C专题
高三C专题(曲线与方程2星)
专题:曲线与方程(★★) 教学目标 (1)理解曲线与方程的概念(两个关系);(2)知道求曲线方程需要适当选取坐标系的意义;(3)掌握求曲线方程的一般方法和步骤;(4)体会通过坐标系建立曲线方程、再利用代数方法研究曲线几何性质的基本思想。
知识梳理5 min.1. 曲线方程的定义:一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系:①曲线C 上的点的坐标都是方程0),(=y x F 的解;②以方程0),(=y x F 的解为坐标的点都是曲线C 上的点。
此时,把方程0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线。
2.利用集合与对应的观点理解曲线方程的概念: 设)}(|{M P M P =表示曲线C 上适合某种条件的点M 的集合;}0),(|),{(==y x F y x Q 表示二元方程的解对应的点的坐标的集合。
于是,方程0),(=y x F 叫做曲线C 的方程等价于⎭⎬⎫⊆⊆P Q Q P ,即 Q P =。
3.求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略); (2)设曲线上任意一点的坐标为),(y x ;(3)根据曲线上点所适合的条件,写出等式;(4)用坐标y x 、表示这个等式,并化简;(5)证明已化简后的方程的解为坐标的点都是曲线上的点。
上述五个步骤可简记为:建系;设点;写出集合;列方程、化简;证明。
4.求曲线方程的方法;(1)直译法:根据条件中提供的等量关系,直接列出方程;(2)代入法:在变化过程中有两个动点,已知其中一个动点在定曲线上运动,求另一动点的轨迹方程,这里通过建立两个动点坐标之间的关系,代人到已知曲线之中,得出所要求的轨迹方程;(3)参数法:单参数法;交轨法;坐标法;定形法。
典例精讲例1.(★★)已知点(2,0)B -、(2,0)C ,顶点A 在坐标平面上运动,且满足4AB AC k k ⋅=-,求动点A 的轨迹方程。
浙大14年C语言专题试卷-英文
浙江大学2014–2015学年冬季学期《程序设计基础》课程期末考试试卷课程号: 211Z0040 ,开课学院:计算机学院__考试试卷:√A卷、B卷(请在选定项上打√)考试形式:√闭、开卷(请在选定项上打√),允许带∕入场考试日期: 2015 年 01 月 28 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪.考生姓名:学号:所属院系: _ (注意:答题内容必须写在答题卷上,写在本试题卷上无效)Section 1: Single Choice(2 marks for each item, total 20 marks)1. Which one below is NOT a valid identifier in the C programming language? _____.A. printfB. _everC. “char”D. true2. Given a, b and c as three double variables, which one below is NOT equivalent toa/b/c? _____.A. (a/b)/cB. a/(b/c)C. a/(b*c)D. a/c/b3. Which function header is NOT correct? _____.A. void f(void)B. void f(int i)C. void f(int i,j)D. void f(int i, int j)4. Given the code below, what will be the value of i after the loop? _____.int i;while ( i<10 ) i++;A. 10B. 11C. 9D. None of above.5. Given the declarations:int a[5], *p=a;which expression is equivalent to theexpression p+1 ? _____.A.a[1] B. &a+1 C.a+1 D. p[2]-16. For the declarations: int a[]={1,2,3,4,5},*p=a+1, y; what will be the value of variabley after executing y=(*p)++; ? _____.A.y=1 B.y=2 C.y=3 D. Syntax error.7. For the declarations: int *p[2], n[5]; which assignment expression is correct? _____ .A.p=n B. p=&n[0] C.p[0]=n D. p[0]=n++8. Given the following code fragment, the loop condition str[i]!=’\0’ could be replaced bywhich choice? ______.char str[20]=”hello, world”;for (i = 0; str[i] != …\0‟; i++) putchar(str[i]);A.str[i] B.i < 20 C.!(str[i] = …\0‟)D.i <= 209. Which function-calling statement could be used, to open a text file entitled “abc.tx t”and located in the folder “user” within D diskette, which is opened for the reading and writing operation? ______.A.fopen("D:\user\abc.txt","r") B. fopen("D:\\user\\abc.txt","r+")C. fopen("D:\user\abc.txt","rb") D.fopen("D:\\user\\abc.txt","w")10. In the following code fragments, which item is completely correct? ______.A.int *p[5]; scanf("%d", p[0]); B.int *p; scanf("%d", p);C.int n[10], *p=n; scanf("%d", p); D.int n, *p; *p= &n; scanf("%d", p);Section 2: Fill in the blanks(2 marks for each item, total 30 marks)1. The value of expression 3/6*2.0 is ________.2. The value of expression '9'-'0' is _______.3. Given:char c = 255;printf("%d", c);The output should be: _______.4. Given:int b=50;if ( 1<b<10 ) printf("ok") else printf("no");the output is _______.5. The following code fragment will print out _____________________________.void swap(int *pa, *pb){int *t = pa;pa = pb;pb = t;}int a = 1, b = 2;swap(&a, &b);printf(“%d#%d#”, a, b);6. The output of the code below is ________.char *s=”abc”;while ( *s++ ) if (*s) putchar(*s-1);7. Given the declaration: char *s;, write a statement which could be used to allocate 10bytes from the system and assign the first address to the variable s _____________.8. Try to use the function-call of fscanf, to replace the function-call of scanf(”%d”,&m);______________________________________________.9. Given the declaration: char *s;, write an expression without any function-calling,which is equivalent to the expression strlen(s)==1 _____________________.10. Given the declaration: int a[3][2]={1,2,3,4,5,6}; what is the value of expression(a[1]+1)[0] ?____________.11. The value of expression !*(“2015-01-28”+5) is ______________.12. The output of the code below is ________.char x[ ]=”hello,world\012345”;printf(”%d#%d#”,sizeof(x),strlen(x));13. The output of the code below is ________.char *a[3]={"one", "two",”three”}, **p=a;printf("%s#", *(++p)+1);printf("%c#", **p-1);14. Given the declarations: FILE *infp, *outfp;, write a statement: it is used to write aletter, which is read from a file pointer infp, into the file pointer outfp, which points to an output file. ________________________________________________________.15. Given the declaration: char s[10]=”12345678”; what will be the value of strlen(s)after executing strcpy(s+2,s+5); ________.Section 3: Read each of the following programs and answer questions (5marks for each item, total 30 marks)1. What is the output of the following program? _____________________________.#include <stdio.h>void swap(int *a, int b){int m, *n;n=&m;*n=*a;*a=b;b=*n;}int main(){int x=8,y=1;swap(&x,y);printf("%d#%d#",x,y);}2. When input: 123, what is the output of the following program_______________.#include <stdio.h>int f(char s[], int b){int i=0, n=0;while (s[i]!=‟\0‟) {n=n*b+s[i]-'0';i++;}return n;}int main(){char s[20];int n;scanf("%s",s);printf("%d", f(s,5));}3. When the following program‟s input ising<Enter>This is a long test string<Enter>the output of the program is __________.#include <stdio.h>#include <string.h>int main(){char s[100], t[100], ch, *p;int count, i;gets(s);gets(t);for (i = 0; i < strlen(s); i++) {count=0;p = t;while (*p != '\0') {if (*p == s[i]) count++;p++;}printf("%c %d ", s[i], count);}}4. The output of the following program‟s is ____________.