过点A1作A1M⊥BC于点M.∵点A的对应点A1恰落在∠BCD的平分线上,∠BCD=90°,∴∠A1CM=45°,即△AMC是等腰直角三角形,∴设CM=A1M=x,则BM=7-x.又由折叠的性质知AB=A1B=5,∴在直角△A1MB中,由勾股定理得A1M2=A1B2-BM2=25-(7-x)2,∴25-(7-x)2=x2,解得x1=3,x2=4,∵在等腰Rt△A1CM中,CA1A1M,∴CA118.【解析】∵CA=CB,∴∠CAB=∠CBA,∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△BCF中,AF BF AC BC CF CF=⎧⎪=⎨⎪=⎩,∴△ACF≌△BCF(SSS),∴∠ACF=∠BCF,∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.19.【解析】在直角△ABO中,已知AB=2.5 m,BO=0.7 m,则AO,∵AO=AA′+OA′,∴OA′=2 m,∵在直角△A′B′O中,AB=A′B′,且A′B′为斜边,∴OB′=1.5 m,∴BB′=OB′-OB=1.5 m-0.7 m=0.8 m.答:梯足向外移动了0.8 m.20.【解析】(1)∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AE=BD,∴AC-AE=BC-BD,∴CE=CD,且∠ACB=60°,∴△CDE是等边三角形,∴∠ECD=∠DEC=60°,∵EF⊥DE,∴∠DEF=90°,∴∠CEF=30°,∵∠DCE=∠CEF+∠CFE=60°,∴∠CEF=∠CFE=30°,∴CE=CF.(2)∵BD=12 CE,CE=CD,∴BD=12CD,∵AB=9,∴BC=9,∴BD=3,CD=6,∵CE=CF=CD,∴CF=6,∴DF=DC+CF=12.21.【解析】(1)由题意可得:AC=6 m,DC=62m,∠CAD=90°,可得AD=22CD AC-=6(m),故△ACD是等腰直角三角形.(2)∵AC=6 m,BC=10 m,∠CAD=90°,∴AB=22BC AC-=8(m),则BD=AB-AD=8-6=2(m).答:船体移动距离BD的长度为2 m.1.【答案】A【解析】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.直通中考4.【答案】B【解析】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去;②若腰为4,底为2,则周长为:4+4+2=10,故选B.5.【答案】50︒或80︒【解析】∵等腰三角形的一个外角为130︒,∴与130°相邻的内角为50°,当50︒为顶角时,其他两角都为65︒,65︒;当50︒为底角时,其他两角为50︒,80︒,所以等腰三角形的顶角为50︒或80︒,故答案为:50︒或80︒.6.【答案】70°【解析】∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°,故答案为:70°.7.【答案】2或2.5【解析】如图,∵AB=2,AD=7,∴BD=BC+CD=AD-AB=5,∵AB,BC,CD可构成以BC为腰的等腰三角形,∴BC=AB 或BC=CD,∴BC=2或BC=2.5,故答案为:2或2.5.8.【答案】3【解析】∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.9.【答案】2327△是锐角三角形,如图1,【解析】分两种情况:①当ABC∵CD⊥AB,∴∠CDA=90°,∵CD=3,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4-1=3,∴BC2222CD BD+=+=;3(3)23②当ABC△是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC=2222CD BD+=+=.综上所述,BC的长为23或27,(3)527故答案为:23或27.10.【解析】∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为的AC中点,∴DA=DC.又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),∴∠A=∠C,∴∠A=∠B=∠C,∴ΔABC是等边三角形.11.【解析】如图所示:。
2018年中考数学专题训练反比例函数与一次函数的综合
2018级中考数学专题复习—反比例函数与一次函数的综合1.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.2.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.3.如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.4.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?5.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.6.如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.7.已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.8.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.9.如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.10.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.12.已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.13.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(3)观察图象,直接写出y1>y2时x的取值范围.14.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.15.如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;16.如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.17.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.18.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.19.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.20.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数的图象交于点C,连接CO,过C作CD⊥x轴于D,已知tan∠ABO=,OB=4,OD=2.(1)求直线AB和反比例函数的解析式;(2)在x轴上有一点E,使△CDE与△COB的面积相等,求点E的坐标.21.如图,在平面直角坐标系中,点A是反比例函数y=(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,﹣2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.22.如图,已知一次函数y=k1x+b的图象分别x轴,y轴交于A、B两点,且与反比例函数y=交于C、E 两点,点C在第二象限,过点C作CD⊥x轴于点D,OD=1,OE=,cos∠AOE=(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.23.如图,一次函数y=x+2的图象与x轴交于点B,与反比例函数y=(k≠0)的图象的一个交点为A(2,m).(1)求反比例函数的表达式;(2)过点A作AC⊥x轴,垂足为点C,设点D在反比例函数图象上,且△DBC的面积等于6,请求出点D的坐标;(3)请直接写出不等式x+2<成立的x取值范围.24.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A(2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.25.如图,已知反比例函数y=(k<0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为2.(1)求k和m的值;(2)若一次函数y=ax+1的图象经过点A,并且与x轴的交点为点C,试求出△ABC的面积.26.如图,已知一次函数y=k1x+b的图象分别与x轴、y轴的正半轴交于A、B两点,且与反比例函数y=交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OA=OB=2,OD=1.(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.27.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.28.如图,直线y=﹣2和双曲线y=相交于A(b,1),点P在直线y=x﹣2上,且P点的纵坐标为﹣1,过P作PQ∥y轴交双曲线于点Q.(1)求Q点的坐标;(2)求△APQ的面积.29.如图,在一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)求△AOB的面积.30.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q (4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.2018级中考数学专题复习-反比例函数与一次函数的交点参考答案与试题解析一.解答题(共30小题)1.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.2.(2016•重庆)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【分析】(1)过点A作AE⊥x轴于点E,设反比例函数解析式为y=.通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可;(2)由点B在反比例函数图象上可求出点B的坐标,设直线AB的解析式为y=ax+b,由点A、B的坐标利用待定系数法求出直线AB的解析式,令该解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)求出直线AB的解析式.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.3.(2016•南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.4.(2014•资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【分析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.【解答】解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2010•成都)如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【分析】(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.(2010•泸州)如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=﹣,再求出B的坐标是(1,﹣2),利用待定系数法求一次函数的解析式;(2)在一次函数的解析式中,令x=0,得出对应的y2的值,即得出直线y2=﹣x﹣1与y轴交点C的坐标,从而求出△AOC的面积;(3)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围﹣2<x<0或x>1.