20第二十章 生物膜
生化知识点整理
生化部分:第一章糖类1.糖类是多羟醛、多羟酮或其衍生物,或水解时能产生这些化合物的物质。
2.糖类根据碳原子数分为丙糖、丁糖、戊糖、己糖;又根据聚合度可以分为单糖、寡糖、多糖。
3.糖类生物学作用:作为生物体的结构成分;作为生物体内的主要能源物质;在生物体内转变为其他物质;作为细胞识别的信息分子。
4.旋光异构:一种异构体使平面偏振光沿顺时针方向偏转,称为右旋型异构体,或D型异构体。
反之,L型异构体。
5.如果在投影式中(离羰基最远的手型C*)碳原子上-OH具有与D(+)-甘油醛C2-OH相同的取向,称为D型糖,反之则为L型糖。
羟甲基在环面上为D,下为L型。
6.许多单糖在水溶液中有变旋现象,原因是单糖分子内醇基与醛基或酮基发生可逆亲核加成,形成环状半缩醛或半缩酮。
经常发生在C5羟基和C1醛基形成六元环吡喃糖,或C5羟基和C2酮基之间形成五元环呋喃糖。
7.在标准定位的Haworth式中D-单糖异头碳的羟基在氧环面下方为alpha-异头物,上方为beta-异头物。
8.几乎所有的单糖及其衍生物都有旋光性;除了甘油醛微溶于水,其他单糖易溶于水。
9.蔗糖,无异构体,无变旋现象,无还原性,不能成脎。
10.乳糖,两种异构体,有变旋现象,具有还原性,能成脎。
11.麦芽糖,变旋现象在水溶解中形成alpha、beta 和开链混合物,具有还原性,能成脎。
12.多糖,非还原糖,无变旋现象,无甜味,一般不能结晶。
13.糖蛋白及其糖链:糖链的生物学功能——糖链在糖蛋白新生肽链折叠和缔合中的作用,糖链影响糖蛋白的分泌和稳定性,糖链参与分子识别和细胞识别(糖链与血浆中老蛋白的清除,糖链与精卵识别,糖链与细胞黏着);糖链与糖蛋白的生物活性——糖链在酶的新生肽链折叠、转运和保护等方面普遍起作用,但糖链与成熟酶活性的关系因酶而异。
糖蛋白激素主要有腺垂体促激素类(FSH、LH、TSH和EPO等)。
每分子lgG平均含糖链三条,其中两条存在于Fc 段每条重链,其余位于Fab 段的高变异区。
2019华南理工食品科学与工程考研865有机化学与874生物化学考试真题试卷与真题答案
2019华南理工食品科学与工程考研865有机化学与874生物化学考试真题试卷与真题答案《2019华南理工大学考研874生物化学复习全析(含真题与答案,共四册)》由致远华工考研网依托多年丰富的教学与辅导经验,组织官方教学研发团队与华南理工大学轻工与食品工程学院食品专业的优秀研究生共同合作编写而成。
全书内容紧凑权威细致,编排结构科学合理,为参加2019华南理工大学考研的考生量身定做的必备专业课资料。
《2019华南理工考研874生物化学复习全析(含真题与答案,共四册)》全书编排根据参考书目:《食品生物化学》(第二版)宁正祥、赵谋明编著,华南理工大学出版社2006 《生物化学》(第三版)沈同、王竟岩主编,高等教育出版社内容提要:1、华工轻工食品学院院系解读+华南理工大学874生物化学考试解读;2、2004-2017年华南理工大学轻工与食品学院874生物化学考研真题及2007-2016年874生物化学考研真题答案;3、874生物化学重难点内容解析。
(注意:华工指定书目虽然是王镜岩的《生物化学》,但实际考察的内容以华工本校老师宁正祥的《食品生物化学》这本教材为主)《2019华南理工大学考研874生物化学复习全析(含真题与答案)》通过提供院系专业相关考研内部信息,总结近年考试内容与考录情况,系统梳理核心考点与重难点知识点,并对历年真题进行透彻解析,令考生不再为信息匮乏而烦恼,同时极大提高了复习效率,让复习更有针对性。
适用院系:食品科学与工程学院:发酵工程、食品科学与工程、食品工程(专业学位)环境与能源学院:环境生态学适用科目:874 生物化学内容详情本书包括以下几个部分内容:一、内部信息必读:网罗华工该专业的考研各类内外部信息,有助于考生高屋建瓴,深入了解华工对应专业的考研知识及概况,做到纵观全局、备考充分。
内容包括:院校简介、专业分析、师资情况、历年报录统计、就业概况、学费与奖学金、住宿情况、其他常见问题。
医学物理学(第7版)教学大纲
前言《医学物理学》是国家教育部规定的高等医学院校临床医学、预防医学等专业的一门必修基础课,是为这些专业的学生提供较系统的物理学知识,使他们在中学物理学教育基础上,进一步学习医学专业所必需的物理学的基本概念、基本规律、基本方法,为后继课程的学习以及将来从事专业工作打下一个良好的基础。
我校《医学物理学》教材选用人民卫生出版社出版普通高等教育“十一五”国家级规划教材《医学物理学》第7版(胡新珉主编)。
依据学校的教学计划,本课程共96学时,其中理论课68学时,实验课28学时。
因此制定本“教学大纲”。
因为教材是按72~108学时编写。
所以,“教学大纲”既参照卫生部1982年“高等医学院校《医用物理学》教学大纲(试用本)”和医药类大学物理课程教学的基本要求,也结合当前教育改革倡导素质教育,针对临床医学、预防医学、影像学、法医学、护理学、药学等专业的特点编写。
“大纲”内容分为掌握、熟悉、了解和自学。
自学内容课堂上教师原则上不讲授,属自学内容,结业考试中一般不作要求。
第一章力学的基本定律(自学)第二章物体的弹性一、学习要求本章要求熟悉描述物体弹性的基本概念,对人体骨骼和肌肉组织的力学特性要有一定的了解。
二、讲授内容和要求等级章节次序内容等级第一节线应变与正应力一线应变熟悉二正应力熟悉三正应力与线应变的关系熟悉四弯曲自学第二节切应变与切应力一切应变熟悉二切应力熟悉三切应力与切熟应变的关系悉四扭转自学第三节体应变与体应力一体应变熟悉二体应力熟悉三体应力与体应变的关系熟悉第四节生物材料的黏弹性自学三、授课学时:2学时。
四、练习:第27~28页,2-6、2-9。
第三章流体的运动一、学习要求本章要求掌握理想流体作稳定流动时的基本规律,即连续性方程和伯努利方程以及它们的应用;熟悉实际流体的流动规律和泊肃叶定律;了解斯托克司定律和血液在循环系统中的流动规律。
二、讲授内容和要求等级章节次序内容等级第一节理想流体的稳定流动一理想流体熟悉二稳定流动熟悉三连续性方程掌握第二节伯努利方程一伯努利方程掌握二伯努利方程的应用掌握第三节黏性流体的流动一层流和湍流熟悉二牛顿黏滞定律熟悉三雷诺数了解第四节黏性流体的运动规律一黏性流体的伯努利方程了解二泊肃叶定律熟悉三斯托克司定律了解第五节血液在循环系统中的流动一血液的组成及特性自学二心脏做功了解三血流速度分布自学四血流过程中的血压分布自学三、授课学时:4学时。
第二章脂类和生物膜(给学生)
3、水解作用
• 酸、碱、酶
O O R2 CH2 O C O R3 CH2 O C R1 C O CH
皂和皂化作用
补充:脂的分类(按能否皂化分)
• 可皂化脂类
– 能被碱水解而产生 皂(脂肪酸盐)的 称为可皂化脂类
• 不可皂化脂类
– 不能被碱水解而产 生皂(脂肪酸盐) 的称为不可皂化脂 类,主要有不含脂 肪酸的萜类和固醇 类
第二章 脂类
本章总结
• • • • • • 脂类的种类 甘油三酯 脂肪酸 油脂的理化性质和鉴定 甘油磷脂、鞘磷脂、固醇 生物膜结构及功能
需要掌握的单词(1)
• lipid • • • • palmitic acid stearic acid oleic acid lipase