#include <stdio.h>#include <string.h>void fun(char *s[], int n){char *t;int i,j;for (i=0; i<n; i++)for (j=i+1; j<n; j++)if (strlen(s[i])> strlen(s[j])) {t=s[i];s[i]=s[j];s[j]=t;}}int main(){char *s[]={"the population of”, “the city”,“has reached”, “top level"};fun(s,4);printf("%s,%s\n",s[0],s[3]);}5. The following program will print out ____________.#include <stdio.h>void p1(int v[]){int i,j,temp;for (i=1; i<4; i++)for (j=i-1; j>=0&&v[j]<v[j+1]; j--) {temp = v[j];v[j]=v[j+1];v[j+1]=temp;}}void p2(int v1[], int v2[]){int i=0, j=0;while (i<4 && j<4) {if (v1[i]>v2[j]) {printf("%d ", v1[i++]);} else {printf("%d ", v2[j++]);}}while (i<4) printf("%d ", v1[i++]);while (j<4) printf("%d ", v2[j++]);}main(){int a[2][4]={{5,3,7,2},{4,1,8,6}};p1(a[0]);p1(a[1]);p2(a[0],a[1]);}6. When input: 8 1 2 3 4 5 6 7 8, the following program will print out ____________.#include <stdio.h>#include <stdlib.h>void F1(int *a, int n){int t, *b = a + n - 1;while (a < b) {t = *a;*a = *b;*b = t;a++;b--;}}void F2(int *a, int n){int i,t;if (n <= 1) return;for (i = 0; i < n/2; i++){t = *(a + i);*(a + i) = *(a + n - 1 - i);*(a + n - 1 - i) = t;}}int main(void ){int i, n, *a;scanf("%d", &n);if ((a = (int*)malloc(n*sizeof(int))) == NULL) return 2;for (i = 0; i<n;i++) scanf("%d",a + i);F1(a + n/4, n/2);F2(a, n);for (i = 0; i < n; i++) printf("%d#",*(a + i));return 0;}Section 4: According to the specification, complete each program (2 marks for each blank, total 20 marks)1. There is an increasing ordered (升序) character list in a text file in.txt. The followingprogram read in this list, calculate the number of duplicates(重复) and write each character and its frequency of occurrence (>1) (大于1的出现次数) into the file out.txt. For example, if the in.txt contains “abbcdddddddddddde”, the list “ab2cd12e” will be written into out.txt.#include <stdio.h>main(){FILE *fp1, *fp2;char last, c;int count=0;fp1=fopen("in.txt", "r");fp2=fopen("out.txt", "w");if (_______(1)_______) return (0);last='\0';while (______(2)_____) {count++;if (c!=last) {if (count>1) _______(3)______;count=0;_______(4)______;last=___(5)____;}}fclose(fp1);fclose(fp2);}2. Function strncat(char *ret, char *s2, int n)copy at most n characters from s2 to ret.The output of the following program is:WooManGoodWoManPlease complete the program.#include <stdio.h>char *strncat(char *ret, char *s2, int n){char *s1=ret;if (n>0) {while (_____(6)____);s1--;while (*s1++=_____(7)____) {if (--n>0) continue;*s1=_____(8)_____;break;}return ret;} else {return s1;}}main(){char s[100]=”Good”;char t1[100]=”Woo”;char t2[100]=”Manager”;strncat(____(9)_____);printf(“%s\n”, t1);strncat(____(10)_____);printf(“%s\n”, s);}。
计算机考试C语言专题训练
计算机考试C语言专题训练计算机考试C语言专题训练C语言有丰富的数据结构和运算符。
包含了各种数据结构,如整型、数组类型、指针类型和联合类型等,用来实现各种数据结构的运算。
下面是店铺为大家搜索整理的C语言专项训练题,希望能给大家带来帮助!更多精彩内容请及时关注我们应届毕业生考试网!一、选择题1). 设有定义: struct {char mark[12]; int num1; double num2;} t1,t2; 若变量均已正确赋初值,则以下语句中错误的是 ( )A.t2.num1=t1.num1;B.t2.mark=t1.mark;C.t1=t2;D.t2.num2=t1.num2;正确答案:B答案解析:这个题目主要涉及到结构体的定义与赋值操作。
根据题意结构体变量t1,t2的成员变量mark是字符数组,对于字符数组之间的赋值操作应该使用循环语句对每个字符进行赋值,而选项A是用数组名实现字符数组之间的赋值操作,是错误的。
2). 若各选项中所用变量已正确定义,函数fun中通过return语句返回一个函数值,以下选项中错误的程序是( )A.main() { …… x=fun(2,10); ……} float fun(int a,int B{……}B.float fun(int a,int B{……} main() { …… x=fun(i,j); ……}C.float fun(int ,int); main() { …… x=fun(2,10); …… } float fun(int a,int B{……}D.main() { float fun(int i,int j); …… x=fun(i,j); …… } float fun(int a,int B{……}正确答案:A答案解析:C语言规定,函数必须先定义,后调用(函数的返回值类型为int或char时除外)。
在选项A中,调用的子函数在调用后面定义,所以不正确。
中考英语阅读专题之C篇解题技巧讲解
中考英语阅读专题之C篇解题技巧讲解一、考点分析1.首字母填空类短文题是近几年中考试题经常采用的题型之一,因为它有非常好的信度和效度,又能拉开考生间的分差、提高区分度。
这种题型属于能力测试的范畴,它考查的范围极广,可以是英语知识的方方面面,还可能涉及其它学科。
2.它要求考生在充分理解短文的基础上将单词拼写出来,并且单词形式合理,符合语法规范,符合短文需要。
这种试题的首字母已给,所填的就必须是该字母开头的单词。
这既是一种限制,又是一种提示。
3.向学生明确这5大词类,是缩小答案范围;同时也突出了词性是解决首字母填空题的关键。
二、专题详解【例1】At some time in your life, you might have a roommate. It is a good idea to share a flat, especially for students or people who have just finished school, because flats are usually expensive. And m_____86_____is not the only reason for having a roommate. Sharing a flat can be fun.But life with a roommate can also be a t_____87_____experience. Some experts(专家) did a study of college students who shared a room. They found that students who had problems with their roommates were not happy at school and were more likely to get sick than other students. So, how can you l_____88_____with a roommate and enjoy it? Here is some advice: Being roommates with a friend can be hard. Friends may be different when you stay with them all the time from when you don't see them very o_____89_____. So, before you plan to share aroom with a friend, discuss the situation carefully.If you decide to share a room with someone you don't know, talk to each other. It's important to be h_____90_____about your habits and things you hate.When you move in with a roommate, make rules. Decide how you will share h_____91_____, such as cleaning, washing and shopping. Will you share food? Is it OK to have guests? And what about loud music?Don't get angry at small things that your roommate does. Try to f_____92_____the unhappy things between you and your roommate. No one - including you- is perfect.