【解答】解:(1)∵函数y1=的图象过点A(﹣2,1),即1=;∴m=﹣2,即y1=﹣,又∵点B(a,﹣2)在y1=﹣上,∴a=1,∴B(1,﹣2).又∵一次函数y2=kx+b过A、B两点,即.解之得.∴y2=﹣x﹣1.(2)∵x=0,∴y2=﹣x﹣1=﹣1,即y2=﹣x﹣1与y轴交点C(0,﹣1).设点A的横坐标为x A,∴△AOC的面积S△OAC==×1×2=1.(3)要使y1>y2,即函数y1的图象总在函数y2的图象上方.∴﹣2<x<0,或x>1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.7.(2008•甘南州)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.【分析】(1)反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点,把A点坐标代入反比例函数解析式,即可求出k,得到反比例函数的解析式.将B(n,﹣1)代入反比例函数的解析式求得B点坐标,然后再把A、B点的坐标代入一次函数的解析式,利用待定系数法求出一次函数的解析式;(2)根据图象,分别在第一、三象限求出反比例函数的值大于一次函数的值时x的取值范围.【解答】解:(1)∵A(1,3)在y=的图象上,∴k=3,∴y=.又∵B(n,﹣1)在y=的图象上,∴n=﹣3,即B(﹣3,﹣1)∴解得:m=1,b=2,∴反比例函数的解析式为y=,一次函数的解析式为y=x+2.(2)从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值.【点评】本类题目的解决需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,另外要学会利用图象,确定x的取值范围.8.(2008•南充)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y轴的交点运用分割法求得不规则图形的面积.9.(2007•资阳)如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【分析】(1)由A和B都在反比例函数图象上,故把两点坐标代入到反比例解析式中,列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A的坐标及反比例函数解析式,把确定出的A坐标及B的坐标代入到一次函数解析式中,得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出一次函数解析式;(2)令一次函数解析式中x为0,求出此时y的值,即可得到一次函数与y轴交点C的坐标,得到OC的长,三角形AOB的面积分为三角形AOC及三角形BOC面积之和,且这两三角形底都为OC,高分别为A和B的横坐标的绝对值,利用三角形的面积公式即可求出三角形ABC的面积;(3)根据图象和交点坐标即可得出结果.【解答】解:(1)∵m=﹣8,∴n=2,则y=kx+b过A(﹣4,2),B(n,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2;(2)由(1)得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6;(3)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有利用待定系数法求函数解析式,两函数交点坐标的意义,一次函数与坐标轴交点的求法,以及三角形的面积公式,利用了数形结合的思想.第一问利用的方法为待定系数法,即根据题意把两交点坐标分别代入两函数解析式中,得到方程组,求出方程组的解确定出函数解析式中的字母常数,从而确定出函数解析式,第二问要求学生借助图形,找出点坐标与三角形边长及边上高的关系,进而把所求三角形分为两三角形来求面积.10.(2005•四川)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【分析】(1)根据tan∠AOC=,且OA=,结合勾股定理可以求得点A的坐标,进一步代入y=中,得到反比例函数的解析式;然后根据反比例函数的解析式得到点B的坐标,再根据待定系数法求一次函数解析式;(2)三角形AOB的面积可利用,求和的方法即等于S△AOC+S△COB来求.【解答】解:(1)过点A作AH⊥x于点H.在RT△AHO中,tan∠AOH==,所以OH=2AH.又AH2+HO2=OA2,且OA=,所以AH=1,OH=2,即点A(﹣2,1).代入y=得k=﹣2.∴反比例函数的解析式为y=﹣.又因为点B的坐标为(,m),代入解得m=﹣4.∴B(,﹣4).把A(﹣2,1)B(,﹣4)代入y=ax+b,得,∴a=﹣2,b=﹣3.∴一次函数的解析式为y=﹣2x﹣3.(2)在y=﹣2x﹣3中,当y=0时,x=﹣.即C(,0).∴S△AOB=S△AOC+S△COB=(1+4)×=.【点评】此题综合考查了解直角三角形、待定系数法、和函数的基本知识,难易程度适中.11.(2016•乐至县一模)如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【分析】(1)把点A(﹣2,4),B(4,﹣2)代入一次函数y=kx+b即可求出k及b的值;(2)先求出C点的坐标,根据S△AOB=S△AOC+S△BOC即可求解;(3)由图象即可得出答案;【解答】解:(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|A x|,S△BOC=×OC×|B x|∴S△AOB=S△AOC+S△BOC=•OC•|A x|+•OC•|B x|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.【点评】本题考查了反比例函数与一次函数的交点问题,属于基础题,关键是掌握用待定系数法求解函数解析式.12.(2016•重庆校级模拟)已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.【分析】(1)先根据解直角三角形求得点D和点B的坐标,再利用C、D两点的坐标求得一次函数解析式,利用点B的坐标求得反比例函数解析式;(2)先根据解方程组求得两个函数图象的交点A的坐标,再将x轴作为分割线,求得△AOB的面积;(3)根据函数图象进行观察,写出一次函数图象在反比例函数图象下方时所有点的横坐标的集合即可.【解答】解:(1)∵∴直角三角形OCD中,=,即CD=OD又∵OC=1∴12+OD2=(OD)2解得OD=,即D(0,﹣)将C(1,0)和D(0,﹣)代入一次函数y=ax+b,可得,解得∴一次函数的解析式为y=x﹣过B作BE⊥x轴,垂足为E∵直角三角形BCE中,BC=5,∴BE=3,CE==4∴OE=4﹣1=3,即B(﹣3,﹣3)将B(﹣3,﹣3)代入反比例函数,可得k=9∴反比例函数的解析式为y=;(2)解方程组,可得,∴A(4,)∴S△AOB=S△AOC+S△COB=×1×+×1×3=+=;(3)根据图象可得,不等式的解集为:x<﹣3或0<x<4.【点评】本题主要考查了反比例函数与一次函数的交点问题,需要掌握待定系数法求函数解析式的方法,以及根据两个函数图象的交点坐标求有关不等式解集的方法.解答此类试题的依据是:①函数图象上点的坐标满足函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.13.(2016•重庆校级一模)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.【分析】(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.【解答】解:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点∴将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4∴将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+2;(2)在一次函数y1=﹣x+2中,当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6;(3)根据图象可得,当y1>y2时,x的取值范围为:x<﹣2或0<x<4【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握根据函数图象的交点坐标求一次函数解析式和有关不等式解集的方法.解答此类试题的依据是:①函数图象的交点坐标满足两个函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.14.(2016•重庆校级模拟)如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.【分析】(1)根据反比例函数图象上点的坐标特征求出m和n,利用待定系数法求出一次函数的解析式;(2)根据函数图象得到答案;(3)求出直线与x轴的交点坐标,根据三角形的面积公式计算即可.【解答】解:(1)∵反比例函数的图象经过A(2,3),∴m=2×3=6,∴反比例函数的解析式为:y=,∵反比例函数的图象经过于B(﹣3,n),∴n==﹣2,∴点B的坐标(﹣3,﹣2),由题意得,,解得,,∴一次函数的解析式为:y=x+1;(2)由图象可知,不等式kx+b>的解集为:﹣3<x<0或x>2;(3)直线y=x+1与x轴的交点C的坐标为(﹣1,0),则OC=1,则S△ABO=S△OBC+S△ACO=×1×2+×1×3=.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤是解题的关键,注意数形结合思想的运用.15.(2016•成华区模拟)如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)由B点的坐标根据待定系数法即可求得在反比例函数的解析式,代入A(﹣2,m)即可求得m,再由待定系数法求出一次函数解析式;(2)由直线解析式求得C点的坐标,从而求出△AOB的面积.【解答】解:(1)∵B(4,﹣2)在反比例函数y=的图象上,∴k=4×(﹣2)=﹣8,又∵A(﹣2,M)在反比例函数y=的图象上,∴﹣2m=﹣8,∴m=4,∴A(﹣2,4),又∵AB是一次函数y=ax+b的上的点,∴解得,a=﹣1,b=2,∴一次函数的解析式为y=﹣x+2,反比例函数的解析式y=﹣;(2)由直线y=﹣x+2可知C(2,0),所以△AOB的面积=×2×4+×2×2=6.【点评】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.16.(2016•重庆校级一模)如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得k,再把B点坐标代入可求得b,再利用待定系数法可求得一次函数解析式;(2)可先求得D点坐标,再利用三角形的面积计算即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,当x=2时,y=﹣1,即B点坐标为(2,﹣1),∵一次函数y=mx+n(m≠0)过A、B两点,∴把A、B两点坐标代入可得,解得,∴一次函数解析式为y=﹣x+1;(2)在y=﹣x+1中,当x=0时,y=1,∴C点坐标为(0,1),∵点D与点C关于x轴对称,∴D点坐标为(0,﹣1),∴CD=2,∴S△ABD=S△ACD+S△BCD=×2×1+×2×2=3.【点评】本题主要考查一次函数和反比例函数的交点,掌握两函数图象的交点坐标满足每一个函数解析式是解题的关键.。
【中考数学】2018最新版本中考数学专题复习系统训练及答案(200页)(历年真题-可打印)
中考数学专题复习系统训练200页附参考答案目录
第一部分数与代数
第一章数与式
第1讲实数
第2讲代数式