• • • • •
triacylglycerol monodiglycerol fatty acid
• 请按照简写符号写出下列脂肪酸的结构 式: • C18:0 C18:1Δ9 C18:3 Δ6,9,12
第二节 磷脂
一、甘油磷酸酯类
• 极性头和非极性尾
补充:卵磷脂
2、磷脂的水解(磷脂酶)
• 溶血磷脂
3、磷脂分子层
二、神经鞘磷脂
• 植物和动物细胞膜的重要组分 • 不含甘油 • 由一分子脂肪酸、一分子鞘氨醇和一分子 极性头基团组成
3、微生物固醇
• 微生物固醇以麦角固醇最多,经过日光和 紫外线照射可以被转化为维生素D2
二、类固醇
• 固醇的衍生物 • 胆酸盐
– 是体内天然的乳化剂 – 促进肠道内脂肪、胆固醇以及脂溶性维生素的 乳化
第四节
生物膜化学
细胞膜
含大量脂类、蛋白质的双分子层结构 使细胞成型,有通透、屏蔽等作用
生物化学第二章 脂类和生物膜
(一)种类: 1、按脂肪酸种类分: 饱和脂肪酸 如:软脂酸(16C)、 硬脂酸(18C)。 不饱和脂肪酸 如:油酸、亚油酸。
(二)命名
脂肪酸的俗名主要反映其来源和特点。系统名反映其碳原 子数目、双键数和位置。如:硬脂酸的系统名是十八烷酸, 用18:0表示,其中“18”表示碳链长度,“0”表示无双键; 油酸是十八碳-9-烯酸,用18:1 Δ9c表示,“1”表示有一 个双键。反油酸用18:1Δ9,trans表示。 天然脂肪酸中的双键多为顺式结构,少数为反式结构, 如:反油酸等。大多数单不饱和脂肪酸中双键的位置在C9 和C10之间( Δ9),多不饱和脂肪酸通常有一个双键在 Δ9,其余双键在Δ9和烃链末端甲基之间。
另外,根据是否能被碱水解而产生皂,分为皂化 脂质和不可皂化脂质。非皂化脂 包括类固醇、萜 类和前列腺素类。 不含脂肪酸,不能被碱水解。 根据脂质在水中和水界面上的行为分为:非极性 和极性。
3、脂质的生物学作用
(1)贮存脂质 机体代谢燃料和储能形式; 三酰甘油主要分布在皮下、胸腔、腹腔、肌肉、骨髓 等处的脂肪组织中,是储备能源的主要形式。 保护作用;绝缘保温、缓冲压力、减轻摩擦振动 (2)结构脂质 磷脂、糖脂、胆固醇等极性脂是构 成生物膜的重要组分; (3)活性脂质 具营养、代谢及调节功能;与细胞 识别、种特异性、组织免疫等密切相关。 肾上腺皮质激素和性激素的本质是类固醇;各种脂溶 性维生素是脂类得的衍生物。
(三)饱和与不饱和脂肪酸的构象
柔性大,完全伸展
一个双键有30°的 刚性弯曲
(四)脂肪酸盐与乳化作用
脂肪酸盐属于Ⅲ类极性脂质,具有亲水基团和疏水基 团,是典型的两亲化合物,是一种离子型的去污剂, 如:天然的胆汁盐酸、人工合成的十二烷基硫酸钠 (SDS)。
生物化学简答题
⽣物化学简答题第⼆章蛋⽩质1、组成蛋⽩质的基本单位是什么?结构有何特点?氨基酸是组成蛋⽩质的基本单位。
结构特点:①组成蛋⽩质的氨基酸仅有20种,且均为α-氨基酸②除⽢氨酸外,其Cα均为不对称碳原⼦③组成蛋⽩质的氨基酸都是L-α-氨基酸2、氨基酸是如何分类的?按其侧链基团结构及其在⽔溶液中的性质可分为四类:①⾮极性疏⽔性氨基酸7种②极性中性氨基酸8种③酸性氨基酸2种④碱性氨基酸3种3、简述蛋⽩质的分⼦组成。
蛋⽩质是由氨基酸聚合⽽成的⾼分⼦化合物,氨基酸之间通过肽键相连。
肽键是由⼀个氨基酸的α-羧基和另⼀个氨基酸的α-氨基脱⽔缩合形成的酰胺键4、蛋⽩质变性的本质是什么?哪些因素可以引起蛋⽩质的变性?蛋⽩质特定空间结构的改变或破坏。
化学因素(酸、碱、有机溶剂、尿素、表⾯活性剂、⽣物碱试剂、重⾦属离⼦等)和物理因素(加热、紫外线、X射线、超声波、⾼压、振荡等)可引起蛋⽩质的变性5、简述蛋⽩质的理化性质。
①两性解离-酸碱性质②⾼分⼦性质③胶体性质④紫外吸收性质⑤呈⾊反应6、蛋⽩质中的氨基酸根据侧链基团结构及其在⽔溶液中的性质可分为哪⼏类?各举2-3例。
①⾮极性疏⽔性氨基酸7种:蛋氨酸,脯氨酸,缬氨酸②极性中性氨基酸8种:丝氨酸,酪氨酸,⾊氨酸③酸性氨基酸2种:天冬氨酸,⾕氨酸②碱性氨基酸3种:赖氨酸,精氨酸,组氨酸第三章核酸1.简述DNA双螺旋结构模型的要点。
①两股链是反向平⾏的互补双链,呈右⼿双螺旋结构②每个螺旋含10bp,螺距3.4nm,直径2.0nm。
每个碱基平⾯之间的距离为0.34nm,并形成⼤沟和⼩沟——为蛋⽩质与DNA相互作⽤的基础③脱氧核糖和磷酸构成链的⾻架,位于双螺旋外侧④碱基对位于双螺旋内侧,碱基平⾯与双螺旋的长轴垂直;两条链位于同⼀平⾯的碱基以氢键相连,满⾜碱基互补配对原则:A=T,G≡C⑤双螺旋的稳定:横向—氢键,纵向—碱基堆积⼒⑥DNA双螺旋的互补双链预⽰DNA 的复制是半保留复制2、从组成、结构和功能⽅⾯说明DNA和RNA的不同。
动物生物化学教案
动物生物化学教案第一章绪论1.生物化学的概念介绍生物化学的概念、动物生物化学的概念。
2.生物化学的发展介绍生物化学的起源;获得的重大成果;我国的成果及展望。
3.生物化学与畜牧和兽医介绍生物化学与畜牧和兽医的关系。
第二章蛋白质的结构与功能第一节蛋白质在生命活动中的重要作用举例说明各种蛋白质的生理功能,例如酶、激素蛋白、血红蛋白、免疫球蛋白等,综合说明蛋白质是生命活动的体现者。
:第二节蛋白质的化学组成1.蛋白质的元素组成强调氮是蛋白质独特元素,氮的含量为16%是蛋白质含量测定的依据。
2.蛋白质的基本结构单位和其它组分强调氨基酸是蛋白质的构件分子。
3.氨基酸氨基酸的基本结构;构型;氨基酸的分类表;其他氨基酸;氨基酸的主要性质。
第三节蛋白质的化学结构1氨基酸构成蛋白质的氨基酸有二十种。
2.肽键和肽链的概念肽键、肽链的概念;肽键形成图。
3.蛋白质的一级结构蛋白质一级结构的基本概念;蛋白质一级结构的表示;蛋白质一级结构测定的基本步骤。
第四节蛋白质的高级结构1.蛋白质的结构层次包括蛋白质一级、二级、超二级结构、.结构域、.三级、.四级结构,用图表示。
2.肽单位平面结构和二面角肽单位、肽单位平面、二面角概念及图示。
3.维持蛋白质分子构象的化学键以图介绍,包括氢键、疏水键、二硫键、范德华引力、离子键等。
4.二级结构概念及图示。
主要介绍. á-螺旋、ß-折迭ß-.转角等结构。
.5.超二级结构概念及图示。
6.结构域概念及图示。
7.三级结构概念及肌红蛋白结构图示。
强调三级结构是天然蛋白质存在的形式。
8.四级结构概念及血红蛋白结构图示。
强调四级结构存在亚基及亚基的概念。
第五节多肽、蛋白质结构与功能的关系1.多肽结构与功能的关系:讲明其在动物体内的表现状态.,附图。
2.同功能蛋白质的种属特异性与保守性以胰岛素和细胞色素C为例讲解,并附表。
3.蛋白质的前体激活以胰岛素原、胰蛋白酶原的激活过程为例讲解,并附图。
生物初中20章内容总结
生物初中20章内容总结第一章:生物的起源和发展生物的起源和发展是生物学中的重要内容。
在这一章中,我们学习了地球上生命的起源、进化和发展的过程。
通过学习生物进化的理论,我们了解到生物多样性的重要性以及不同物种在进化过程中的适应性变化。
第二章:细胞结构和功能细胞是生物体的基本单位,它具有多种结构和功能。
在这一章中,我们学习了细胞的基本结构、细胞膜的组成、细胞的生物膜运输和细胞器的功能。
通过这些知识,我们能够更好地理解生物体内部细胞之间的相互作用和调节过程。