【例2】A school newspaper The Teens asked over one thousand teenagers howthey spent their spare time. Here they report the r_____81_____of thesurvey. It’s not at all surprising to learn that most teens said they wantedmore free time. Most have less than an hour a day for after-school activities.P_____82_____activity was popular among both girls and boys, averaging between three to six hours a week. Favourite sports among girls were tennis, basketball and swimming. Boys said they liked football, basketball and skating.Speaking of entertainment, music and TV were popular. About half of those surveyed said that music was their favourite activity. This i_____83_____both listening to and playing music. TV was also very popular. Three quarters said they preferred watching TV to reading a book or magazine.Unexpectedly, as many as three out of ten teenagers mentioned that collecting things was something they liked to do in their spare time. They had v_____84_____collections from cartoon books and baseball cards to stickers, toys and coins.V_____85_____friends was also popular. Eight out of ten teenagers said they met friends once a week. Nine out of ten said they contacted friends through the Internet A_____86_____popular way of contacting friends was the telephone. Everyone we surveyedsaid they spoke to friends every day. Most said they spoke about twenty minutes a day. Surprisingly, teenagers s_____87_____went dancing, especially girls. Only one out of ten said they went to the dance regularly.学法指导1. 总述首字母填空既考查学生对语法、词汇、句型、搭配等基础知识的综合运用能力,也考查了学生对文章的阅读理解能力。
高三C专题(抽象函数3星)
专题 抽象函数之原型解法 ★★★教学目标1、 理解抽象函数的概念;2、 掌握“原型”法,解决抽象函数问题。
抽象:抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征。
知识梳理5 min.1、 抽象函数没有明确给出函数表达式,只给出它具有的某些特征或性质,并用一种符号表示的函数。
2、 抽象函数问题由抽象函数构成的数学问题叫抽象函数问题,这类问题是学生学习中的一个难点,也是各种考试测评的热点问题之一。
3、 “原型”解法抽象来源于具体,是由特殊的、具体的函数抽象而得到的。
如()()(0)f x k f x k =⋅≠有121212()()()()f x x k x x f x f x +=+=+可抽象为()()()f x y f x f y +=+。
那么y kx =就叫做抽象函数()f x 满足()()()f x y f x f y +=+的“原型”(函数) 抽象函数问题的解题过程一般是由抽象函数的结构,联想到已学过的具有相同或相似结构的某类(基本)“原型”函数,并由“原型”函数的相关结论,预测、猜想抽象函数可能具有的某种性质使问题获解的,称这种解抽象函数问题的方法为“原型”解法。
4、 常用抽象函数()f x 的“原型”(函数)(1)()()()f x y f x f y +=+——y kx =(k 为常数) (2)()()()f x y f x f y +=——y =xa (a >0且a ≠1) (3)()()()f xy f x f y =+——log a y x = (a >0且a ≠1) (4)()()()f xy f x f y =——ny x =(n 为常数) (5)()()()1()()f x f y f x y f x f y ++=---y =tan x典例精讲33 min.例1. (★★★)已知函数()f x 对于任意实数x 、y 都有()()()f x y f x f y +=+,且当0x >时,()0f x >,(1)2f -=-,求函数()f x 在区间[2,1]-上的值域。
高三C专题(二项式定理3星)
专题: 二项式定理 ★★★教学目标1. 掌握二项式定理.2.掌握组合数的性质,具有一定的观察、分析、归纳能力.【包括求二项展开式的指定项、二项式系数与展开式系数,研究二项展开式系数的性质,利用二项式定理比较多项式与指数式的大小,证明整除性问题等.】知识梳理5 min.1. 二项式展开:11222()nnn n r n r r n n n n n n n a b C a C a b C ab C a b C b ---+=++++++L L通项公式:1C 0,1,2,,k n k kk n T a b k n -+=⋅⋅=,L 2. 二项展开式的结构与特征 (1)项数:共1n +项(2)系数:()0,1,2,,rn C r n =L 为第1r +项的二项式系数.(3)指数:a 的次数从n 起逐项减1直到0;b 的次数从0起逐项加1直到n .a 与b 的次数之和等于n . 3. 二项式系数的性质(1)等距性:与首末两端“等距离”的两项的二项式系数相等即:r n r n n C C -=.(2)所有二项式系数之和等于2n,即:0122nnn n n n C C C C ++++=L .(3)奇数项的二项式系数的和等于偶数项的二项式系数的和,都等于12n -.即:0241351C C C C C C 2.n n n n n n n -+++=+++=L L4. 二项式定理的应用赋值法:()()nF x ax b =+展开式的各项系数和为()1f ;典例精讲33 min.例1.(★★)若723456701234567(12)x a a x a x a x a x a x a x a x +=+++++++,求(1) 展开式中各项系数和; (2) 求0246a a a a +++的值.解:(1)利用赋值法,令1x =,得7701234567(12)32187a a a a a a a a +=+++++++==①,所以展开式中各项系数和是2187.(2)令1x =-,7701234567(12)31a a a a a a a a -=-+-+-+-==-②,①+②,得02462222218712186a a a a +++=-=,即02461093a a a a +++=.例2.(★★)求证1211124223.n n n nn nn n n C C C C --+++++=L证明:在二项展开式011222()nnn n r n r r n n n n n n n a b C a C a b C ab C a b C b ---+=++++++L L 中,令1,2,a b ==得122(12)12223nnnnn n n C C C +=+⋅+⋅++⋅=L , 即12(12)12423nnnnn n n C C C +=++++=L .巩固练习:(★★)求证:()()1212421.n nnnn n C C C -+-+-=-L证明:由011222()n nn n r n r r n n n n n n n a b C a C a b C ab C a b C b ---+=++++++L L 可知,()()112nn-=-=()()()2012222nn n n n n C C C C +-+-++-L ()121242.nnnn n C C C =-+-+-L 例3.(★★)求证:()na b +的二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.证明:在二项展开式011222()nnn n r n r r n n n n n n n a b C a C a b C ab C a b C b ---+=++++++L L 中,令1,1a b ==-,得()0231(11)1nnnn n n n n C C C C C -=-+-++-L ,即()()20212130r n n r n n n n C C C C C C +=++++-++++L L L L ()0,1,2,r =L , 由此得,0212231r n r n n n nn C C C C C C +++++=++++L L L L ()0,1,2,r =L ,即在()na b +的二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和. 例4.(★★)利用二项式定理证明:()2215,*.n n n n n N >++≥∈证明:()211nn=+()0121222212 1.n nn n n n n C C C C C n n n n n n n -=+++++=++-+>++>++L L所以,()2215,*.n n n n n N >++≥∈【结论可用于判断指数式与多项式的大小关系,类似地,我们还可以利用二项式定理进行近似计算.】巩固练习:求证:)2,(2)2(3*1>∈+>-n N n n n n 且解:0112203(21)2222nnnn n n n n n n C C C C --=+=++++L 11221(2)2n n n n n --=+⋅++>+⋅L课堂检测1. (★★)在5x ⎛+ ⎝的展开式的各项中随机取两项,其系数和为奇数的概率是 . 解:8152. (★★)若()22213222132102,*nn n n n x a x a x a x a x a x a n N --+=++++++∈L ,则13521...n a a a a -++++的值为 . 解:21(31)2n- 3. (★★)已知二项式81x a ⎛⎫+ ⎪⎝⎭展开式的前三项系数成等差数列,则a = .解:2或144. (★★)若32(2)2(,3)nnnx x ax bx cx n N n +=+++++∈≥L 且:3:2a b =,则_______________.n = 解:115. (★★)若()12nx +的二项展开式中含4x 项的系数与含5x 项的系数之比是512,则n =_________. 解:106. (★★★)若454233241)1()1()1()1(x a x a x a x a x a =+-+-+-+-,则234a a a ++的值为 . 解:147. (★★★)式子 1 2 3248(2)n n n n n n C C C C -+-++-L 等于( ).A .(1)n -B .(1)1n --C .3nD .31n - 解:B8. (★★★)设21()2nx x+的展开式中含有非零常数项,则正整数n 的最小值为______________. 解:39. (★★★)在()61x -的二项展开式中,中间项的系数是__________. 解:10. (★★★)在二项式10(1)x +的展开式中任取一项,则该项的系数为奇数的概率是 .解:41111. (★★★)(选)对于二项式51nx x ⎛⎫+ ⎪⎝⎭的展开式*n N ∈,四位同学做出了四种判断:①存在*n N ∈,展开式中有常数项;②对任意*n N ∈,展开式中没有常数项;③对任意*n N ∈,展开式中没有x 的一次项;④存在*n N ∈,展开式中有x 的一次项.上述判断中正确的是 ( ) A. ①③ B. ②③ C. ①④ D. ②④解:C12. (★★★)(选)已知232012(1)(1)(1)(1)n nn x x x x a a x a x a x ++++++++=++++L L ,若12129n a a a n -+++=-L ,则自然数n = .解:413. (★★★)若()2122a b +=+(,a b 为有理数),则a b += ( ) A .33B . 29C .23D .19解:本题主要考查二项式定理及其展开式. 属于基础知识、基本运算的考查. ()()()()()()212341234444441222222CCC CC+=++++Q1421282417122=++++=+,由已知,得171222a b +=+, ∴171229a b +=+=.故选B .14.(★★★)在(1+x )+(1+x )2+……+(1+x )6的展开式中,x 2项的系数是 .(用数字作答).【答案】35【解析】C 22+ C 23+ C 24+ C 25+ C 26= C 33+ C 23+ C 24+ C 25+ C 26= C 37,这里需要用到组合数公式C m n 1+=C m n +C 1-m n回顾总结:2 min.二项式系数与系数的区别是什么?答:在一个n 次的二项展开式中称k n C 为第1k +项的二项式系数,二项展开式项的系数是指不含变量的部分.例如:二项式332nx x 的展开式的通项:23112k n kk k n T C x -+⎛⎫=-⋅⋅ ⎪⎝⎭,k n C 为第1k +项的二项式系数,12kk n C ⎛⎫-⋅ ⎪⎝⎭为第1k +项的系数.。