第3讲整式与分式
第1课时整式
第2课时因式分解
第3课时分式
第4讲二次根式
第二章方程与不等式
第1讲方程与方程组
第1课时一元一次方程与二元一次方程组
第2课时分式方程
第3课时一元二次方程
第2讲不等式与不等式组
第三章函数
第1讲函数与平面直角坐标系
第2讲一次函数
第3讲反比例函数
第4讲二次函数
第二部分空间与图形
第四章三角形与四边形
第1讲相交线和平行线
第2讲三角形
第1课时三角形
第2课时等腰三角形与直角三角形
第3讲四边形与多边形
第1课时多边形与平行四边形
第2课时特殊的平行四边形
第3课时梯形
第五章圆
第1讲圆的基本性质
第2讲与圆有关的位置关系
第3讲与圆有关的计算
第六章图形与变换
第1讲图形的轴对称、平移与旋转
第2讲视图与投影
第3讲尺规作图
第4讲图形的相似
第5讲解直角三角形
1。
2018初三中考数学复习数与式专项复习训练含答案(K12教育文档)
2018初三中考数学复习数与式专项复习训练含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018初三中考数学复习数与式专项复习训练含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018初三中考数学复习数与式专项复习训练含答案(word版可编辑修改)的全部内容。
2018 初三中考数学复习数与式专项复习训练1.小亮用天平称得一个罐头的质量为2。
026 kg,用四舍五入法将2。
026精确到0.01的近似值为( B )A.2 B.2.0 C.2。
02 D.2。
032.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( D )A.a>-2 B.a<-3 C.a>-b D.a<-b3.下列四个数中:-3,-3,-π,-1,其中最小的数是( A )A.-π B.-3 C.-1 D.-34.若2x-1+错误!+1在实数范围内有意义,则x满足的条件是( C ) A.x≥错误! B.x≤错误! C.x=错误! D.x≠错误!5.化简(1a+错误!)÷(错误!-错误!)·ab,其结果是( B )A.错误! B。
错误! C。
错误! D. 错误!6.作为“一带一路"倡议的重大先行项目,中国、巴基斯坦经济走廊建设进展快、成效显著,近年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为( B )A.1.85×109 B.1。
85×1010 C.1。
85×1011 D.1。
85×1012 7.大米包装袋上(10±0.1)kg的标识表示此袋大米重( A )A.(9.9~10。
中考数学专题复习系统训练及答案(200页)
中考数学专题复习系统训练200页附参考答案目录第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲尺规作图第4讲图形的相似第5讲解直角三角形第三部分统计与概率第七章统计与概率第1讲统计第2讲概率第四部分中考专题突破专题一归纳与猜想专题二方案与设计专题三阅读理解型问题专题四开放探究题专题五数形结合思想基础题强化提高测试中考数学基础题强化提高测试1中考数学基础题强化提高测试2中考数学基础题强化提高测试3中考数学基础题强化提高测试4中考数学基础题强化提高测试5中考数学基础题强化提高测试6第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.(2012年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12 D .±23.(2011年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(2012年广东深圳)-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( ) A .-(-2)-(-3) B .(-2)×(-3)C .(-2)2D .(-3)-3 7.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃. 8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(2012年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(2012年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题 11.(2012年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1A .a <bB .|a |>|b |C .-a <-bD .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.(2011年江苏盐城)将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0. 15.(2012年浙江绍兴)计算:-22+-113⎛⎫ ⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.(2012年广东)观察下列等式: 第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭;第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭;第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;…请解答下列问题:(1)按以上规律列出第5个等式:a 5=______________=______________; (2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.选做题18.(2012年浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =________(用a ,b 的一个代数式表示).第2讲 代数式A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( ) A .(15+a )万人 B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B .2 n C .m +n D .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.124.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )A .-1B .1C .-5D .55.(2012年浙江宁波)已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( ) A .3 B .-3 C .1 D .-16.(2011年河北)若|x -3|+|y +2|=0,则x +y 的值为__________.7.(2010年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.如图X1-2-1,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).图X1-2-110.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.(2012年云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12 B.12C .1D .212.(2012年浙江杭州)化简m 2-163m -12得____________;当m =-1时,原式的值为________.13.(2011年浙江宁波)把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a . 其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题 16.(2012年山东东营)若3x =4,9y =7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是________(n 为正整数).选做题18.(2010年广东深圳)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.(2012年贵州遵义)如图X1-2-3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图X1-2-3A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第3讲 整式与分式 第1课时 整式A 级 基础题1.(2012年江苏南通)计算(-x )2·x 3的结果是( ) A .x 5 B .-x 5 C .x 6 D .-x 62.(2012年四川广安)下列运算正确的是( ) A .3a -a =3 B .a 2·a 3=a 5 C .a 15÷a 3=a 5(a ≠0) D .(a 3)3=a 6 3.(2012年广东汕头)下列运算正确的是( ) A .a +a =a 2 B .(-a 3)2=a 5 C .3a ·a 2=a 3 D .(2a )2=2a 24.(2012年上海)在下列代数式中,系数为3的单项式是( ) A .xy 2 B .x 3+y 3 C .x 3y D .3xy 5.(2012年江苏杭州)下列计算正确的是( ) A .(-p 2q )3=-p 5q 3 B .(12a 2b 3c )÷(6ab 2)=2ab C .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(2011年山东日照)下列等式一定成立的是( ) A .a 2+a 3=a 5 B .(a +b )2=a 2+b 2 C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(2012年陕西)计算(-5a 3)2的结果是( ) A .-10a 5 B .10a 6 C .-25a 5 D .25a 68.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( ) A .(x -2)2+3 B .(x +2)2-4 C .(x +2)2-5 D .(x +2)2+4 9.计算:(1)(3+1)(3-1)=____________;(2)(2012年山东德州)化简:6a 6÷3a 3=________. (3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________.10.化简:(a +b )2+a (a -2b ).B级中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1C.13x-1 D.13x+112.(2011年安徽芜湖)如图X1-3-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().图X1-3-1A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm213.(2012年湖南株洲)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.(2012年吉林)先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b= 2.15.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16.(2012年四川宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.(2012年江苏苏州)若3×9m×27m=311,则m的值为____________.