第三章:细胞的代谢过程细胞的代谢过程是生物体内各种化学反应的总称。
在这一章中,我们学习了细胞的呼吸和光合作用。
呼吸是细胞中产生能量的过程,而光合作用则是植物细胞中光能转化为化学能的过程。
通过学习这些过程,我们能够更好地理解细胞内能量的来源和利用方式。
第四章:遗传与进化遗传与进化是生物学中的核心概念。
在这一章中,我们学习了遗传的基本规律和遗传物质DNA的结构。
同时,我们还了解了基因的表达和突变对物种进化的影响。
通过这些知识,我们能够更好地理解物种的遗传变异和进化的过程。
第五章:生物分类学生物分类学是研究生物种类以及它们的分类方法和分类规则的学科。
在这一章中,我们学习了生物分类的基本原则和分类的方法。
通过学习这些知识,我们能够更好地理解不同物种的分类和归属。
第六章:植物的形态结构和生活习性植物的形态结构和生活习性是植物生物学中的重要内容。
在这一章中,我们学习了植物的形态结构,包括根、茎、叶和花等部分的结构和功能。
同时,我们还了解了植物的生活习性,包括植物的生长、繁殖和适应环境的特征。
通过这些知识,我们能够更好地了解植物的特点和生活方式。
第七章:动物的形态结构和生活习性动物的形态结构和生活习性是动物生物学中的重要内容。
在这一章中,我们学习了动物的形态结构,包括动物的身体组织和器官的结构和功能。
同时,我们还了解了动物的生活习性,包括动物的寻食、生殖和适应环境的特征。
生物化学下册复习提纲重点版(华南理工)
物质代谢(合成代谢、分解代谢):从物质代谢来说,新陈代谢包括分解代谢和合成代谢。
分解代谢——生物大分子通过一系列的酶促反应步骤,转变为教小的、较简单的物质的过程。
合成代谢——生物体利用小分子或大分子的结构元件合成自身生物大分子的过程。
能量代谢:在生物体内,以物质代谢为基础,与物质代谢过程相伴随发生的,是蕴藏在化学物质中的能量转化,统称为能量代谢。
一、名词解释高能磷酸化合物:机体内有许多磷酸化合物,当其磷酰基水解时,释放出大量的自由能。
这类化合物为高能磷酸化合物。
高能键:高能磷酸化合物分子中的酸酐键,能释放出大量自由能,称之为“高能键”。
二、高能磷酸键化合物及其他高能化合物的类型(一)磷氧型1、酰基磷酸化合物(1)乙酰磷酸(2)氨甲酰磷酸(3)1,3-二磷酸甘油酸(4)酰基腺苷酸(5)氨酰腺苷酸2、焦磷酸化合物(1)焦磷酸(2)二磷酸腺苷3、烯醇式磷酸化合物磷酸烯醇式丙酮酸(二)氮磷型胍基磷酸化合物(1)磷酸肌酸(2)磷酸精氨酸(三)硫酯键型活性硫酸基(1)3’-腺苷磷酸5’-磷酰硫酸(2)酰基辅酶A(四)甲硫键型活性甲硫氨酸一、名词解释被动运输:指物质从高浓度的一侧,通过膜运输到低浓度的一侧,物质顺浓度梯度的方向跨膜运输的过程,是不需要消耗代谢能的穿膜运输。
主动运输:指物质逆浓度梯度的穿膜运输过程。
需消耗代谢能,并需专一性的载体蛋白。
协同运输:小分子的跨膜运送大都是通过专一性运送蛋白的作用实现的。
如果只是运输送一种分子由膜的一侧到另一侧,称为单向运输;如果一种物质的运输与另一种物质的运输相关而且方向相同,称为同向运输。
方向相反则称为反向运输,这二者又统称为协同运输。
Na+,K+—泵:Na+、K+-泵实际是分布在膜上的Na+、K+-ATP酶。
通过水解ATP提供的能量主动向外运输Na+,而向内运输K+ 。
每水解1分子ATP,向外运输3个Na+,而向内运输2个K+ 。
Ca+—泵:Ca2+泵即为Ca2+-ATP酶,Ca2+泵主动运送Ca2+到膜内是通过水解ATP提供的能量驱动的。
生物化学教案生物膜的结构与功能
生物化学教案生物膜的结构与功能教学目标:1.了解生物膜的结构与功能;2.理解生物膜对细胞有机体起到的重要作用;3.掌握生物膜与物质运输、信号传导等过程的关系。
教学重点:1.生物膜的结构与组成;2.生物膜在细胞内外的功能。
教学难点:1.生物膜的复杂结构与功能的关系。
教学过程:一、导入(10分钟)通过提问和引入话题,引发学生的思考和兴趣,比如:“请问生物膜是什么?在生物体中起到什么作用?”让学生思考并回答。
二、知识讲解(20分钟)1.生物膜的定义:生物膜指的是由脂质、蛋白质、糖类等多种生物分子组成的细胞膜结构,广泛存在于生物体的各种细胞和组织中。
2.生物膜的结构与组成:a.磷脂双分子层:生物膜的主要组成成分是磷脂,由两层磷脂分子构成。
磷脂分子的疏水性头部与亲水性尾部形成双分子层结构。
b.蛋白质:生物膜中含有不同类型的蛋白质,包括通道蛋白、受体蛋白、酶等。
这些蛋白质能够在生物膜上发挥各种功能。
c.糖类:一部分生物膜表面的磷脂分子上结合有糖类,形成糖脂双分子层,起到保护细胞、识别和结合外来物质等作用。
三、生物膜的功能(30分钟)1.物质运输:生物膜能够通过对物质的选择性通透性,控制细胞内外物质的交换和传递。
比如细胞膜上的离子通道能够调节离子的进出,细胞膜上的转运蛋白能够主动转运物质。
2.细胞识别与结合:生物膜上的糖类能够参与细胞识别和结合,与其他细胞或分子相互作用。
这种相互作用能够介导细胞的黏附、移动、分化等过程。
3.信号传导:多种信号分子能够与生物膜上的受体蛋白结合,通过生物膜的传导作用,进一步传递信号并引起细胞内的生物学效应。
4.维持细胞形态和结构:生物膜的完整性和稳定性对于细胞形态和结构的维持非常重要。
四、案例分析(20分钟)以相关的案例和实验结果为例,让学生分析和讨论生物膜在细胞中的具体作用。
比如,生物膜的组成和结构对于细胞内物质运输的调节、信号传导等过程的影响。
五、小结与拓展(10分钟)通过对本节课的学习,对生物膜的结构与功能进行一个简要的总结,并展示扩展知识,比如其他膜相关的知识和实验研究进展。
生物化学教程
生物化学教程第1篇生物分子的结构和化学第1章生物分子导论一、生命物质的化学组成(一) 生命元素(二) 生物分子二、物分子的三维结构(一) 生物分子的大小(二) 立体异构与构型(三) 生物分子间相互作用的立体专一性(四) 构象与三维结构(五) 三维结构的分子模型三、生物结构中的非共价力(一) 静电相互作用(二) 氢键(三) 范德华力(四) 疏水相互作用熵效应四、水和生命(一) 水的结构和性质(二) 水是生命的介质五、细胞的分子组织层次六、生物分子的起源与进化(一) 化学进化的理论(二) 实验室中化学进化的演示(三) 原始生物分子第2章蛋白质的构件——氨基酸一、蛋白质的化学组成和分类二、蛋白质的水解三、a-氨基酸的一般结构四、氨基酸的分类(一) 常见的蛋白质氨基酸(二) 不常见的蛋白质氨基酸(三) 非蛋白质氨基酸五、氨基酸的酸碱性质(一) 氨基酸的解离(二) 氨基酸的等电点六、氨基酸的化学反应(一) a-羧基反应(二) a-氨基反应(三) 茚三酮反应(四) 侧链官能团的特异反应七、氨基酸的旋光性和光谱性质(一) 氨基酸的旋光性和立体化学(二) 氨基酸的光谱性质八、氨基酸混合物的分离和分析(一) 分配层析(二) 离子交换层析第3章蛋白质的通性、纯化和表征一、蛋白质的酸碱性质二、蛋白质的胶体性质与蛋白质的沉淀(一) 蛋白质胶体性质(二) 蛋白质沉淀三、蛋白质分离纯化的一般原则四、蛋白质的分离纯化方法(一) 透析和超过滤(二) 凝胶过滤(三) 盐溶和盐析(四) 有机溶剂分级分离法(五) 凝胶电泳和等电聚焦(六) 离子交换层析(七) 亲和层析(八) 高效液相层析五、蛋白质相对分子质量的测定(一) 