高三C专题(反三角函数1星)
专题: 反三角函数 ★教学目标1. 知道反正弦函数、反余弦函数、反正切函数的基本性质和图像;2. 理解反正弦函数、反余弦函数、反正切函数的概念和符号表示;3. 会用计算器求反三角函数的值和用反三角函数的值表示角的大小.【解读:主要在于理解反正弦、余弦及正切函数的意义、定义域和值域,会用反三角函数表示一个角.】知识梳理6 min.1. 反三角函数的性质与图像反三角函数 arcsin y x =arccos y x =arctan y x =定义域[]1,1-[]1,1- (),-∞+∞值域 ,22ππ⎡⎤-⎢⎥⎣⎦[]0,π,22ππ⎛⎫- ⎪⎝⎭奇偶性 奇函数 非奇非偶 偶函数 单调性增函数减函数增函数2. 常用关系式(1)()[]arcsin arcsin ,1,1x x x -=-∈- ()sin arcsin ,x x =[]1,1x ∈-()arcsin sin ,x x x =∈,22ππ⎡⎤-⎢⎥⎣⎦(2)()[]arccos arccos ,1,1x x x π-=-∈- ()cos arccos ,x x =[]1,1x ∈-()arccos cos ,x x x =∈[]0,π(3)()arctan arctan ,x x x R π-=-∈, ()tan arctan ,x x R =∈()arc tan tan ,,22x x x ππ⎛⎫=∈- ⎪⎝⎭【学科教师不仅要让学生记住公式,更要理解公式是怎样来的,在理解的前提下进行记忆.】典例精讲32 min.例1. (★)求下列反正弦函数的值:(1)arcsin21; (2)arcsin0; (3)arcsin (3- 解:(1)因为sin6π=12,且6π,22ππ⎡⎤∈-⎢⎥⎣⎦,所以arcsin 12=6π. (2)因为sin00=,且00,22ππ⎡⎤∈-⎢⎥⎣⎦,所以arcsin00=. (3)因为3sin()3π-=,且-3π,22ππ⎡⎤∈-⎢⎥⎣⎦,所以3arcsin(3π=-. 【本题在让学生了解算理的情况下,也要保证学生会用计算器计算.】 例2. (★)求1arcsin2y x =-的定义域与值域 解:由112x ≤-,得21x -≥,解得1x ≤或3x ≥,故定义域为(][),13,-∞+∞U , 因[)(]11,00,12x ∈--U ,所以1arcsin,00,222x ππ⎡⎫⎛⎤∈-⎪ ⎢⎥-⎣⎭⎝⎦U , 从而,00,44y ππ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦U . 例3. (★) 求满足()arccos2arccos 1x x <-的x 的取值范围;解:因为arccos y x =在定义域上单调递减,故不等式可化为121,111,21.x x x x -≤≤⎧⎪-≤-≤⎨⎪>-⎩,解得1132x <≤,即11,32x ⎛⎤∈ ⎥⎝⎦.例4. (★)函数()()2arcsin 1f x x =-的反函数为 .解:()[]11sin,,2xfx x ππ-=+∈-,注意反函数的定义域为原函数的值域.例5. (★★)已知arcsin 1x ≥,则x 的取值范围是 . 解:[]sin1,1,因为arcsin y x =单调增函数.课堂检测1. (★)用反正弦函数值的形式表示下列各式的x :(1)sin x =32,x ∈,22ππ⎡⎤-⎢⎥⎣⎦; (2)sin x =-33 ,x ∈[],0π-.解:(1)因为x ∈,22ππ⎡⎤-⎢⎥⎣⎦,由定义,可知arcsin x =3;(2)在区间,02π⎡⎤-⎢⎥⎣⎦上,由定义,可知arcsin x =(-3)=arcsin -3;在区间,2ππ⎡⎤--⎢⎥⎣⎦上,由诱导公式,可知arcsin 3x π=-+,满足 sin x =-3.因此arcsin3x =或arcsin 3x π=-+. 2. (★)化简下列各式:(1)arcsin sin7π⎛⎫⎪⎝⎭; (2)()arcsin sin 2007o解:(1)因为7π∈[-2π,2π],设sin 7π=α,所以arcsin α=7π,即arcsin (sin 7π)=7π. (2)因为()()sin 2007sin 5360207sin 207sin 18027sin 27=⨯+==+=-o o o o o o o 3. (★)求函数()2arcsin 2f x x =的反函数()1f x -,并指出反函数的定义域和值域.解:设()2arcsin 2f x x =,则2y = arcsin 2x ,因为[]21,1x ∈-,arcsin 2x ,22ππ⎡⎤∈-⎢⎥⎣⎦,所以11,22x ⎡⎤∈-⎢⎥⎣⎦,[],y ππ∈-,根据反正弦函数的定义,得12sin ,sin 222y y x x ==,将,x y 互换,得反函数()11sin 22xf x -=,定义域是[],ππ-,值域是11,22⎡⎤-⎢⎥⎣⎦.4. (★)求()2arccos 2y x x =-的定义域与值域解:由2121x x -≤-≤,解出112x -≤≤,即1,12x ⎡⎤∈-⎢⎥⎣⎦,由于2211122488x x x ⎛⎫-=--≥- ⎪⎝⎭,即212,18x x ⎡⎤-∈-⎢⎥⎣⎦,因此10,arccos 8y π⎡⎤∈-⎢⎥⎣⎦.5. (★)函数arcsin y x =的定义域为 ,值域为 .解:[]1,1,0,2π⎡⎤-⎢⎥⎣⎦6. (★)函数arc cosy x=的值域为( ) A. 0,2π⎡⎫⎪⎢⎣⎭B. 0,2π⎛⎤⎥⎝⎦C. [)0,πD.(]0,π 解:因为01x <≤,所以0,2y π⎡⎫∈⎪⎢⎣⎭. 故选A.回顾总结:2 min.【让学生画出反正弦函数、反余弦函数、反正切函数的图像并指出定义域、值域、单调性、奇偶性等性质.】。
(整理)高三物理沪科版C专题力矩平衡综合专题4星级★★★★1
精锐教育学科教师辅导教案学员编号:年级:高三课时数: 3学员姓名:辅导科目:物理学科教师:授课类型C力矩平衡综合专题星级★★★★★★★★★★授课日期及时段教学内容i.基础引入<建议用时5分钟!>批注:部分知识点由学生填空完成,5分钟左右完成。
:静力学平衡的综合问题是高中物理力学部分的重点之一,也是高考必考的重要考点,尤其喜欢考察学生受力分析的能力,整体隔离等方法的应用。
力学平衡综合问题:1、物体的平衡物体的平衡有两种情况:一是质点静止或做匀速直线运动状态,物体的加速度为0 ;缓慢运动也可看做平衡状态。
二是物体不转动或匀速转动(此时的物体不能看作质点)。
2、共点力作用下物体的平衡共点力的平衡条件:在共点力作用下物体的平衡条件是合外力为零。
解题方法:处理平衡问题的基本方法;平行四边形法(合成法、分解法)。
相似三角形法、直角三角形法、正弦定理及余弦定理法;当物体在多个共点力作用下平衡时,往往采用正交分解法。
3、有固定转动轴的物体的平衡条件F (1)有固定转动轴的物体的平衡是指物体静止,或绕转轴匀速转动;(2)有固定转动轴物体的平衡条件是合力矩为零,即∑Fx=0,也就是顺时针力矩之和等于逆时针力矩之和。
4、平衡条件的选择(1)有固定转轴的物体一般用力矩平衡条件求解。
(2)一般物体处于平衡状态时,既满足共点力平衡条件又符合力矩平衡条件。
5、整体法和隔离法的选取(1)涉及多个物体时,若不涉及相互作用力,优先考虑整体法。
(2)涉及两物体相互作用力时用隔离法。
ii.例题讲解<建议用时20分钟!>:静力学部分的综合问题在高考中出现的情况较多,因为它既可以考察学生分析问题的能力,又可以和其他知识点进行结合考察学生知识的联系和综合的能力。
寻找足迹:力矩平衡综合问题的相关考题题型一:共点力和力矩平衡的整体隔离法例1.(★★★★)如图所示,球重为G ,半径为R ,木块重为W 、厚为h ,放置在竖直墙边,当对木块施以水平推力F 后,球刚好对水平地面压力为零,不计一切摩擦,求:(1)力F 的大小,(2)木块对地面的压力大小。
高三C专题+(三轮复习:椭圆3星)
专题:三轮回归课本 椭圆 (★★★)教学目标通过回归课本等,在第三轮复习中,查漏补缺,巩固“双基”。
【说明:要以“纲”为纲,以“本”为本,不要涉及太多超纲内容,不要去背诵过多小结论】知识梳理10 min.一、回归“考纲”二、回归“课本” 1. 椭圆的定义是什么?答:平面内到两个定点12,F F 的距离之和等于常数2a (122||a F F >)的点的轨迹。
这两个定点12,F F 叫做椭圆的焦点,两个焦点的距离12F F ,一般记作2c ,叫做焦距。
追问:如果距离之和必须小于或者等于两的定点间的距离(即22a c ≤),还是椭圆吗? 答:22a c >⇔轨迹:椭圆;22a c =⇔轨迹:线段12F F ; 22a c <⇔轨迹不存在;【说明:一定要让学生搞清楚椭圆的定义,注意到22a c >】 2. 椭圆的标准方程是如何推导的?答:直接法。
(建系)取线段12F F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系,则12,F F 的坐标分别为(,0)c -、(,0)c ;(设点)设动点是(,)P x y ;(写式)则满足122PF PF a +=;内容要求记忆性水平 解释性水平 探究性水平 曲线 与方程 ······ ······ ······ ······椭圆的标准方程和几何性质(无) (无)掌握椭圆的标准方程和几何性质。
重点讨论焦点在x 轴上椭圆的标准方程。
························(代入)即2222()()2x c y x c y a +++-+=;(化简)通过化简,得222221x y a a c+=-; 再令222b ac =-,则得22221x y a b+=(0)a b >>;(证明)略所以,焦点在x 轴上的椭圆的标准方程为22221x y a b +=(0)a b >>;同理,焦点在y 轴上的椭圆的标准方程为22221y x a b+=(0)a b >>【说明:要让学生尝试推导,同时要让学生明白“标准”的含义】3. 椭圆的相关概念与性质图像标准方程22221x y a b +=(0)a b >> 22221y x a b +=(0)a b >> 焦点坐标 1(,0)F c -、2(,0)F c1(0,)F c -、2(0,)F c顶点坐标 1(,0)A a -、2(,0)A a 、1(0,)B b -、2(0,)B b1(0,)A a -、2(0,)A a 、1(,0)B b -、2(,0)B b对称性 关于x 轴、y 轴成轴对称、关于原点成中心对称范围a x a -≤≤、b y b -≤≤ a y a -≤≤、b x b -≤≤c b a ,,的关系长轴12A A 长为2a 、短轴12B B 长为2b ,222a b c =+【说明:要让学生迅速完整地填写该表,特别注意对称性的推导、顶点、范围等】4. 如何判断点00(,)P x y 与椭圆2222:1x y C a b+=(0)a b >>的位置关系?答:(1)2200221x y a b +<⇔点P 在椭圆C 内;(2)2200221x y a b+=⇔点P 在椭圆C 上;(3)2200221x y a b+>⇔点P 在椭圆C 外5. 如何判断直线22:0(0)l Ax By C A B ++=+≠与椭圆2222:1x y C a b+=(0)a b >>的位置关系?答:(∆法)联立两方程,消元,得到一个一元二次方程;则(1)0∆>⇔直线l 与椭圆C 相交,弦长用弦长公式; (2)0∆=⇔直线l 与椭圆C 相切; (3)0∆<⇔直线l 与椭圆C 相离6. 其他【说明:根据学生情况,可以适当背诵一些小结论,例如参数方程、切线公式、焦点三角形的相关结论等】典例精讲25 min.【说明:由于是第三轮复习,因此一律采取先做后讲的形式,也不再设置巩固练习】 类型一:“求椭圆的标准方程”例1.(★★★)分别根据下列条件,求出椭圆的标准方程(1)一个顶点和一个焦点分别是直线360x y +-=与两坐标轴的交点; (2)过点(2,4)--,且长轴长是短轴长的2倍; (3)过点35(,)22-与点(3,5); (4)焦点在x 轴上,被直线220x y +-=所截得线段长5,且中点坐标是1(,)2m ;(5)水星运转的轨道是以太阳的中心为一个焦点的椭圆,轨道上离太阳中心最近的距离约为84.710⨯千米,最远的距离约为87.0510⨯千米。
《C语言程序设计》专题复习资料
7、编写一个程序,将用户输入的十进制整数转换成
十六进制数。
8、编写程序,把一个65---91之间的数据看成是字
符的ASCII码,输出对应的字符。
(用Do循环语句编写,且字符之间用空格分开)