第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证()图X1-3-2A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 210.若m 2-n 2=6且m -n =3,则m +n =________.B 级 中等题 11.对于任意自然数n ,(n +11)2-n 2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________. 13.(2012年四川内江)分解因式:ab 3-4ab =______________. 14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________. 15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( ) A .(x -1)(x -2) B .x 2 C .(x +1)2 D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题 17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题 19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x有意义,x 的取值范围满足( )A .x =0B .x ≠0C .x >0D .x <02.(2012年四川德阳)使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12D .一切实数3.在括号内填入适当的代数式,是下列等式成立: (1)2ab =( )2xa 2b2 (2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z=____________;x 2-9x 2-2x -3=____________.5.已知a -b a +b =15,则ab =__________.6.当x =______时,分式x 2-2x -3x -3的值为零.7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________. B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值. 2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.(2012年四川资阳)先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x2的值.17.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为____________.第4讲二次根式A级基础题1.下列二次根式是最简二次根式的是()A.12 B. 4 C.3 D.82.下列计算正确的是()A.20=2 10B.2·3= 6C.4-2= 2D.(-3)2=-33.若a<1,化简(a-1)2-1=()A.a-2 B.2-aC.a D.-a4.(2012年广西玉林)计算:3 2-2=()A.3 B. 2 C.2 2 D.4 25.如图X1-3-3,数轴上A、B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()图X1-3-3A.-2- 3 B.-1- 3C.-2+ 3 D.1+ 36.(2011年湖南衡阳)计算:12+3=__________.7.(2011年辽宁营口)计算18-2 12=________.8.已知一个正数的平方根是3x-2和5x+6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________.图X1-3-410.(2011年四川内江)计算:3tan30°-(π-2 011)0+8-|1-2|.B 级 中等题11.(2011年安徽)设a =19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和512.(2011年山东烟台)如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥1213.(2011年浙江)已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( )A .9B .±3C .3D .5 14.(2012年福建福州)若20n 是整数,则正整数n 的最小值为________.15.(2011年贵州贵阳)如图X1-3-5,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )图X1-3-5A .2.5B .2 2 C. 3 D. 516.(2011年四川凉山州)计算:(sin30°)-2+0352⎛⎫ ⎪-⎝⎭-|3-18|+83×(-0.125)3.C 级 拔尖题17.(2012年湖北荆州)若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( ) A .3 B .9 C .12 D .2718.(2011年山东日照)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.选做题19.(2011年四川凉山州)已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.152第二章 方程与不等式 第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(2012年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(2012年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( )A. 3,0x y =⎧⎨=⎩B.1,2x y =⎧⎨=⎩C. 5,2x y =⎧⎨=-⎩D.2,1x y =⎧⎨=⎩3.(2012年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A. 50,6()320x y x y +=⎧⎨+=⎩B.50,610320x y x y +=⎧⎨+=⎩C.50,6320x y x y +=⎧⎨+=⎩D.50,106320x y x y +=⎧⎨+=⎩4.(2012年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.7.(2012年湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________. 8.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(2012年贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.(2012年山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .411.(2012年湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(2011年内蒙古呼和浩特)解方程组:4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(2012年江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(2011年上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程A 级 基础题1.(2012年广西北海)分式方程7x -8=1的解是( )A .-1B .1C .8D .152.(2012年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)3.(2012年湖北随州)分式方程10020+v =6020-v的解是( )A .v =-20B .v =5C .v =-5D .v =204.(2012年四川成都)分式方程32x =1x -1的解为( )A .x =1B .x =2C .x =3D .x =4 5.(2012年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________.7.(2012年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(2012年山东德州)解方程:2x 2-1+1x +1=1.9.(2012年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(2012年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.B 级 中等题11.(2012年山东莱芜)对于非零实数a ,b ,规定a ⊕b =1b -1a.若2⊕(2x -1)=1,则x 的 值为( )A.56B.54C.32 D .-1612.(2012年四川巴中)若关于x 的方程2x -2+x +m 2-x =2有增根,则m 的值是________.13.(2012年山东菏泽改编)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C级拔尖题15.(2012年江苏无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投资收益率=投资收益实际投资额×100%)?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题14.(2012年山东日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?15.(2012年湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8 800 件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2 倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20 天完成,求A,B两车间每天分别能加工多少件.第3课时 一元二次方程A 级 基础题1.(2011年江苏泰州)一元二次方程x 2=2x 的根是( ) A .x =2 B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=-2 2.方程x 2-4=0的根是( ) A .x =2 B .x =-2C .x 1=2,x 2=-2D .x =43.(2011年安徽)一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2C .1和2D .-1和24.(2012年贵州安顺)已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定5.(2012年湖北武汉)若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是( ) A .-2 B .2 C .3 D .16.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( ) A .m ≤-1 B .m ≤1C .m ≤4D .m ≤127.(2012年江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-148.(2012年上海)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c的取值范围是__________.9.(2011年山东滨州)某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为________________________________________________________________________.10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.