凝胶过滤法测定相对分子质量(二) SDS-聚丙烯酰胺凝胶电泳法测定相对分子质量(三) 沉降速度法测定相对分子质量六、蛋白质的含量测定与纯度鉴定(一) 蛋白质含量测定(二) 蛋白质纯度鉴定第4章蛋白质的共价结构一、蛋白质的分子大小二、蛋白质结构的组织层次三、肽(一) 肽和肽键的结构(二) 肽的物理和化学性质(三) 天然存在的活性肽四、蛋白质测序的策略五、蛋白质测序的一些常用方法(一) 末端分析(二) 二硫键的断裂(三) 氨基酸组成的分析(四) 多肽链的部分裂解(五) 肽段氨基酸序列的测定(六) 肽段在原多肽链中的次序的确定(氨基酸全序列的重建)(七) 二硫键位置的确定六、根据基因的核苷酸序列推定多肽的氨基酸序列七、蛋白质一级结构的举例八、蛋白质序列数据库九、肽与蛋白质的化学合成:固相肽的合成第5章蛋白质的三维结构一、研究蛋白质构象的方法二、稳定蛋白质三维结构的力三、多肽主链折叠的空间限制(一) 肽平面与a-碳的二面角(φ和ψ)(二) 可允许的妒和砂值:拉氏图四、二级结构:多肽主链的局部规则构象(一) a螺旋(二) 卢片或卢折叠(三) 口转角五、纤维状蛋白质(一) a-角蛋白(二) 磷脂的生物合成六、类二十烷酸的生物合成七、胆固醇的代谢(一) 胆固醇代谢的特点(二) 胆固醇的生物合成八、脂蛋白的代谢第6章蛋白质的功能与进化一、蛋白质功能的多样性二、血红蛋白的结构(一) 血红素(二) 珠蛋白的三级结构(三) 与O2结合的机制(四) 血红蛋白的四级结构三、血红蛋白的功能:转运氧(一) 肌红蛋白是氧的贮库(二) 血红蛋白氧合的协同性和别构效应(三) 血红蛋白的两种构象状态:R态和T态(四) 血红蛋白协同性氧结合的定量分析(五) BPG调节Hb对O2的亲和力(六) H+和CO2调节Hb对O2的亲和力:Bohr效应四、血红蛋白分子病(一) 镰状细胞贫血病(二) a-和β-地中海贫血五、免疫球蛋白(一) 免疫系统(二) 免疫球蛋白的结构和类别(三) 基于抗体一抗原相互作用的生化分析方法六、氨基酸序列与生物学功能(一) 同源蛋白质的物种差异与生物进化(二) 同源蛋白质具有共同的进化起源第7章糖类和糖生物学一、引言(一) 糖类的生物学作用(二) 糖类的化学本质(三) 糖类的命名和分类二、单糖的结构和性质(一) 单糖的链状结构(二) 单糖的环状结构(三) 单糖的构象(四) 单糖的物理和化学性质三、重要的单糖和单糖衍生物(一) 单糖(二) 糖醇(三) 糖酸(四) 脱氧糖(五) 氨基糖四、寡糖(一) 寡糖的结构(二) 常见的二糖(三) 其他简单寡糖(四) 环糊精五、多糖(一) 贮存同多糖(二) 结构同多糖(三) 结构杂多糖六、糖缀合物(一) 糖蛋白(二) 寡糖链的生物学功能(三) 蛋白聚糖(四) 脂多糖七、寡糖结构的分析(一) 寡糖结构分析的策略(二) 用于寡糖结构分析的一些方法第8章脂质与生物膜一、三酰甘油和蜡(一) 脂肪酸(二) 酰基甘油(三) 蜡二、磷脂和鞘脂(一) 甘油磷脂的结构(二) 甘油磷脂的一般性质(三) 几种常见的甘油磷脂(四) 醚甘油磷脂(五) 鞘脂三、萜和类固醇(一) 萜(二) 类固醇(三) 胆固醇和其他固醇(四) 固醇衍生物四、血浆脂蛋白(一) 血浆脂蛋白的分类(二) 血浆脂蛋白的结构与功能五、膜的分子组成和超分子结构(一) 生物膜的分子组成(二) 脂双层的自装配(三) 膜组分的不对称分布(四) 生物膜的流动性(五) 生物膜的流动镶嵌模型六、脂质的提取与分析(一) 脂质的有机溶剂提取(二) 脂质的吸附层析分离(三) 混合脂肪酸的气液色谱分析(四) 脂质结构的测定第9章酶引论一、酶研究的简史二、酶是生物催化剂(一) 反应速率理论与活化能(二) 酶通过降低活化自由能提高反应速率(三) 酶还是偶联反应的介体(四) 酶作为生物催化剂的特点三、酶的化学本质(一) 酶的化学组成(二) 酶的四级缔合四、酶的命名和分类(一) 酶的命名(二) 酶的分类和编号五、酶的专一性(一) 酶对底物的专一性(二) 关于酶专一性的假说六、酶活力的测定(一) 酶活力、活力单位和比活力(二) 反应速率、初速率和酶活力测定七、非蛋白质生物催化剂——核酶(一) 核酶的发现(二) L19RNA是核酶(三) RNaseP的RNA组分是核酶(四) 锤头核酶八、酶分子工程(一) 固定化酶(二) 化学修饰酶(三) 抗体酶——人工模拟酶(四) 酶的蛋白质工程第10章酶动力学一、有关的化学动力学概念(一) 基元反应和化学计量方程(二) 化学反应的速率方程一(三) 反应分子数和反应级数(四) 一级、二级和零级反应的特征二、底物浓度对酶促反应速率的影响(一) 酶促反应动力学的基本公式-米-曼氏方程(二) 米一曼氏方程所确定的图形是一直角双曲线(三) 米一曼氏动力学参数的意义(四) 米一曼氏方程的线性化作图求Km和Vmax值三、多底物的酶促反应四、影响酶促反应速率的其他因素(一) pH对酶促反应的影响(二) 温度对酶促反应的影响(三) 激活剂对酶促反应的影响五、酶的抑制作用(一) 抑制作用的概念(二) 抑制作用的类型(三) 可逆抑制的动力学(四) 酶抑制剂应用举例第11章酶作用机制和酶活性调节一、酶的活性部位及其确定方法二、酶促反应机制(一) 基元催化的分子机制(二) 酶具有高催化能力的原因三、酶促反应机制的举例(一) 丝氨酸蛋白酶(二) 烯醇化酶四、酶活性的别构调节(一) 酶的别构效应和别构酶(二) 别构酶的动力学特点(三) 协同性配体结合的模型(四) 别构酶的举例五、酶活性的共价调节(一) 酶的可逆共价修饰(二) 酶原激活——不可逆共价调节六、同工酶第12章维生素与辅酶一、引言(一) 维生素的概念(二) 维生素的发现(三) 维生素-辅酶的关系二、水溶性维生素(一) 维生素B1(硫胺素) 和辅酶硫胺素焦磷酸(TPP)(二) 维生素B2(核黄素) 和黄素辅酶(FMN和FAD)(三) 维生素PP(烟酸和烟酰胺) 和烟酰胺辅酶(NAD和NADP)(四) 泛酸和辅酶A(五) 维生素B6和辅酶磷酸吡哆醛(六) 生物素和辅酶生物胞素(七) 叶酸和辅酶F(四氢叶酸)(八) 维生素B12(氰钴氨素) 和辅酶5-脱氧腺苷钴胺素(十) 维生素C(抗坏血酸)三、脂溶性维生素(一) 维生素A(视黄醇)(二) 维生素D(钙化醇)(三) 维生素E(生育酚)(四) 维生素K(萘醌)第13章核酸通论一、核酸的发现和研究简史(一) 核酸的发现(二) 核酸的早期研究(三) DNA双螺旋结构模型的建立(四) 生物技术的兴起(五) 人类基因组计划开辟了生命科学新纪元二、核酸的种类和分布(一) 脱氧核糖核酸(DNA)(二) 核糖核酸(RNA)三、核酸的生物功能(一) DNA是主要的遗传物质(二) RNA参与蛋白质的生物合成(三) RNA功能的多样性第14章核酸的结构一、核苷酸(一) 碱基(二) 核苷二、核酸的共价结构(一) 核酸中核苷酸的连接方式(二) DNA的一级结构(三) RNA的一级结构三、DNA的高级结构(一) DNA的双螺旋结构(二) DNA的三股螺旋和四股螺旋(三) DNA的超螺旋(四) DNA与蛋白质复合物的结构四、RNA的高级结构(一) tRNA的高级结构(二) rRNA的高级结构(三) 其他RNA的高级结构第2篇新陈代谢第15章核酸的物理化学性质和研究方法一、核酸的水解(一) 酸水解(二) 碱水解(三) 