9、输入一个英文句子,它仅包含单词与空格,试把其中的每一个单词的第一个字母设置为大写,其余字母设置为小写,输出结果。
(用数组编程)
10、
11、
12、
13、
14、
15、
16、
17
18、
19、
20、
21、
第二部分参考答案
参考资料:[1]程朔鹰等人民邮电出版社《C语言程序设计习题集》
[1]程朔鹰等人民邮电出版社《C语言程序设计习题集》
[1]程朔鹰等人民邮电出版社《C语言程序设计习题集》
[1]程朔鹰等人民邮电出版社《C语言程序设计习题集》
[1]程朔鹰等人民邮电出版社《C语言程序设计习题集》。
沪教版高三C专题(函数的周期性3星)
专题:函数的周期性(★★★)教学目标了解函数周期性的概念,会用定义判断函数的周期;能够利用函数的周期解决一些简单问题,理解函数对称性与周期性之间的关系。
【解读:了解函数周期性的意义,能根据已知的函数方程求函数的周期;能够判断函数的周期,求解类似求值、求解析式等函数的综合问题;了解函数的奇偶性、对称性与周期性之间的关系,能够利用函数的性质解决综合性问题】知识梳理15 min.1、周期函数的定义一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。
如无特别说明,我们后面一般所说的周期是指函数的最小正周期。
说明:1、周期函数定义域必是无界的。
2、周期函数不一定都有最小正周期。
【可让学生举出反例,随后教师给出例子:函数()()f x C C=为常数】 推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期;)2()2(Tx f T x f -=+,则)(x f 周期为T ;()f x 的周期为)(x f T ω⇔的周期为ωT。
2、常见周期函数的函数方程:(1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -=特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;(2)两个函数值之积定值型,即倒数或负倒数型若)()()(可正可负,C b a C x b f x a f ≠=+⋅+,则得)]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=(3)分式型,即函数)(x f 满足)()(1)(1)(b a b x f b x f a x f ≠+-++=+由)()(1)(1)(b a b x f b x f a x f ≠+-++=+得)2(1)2(b x f a x f +-=+,进而得1)2()2(-=+⋅+b x f a x f ,由前面的结论得)(x f 的周期是)(4a b T -=特例:()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; )(11)(x f a x f +-=+,则()x f 是以a T 3=为周期的周期函数.)(11)(x f a x f -=+,则()x f 是以a T 3=为周期的周期函数. )(11)(x f a x f -=+,则()x f 是以a T 3=为周期的周期函数.1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.1)(1)()(+-=+x f x f a x f ,则()x f 是以4T a =为周期的周期函数.1)(1)()(-+=+x f x f a x f ,则()x f 是以a T 2=为周期的周期函数.1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.(4)递推型:)()()(a x f x f a x f --=+(或)2()()(a x f a x f x f ---=),则)(x f 的周期T = 6a (联系数列) ()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;,,满足)0())(()()(≠=+=a x f g a x f x f y 其中)()(1x g x g =-,则)(x f y =是以a 2为周期的周期函数。
C语言函数专题
main( ) {float a,b; int c; scanf(“%f %f”,&a,&b); c=max(a,b); printf(“Max is %d\n”,c); }
输入 3.5
5.8
输出为:Max 输出为:Max is 5
max(x,y) /*函数类型隐含为 型*/ 函数类型隐含为int 函数类型隐含为 float x,y; { float z; z=x>y?x:y; return z; 返回值为float 型 返回值为 }
注意: 注意 1) 除main函数外,其它函数可相互调用 函数外 函数 其它函数可相互调用 main ( ) a d b L c x z
2)函数不可嵌套定义,函数间具有全局性、平行性 函数不可嵌套定义 函数间具有全局性 函数不可嵌套定义 函数间具有全局性、 3)函数分为有参函数和无参函数 函数分为有参函数和 函数分为有参函数 4)程序从 程序从main开始执行 最后又回到 开始执行,最后又回到 程序从 开始执行 最后又回到main函 函 数结束。 数结束。
函数分类及定义
无参函数的定义 无参函数的定义
函数名() 类型标识符 函数名 { 说明部分; 说明部分; 执行部分; 执行部分; } 类型标识符: 类型标识符 表示返回值 类型 void putstar( ) { printf(“\n**********\n”); printf( \n**********\n ); }
C语言程序概述 语言程序概述
void main() { Void printstar(); Void print_message(); Printstar(); Print_message(); Printstar(); } Void printstar() {printf(“********\n”);} Void print_message( ); {“hellow!”}
医学专题维生素C与健康
菌
堆积起来。假设这个角落在眼部微循环这
和
里,那么眼部就会发炎。所谓发炎就是指
病
细菌感染。所谓细菌感染不是在于细菌感
毒
染了你,而是在于感染的这个部位提供了
大
大量的营养给细菌。什么营养?就是死细
量
胞。
的
营 养
第九页,共二十一页。
细菌是不能伤害你的正常细胞的。它只能去伤 害已经(yǐ jing)受到损伤的或者已经(yǐ jing)死亡的细胞 才能做它的养分。
交
一口气制造出5万毫克的C出来。 几乎所有的动物都可以制造C,唯独有一个系列
给
的动物,就是属于灵长类的动物,包括大猩猩、 猿猴、猴子、人类。这个群体不会制造C。
谁
?
第三页,类人
么
猿、猿猴、人类逐渐的选择了以
人
蔬菜、水果为主要食物。
类
人类自己不会制造C,可是(kěshì)水
第十四页,共二十一页。
1、保鲜
2、最重要的你们不知道,你们没卖过水 果。如果一箩筐的橙,其中一个烂了,一 夜之间全部烂掉
把我们吃的米放在水里面,倒入一个 很强烈的氧化物叫做碘酒或高锰酸钾, 这2个东西毒性都很大,要稀释来用。 为什么碘酒可以(kěyǐ)杀菌呢?它连细菌 全部都能干掉的,非常厉害。现在把 碘酒放在水里面,搅匀,看一下有什 么反应?马上就变成黑米,这个现象 叫做氧化。所以你平时吃了不少毒素, 胃、肠里面变成什么颜色你看不到, 可是我们每天都接触广大的氧化物、 色素、香料。
如果你学会从饮食当中补充一些营养素,可以让你避免许许多多让 你烦恼痛苦的疾病。我认为(rènwéi)这是一个习惯对我们现代人来 讲是很有意义的。当然是不是一定要补充C?我认为(rènwéi)你活在 40~50年代,如果你有机会大量的去吃很多新鲜的水果、甚至把水 果当成主食。那么也许你不需要额外的补充C。可是现在可就困难, 现在一般人每天吃2~3个水果所带来的C,顶多有50~60毫克,这样 的C的含量,你只需要吓一跳就消耗完了;你只需要一紧张就消耗 完了;你只需要一发呆、迟疑,感觉到压力的存在,稍微持续一小 段时间就消耗完了;你只需要接触病毒、细菌、脏东西,很快就消 耗完了。所以这是远远不够的。现代空气污染、环境污染受到很大 的破坏,加上很多人长时间在疲劳状态,这个时候,当你疲劳的时 候是特别容易被感染的。因为疲劳意味着身体死细胞会在体内堆积, 不能够及时进行新陈代谢。
沪教版高三C专题(椭圆的定义、方程及性质专题4星)
1专题:椭圆的定义、方程与性质应用(★★★★)教学目标1.理解掌握椭圆的定义、标准方程以及几何性质;2.能灵活运用定义性质解决有关轨迹、面积以及最值问题.知识梳理4 min.1.椭圆的定义:平面内到两个定点21 F F 、的距离和等于常数)>(2122F F a a 的点的轨迹叫做椭圆.这两个定点21 F F 、叫做椭圆的焦点,两个焦点21F F 的距离叫做焦距.(1)当212F F a >时,动点轨迹是椭圆; (2)当212F F a =时,动点轨迹是线段21 F F ; (3)当212F F a <时,动点轨迹不存在. 2.椭圆的标准方程: 类型标准方程焦点坐标之间的关系、、c b a焦点在x 轴上)0(12222>>b a by a x =+ )0,( , )0,(21c F c F - 222c b a +=焦点在y 轴上)0(12222>>b a bx a y =+),0( , ),0(21c F c F -3.常用的解题思想和方法:①函数方程思想、对称思想和分类讨论思想;②定义法:利用椭圆的定义解题,使求解过程更简捷;③点差法:利用椭圆弦的端点坐标、中点坐标、弦所在直线的斜率的相互关系解题,是解决中点弦问题的简捷方法.2典例精讲33 min.例1(★★★★)已知椭圆22195x y +=的焦点为1F 、2F ,在直线60L x y +-=:上找一点M .求以1F 、2F 为焦点,通过点M 且长轴最短的椭圆方程.巩固练习(★★★)已知点P 是交点在x 轴上的椭圆上一点,点P 到两焦点1F 、2F 的距离分别是43和23,12F PF ∠的平分线交x 轴于点1,0Q ().求椭圆C 的标准方程.例2(★★★★)已知椭圆221164x y +=. (1)若它的弦AB 被1,1M ()平分,求AB 所在直线方程; (2)求过点1,1M ()的弦的中点P 的轨迹方程.巩固练习(★★★★)已知椭圆2222x y +=,过点()2,1A 作直线与椭圆相交于P 、Q 两点.求PQ 中点的轨迹方程.例3(★★★★)已知椭圆22221(0)x y a b a b+=>>,P 为椭圆上任意一点,且12F PF θ∠=.求△12F PF 的面积.巩固练习(★★★★)1.椭圆,斜率为1的直线交椭圆2214x y +=于A 、B 两点,O 为坐标原点.求△AOB 面积的最大值及此时直线方程.(★★★)2.过点(1,0)P -作倾斜角为3π的直线L 与椭圆22:24C x y +=交于A 、B 两点. (1)求AB ;(2)若右焦点为1F ,求△1AF B △的面积.回顾总结3 min.椭圆的定义、方程是什么?椭圆有哪些性质?解题的思想方法是什么?3。
高三C专题(半角公式2星)
专题:半角公式 ★★教学目标了解半角的正弦、余弦、正切的推导过程,体会三角变换的思想方法。
【解读:利用半角的正弦、余弦、正切公式进行三角式的求值、化简、证明。
】知识梳理3 min.半角公式:1cos 1cos sin,cos2222αααα-+=±=±1cos sin 1cos tan21cos 1+cos sin ααααααα--=±==+【半角是相对而言的(α是2α的半角,4α是2α的半角),要辩证地看待半角。
】 典例精讲34 min.例1. (★★)已知1cos 3α=,且[,2]αππ∈,则sin 2α= ;cos 2α= ;tan 2α= ; 解:21cos 1sin223αα-==,21cos 2cos 223αα+==,222sin 12tan 22cos 2ααα== 由[,2]αππ∈,则[,]22αππ∈,位于第二象限, 故3sin2α=,6cos 2α=2tan 2α= 例2. (★★)(1)已知3cos ,(,0),52παα=∈-求tan 2α的值。
(2)已知3sin ,5θ=且θ是第二象限角,求cos ,sin ,tan 222θθθ的值。
解:(1)(方法一)由(,0)2πα∈-,则(,0)24απ∈-,位于第四象限,tan<02α1cos 1tan21cos 2ααα-==-+;(方法二)由3cos ,(,0)52παα=∈-,位于第四象限,则4sin 5α=- sin 1tan 21cos 2ααα==-+(2)θ是第二象限角,2θ是第一或第三象限角,故costan 3222θθθ===【正切函数的半角公式有三个:sin 1cos tan21+cos sin ααααα-===。
要灵活根据题目选择更加适合的方法。
本题选用(方法二)方便一些。