(2012年内蒙古呼和浩特)已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.(2011年山东潍坊)关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.(2011年山东德州)若x 1,x 2是方程x 2+x -1=0的两个实数根,则x 21+x 22=__________.14.(2011年江苏苏州)已知a ,b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于________.15.(2012年山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.(2012年湖南湘潭)如图X2-1-2,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m 2.X2-1-2C 级 拔尖题17.(2012年湖北襄阳)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题 18.(2012年江苏南通)设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.第2讲 不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( ) A .x >2 B .x ≥2 C .x <2 D .x ≤2 2.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为( )图X2-2-1A.2,1x x >⎧⎨≤-⎩B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( ) A .x <-2 B .x >-2 C .x <-1 D .x >-1图X2-2-2图X2-3-34.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )A .x >1B .x <1C .x >-2D .x <-25.(2012年湖南湘潭)不等式组11,3x x ->⎧⎨<⎩的解集为__________.6.若关于x 的不等式组2,x x m ⎧⎨⎩>>的解集是x >2,则m 的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是________.8.不等式组14,2124x x +⎧≤⎪⎨⎪-<⎩的整数解是____________.9.(2012年江苏苏州)解不等式组:322,813(1).x x x x -<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x 名老人,则这批牛奶共有多少盒(用含x 的代数式表示)? (2)该敬老院至少有多少名老人?最多有多少名老人?B 级 中等题11.(2012年湖北荆门)已知点M (1-2m ,m -1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A.40% B.33.4% C.33.3% D.30%13.(2012年湖北黄石)若关于x的不等式组233,35x xx a>-⎧⎨->⎩有实数解,则实数a的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C级拔尖题15.试确定实数a的取值范围,使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48 000 m2和B种板材24 000 m2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A种板材60 m2或B种板材40 m2.请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房A种板材/m2B种板材/m2安置人数/人甲型1086112乙型1565110问这400间板房最多能安置多少灾民?选做题 17.若关于x ,y 的二元一次方程组31,33x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则实数a 的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别 冰箱 彩电进价(元/台)2 320 1 900 售价(元/台)2 420 1 980 (1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?第三章函数第1讲函数与平面直角坐标系A级基础题1.(2012年山东荷泽)点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2012年四川成都)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5) B.(3,5)C.(3,-5) D.(5,-3)3.已知y轴上的点P到x轴的距离为3,则点P的坐标为()A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.(2012年浙江绍兴)在如图X3-1-1所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()图X3-1-1A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.(2011年山东枣庄)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2012年湖北孝感)如图X3-1-2,△ABC在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是()图X3-1-2A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)7.(2012年贵州毕节)如图X3-1-3,在平面直角坐标系中,以原点O为中心,将△ABO 扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()图X3-1-3A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)8.(2011年浙江衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图X3-1-4).若小亮上坡、平路、下坡的速度分别为v1、v2、v3,且v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()图X3-1-49.(2012年山东潍坊)甲、乙两位同学用围棋子做游戏,如图X3-1-5,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]图X3-1-5A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)10.(2011年山东德州)点P(1,2)关于原点的对称点P′的坐标为__________.B级中等题11.(2012年四川泸州)将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12.(2012年四川内江)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.13.(2012年四川达州)将边长分别为1,2,3,4,…,19,20的正方形置于直角坐标系第一象限,如图X3-1-6中的方式叠放,则按图示规律排列的所有阴影部分的面积之和为__________.图X3-1-6图X3-1-714.(2012年江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移两个单位称为一次变换.如图X3-1-7,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续九次这样的变换得到△A ′B ′C ′,则点A 的对应点A ′的坐标是__________.15.(2012年吉林)在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若点A 的坐标为(1,2),请你在给出的图X3-1-8,坐标系中画出△ABC .设AB 与y轴的交点为D ,则S △ADOS △ABC=__________;(2)若点A 的坐标为(a ,b )(ab ≠0),则△ABC 的形状为____________.图X3-1-8C 级 拔尖题16.(2011年贵州贵阳)【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭. 【运用】(1)如图X3-1-9,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.图X3-1-9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习系统训练200页附参考答案目录第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲尺规作图第4讲图形的相似第5讲解直角三角形第三部分统计与概率第七章统计与概率第1讲统计第2讲概率第四部分中考专题突破专题一归纳与猜想专题二方案与设计专题三阅读理解型问题专题四开放探究题专题五数形结合思想基础题强化提高测试中考数学基础题强化提高测试1中考数学基础题强化提高测试2中考数学基础题强化提高测试3中考数学基础题强化提高测试4中考数学基础题强化提高测试5中考数学基础题强化提高测试6第一部分 数与代数第一章 数与式 第1讲 实数A 级 基础题1.在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A .-1 B .0 C .1 D .22.(2012年浙江湖州)-2的绝对值等于( )A .2B .-2 C.12 D .±23.(2011年贵州安顺)-4的倒数的相反数是( )A .-4B .4C .-14 D.144.(2012年广东深圳)-3的倒数是( ) A .3 B .-3 C.13 D .-135.无理数-3的相反数是( )A .- 3 B. 3 C.13 D .-136.下列各式,运算结果为负数的是( ) A .-(-2)-(-3) B .(-2)×(-3)C .(-2)2D .(-3)-3 7.某天最低气温是-5 ℃,最高气温比最低气温高8 ℃,则这天的最高气温是________℃. 8.如果x -y <0,那么x 与y 的大小关系是x ____y (填“<”或“>”).9.(2012年山东泰安)已知一粒米的质量是0.000 021千克,这个数字用科学记数法表示为( )A .21×10-4千克B .2.1×10-6千克C .2.1×10-5千克D .2.1×10-4千克10.(2012年河北)计算:|-5|-(2-3)0+6×1132⎛⎫- ⎪⎝⎭+(-1)2.B 级 中等题 11.(2012年贵州毕节)实数a ,b 在数轴上的位置如图X1-1-1所示,下列式子错误的是( )图X1-1-1A .a <bB .|a |>|b |C .-a <-bD .b -a >012.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒请你用科学记数法表示________________________秒.13.(2011年江苏盐城)将1,2,3,6按下列方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(14,5)表示的两数之积是________.14.计算:|-3 3|-2cos30°-2-2+(3-π)0.15.