酶水解二、核酸的酸碱性质三、核酸的紫外吸收四、核酸的变性、复性及杂交(一) 变性(二) 复性(三) 核酸分子杂交五、核酸的分离和纯化(一) 核酸的超速离心(二) 核酸的凝胶电泳(三) 核酸的柱层析(四) DNA的提取和纯化(五) RNA的提取和纯化六、核酸序列的测定(一) DNA的酶法测序(二) DNA的化学法测序(三) RNA的测序(四) DNA序列分析的自动化七、核酸的化学合成八、DNA微阵技术(一) DNA芯片的类型(二) DNA芯片的制作(三) 核酸杂交的检测(四) DNA芯片的应用第16章激素一、引言(一) 激素的定义(二) 激素的分类(三) 人和脊椎动物的内分泌腺及其分泌的激素(四) 激素和其他化学信号的区别(五) 激素分泌的等级控制和反馈调节二、激素作用的机制(一) 类固醇激素和甲状腺激素的作用机制(二) 肽激素和肾上腺儿茶酚胺激素的作用机制三、人和脊椎动物激素举例(一) 胺(氨基酸衍生物) 激素(二) 肽和蛋白质激素(三) 类固醇(甾类) 激素(四) 类二十烷酸或类前列腺酸(脂肪酸衍生物)四、昆虫激素(一) 脑激素(二) 保幼激素(三) 蜕皮激素(四) 性信息素五、植物激素(一) 生长素(二) 细胞分裂素(三) 赤霉素(四) 脱落酸(五) 乙烯第17章新陈代谢总论一、新陈代谢概述二、新陈代谢中常见的有机反应机制(一) 基团转移反应(二) 氧化反应和还原反应(三) 消除、异构化及重排反应(四) 碳一碳键的形成与断裂反应三、新陈代谢的研究方法第18章生物能学一、有关热力学的一些基本概念(一) 体系的概念、性质和状态(二) 能的两种形式——热与功(三) 内能和焓的概念(四) 热力学的两个基本定律和熵的概念(五) 自由能的概念二、自由能变化、标准自由能变化及其与平衡常数的关系(一) 化学反应的标准自由能变化及其与平衡常数的关系(二) 能量学用于生物化学反应中一些规定的概括(三) 标准自由能变化的可加性(四) △Gθ,△G和平衡常数计算的举例三、高能磷酸化合物(一) 高能磷酸化合物的概念(二) ATP以基团转移形式提供能量四、其他高能化合物第19章六碳糖的分解和糖酵解作用一、糖酵解作用二、糖酵解第一阶段的5步反应(一) 葡萄糖磷酸化形成葡萄糖-6-磷酸(二) 葡萄糖-6-磷酸异构化形成果糖-6-磷酸(三) 果糖-6-磷酸形成果糖-1,6-二磷酸(四) 果糖-1,6-二磷酸转变为甘油醛-3-磷酸和二羟丙酮磷酸(五) 二羟丙酮磷酸转变为甘油醛-3-磷酸三、糖酵解第二阶段的5步反应(一) 甘油醛-3-磷酸形成1,3-二磷酸甘油酸(二) 1,3-二磷酸甘油酸转移高能磷酸基团形成ATP(三) 3-磷酸甘油酸转变为2一磷酸甘油酸(四) 2-磷酸甘油酸脱水形成磷酸烯醇式丙酮酸(五) 磷酸烯醇式丙酮酸转变为丙酮酸并产生一个ATP分子四、由葡萄糖转变为2分子丙酮酸的能量估算五、丙酮酸在无氧条件下的去路(一) 生成乳酸(二) 生成乙醇六、糖酵解作用的调节(一) 磷酸果糖激酶是关键酶(二) 果糖-2,6-二磷酸对糖酵解的调节作用(三) 已糖激酶和丙酮酸激酸对糖酵解的调节作用七、其他六碳糖的分解途径(一) 六碳糖进入细胞(二) 六碳糖进入糖酵解途径分解第20章柠檬酸循环一、丙酮酸进入柠檬酸循环的准备阶段——形成乙酰-CoA(乙酰-SCoA)(一) 丙酮酸脱羧反应(二) 乙酰基转移到CoA-SH分子上形成乙酰-CoA的反应(三) 还原型二氢硫辛酰转乙酰基酶氧化,形成氧化型的硫辛酰转乙酰基酶(四) 还原型E3的再氧化二、柠檬酸循环的全貌三、柠檬酸循环的各个反应步骤(一) 草酰乙酸与乙酰-CoA缩合形成柠檬酸(二) 柠檬酸异构化形成异柠檬酸(三) 异柠檬酸氧化形成a-酮戊二酸(四) a-酮戊二酸氧化脱羧形成琥珀酰-CoA(五) 琥珀酰-CoA转化为琥珀酸并使GDP磷酸化形成高能GTP(哺乳类) 或使ADP成为ATP(植物或细菌)(六) 琥珀酸脱氢形成延胡索酸(七) 延胡索酸水合形成L-苹果酸(八) 苹果酸氧化形成草酰乙酸四、柠檬酸循环的化学总结算五、柠檬酸循环的调节六、柠檬酸循环的双重作用七、乙醛酸途径第21章氧化磷酸化和光合磷酸化作用一、氧化磷酸化作用(一) 和电子传递相关的氧化还原电势(二) 用标准还原势计算自由能变化(三) 线粒体的电子传递链(四) 氧化磷酸化作用的机制(五) 氧化磷酸化的解偶联(六) 质子动力为主动转运提供能量(七) 电子传递和氧化磷酸化中的P/O比(八) 细胞溶胶内NADH的再氧化(九) 氧化磷酸化作用的调节二、光合磷酸化作用(photophosphorylation)(一) 光合作用(photosynthesis)(二) 叶绿体的结构(三) 叶绿体中捕获光的叶绿素和其他色素(四) 光合作用中的电子传递(五) 光合磷酸化作用(六) CO2的固定(暗反应)(七) 由Rubisco酶的加氧活性引起的光(合) 呼吸第22章戊糖磷酸途径一、戊糖磷酸途径的发现二、戊糖磷酸途径的主要反应三、戊糖磷酸途径反应速率的调控四、戊糖磷酸途径的生物学意义第23章葡糖异生和糖的其他代谢途径一、葡糖异生作用(一) 葡糖异生作用的途径(二) 葡糖异生途径总览(三) 由丙酮酸形成葡萄糖的能量消耗及意义(四) 葡糖异生作用的调节(五) 乳酸的再利用和可立氏循环二、糖的其他代谢途径三、葡萄糖出入动物细胞的特殊运载机构四、糖蛋白的生物合成五、糖蛋白糖链的分解代谢第24章糖原的分解与合成代谢一、糖原的分解代谢二、糖原的生物合成三、糖原代谢的调控(一) 糖原磷酸化酶的别构调节因素(二) 糖原合酶的调节因素(三) 激素对糖原代谢的调节四、糖原累积症第25章脂质的代谢一、脂肪酸的分解代谢(一) 三酰甘油的消化、吸收和转运(二) 脂肪酸的氧化分解二、脂肪酸的生物合成(一) 乙酰-CoA从线粒体到细胞溶胶的转运(二) 脂肪酸的合成步骤三、脂肪酸代谢的调节四、三酰甘油的生物合成五、磷脂的分解代谢与合成(一) 甘油磷脂的分解代谢第26章蛋白质降解和氨基酸的分解代谢一、蛋白质的降解(一) 蛋白质降解的特性(二) 蛋白质降解的反应机制(三) 机体对外源蛋白质的需要及其消化作用二、氨基酸的分解代谢(一) 氨基酸的转氨基作用(二) 葡萄糖-丙氨酸循环将氨运入肝脏(三) 谷氨酸脱氢酶催化的氧化脱氨基作用(四) 氨的命运三、尿素的形成——尿素循环(一) 尿素循环过程(二) 尿素循环的调节四、氨基酸碳骨架的分解代谢(一) 经丙酮酸形成乙酰-CoA(二) 部分碳骨架形成乙酰-CoA或乙酰乙酰-CoA(三) 形成a-酮戊二酸(四) 形成琥珀酰-CoA(五) 形成草酰乙酸的途径(六) 分支氨基酸脱氨基和脱羧基的特殊性(七) 生糖氨基酸和生酮氨基酸(八) 氨基酸与一碳单位(九) 氨基酸与生物活性物质(十) 氨基酸代谢缺陷症第27章氨基酸的生物合成和生物固氮一、生物固氮二、氨的同化作用——氨通过谷氨酸和谷氨酰胺掺人生物分子三、氨基酸的生物合成(一) 由a-酮戊二酸形成的氨基酸——谷氨酸、谷氨酰胺、脯氨酸、精氨酸、赖氨酸(二) 由草酰乙酸形成的氨基酸——天冬氨酸、天冬酰胺、甲硫氨酸、苏氨酸、赖氨酸(细菌、植物) 、异亮氨酸(三) 由丙酮酸形成的氨基酸——亮氨酸、异亮氨酸、缬氨酸、丙氨酸(四) 由甘油酸-3-磷酸形成的氨基酸——丝氨酸、甘氨酸、半胱氨酸(五) 以磷酸烯醇式丙酮酸和赤藓糖-4-磷酸为前体形成的氨基酸——色氨酸、苯丙氨酸、酸(六) 