】 例3. (★★★)已知12sin 13a =,4sin()5αβ+=,α与β均为锐角,求cos β2.解:∵π02α<<,∴5cos 13α==.又∵π02α<<,π02β<<,∴0αβπ<+<.若π02αβ<+<, ∵sin()sin αβα+<,∴αβα+<不可能.故π2αβπ<+<.∴3cos()5αβ+=-.3541233cos cos[()]cos()cos sin()sin 51351365a βαβααβααβ∴=+-=+++=-⋅+⋅=, ∵π02β<<,∴024βπ<<.故cos 65β==2. 【本题难点在于利用已知条件,通过凑角求β相关的三角比。
高三C专题(正弦函数和余弦函数的图像与性质4星)
专题:正余弦函数的图像与性质 ★★★★教学目标1. 形成正弦函数和余弦函数的概念并理解其意义;2. 掌握正弦函数和余弦函数的奇偶性、周期性、单调性、最大值和最小值等性质.【重点掌握两函数sin ,cos y x y x ==的四大性质(奇偶性、周期性、单调性、最大值和最小值),特别是正弦函数和余弦函数的周期性与单位圆的对应.】知识梳理6 min.1. 正弦函数的图像与性质1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x正弦函数的定义域是__________,最大值是____,最小值是____,周期是____, 递增区间是_____________________,递减区间是______________________. 对称轴是______________,对称中心是_____________;答案:定义域是x R ∈,最大值1,最小值1-,周期2π,递增区间是(2,2),22k k k Z ππππ-++∈,递减区间是3(2,2),22k k k Z ππππ++∈. 对称轴,2x k k Z ππ=+∈,对称中心(,0),k k Z π∈, 2. 余弦函数的图像与性质1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x余弦函数的定义域是______,最大值是______,最小值是____,周期是____, 递增区间是_____________________,递减区间是______________________. 对称轴是__________________,对称中心是____________;答案:定义域是x R ∈,最大值1,最小值1-,周期2π,递增区间是(2,2),k k k Z πππ-+∈,递减区间是(2,2),k k k Z πππ+∈;对称轴,x k k Z π=∈,对称中心(,0),2k k Z ππ+∈.典例精讲32 min.例1. (★★)函数x a y π2sin =)0(>a 的最小正周期为2,则实数_______=a . 解:12变式练习:1. (★★★)函数x a y π2sin =的最小正周期为2,则实数_______=a . 解:12±2. (★★★) “12a =”是函数22cos 2sin 2y ax ax =-的最小正周期为π的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 解:A【题目设置的目的是让学生充分理解公式2|T πω=中的绝对值符号.】 例2. (★★★)函数44sin cos y x x =+的最小正周期是 解:4422222sin cos (sin cos )2sin cos y x x x x x x =+=+- 211cos 431sin 21(1cos 4)2444x x x =-=--=+ 故最小正周期为 2T π=.巩固练习:(★★★)函数44cossin y x x ππ=-的最小正周期T = .解:44cos sin cos 2y x x x πππ=-=,故最小正周期为1例3. (★★★)若动直线x a =与函数x x f sin )(=和x x g cos )(=的图像分别交于N M ,两点,则MN 的最大值为 .解:|sin cos |2sin()|24MN a a a π=-=-≤2.【乍看本题与数形结合有关,其实不然,本题用代数的方法更为简单.】 巩固练习:1. (★★★)同一坐标系中,函数3cos()([0,2])22x y x ππ=+∈的图像和直线12y =的交点个数有_____个;解:两个,分别为5,33ππ 2. (★★★★)已知函数x x f πsin )(=的图像的一部分如下方左图,则下方右图的图像所对应的解析式为( )A .)21-B .(C .2(-xD .)212(-=x f y 解:B3. (★★★)(选)函数sin(2)y x φ=+的图像关于y 轴对称,则φ= 解:,2k k Z πφπ=+∈.【函数的图像关于y 轴对称,等价转化为偶函数.】例4. (★★★★)定义函数sin , sin cos ()cos , sin cos x x xf x x x x ≥⎧=⎨<⎩,给出下列四个命题:(1) 该函数的值域为[1,1]-; (2) 当且仅当2()2x k k Z ππ=+∈时,该函数取得最大值;(3) 该函数是以π为最小正周期的周期函数; (4) 当且仅当322()2k x k k Z ππππ+<<+∈时,()0f x <. 上述命题中正确的个数是 ( )A 1个 B.2个 C.3个 D.4个 解:A. 错误的序号为:(1)(2)(3); 正确的序号为:(4) 变式训练:(★★★★)定义函数sin , sin cos ()cos , sin cos x x xf x x x x≤⎧=⎨>⎩,根据函数的图像与性质填空: (1) 该函数的值域为_______________;(2) 当且仅当________________________时,该函数取得最大值; (3) 该函数是以________为最小正周期的周期函数;(4) 当且仅当______________________________时,()0f x >.解:(1) 2[1,]2-; (2) 2,4x k k Z ππ=+∈; (3) 2π; (4) 22()2k x k k Z πππ<<+∈ 回顾总结:2 min.-1yx0 11-1 yx-1 10.5 1-1本节课你有哪些收获和感悟?。
高三C专题(三角函数的图像与性质3星)
专题:函数sin()y A x ωϕ=+的图像与性质★★★教学目标1. 会求形如sin()y A x ωϕ=+一般正弦函数的周期,进一步领会分解与组合的思想方法;2. 在学习基本三角函数的基础上,对一般正弦函数的图像和性质进行研究。
【解读:掌握函数sin y x =的图像经过变换得到函数sin()y A x ωϕ=+图像的过程,熟练掌握函数sin y a x b =+;sin cos y a x b x =+;22sin sin cos cos y a x b x x c x =++等转化为sin()y A x ωϕ=+的方法,从而进一步研究他们的性质:单调性,对称性,周期性、最值等。
】知识梳理8 min.1. 熟练掌握正弦函数、余弦函数、正切函数的性质及图形特点: 三角函数 sin y x =cos y x =tan y x =定义域 RR值域 [1,1]-[1,1]-R奇偶性 奇函数偶函数奇函数周期性2π2ππ单调性在2222k k ππππ⎡⎤-+⎢⎥⎣⎦,上递增在32222k k ππππ⎡⎤++⎢⎥⎣⎦,上递减 在[]22k k πππ-,上递增 在[]22k k πππ+,上递减22k k ππππ⎛⎫-+ ⎪⎝⎭,递增最值22x k ππ=+时,最大值122x k ππ=-时,最小值1-2x k π=时,最大值12x k ππ=+时,最小值1- 无最大值 无最小值图像2. 周期函数的定义: .答:周期函数的定义:对于函数(),y f x x D =∈,如果存在非零常数T ,使()()f x T f x +=对于D 中让每一个x 都成立,那么()f x 是周期函数,T 是它的一个周期. 3. 函数图形的变换: 途径一:先平移后伸缩sin y x =→函数图像上点的横坐标 纵坐标变为原来的 倍可得到: sin y A x =→函数图像向 平移 个单位可得到:()sin y A x ϕ=+→函数图像点的纵坐标 ,横坐标变为原来的 倍可得到:()sin y A x ωϕ=+或sin y x =→函数图像上点的横坐标 ,纵坐标变为原来的 倍可得到:途径二:先伸缩后平移sin y x =→函数图像点的纵坐标 ,横坐标变为原来的 倍可得到: sin y A x ω=→函数图像向 平移 个单位可得到:()sin y A x ωϕ=+.解:函数图像的变换: 不变;A ;左;ϕ;不变;1ω;不变;A ;不变;1ω;左;4ω【利用图像的变换作图像时,提倡先平移后伸缩,但先伸缩后平移也经常出现. 无论哪种变形,请切记每一个变换总是对字母x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。
小六C专题动词时态(一) 王芳
精锐教育学科教师辅导讲义学员编号:NJ103384169年级:小六课时数:3 学员姓名:张宇慧辅导科目:英语学科教师:王芳授课C一般过去时类型授课日9月25日15:00--17:00期时段教学内容看看下面图片,你能猜到本单元将要讲解哪些内容吗?批注:1. 感受一下上面几幅图所要表达的含义;2. 让学生了解天气该如何去表达。
一、专题精讲知识点一:重点词汇sunny 晴朗的cloudy 多云的windy 有风的rainy 多雨的become 变为,变成lose 丢失cloud 云rain 雨find 找到,发现wet 湿的,潮湿的show 展览,展示interesting 有趣的weather 天气high 在高处honey 蜂蜜drink 饮料ant 蚂蚁bee 蜜蜂知识点二:重点短语in the morning 在早上 a parrot show 一只鹦鹉表演by bike 骑自行车in the sky 在天上fly a kite 放风筝well done 干得好become windy and cloudy 变成多风和多云的be time for lunch 吃午饭的时间some dumplings 一些饺子some bread and honey 一些面包和蜂蜜some drinks 一些饮料some bees and ants 一些蜜蜂和蚂蚁black clouds in the sky 空中满是黑云fly away 飞离pick three cards 挑选三张卡片lose my new bike 我的新自行车丢了watch a film 看一场电影have a picnic 去野餐hold onto 抓紧知识点三:重点句型1. What a day!难忘的一天。
.2. It was sunny/windy/cloudy/rainy.天气是晴朗的、有风的、多云的、下雨的。
3. SuHai,Mike,LiuTao and I went to the park by bike.我和苏海、迈克、刘涛骑自行车去公园.4. We saw some interesting pariots.我们看到了很多有趣的鹦鹉.5. Then,the weather became windy and cloudy.然后,天气变的有风并且多云。
沪教版高三C专题(二轮复习-函数、数列与不等式4星)