(2012年浙江绍兴)计算:-22+-113⎛⎫⎪⎝⎭-2cos60°+|-3|.C 级 拔尖题16.如图X1-1-2,矩形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为__________.图X1-1-217.(2012年广东)观察下列等式:第1个等式:a 1=11×3=12×113⎛⎫- ⎪⎝⎭;第2个等式:a 2=13×5=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=15×7=12×1157⎛⎫- ⎪⎝⎭;第4个等式:a 4=17×9=12×1179⎛⎫- ⎪⎝⎭;…请解答下列问题:(1)按以上规律列出第5个等式:a 5=______________=______________; (2)用含有n 的代数式表示第n 个等式:a n =______________=______________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.选做题18.(2012年浙江台州)请你规定一种适合任意非零实数a ,b 的新运算“a ⊕b ”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=-76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a ⊕b =________(用a ,b 的一个代数式表示).第2讲 代数式A 级 基础题1.某省初中毕业学业考试的同学约有15万人,其中男生约有a 万人,则女生约有( ) A .(15+a )万人 B .(15-a )万人C .15a 万人 D.15a万人2.若x =m -n ,y =m +n ,则xy 的值是( ) A .2 m B .2 n C .m +n D .m -n3.若x =1,y =12,则x 2+4xy +4y 2的值是( )A .2B .4 C.32 D.124.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( )A .-1B .1C .-5D .55.(2012年浙江宁波)已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于( ) A .3 B .-3 C .1 D .-16.(2011年河北)若|x -3|+|y +2|=0,则x +y 的值为__________.7.(2010年湖北黄冈)通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是____________元.8.已知代数式2a 3b n +1与-3a m +2b 2是同类项,2m +3n =________.9.如图X1-2-1,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是________(用含m ,n 的式子表示).图X1-2-110.(2011年浙江丽水)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.B 级 中等题11.(2012年云南)若a 2-b 2=14,a -b =12,则a +b 的值为( )A .-12 B.12C .1D .212.(2012年浙江杭州)化简m 2-163m -12得____________;当m =-1时,原式的值为________.13.(2011年浙江宁波)把四张形状大小完全相同的小长方形卡片[如图X1-2-1(1)]不重叠的放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部[如图X1-2-1(2)],盒子底面未被卡片覆盖的部分用阴影表示,则图X1-2-1(2)中两块阴影部分的周长和是( )图X1-2-1A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a +b +c 就是完全对称式.下列三个代数式:①(a -b )2;②ab +bc +ca ;③a 2b +b 2c +c 2a . 其中是完全对称式的是( )A .①②B .①③C .②③D .①②③15.(2012年浙江丽水)已知A =2x +y ,B =2x -y ,计算A 2-B 2.C 级 拔尖题 16.(2012年山东东营)若3x =4,9y =7,则3x -2y 的值为( ) A.47 B.74 C .-3 D.2717.一组按一定规律排列的式子(a ≠0):-a 2,a 52,-a 83,a 114,…,则第n 个式子是________(n 为正整数).选做题18.(2010年广东深圳)已知,x =2 009,y =2 010,求代数式x -y x ÷22xy y x x ⎛⎫-- ⎪⎝⎭的值.19.(2012年贵州遵义)如图X1-2-3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )图X1-2-3A .2 cm 2B .2a cm 2C .4a cm 2D .(a 2-1)cm 2第3讲 整式与分式 第1课时 整式A 级 基础题1.(2012年江苏南通)计算(-x )2·x 3的结果是( ) A .x 5 B .-x 5 C .x 6 D .-x 62.(2012年四川广安)下列运算正确的是( ) A .3a -a =3 B .a 2·a 3=a 5 C .a 15÷a 3=a 5(a ≠0) D .(a 3)3=a 6 3.(2012年广东汕头)下列运算正确的是( ) A .a +a =a 2 B .(-a 3)2=a 5 C .3a ·a 2=a 3 D .(2a )2=2a 24.(2012年上海)在下列代数式中,系数为3的单项式是( ) A .xy 2 B .x 3+y 3 C .x 3y D .3xy 5.(2012年江苏杭州)下列计算正确的是( ) A .(-p 2q )3=-p 5q 3 B .(12a 2b 3c )÷(6ab 2)=2ab C .3m 2÷(3m -1)=m -3m 2D .(x 2-4x )x -1=x -46.(2011年山东日照)下列等式一定成立的是( ) A .a 2+a 3=a 5 B .(a +b )2=a 2+b 2 C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab7.(2012年陕西)计算(-5a 3)2的结果是( ) A .-10a 5 B .10a 6 C .-25a 5 D .25a 68.(2011年湖北荆州)将代数式x 2+4x -1化成(x +p )2+q 的形式为( ) A .(x -2)2+3 B .(x +2)2-4 C .(x +2)2-5 D .(x +2)2+4 9.计算:(1)(3+1)(3-1)=____________;(2)(2012年山东德州)化简:6a 6÷3a 3=________. (3)(-2a )·3114a ⎛⎫- ⎪⎝⎭=________.10.化简:(a +b )2+a (a -2b ).B级中等题11.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是()A.-5x-1 B.5x+1C.13x-1 D.13x+112.(2011年安徽芜湖)如图X1-3-1,从边长为(a+4) cm的正方形纸片中剪去一个边长为(a+1) cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为().图X1-3-1 A.(2a2+5a) cm2B.(3a+15) cm2C.(6a+9) cm2D.(6a+15) cm213.(2012年湖南株洲)先化简,再求值:(2a-b)2-b2,其中a=-2,b=3.14.(2012年吉林)先化简,再求值:(a+b)(a-b)+2a2,其中a=1,b= 2.15.(2012年山西)先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中x=- 3.C级拔尖题16.(2012年四川宜宾)将代数式x2+6x+2化成(x+p)2+q的形式为()A.(x-3)2+11 B.(x+3)2-7C.(x+3)2-11 D.(x+2)2+417.若2x-y+|y+2|=0,求代数式[(x-y)2+(x+y)(x-y)]÷2x的值.选做题18.观察下列算式:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1;④__________________________.……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.19.(2012年江苏苏州)若3×9m×27m=311,则m的值为____________.第2课时因式分解A级基础题1.(2012年四川凉山州)下列多项式能分解因式的是()A.x2+y2B.-x2-y2C.-x2+2xy-y2D.x2-xy+y22.(2012年山东济宁)下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.(2012年内蒙古呼和浩特)下列各因式分解正确的是()A.-x2+(-2)2=(x-2)(x+2)B.x2+2x-1=(x-1)C.4x2-4x+1=(2x-1)2D.x2-4x=x(x+2)(x-2)4.(2011年湖南邵阳)因式分解:a2-b2=______.5.(2012年辽宁沈阳)分解因式:m2-6m+9=______.6.(2012年广西桂林)分解因式:4x2-2x=________.7.(2012年浙江丽水)分解因式:2x2-8=________.8.(2012年贵州六盘水)分解因式:2x2+4x+2=________.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)[如图X1-3-2(1)],把余下的部分拼成一个矩形[如图X1-3-2(2)],根据两个图形中阴影部分的面积相等,可以验证()图X1-3-2A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 210.若m 2-n 2=6且m -n =3,则m +n =________.B 级 中等题11.对于任意自然数n ,(n +11)2-n 2是否能被11整除,为什么?12.(2012年山东临沂)分解因式:a -6ab +9ab 2=____________. 13.(2012年四川内江)分解因式:ab 3-4ab =______________. 14.(2012年山东潍坊)分解因式:x 3-4x 2-12x =______________. 15.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( ) A .(x -1)(x -2) B .x 2 C .(x +1)2 D .(x -2)216.(2012年山东德州)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y 2的值.C 级 拔尖题 17.(2012年江苏苏州)若a =2,a +b =3,则a 2+ab =________.18.(2012年湖北随州)设a 2+2a -1=0,b 4-2b 2-1=0,且1-ab 2≠0,则52231ab b a a ⎛⎫+-+ ⎪⎝⎭=________.选做题 19.分解因式:x 2-y 2-3x -3y =______________.20.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.21.(2012年贵州黔东南州)分解因式x 3-4x =______________________.第3课时 分式A 级 基础题1.(2012年浙江湖州)要使分式1x有意义,x 的取值范围满足( )A .x =0B .x ≠0C .x >0D .x <02.(2012年四川德阳)使代数式x2x -1有意义的x 的取值范围是( )A .x ≥0B .x ≠12C .x ≥0且x ≠12D .一切实数3.在括号内填入适当的代数式,是下列等式成立: (1)2ab =( )2xa 2b2 (2)a 3-ab 2(a -b )2=a ( )a -b4.