组氨酸的生物合成四、氨基酸生物合成的调节五、由氨基酸合成的其他特殊生物分子(一) 卟啉的生物合成(二) 谷胱甘肽的生物合成(三) 肌酸的生物合成(四) 氧化氮的生物合成第28章核酸的降解和核苷酸代谢一、核酸和核苷酸的分解代谢(一) 核酸的解聚作用(二) 核苷酸的降解(三) 嘌呤碱的分解(四) 嘧啶碱的分解二、核苷酸的生物合成(一) 嘌呤核糖核苷酸的合成(二) 嘧啶核糖核苷酸的合成(三) 脱氧核糖核苷酸的合成三、辅酶核苷酸的生物合成(一) 烟酰胺核苷酸的合成(二) 黄素核苷酸的合成(三) 辅酶A的合成第3篇遗传信息第29章遗传信息概论一、NA是遗传信息的携带分子(一) 细胞含有恒定量的DNA(二) DNA是细菌的转化因子(三) 病毒是游离的遗传因子(四) 基因是DNA的一段序列(五) DNA重组技术为基因组的研究提供了最有力的手段二、RNA使遗传信息得以表达(一) RNA参与蛋白质的合成(二) RNA进行信息加工(三) RNA干扰(四) RNA的表型效应(五) RNA对基因的解读三、遗传密码的破译四、遗传密码的基本特性(一) 密码的基本单位(二) 密码的简并性(三) 密码的变偶性(四) 密码的通用性(五) 密码的防错系统五、遗传物质的进化(一) 生物进化的热力学和动力学(二) 生命的起源和进化(三) 生物的进化:驱动力、多样性和适应性第30章 DNA的复制和修复一、DNA的复制(一) DNA的半保留复制(二) DNA的复制起点和复制方式(三) DNA聚合反应和有关的酶(四) DNA的半不连续复制(五) DNA复制的拓扑性质(六) DNA的复制过程与复制体变化(七) 真核生物DNA的复制二、DNA的损伤修复(一) 错配修复(二) 直接修复(三) 切除修复(四) 重组修复(五) 应急反应(SOS) 和易错修复三、DNA的突变(一) 突变的类型(二) 诱变剂的作用(三) 诱变剂和致癌剂的检测第31章DNA的重组一、同源重组(一) Holliday模型(二) 细菌的基因转移与重组(三) 重组有关的酶二、特异位点重组三、转座重组(一) 细菌的转座因子(二) 真核生物的转座因子第32章RNA的生物合成和加工一、DNA指导下RNA的合成(一) DNA指导的RNA聚合酶(二) 启动子和转录因子(三) 终止子和终止因子(四) 转录的调节控制(五) RNA生物合成的抑制剂二、RNA的转录后加工(一) 原核生物中RNA的加工(二) 真核生物中RNA的一般加工(三) RNA的剪接、编辑和再编码(四) RNA生物功能的多样性(五) RNA的降解三、在RNA指导下RNA和DNA的合成(一) RNA的复制(二) RNA的逆转录(三) 逆转座子的种类和作用机制第33章蛋白质的生物合成一、参与蛋白质生物合成的RNA和有关装置(一) 核糖体(二) 转移RNA和氨酰-tRNA合成酶(三) 信使RNA二、蛋白质生物合成的步骤(一) 氨酰-tRNA的合成(二) 多肽链合成的起始(三) 多肽链合成的延伸(四) 多肽链合成的终止(五) 多肽链的折叠与加工三、蛋白质合成的忠实性(一) 蛋白质合成的忠实性需要消耗能量(二) 合成酶的校对功能提高了忠实性(三) 核糖体对忠实性的影响四、蛋白质的运输和定位(一) 蛋白质的信号肽与跨膜运输(二) 糖基化在蛋白质定位中的重要作用(三) 线粒体和叶绿体蛋白质的定位(四) 核的运输和定位五、蛋白质生物合成的抑制物第34章细胞代谢与基因表达调控一、细胞代谢的调节网络(一) 代谢途径交叉形成网络(二) 分解代谢和合成代谢的单向性(三) ATP是通用的能量载体(四) NADPH以还原力形式携带能量(五) 代谢的基本要略在于形成ATP、还原力和构造单元以用于生物合成二、酶活性的调节(一) 酶促反应的前馈和反馈(二) 产能反应与需能反应的调节(三) 酶活性的特异激活剂和抑制剂(四) 蛋白酶解对酶活性的影响(五) 酶的共价修饰与连续激活三、细胞对代谢途径的分隔与控制(一) 细胞结构和酶的空间分布(二) 细胞膜结构对代谢的调节和控制作用四、细胞信号传递系统(一) 激素和递质受体的信号转导系统(二) 细胞增殖的调节(三) 门控离子通道和神经信号的传导五、基因表达的调节(一) 原核生物基因表达的调节(二) 真核生物基因表达的调节第35章基因工程及蛋白质工程一、DNA克隆的基本原理(一) DNA限制酶与片段连接(二) 分子克隆的载体与宿主(三) 外源基因导入宿主细胞二、基因的分离、合成和测序(一) 基因文库的构建(二) cDNA文库的构建(三) 克隆基因的分离与鉴定(四) 聚合酶链(式) 反应扩增基因(五) DNA的化学合成(六) 基因定位诱变(七) DNA序列的测定三、克隆基因的表达(一) 外源基因在原核细胞中的表达(二) 基因表达产物的分离和鉴定(三) 外源基因在真核细胞中的表达四、蛋白质工程(一) 蛋白质的分子设计和改造(二) 蛋白质的实验进化(三) 蛋白质工程的进展五、基因工程的应用与展望(一) 基因工程开辟了生物学研究的新纪元(二) 基因工程促进了生物技术产业的兴起(三) 基因工程研究的展望(二) 丝心蛋白(三) 胶原蛋白六、超二级结构和结构域(一) 超二级结构(二) 结构域七、球状蛋白质与三级结构(一) 球状蛋白质及其亚基的分类(二) 球状蛋白质三维结构的特征八、亚基缔合与四级结构(一) 有关四级结构的一些概念(二) 四级缔合在结构和功能上的优越性九、蛋白质的变性与折叠(一) 蛋白质变性与功能丢失-(二) 氨基酸序列规定蛋白质的三维结构(三) 多肽链是分步快速折叠的。
封面、目录、概要王镜岩《生物化学》第三版笔记(打印版)
封⾯、⽬录、概要王镜岩《⽣物化学》第三版笔记(打印版)⽣物化学笔记王镜岩等《⽣物化学》第三版适合以王镜岩《⽣物化学》第三版为考研指导教材的各⾼校的⽣物类考⽣备考⽬录第⼀章概述------------------------------01 第⼆章糖类------------------------------06 第三章脂类------------------------------14 第四章蛋⽩质(注1)-------------------------21 第五章酶类(注2)-------------------------36 第六章核酸(注3)--------------------------------------45 第七章维⽣素(注4)-------------------------52 第⼋章抗⽣素------------------------------55 第九章激素------------------------------58 第⼗章代谢总论------------------------------63 第⼗⼀章糖类代谢(注5)--------------------------------------65 第⼗⼆章⽣物氧化------------------------------73 第⼗三章脂类代谢(注6)--------------------------------------75 第⼗四章蛋⽩质代谢(注7)-----------------------------------80 第⼗五章核苷酸的降解和核苷酸代谢--------------86 第⼗六章 DNA的复制与修复(注8)---------------------------88 第⼗七章 RNA的合成与加⼯(注9)---------------------------93 第⼗⼋章蛋⽩质的合成与运转--------------------96 第⼗九章代谢调空------------------------------98第⼆⼗章⽣物膜(补充部分)---------------------102(1)对应⽣物化学课本上册第3、4、5、6、7章。