专题:函数、数列与不等式★★★★教学目标通过本节内容的学习,提升分析问题与解决问题的能力以及综合运用知识的能力.知识梳理1 min函数、数列与不等式综合问题不仅题型灵活新颖,富有时代气息,同时能够很好地揭示知识之间的内在联系,更注重思想与方法的相互交融,特别是对知识网络交汇点的揭示和应用,更应加以深入研究.典例精讲38 min例1.(★★★★)已知函数()33f x x =-+,2[,1]3x ∈. (1)求()f x 的反函数()g x ;(2)2在数列{}n a 中,111,()(2,)n n a a g a n n N *-==≥∈,求证:数列34n a ⎧⎫-⎨⎬⎩⎭是等比数列,并求lim n n a →∞的值;(3)解关于n 的不等式79n a ≥. 解:(1)∵2[,1]3x ∈,∴()f x 的值域为[0,1].由33y x =-+,得13y x =-. ∴()1(01)3xg x x =-≤≤. (2)11()13n n n a a g a --==-,令11()3n n a a λλ-+=-+,则13λλ--=,解得34λ=-,1313()434n n a a --=--,即数列3{}4n a -是首项为14,公比为13-的等比数列.∴1311()()443n n a n N -*=+-∈,13113lim lim[()]4434n n n n a -→∞→∞=+-=(3)13117()4439n n a -=+-≥,即11().()327n -≤-*显然,当n 是偶数时,不等式()*不成立;当n 是奇数时,不等式()*可化为311()(),333nn ≥∴≤.即原不等式的解集为1n =或3n =.巩固练习:1.(★★★★)已知函数2()((f x x x =≥.(1)求反函数1()fx -,并指出其定义域;(2)正数数列{}n a 的前n 项和为n S ,且111()(2)n a fS n --==≥,求数列{}n a 的通项;(3)若2211()2n nn n n a a b n N a a +++=∈,求12lim()n n b b b n →∞+++-L 的值.解:(1)令2(y x =-,∵x ≥()f x 的值域为[0,)+∞,∴x =x =变换x ,y,得y =,∴反函数1()f x -=[0,)+∞.(2)当2n ≥==,∴数列为首项和公差的等差数列.(n =-=.∴22n S n =.当2n ≥时,22122(1)42n n n a S S n n n -=-=--=-;当1n =时,12a =也适合,从而{}n a 数列通项为:42()n a n n N *=-∈.(3)∴121lim()lim(1)121n n n b b b n n →∞→∞+++-=-=+L .∴12111111(11)(1)(1)1335212121n b b b n n n n n +++-=+-++-+++--=--++L L . ∴121lim()lim(1)121n n n b b b n n →∞→∞+++-=-=+L . 例2.(★★★★)已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈都满足:()()()f a b af b bf a ⋅=+.(1) 求(0),(1)f f 的值;(2) 若(2)(2)2,()n n f f u n N n-*==∈,求数列{}n u 的前n 项的和n S . 解:(1)(0)(00)0(0)0(0)0,f f f f =⋅=⋅+⋅=由(1)(11)1(1)1(1)f f f f =⋅=⋅+⋅,得(1)0f =. (2)当0ab ≠时,()()()f ab f b f a ab b a=+,令()()f x g x x=,则()()(),g a b g a g b ⋅=+ 故1()(),()()()()nnnnnn g a ng a f a a g a na g a na f a -=∴=⋅==,∴1(2)111()()22n n n f u n f n n --==⋅⋅⋅. 又1111(2)2,0(1)(2)2()(2)2()1,2222f f f f f f ===⨯=+=+11()22f =-,111()()()22n n u n N -*∴=-∈ ∴2111[1()]1111122(1)()1()12222212n n n n S n N *---=-++++==-∈-L . 巩固练习:1.(★★★★)已知函数()f x 满足()()()f x y f x f y +=⋅且1(1)2f =. (1) 当n N *∈时,求()f n 的表达式;(2) 设(),n a nf n n N *=∈,求证:122n a a a +++<L ;(3) 设12(1),,()n n n nf n b n N S b b b f n *+=∈=+++L ,求12111lim()n n S S S →∞+++L .解:(1)1111()[(1)1](1)()(1)()()222n n f n f n f n f n N -*=-+=-==⋅=∈L . (2)'2311111(),2()3()()22222n nn n a n S n =⋅=++++L ①'234111111=()2()3()()22222n n S n +++++L ② -①②得'11122()2()222n n n S n +=--<.(3)(1)(1),()24n n nf n n n n b S f n ++===.12111111111lim()lim 4[(1)()()]lim 4(1)422311n n n n S S S n n n →∞→∞→∞+++=⋅-+-++-=-=++L L回顾总结1 min1.在解决综合性能力题的时候要注意分析题目的条件,然后利用所学的知识点去加以解决.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图论:1062* 昂贵的聘礼枚举等级限制+dijkstra /problem?id=10621087* A Plug for UNIX 2分匹配/problem?id=10871094 Sorting It All Out floyd 或拓扑/problem?id=10941112* Team Them Up! 2分图染色+DP/problem?id=11121125 Stockbroker Grapevine FLOYD/problem?id=11251135 Domino Effect 最短路/problem?id=11351149* PIGS 网络流/problem?id=11491161* Walls floyd/problem?id=11611201 Intervals 差分约束/problem?id=12011236* Network of Schools 强联通/problem?id=12361251 Jungle Roads MST/problem?id=12511273 Drainage Ditches 最大流/problem?id=12731274 The Perfect Stall 2分匹配/problem?id=12741275* Cashier Employment 差分约束/problem?id=12751325 Machine Schedule 2分匹配(最小点覆盖)/problem?id=13251364 King 差分约束/problem?id=13641422 Air Raid 2分匹配/problem?id=14221459 Power Network 网络流/problem?id=14591466 Girls and Boys 2分图(最大独立团)/problem?id=14661469 COURSES 2分匹配/problem?id=14691502 MPI Maelstrom floyd/problem?id=15021511* Invitation Cards 最短路径/problem?id=11511637* Sightseeing tour 混合图欧拉回路-网络流/problem?id=16371716 Integer Intervals 差分约束/problem?id=17161724* ROADS 最短路-拆点/problem?id=17241780* Code 欧拉回路/problem?id=17801789 Truck History 最小生成树/problem?id=17891797 Heavy Transportation 最小生成树/problem?id=17971847 Tram 最短路/problem?id=18471904* King's Quest 强联通/problem?id=19041949 Chores 最短路/problem?id=19492060 Taxi Cab Scheme 2分匹配/problem?id=20602075 Tangled in Cables 最小生成树/problem?id=20752112 Optimal Milking 网络流/problem?id=21122125 Destroying The Graph 最小割/problem?id=21252135 Farm Tour 费用流/problem?id=21352139 Six Degrees of Cowvin Bacon floyd/problem?id=21392226 Muddy Fields 2分匹配/problem?id=22262230 Watchcow 欧拉回路/problem?id=22302239 Selecting Courses 2分匹配/problem?id=22392267* From Dusk till Dawn or: Vladimir the Vampire 最短路/problem?id=22672289 Jamie's Contact Groups 网络流/problem?id=22892337 Catenyms 欧拉通路/problem?id=22372349 Arctic Network 最小生成树/problem?id=23492369 Genealogical tree 拓扑序/problem?id=23692387 Til the Cows Come Home 最短路/problem?id=23872391* Ombrophobic Bovines 最大流/problem?id=23912394 Checking an Alibi 最短路/problem?id=23942396* Budget 网络流/problem?id=23962421* Constructing Roads 最小生成树/problem?id=24212446 Chessboard 2分匹配/problem?id=24462455 Secret Milking Machine 网络流/problem?id=24552457 Part Acquisition 最短路/problem?id=24572472 106 miles to Chicago 最短路/problem?id=24722485 Highways 最小生成树/problem?id=24852516 Minimum Cost 费用流/problem?id=25162536 Gopher II 2分匹配/problem?id=25362553* The Bottom of a Graph 强联通/problem?id=25532570 Fiber Network flo/problem?id=25702584 T-Shirt Gumbo 网络流/problem?id=25842594* Treasure Exploration 2分匹配/problem?id=25942723 Get Luffy Out 2-sat/problem?id=27232724 Purifying Machine 2分匹配/problem?id=27242728 Desert King 最优比例生成树/problem?id=27282749* Building roads 2-sat/problem?id=27492762 Going from u to v or from v to u? 强联通/problem?id=27622949* Word Rings 差分约束/problem?id=29492983 Is the Information Reliable? 差分约束/problem?id=29832987 Firing 最小割(求解正确性??)/problem?id=29873020 Antenna Placement 2分匹配/problem?id=30203041 Asteroids 2分匹配/problem?id=30413072* Robot 最短路/problem?id=30723160 Father Christmas flymouse 强联通/problem?id=31603164 Command Network 最小树形图/problem?id=31643169 Layout 差分约束/problem?id=31693177 Redundant Paths 双联通分量/problem?id=31773189 Steady Cow Assignment 网络流/problem?id=31893204 Ikki's Story I - Road Reconstruction 最大流/problem?id=32043207 Ikki's Story IV - Panda's Trick 2分图/problem?id=32073216 Repairing Company 2分匹配/problem?id=32163228 Gold Transportation 网络流/problem?id=32283255 Roadblocks 最短路/problem?id=32553259 Wormholes 最短路/problem?id=32593268 Silver Cow Party 最短路/problem?id=32683275 Ranking the Cows floyd/problem?id=32753281 Dining 最大流/problem?id=32813308 Paratroopers 最小割/problem?id=33083310 Caterpillar/problem?id=33103311 Hie with the Pie floyd/problem?id=33113328 Cliff Climbing 最短路/problem?id=33283343 Against Mammoths 2分匹配/problem?id=33433352 Road Construction 桥/problem?id=33523439 Server Relocation 最短路/problem?id=34393463 Sightseeing 最短路/problem?id=34633469 Dual Core CPU 最小割/problem?id=34693487 The Stable Marriage Problem 稳定婚姻/problem?id=34873522 Slim Span 最小生成树/problem?id=35223594 Escort of Dr. Who How 最短路/problem?id=35943615 Cow Hurdles 最短路/problem?id=36153623 Wedding 2-sat/problem?id=36233653 Here We Go(relians) Again 最短路/problem?id=36533659* Cell Phone Network 最小支配集/problem?id=36593660 Cow Contest 拓扑/problem?id=33603662* Telephone Lines 最短路/problem?id=36623678 Katu Puzzle 2-sat/problem?id=36783683* Priest John's Busiest Day 2-sat求解/problem?id=36833687 Labeling Balls 差分约束或拓扑/problem?id=36873692 Kindergarten 2分匹配/problem?id=36923694 Network 无向图缩点/problem?id=3694poj DP专辑(转)打星号的比较经典,或是算法比较好的题目1014* Dividing 半个背包,注意中断/problem?id=10141036 Gangsters/problem?id=10361038* Bugs Integrated, Inc. 