约分:56x 3yz 448x 5y 2z=____________;x 2-9x 2-2x -3=____________. 5.已知a -b a +b =15,则ab =__________.6.当x =______时,分式x 2-2x -3x -3的值为零.7.(2012年福建漳州)化简:x 2-1x +1÷x 2-2x +1x 2-x.8.(2012年浙江衢州)先化简x 2x -1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:x -2x 2-4-xx +2,其中x =2.10.(2012年山东泰安)化简:222mm m m ⎛⎫- ⎪+-⎝⎭÷m m 2-4=____________________. B 级 中等题11.若分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对12.先化简,再求值:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1.13.(2011年湖南常德)先化简,再求值. 2212111x x x x ⎛⎫-++ ⎪+-⎝⎭÷x -1x +1,其中x =2.14.(2012年四川资阳)先化简,再求值:a -2a 2-1÷2111a a a -⎛⎫-- ⎪+⎝⎭,其中a 是方程x 2-x =6的根.C 级 拔尖题15.先化简再求值:ab +a b 2-1+b -1b 2-2b +1,其中b -2+36a 2+b 2-12ab =0.选做题16.已知x 2-3x -1=0,求x 2+1x2的值.17.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为____________.第4讲二次根式A级基础题1.下列二次根式是最简二次根式的是()A.12 B. 4 C.3 D.82.下列计算正确的是()A.20=2 10B.2·3= 6C.4-2= 2D.(-3)2=-33.若a<1,化简(a-1)2-1=()A.a-2 B.2-aC.a D.-a4.(2012年广西玉林)计算:3 2-2=()A.3 B. 2 C.2 2 D.4 25.如图X1-3-3,数轴上A、B两点表示的数分别为-1和3,点B关于点A的对称点为C,则点C所表示的数为()图X1-3-3A.-2- 3 B.-1- 3C.-2+ 3 D.1+ 36.(2011年湖南衡阳)计算:12+3=__________.7.(2011年辽宁营口)计算18-2 12=________.8.已知一个正数的平方根是3x-2和5x+6,则这个数是__________.9.若将三个数-3,7,11表示在数轴上,其中能被如图X1-3-4所示的墨迹覆盖的数是__________.图X1-3-410.(2011年四川内江)计算:3tan30°-(π-2 011)0+8-|1-2|.B级中等题11.(2011年安徽)设a =19-1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和512.(2011年山东烟台)如果(2a -1)2=1-2a ,则( )A .a <12B .a ≤12C .a >12D .a ≥1213.(2011年浙江)已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( )A .9B .±3C .3D .5 14.(2012年福建福州)若20n 是整数,则正整数n 的最小值为________.15.(2011年贵州贵阳)如图X1-3-5,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )图X1-3-5A .2.5B .2 2 C. 3 D. 516.(2011年四川凉山州)计算:(sin30°)-2+0352⎛⎫ ⎪-⎝⎭-|3-18|+83×(-0.125)3.C 级 拔尖题17.(2012年湖北荆州)若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( ) A .3 B .9 C .12 D .2718.(2011年山东日照)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 011-y 2 011=______.选做题19.(2011年四川凉山州)已知y =2x -5+5-2x -3,则2xy 的值为( )A .-15B .15C .-152 D.152第二章 方程与不等式 第1讲 方程与方程组第1课时 一元一次方程与二元一次方程组A 级 基础题1.(2012年山东枣庄)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2 080B .x ×30%×80%=2 080C .2 080×30%×80%=xD .x ×30%=2 080×80%2.(2012年广西桂林)二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( )A. 3,0x y =⎧⎨=⎩B.1,2x y =⎧⎨=⎩C. 5,2x y =⎧⎨=-⎩D.2,1x y =⎧⎨=⎩3.(2012年湖南衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A. 50,6()320x y x y +=⎧⎨+=⎩B.50,610320x y x y +=⎧⎨+=⎩C.50,6320x y x y +=⎧⎨+=⎩D.50,106320x y x y +=⎧⎨+=⎩ 4.(2012年贵州铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x5.已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.6.方程组2,21x y x y -=⎧⎨+=⎩的解是__________.7.(2012年湖南湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________. 8.(2012年江苏苏州)我国是一个淡水资源严重缺乏的国家.有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13800 m 3.问中、美两国人均淡水资源占有量各为多少(单位:m 3)?B 级 中等题9.(2012年贵州黔西南)已知-2x m -1y 3与12x n y m +n 是同类项,那么(n -m )2 012=______.10.(2012年山东菏泽)已知2,1x y =⎧⎨=⎩是二元一次方程组的解8,1,mx ny nx my +=⎧⎨-=⎩则2m -n 的算术平方根为( )A .± 2 B.2 C .2 D .411.(2012年湖北咸宁)某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.12.(2011年内蒙古呼和浩特)解方程组: 4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩C 级 拔尖题13.如图X2-1-1,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.图X2-1-114.(2012年江西南昌)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”; 爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).选做题15.(2011年上海)解方程组:222,230.x y x xy y -=⎧⎨--=⎩16.若关于x ,y 的二元一次方程组5,9x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43第2课时 分式方程A 级 基础题1.(2012年广西北海)分式方程7x -8=1的解是( )A .-1B .1C .8D .152.(2012年浙江丽水)把分式方程2x +4=1x化为一元一次方程时,方程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)3.(2012年湖北随州)分式方程10020+v =6020-v的解是( )A .v =-20B .v =5C .v =-5D .v =204.(2012年四川成都)分式方程32x =1x -1的解为( )A .x =1B .x =2C .x =3D .x =4 5.(2012年四川内江)甲车行驶30千米与乙车行驶40千米所用的时间相同.已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/时,依题意列方程正确的是( )A.30x =40x -15B.30x -15=40xC.30x =40x +15D.30x +15=40x6.方程 x 2-1x +1=0的解是________.7.(2012年江苏连云港)今年6月1日起,国家实施了《中央财政补贴条例》,支持高效节能电器的推广使用.某款定速空调在条列实施后,每购买一台,客户可获财政补贴200元,若同样用1万元所购买的此款空调台数,条例实施后比条例实施前多10%,则条例实施前此款空调的售价为 __________元.8.(2012年山东德州)解方程:2x 2-1+1x +1=1.9.(2012年江苏泰州)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?10.(2012年北京)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1 000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同.求一片国槐树叶一年的平均滞尘量.B 级 中等题11.(2012年山东莱芜)对于非零实数a ,b ,规定a ⊕b =1b -1a.若2⊕(2x -1)=1,则x 的 值为( )A.56B.54C.32 D .-1612.(2012年四川巴中)若关于x 的方程2x -2+x +m 2-x =2有增根,则m 的值是________.13.(2012年山东菏泽改编)我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12 000元购进的科普书与用8 000元购进的文学书的本数相等.C级拔尖题15.(2012年江苏无锡)某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购.投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%;方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么(注:投资收益率=投资收益实际投资额×100%)?(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?选做题14.(2012年山东日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?15.(2012年湖北黄冈)某服装厂设计了一款新式夏装,想尽快制作8 800 件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2 倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20 天完成,求A,B两车间每天分别能加工多少件.第3课时 一元二次方程A 级 基础题1.(2011年江苏泰州)一元二次方程x 2=2x 的根是( ) A .x =2 B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=-2 2.方程x 2-4=0的根是( ) A .x =2 B .x =-2C .x 1=2,x 2=-2D .x =43.(2011年安徽)一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2C .1和2D .