《中药药剂学》课件——第二十章 药物制剂新技术
中药药剂学
几点说明:
第二十章 药物制剂新技术
▼凝聚囊的固化:高分子物质的凝聚往往是可逆的, 一旦凝聚的条件解除,就可能发生解凝聚。因此,形 成微囊后,要尽快固化,使之保持囊形。固化方法视 囊材而定,如以明胶为囊材,可用甲醛进行固化,其 固化条件及原理如下:
固化剂:甲醛 固化温度:15℃以下(低温有利于固化)。 原理:以明胶为囊材时,加入甲醛进行胺缩醛反应, 使明胶分子互相交联,从而使之固化。 2 R-NH2 + HCHO → R-NH-CH2-NH-R +H2O
工艺要点 ▼常用囊材:明胶-阿拉伯胶、明胶-桃胶、明胶海藻酸钠等。 ▼必须精确测定两种胶液的等电点,根据测得的等 电点,控制微囊制备过程中的pH值。
中药药剂学
下
第二十章 药物制剂新技术
等电点(pH值) 等电点之上 等电点之
酸法明胶(A型) 7~9
负
正
碱法明胶(B型)4.5~5.0
负
正
通常用A型明胶,因其等电点较大,只要用弱酸(如
中药药剂学
第二十章 药物制剂新技术
第二十章 药物制剂新技术 第一节 环糊精包合技术
1、概念 固体或液体药物分子(客分子) 被全部或部分包合于环糊精分子(主分子)的 空穴结构中所形成的包合物叫环糊精包合物, 这一包合技术叫环糊精包合技术。
中药药剂学
第二十章 药物制剂新技术
2、有关环糊精的基本知识 概念:环糊精系淀粉经环糊精葡聚糖转位酶作用 后所形成的产物,是由6~12个D-葡萄糖分子以1、4糖 苷键连接的环状低聚糖化合物,为水溶性、非还原性 的白色结晶性粉末,熔点300~305℃。常见的有α、 β、γ三种,分别由6、7、8个葡萄糖分子构成,最常 用的为β-环糊精(β-CD)。
第2章、脂类化合物(脂质和生物膜)
• 糖脂: 非脂成分是糖。因醇成分的不同,分为:鞘糖脂和甘油糖脂
3 衍生脂质(derived lipid):由单纯脂质和复合脂质衍生而来, 包括:取代烃,固醇类(甾类),萜和其他脂质
(三)脂质按生物学功能分类
2. 甘油三酯的物理性质 P93
• 溶解度:水不溶性,也无形成高度分散的倾向,甘油二酯 和甘油单酯含-OH,可形成高度分散态。 • 熔点:由脂肪酸组成决定,随饱和脂肪酸数目及碳链长度 的增加而增加。
• 光学性质:甘油本身无光学活性,C1及C3的脂肪酸不同时, C2为不对称碳,有光学活性。 • 颜色和气味:是无色、无嗅、无味的稠性液体或蜡状固体。
第2章、脂质和生物膜
一、脂类的概述
(一)脂质的概念
脂质(lipid,脂类或类脂),是一类低溶于水而高溶于非 极性溶剂的生物有机分子。对大多数脂质而言,其化学本质是 脂肪酸和醇所形成的酯类及其衍生物。
脂质是生物体的一大类重要的有机化物,脂类包括的范围 很广,这些物质不但化学成份和化学结构有很大差异,而且具 有不同的生物学功能。
(一)脂肪酸概述 ( fatty acid)
1、存在:多结合,少游离,形成甘油三酯、磷脂、糖脂等
2、分类
饱和脂肪酸
脂肪酸
不饱和脂肪酸
单不饱和脂肪酸:含一个双键 多不饱和脂肪酸:含2个或2个以上双键
3、命名: 有俗名和系统命名两种,脂肪酸的俗名主要反映其
来源和特点。系统名反映其碳原子数目、双键 数和位置。
苏州大学 2006
不饱和脂肪酸的合成
• 不饱和脂肪酸的合成分成有氧机制(脱氢途径) 和无氧机制(脱水途径)。 1、需氧途径(存在于真核生物中)
细胞生物学笔记
细胞生物学笔记(共17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--细胞生物学笔记第一章真核细胞的核酸遗传物质有膜包裹,这是与原核细胞的差别。
电子显微镜利用短波长电子束可以观察到比可见光小十万分倍的物质。
第二章人体必需元素:碳氢氧氮磷钾硫钙镁。
人体90%是水,老人75%。
分为结合水、自由水。
心脏含水率79%。
糖类分为单糖、寡糖、多糖。
糖还有润滑保护作用。
脂类不溶于水,溶于脂溶性溶剂,包括脂肪和类脂。
脂肪一个分子甘油和三个脂肪酸组成中性脂。
人体和动物碳原子数为4-24个,都为偶数。
类脂是脂肪衍生物,包括磷脂、糖脂、类固醇。
类固醇有胆固醇和胆汁酸等。
胆固醇是最重要的类固醇,是所有激素、酮类的原料,其中维生素D就是以胆固醇为原料合成的。
蛋白质占细胞干重50%,蛋白质含有磷和硫,还有一些金属元素。
其中N氮的含量较为恒定,一般是16%。
组成蛋白质的氨基酸有20多种,这二十多种又称基本氨基酸。
一般在α碳原子上有一个氨基NH2和一个羧基COOH组成。
蛋白质分为一级结构,二级结构,三级结构,等等。
一级结构有一个肽键和一个二硫键组成。
二级结构是在一级结构的基础上螺旋或折叠形成的。
蛋白质受物理或化学因素的影响,会遭到破坏,成为蛋白质变性,本质是破坏非共价键和二硫键。
如果变性条件不剧烈,变性是可逆的(复性),如果剧烈持久,变性则是不可逆的。
酶是具有高效催化作用的大分子物质。
传统意义上的酶是蛋白质,但现代研究发现,RNA和肽类抗生素等竟然也具有催化作用。
与无机催化剂相比,酶的催化效率高,专一性强。
反应条件温和,但稳定性差,外界的强烈干扰可使酶失去活性。
酶的缺乏可能引起疾病,如急性胰腺炎。
酶对诊断疾病也有作用,如急性胰腺炎、肝炎、心肌炎。
核酸是遗传变异生长发育的重要物质。
包括脱氧核糖核酸DNA和核糖核酸RNA 两大类。
核酸是有多个核苷酸头尾相连组成的链状化合物。
人类的DNA大约有3*10^9个核苷酸。
水污染控制工程课后作业及答案
《水污染控制工程》习题集青海大学化工学院盐湖系环境工程教研室2013年3月目录第一章污水水质及控制 (3)第二章废水的预处理 (5)第三章水的混凝 (6)第四章沉淀 (7)第五章浮上分离和去油技术 (9)第六章过滤 (10)第七章吸附 (11)第八章离子交换 (13)第九章膜技术 (14)第十章氧化还原法 (15)第十一章化学沉淀法 (16)第十二章消毒 (18)第十三章生化处理概论 (19)第十四章活性污泥法 (20)第十五章生物膜法 (22)第十六章厌氧生物处理及污泥厌氧处理 (23)第十七章废水的生物脱氮除磷技术 (24)第十八章污水回用 (25)第十九章污泥的处理与处置 (26)第二十章污水处理厂的设计 (27)第一章污水水质及控制1.何谓水质?常用水质指标有哪些?2.水质的标准是如何制定的?3.一般情况下,高锰酸钾的氧化能力大于重铬酸钾(前者的标准氧还原电位为,后者为),为什么由前者测得的高锰酸盐指数值远小于由后者测得的COD值?4.按照污水处理程度不同可划分为几级处理?简述其内容。
5.试简述BOD、COD、TOC、TOD的内涵,根据其各自的内涵判断这四者之间在数量上会有怎样的关系,并陈述其原因。
6.将某污水水样100mL置于重量为的古氏坩埚中过滤,坩埚在105℃下烘干后称重为,然后再将此坩埚置于600℃下灼烧,最后称重为。