状态压缩/problem?id=10381050 To the Max 最大子矩形/problem?id=10501080 Human Gene Functions/problem?id=10801088 滑雪/problem?id=10881141* Brackets Sequence 括号序列/problem?id=11411157 LITTLE SHOP OF FLOWERS /problem?id=1157 1159* Palindrome/problem?id=1159 1170 Shopping Offers/problem?id=1170 1191 棋盘分割/problem?id=1191 1276 Cash Machine/problem?id=1276 1322 Chocolate/problem?id=1322 1458 Common Subsequence /problem?id=1458 1661 Help Jimmy/problem?id=1661 1745 Divisibility/problem?id=1745 1770 Special Experiment/problem?id=1770 1828 Monkeys' Pride/problem?id=1828 1836 Alignment/problem?id=1836 1837 Balance/problem?id=1837 1848* Tree/problem?id=1848 1862 Stripies/problem?id=1862 1925* Spiderman/problem?id=1925 1946* Cow Cycling/problem?id=1946 1948 Triangular Pastures/problem?id=1948 1952 BUY LOW, BUY LOWER /problem?id=1952 1985 Cow Marathon/problem?id=1985 2057* The Lost House/problem?id=2057 2137 Cowties/problem?id=2137 2181 Jumping Cows/problem?id=2181 2184 Cow Exhibition/problem?id=2184 2192 Zipper/problem?id=2192 2231 Moo Volume/problem?id=2231 2241 The Tower of Babylon /problem?id=2241 2250 Compromise/problem?id=2250 2264 Advanced Fruits/problem?id=2264 2287* Tian Ji -- The Horse Racing/problem?id=22872353 Ministry/problem?id=23532385 Apple Catching/problem?id=23852392 Space Elevator/problem?id=23922404 Jogging Trails/problem?id=24042411 Mondriaan's Dream/problem?id=24112475* Any fool can do it/problem?id=24752479 Maximum sum/problem?id=24792486* Apple Tree/problem?id=24862559* Largest Rectangle in a Histogram /problem?id=25592593 Max Sequence/problem?id=25932663 Tri Tiling/problem?id=26632677* Tour 双调欧几里德TSP/problem?id=26772726 Holiday Hotel/problem?id=27262817* WordStack/problem?id=28172923 Relocation/problem?id=2923 2938* Economic Phone Calls /problem?id=2938 2948 Martian Mining/problem?id=2948 3036 Honeycomb Walk/problem?id=3036 3042 Grazing on the Run/problem?id=3042 3046 Ant Counting/problem?id=3046 3088 Push Botton Lock/problem?id=3088 3132 Sum of Different Primes /problem?id=3132 3133* Manhattan Wiring 插头dp /problem?id=3133 3140 Contestants Division /problem?id=3140 3171 Cleaning Shifts/problem?id=3171 3184 Finicky Grazers/problem?id=3184 3186 Treats for the Cows/problem?id=3186 3211 Washing Clothes/problem?id=3211 3230 Travel/problem?id=32303254 Corn Fields/problem?id=3254 3257 Cow Roller Coaster /problem?id=3257 3265 Problem Solving/problem?id=3265 3267 The Cow Lexicon/problem?id=3267 3272 Cow Traffic/problem?id=3272 3298 Antimonotonicity/problem?id=3298 3342 Party at Hali-Bula/problem?id=3342 3345 Bribing FIPA/problem?id=3345 3356 AGTC/problem?id=3356 3459 Projects/problem?i=3459 3519 Minimal Backgammon /problem?id=3519 3616 Milking Time/problem?id=3616 3638 Moogle/problem?id=3638 3666 Making the Grade/problem?id=3666 1195 Mobile phones 树状数组/problem?id=11951521 Entropy Huffman/problem?id=15211703 Find them, Catch them 并查集/problem?id=17031785 Binary Search Heap Construction/problem?id17851794 Castle Walls 逆序对/problem?id=17941961 Period KMP重复因子/problem?id=19611984* Navigation Nightmare 并查集+坐标平移/problem?id=19841986* Distance Queries LCA/problem?id=19861988* Cube Stacking 并查集应用/problem?id=19881990* MooFest 线段树/problem?id=19902010* Moo University - Financial Aid 最大堆-最小堆/problem?id=20102182 Lost Cows 线段树/problem?id=21822183 Bovine Math Geniuses hash/problem?id=21832188 Cow Laundry 逆序对/problem?id=21882227 The Wedding Juicer 堆+floodfill/problem?id=22272236 Wireless Network 并查集/problem?id=22362266* Quadtree 递归构造四叉树/problem?id=22662269* Friends 表达式/problem?id=22692270 Quadtree II or: Florida Jones strikes back 将2266反之/problem?id=22702299 Ultra-QuickSort 归并排序/problem?id=22992352 Stars 树状数组/problem?id=23522395 Out of Hay 并查集/problem?id=22952482 Stars in Your Window 静态2叉树/problem?id=24822513 Colored Sticks 并查集/problem?id=25132524 Ubiquitous Religions 并查集/problem?id=25242528 Mayor's posters 线段树/problem?id=25282567 Code the Tree/problem?id=25672750* Potted Flower 线段树/problem?id=27502777 Count Color 线段树/problem?id=27772796 Feel Good RMQ/problem?id=27962823 Sliding Window 堆或双端队列/problem?id=28232828 Buy Tickets 线段树/problem?id=28282886* Who Gets the Most Candies? 线段树/problem?id=28862892* Tunnel Warfare 树状数组/problem?id=28923214* Heap 后序遍历,每个节点减去相应sub保证属性,然后对遍不下降序列/problem?id=32143253 Fence Repair Huffman/problem?id=32533263 Tallest Cow 线段树/problem?id=32633274* Gold Balanced Lineup hash/problem?id=32743277 City Horizon 线段树/problem?id=32773320 Jessica's Reading Problem 队列操作或最小堆/problem?id=33203321* Apple Tree 树状数组/problem?id=33213332 Parsing Real Numbers DFA/problem?id=33323344 Chessboard Dance 队列模拟/problem?id=33443349 Snowflake Snow Snowflakes hash(or 暴力)/problem?id=33493437 Tree Grafting dfs树构造/problem?id=34373461 Oulipo KMP/problem?id=34613468 A Simple Problem with Integers 线段树区间更新,懒操作/problem?id=34683631 Cuckoo Hashing 并查集/problem?id=36313667 Hotel 线段树/problem?id=36673690 Constellations trie匹配/problem?id=36903695 Rectangles 矩阵切割/problem?id=3695。