-1和24.(2012年贵州安顺)已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定5.(2012年湖北武汉)若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2的值是( ) A .-2 B .2 C .3 D .16.(2012年湖南常德)若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是( ) A .m ≤-1 B .m ≤1C .m ≤4D .m ≤127.(2012年江西南昌)已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是( )A .1B .-1 C.14 D .-148.(2012年上海)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实根,那么c的取值范围是__________.9.(2011年山东滨州)某商品原售价为289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为________________________________________________________________________.10.解方程: (x -3)2+4x (x -3)=0.B 级 中等题11.(2012年内蒙古呼和浩特)已知:x 1,x 2是一元二次方程x 2+2ax +b =0的两个根,且x 1+x 2=3,x 1x 2=1,则a ,b 的值分别是( )A .a =-3,b =1B .a =3,b =1C .a =-32,b =-1D .a =-32,b =112.(2011年山东潍坊)关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( )A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种13.(2011年山东德州)若x 1,x 2是方程x 2+x -1=0的两个实数根,则x 21+x 22=__________.14.(2011年江苏苏州)已知a ,b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于________.15.(2012年山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?16.(2012年湖南湘潭)如图X2-1-2,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25 m),现在已备足可以砌50 m 长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m 2.X2-1-2C 级 拔尖题17.(2012年湖北襄阳)如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠0选做题 18.(2012年江苏南通)设α,β是一元二次方程x 2+3x -7=0的两个根,则α2+4α+β=________.19.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是________.第2讲 不等式与不等式组A 级 基础题1.不等式3x -6≥0的解集为( ) A .x >2 B .x ≥2 C .x <2 D .x ≤2 2.(2012年湖南长沙)一个不等式组的解集在数轴上表示出来如图X2-2-1,则下列符合条件的不等式组为( )图X2-2-1A.2,1x x >⎧⎨≤-⎩B.2,1x x <⎧⎨>-⎩C.2,1x x <⎧⎨≥-⎩D.2,1x x <⎧⎨≤-⎩3.函数y =kx +b 的图象如图X2-2-2,则当y <0时,x 的取值范围是( ) A .x <-2 B .x >-2 C .x <-1 D .x >-1图X2-2-2图X2-3-34.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图X2-2-3,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1C.x>-2 D.x<-25.(2012年湖南湘潭)不等式组11,3xx->⎧⎨<⎩的解集为__________.6.若关于x的不等式组2,xx m⎧⎨⎩>>的解集是x>2,则m的取值范围是________.7.(2012年江苏扬州)在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.8.不等式组14,2124xx+⎧≤⎪⎨⎪-<⎩的整数解是____________.9.(2012年江苏苏州)解不等式组:322,813(1).x xx x-<+⎧⎨-≥--⎩10.某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人.如果给每个老人分5盒,则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒(用含x的代数式表示)?(2)该敬老院至少有多少名老人?最多有多少名老人?B级中等题11.(2012年湖北荆门)已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()12.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%13.(2012年湖北黄石)若关于x的不等式组233,35x xx a>-⎧⎨->⎩有实数解,则实数a的取值范围是____________.14.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?C级拔尖题15.试确定实数a的取值范围,使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰有两个整数解.16.(2012年四川德阳)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48 000 m2和B种板材24 000 m2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A种板材60 m2或B种板材40 m2.请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:板房A种板材/m2B种板材/m2安置人数/人甲型1086112乙型1565110问这400间板房最多能安置多少灾民?选做题 17.若关于x ,y 的二元一次方程组31,33x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则实数a 的取值范围为______.18.(2011年福建泉州)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别 冰箱 彩电 进价(元/台) 2 320 1 900 售价(元/台) 2 420 1 980(1)按国家政策,农民购买“家电下乡”产品享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56.若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?第三章函数第1讲函数与平面直角坐标系A级基础题1.(2012年山东荷泽)点(-2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2012年四川成都)在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A.(-3,-5) B.(3,5)C.(3,-5) D.(5,-3)3.已知y轴上的点P到x轴的距离为3,则点P的坐标为()A.(3,0) B.(0,3)C.(0,3)或(0,-3) D.(3,0)或(-3,0)4.(2012年浙江绍兴)在如图X3-1-1所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()图X3-1-1A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位5.(2011年山东枣庄)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.(2012年湖北孝感)如图X3-1-2,△ABC在平面直角坐标系中第二象限内,顶点A 的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是()图X3-1-2A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)7.(2012年贵州毕节)如图X3-1-3,在平面直角坐标系中,以原点O为中心,将△ABO 扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()图X3-1-3A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)8.(2011年浙江衢州)小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图X3-1-4).若小亮上坡、平路、下坡的速度分别为v1、v2、v3,且v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()图X3-1-49.(2012年山东潍坊)甲、乙两位同学用围棋子做游戏,如图X3-1-5,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是()[说明:棋子的位置用数对表示,如A点在(6,3)]图X3-1-5A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)10.(2011年山东德州)点P(1,2)关于原点的对称点P′的坐标为__________.B级中等题11.(2012年四川泸州)将点P(-1,3)向右平移2个单位长度得到点P′,则点P′的坐标为________.12.(2012年四川内江)已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为____________.13.(2012年四川达州)将边长分别为1,2,3,4,…,19,20的正方形置于直角坐标系第一象限,如图X3-1-6中的方式叠放,则按图示规律排列的所有阴影部分的面积之和为__________.图X3-1-6图X3-1-714.(2012年江苏南京)在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移两个单位称为一次变换.如图X3-1-7,已知等边三角形ABC 的顶点B 、C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续九次这样的变换得到△A ′B ′C ′,则点A 的对应点A ′的坐标是__________.15.(2012年吉林)在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若点A 的坐标为(1,2),请你在给出的图X3-1-8,坐标系中画出△ABC .设AB 与y轴的交点为D ,则S △ADOS △ABC=__________;(2)若点A 的坐标为(a ,b )(ab ≠0),则△ABC 的形状为____________.图X3-1-8C 级 拔尖题16.(2011年贵州贵阳)【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭. 【运用】(1)如图X3-1-9,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.图X3-1-9。