另取同一水样100mL,放在重量为的蒸发皿中,在105℃下蒸干后称重为,试计算该水样的总固体、悬浮固体、溶解固体、挥发性悬浮固体和固定性悬浮固体量各为多少?7.碱度与pH的区分是什么?8.一般采用哪些间接的水质指标来反映水中的有机物质的相对含量?9.生化需氧量反应动力学公式。
10.某废水20℃时的BOD5是150mg/L,此时K1=0.10/d。
求该废水15℃时的BOD8的值。
11. 在实际实验中区分DS、SS的方法是什么?12.在水质指标中氮有几种表述形式,磷有几种表述形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章生物膜
第一节脂双层
一个典型的生物膜含有磷脂、糖鞘脂和胆固醇(在一些真核细胞中)。
膜含有的脂有一共同的特点,它们都是两性分子,含有极性成分和非极性成分。
磷脂和糖鞘脂在一定的条件下可以象肥皂那样形成单层膜或微团,然而在体内这些脂倾向于组装成一个脂双层。
由于磷脂和糖鞘脂含有两条烃链的尾巴,不能很好地包装成微团,却可以精巧地组装成脂双层(下图)。
但并不是所有的两性脂都可以形成脂双层,如胆固醇,其分子中的极性基团-OH 相对于疏水的稠环系统太小了。
在生物膜中,不能形成脂双层的胆固醇和其它脂(大约占整个膜脂的30%)可以稳定地排列在其余70%脂组成的脂双层中。
脂双层内脂分子的疏水尾巴指向双层内部,而它们的亲水头部与每一面的水相接触,磷脂中带正电荷和负电荷的头部基团为脂双层提供了两层离子表面,双层的内部是高度非极性的。
脂双层倾向于闭合形成球形结构,这一特性可以减少脂双层的疏水边界与水相之间的不利的接触。
在实验室里可以合成由脂双层构成的小泡,小泡内是一个水相空间,这样的脂双层结构称为脂质体(liposomes),它相当稳定,并且对许多物质是不通透的。
可以包裹药物分子,将药物带到体内特定组织。
第二节流动镶嵌模型
脂双层形成了所有生物膜的基础,而蛋白质是生物膜的必要成分。
不含蛋白质的脂双层的厚度大约是5~6nm,而典型的生物膜的厚度大约是6~10nm,这是由于存在着镶嵌在膜中或与膜结合的蛋白质的缘故。
1972年,S.Jonathan Singer和Garth L.Nicolson就生物膜的结构提出了流动镶嵌模型(fluid mosaic model)。
根据这一模型的描述,膜蛋白看上去象是圆形的“冰山”飘浮在高度流动的脂双层“海”中(下图)。
内在膜蛋白(integral membrane proteins)插入或跨越脂双层,与疏水内部接触。
外周膜蛋白(peripheral membrane proteins)与膜表面松散连接。
生物膜是一个动态结构,即膜中的蛋白质和脂可以快速地在双层中的每一层内侧向扩散。
尽管现在对原来的流动镶嵌模型中的某些方面作了一些修正和补充,但该模型时至今日仍然是基本正确的。
第三节膜的流动性
流动镶嵌模型最有力的证据之一是L.D.Frye 和Michael A进行的小鼠细胞和人细胞的融合实验(右图),该实验证明了某些内在膜蛋白可以在生物膜内侧向扩散。
他们将小鼠细胞和人的细胞融合形成一个异核体(杂化细胞)。
在融合之前利用可以特异结合在人细胞质膜中某个蛋白的红色荧光标记的抗体标记人细胞,而用可以特异结合在小鼠细胞质膜中某个蛋白的绿色荧光标记的抗体标记小鼠细胞。
这样一来可以通过免疫荧光显微镜观察两种标记的细胞融合后,细胞膜上内在膜蛋白的变化。
大约在融合后40分钟,就观察到细胞表面抗原相互混合的情形。
这一实验表明,至少某些内在膜蛋白可以在生物膜内侧向自由扩散。
第四节物质运输与生物膜
生物膜是从物理角度将活细胞与它周围的环境分开所必要的,而其另一个作用也非常重要,那就是生物膜使细胞生长所需要的水、氧和所有其它营养物质进入细胞内,而将细胞生成的产物(例如激素、某些降解酶和毒素等)输出,以及使一些废物(例如二氧化碳和尿素等)排泄掉。
疏水的、小的、不带电荷的分子可以自由地扩散通过细胞膜,这种不依赖其他蛋白帮助的转运方式称为非介导转运(Nonmediated transport)。
但对大多数带电物质来说,脂双层是一个几乎不可通透的壁垒,需要通过转运蛋白转运,这种转运方式称为介导转运(Nonmediated transport)。
小分子和离子跨膜运输借助于三种类型的内在膜蛋白:通道(channels)蛋白和(膜)孔(pores)蛋白、被动转运蛋白(passive transporters)和主动转运蛋白(active transporters)
孔蛋白和通道蛋白非常象离子载体,为小分子和离子提供一个沿着浓度梯度迁移的途径,该迁移过程不需要能量,是通过这些蛋白而不是通过脂双层扩散
被动转运不需要能量驱动,被动转运也称为易化扩散(facilitated diffusion)。
转运蛋白的作用是加快反应的平衡,如果没有转运蛋白,单靠扩散达到平衡非常慢。
红细胞主要依赖于葡萄糖作为能源。
D-葡萄糖从血液(葡萄糖浓度大约为5mM)通过被动转运,经葡萄糖转运蛋白沿着葡萄糖浓度梯度降低方向进入红细胞内。
葡萄糖首先与转运蛋白的面向外构象结合,然后当转运蛋白构象改变时,葡萄糖跨过
脂双层。
在面向细胞质一侧,葡萄糖脱离转运蛋白,进入细胞质,而转运蛋白又改变为起始的构象。
被动和主动转运蛋白与通道蛋白和孔蛋白不同,转运蛋白通常能特异地结合某些分子或结构上类似的分子的基团并进行跨膜转运。
最简单的一类转运蛋白执行单向转运(uniport),即它们只携带一种类型的溶质跨膜转运。
而许多转运蛋白可进行两种溶质的同一方向的同向转运(symport)或协同转运(cotransport)。
被动转运是溶质沿着浓度梯度降低方向转运,不需要能量;与被动转运相反,主动转运可以逆浓度梯度转运,但需要能量。
主动转运可以利用不同形式的能源。
常用的是ATP,离子转运ATP酶(ion-transporting ATPase)是一大类ATP驱动离子转运蛋白,几乎存在于所有细胞器官。
其中包括Na+-K+ ATP酶和Ca2+ ATP 酶,它们在制造和维持跨质膜和细胞内器官的离子浓度梯度中起着必要的作用。
光是某些主动转运的能源,例如细菌视紫红质将光能转化为化学能的过程。
原发主动转运直接由ATP、光或电子传递驱动的,而第二级主动转运是靠离子浓度驱动的。
在大多数情况下,原发主动转运常用来在第二个溶质中制造一个梯度。
例如在ATP的驱动下将第一种溶质逆浓度梯度转运,结果形成的第一种溶质浓度梯度贮存的能量又能驱动第二种溶质的逆浓度梯度转运
第五节胞吞与胞吐
原核生物在它们的质膜和外膜中含有多成分的输出系统,使得它们能够将某些蛋白质(往往是些毒素或酶)分泌到细胞外介质中。
在真核细胞中,蛋白质的输入和输出细胞分别通过胞吞和胞吐实现的。
原核生物在它们的质膜和外膜中含有多成分的输出系统,使得它们能够将某些蛋白质(往往是些毒素或酶)分泌到细胞外介质中。
在真核细胞中,蛋白质的输入和输出细胞分别通过胞吞和胞吐实现的。
胞吞和胞吐都涉及到一种特殊的脂囊泡的形成。
蛋白质和某些其它的大的物质被质膜吞入并带入细胞内(以脂囊泡形式)。
受体介导的胞吞开始是大分子与细胞的质膜上的受体蛋白结合,然后膜凹陷,形成一个含有要输入的大分子的脂囊泡,也称为内吞囊泡,出现在细胞内。
出现在胞内的囊泡。