完整word版,分子生物学总结完整版,推荐文档

合集下载

分子生物学精选全文

分子生物学精选全文

可编辑修改精选全文完整版第一章绪论1、分子生物学简史:分子生物学是研究核酸、蛋白质等所有生物大分子形态、结构特征及其重要性、规律性而相互联系的科学,是人类从分子水平上真正揭示生物世界的奥秘,由被动的适应自然界到主动的改造和重组自然界的基础科学。

2、分子生物学发展阶段第一阶段:分子生物学发展的萌芽阶段第二阶段:分子生物学的建立和发展阶段第三阶段:分子生物学的深入发展和应用阶段3、分子生物学的主要研究内容DNA重组技术;基因表达调控研究;生物大分子的结构与功能的研究;基因组、功能基因组与生物信息学的研究第二章染色体与DNA1、名词解释:不重复序列:在单倍体基因组中只有一个或几个拷贝的DNA序列。

真核生物的大多数基因在单倍体中都是单拷贝。

中度重复序列:每个基因组中10~104个拷贝。

平均长度为300 bp,一般是不编码序列,广泛散布在非重复序列之间。

可能在基因调控中起重要作用。

常有数千个类似序列,各重复数百次,构成一个序列家族。

高度重复序列:只存在于真核生物中,占基因组的10%~60%,由6~10个碱基组成。

卫星DNA(satellite DNA):又称随体DNA。

卫星DNA是一类高度重复序列DNA。

这类DNA是高度浓缩的,是异染色质的组成部分。

微卫星DNA(microsatellite DNA):又称短串联重复序列,是真核生物基因组重复序列中的主要组成部分,主要由串联重复单元组成。

重叠基因(overlapping gene,nested gene):具有部分共同核苷酸序列的基因,及同一段DNA携带了两种或两种以上不同蛋白质的编码信息。

重叠的序列可以是调控基因也可以是结构基因部分。

多顺反子(polycistronic mRNA ) :编码多个蛋白质的mRNA称为多顺反子mRNA 。

单顺反子(monocistronic mRNA) :只编码一个蛋白质的mRNA称为单顺反子mRNA。

DNA的转座:又称移位(transposition),是由可移位因子介导的遗传物质重排现象。

(完整word版)分子生物学知识点归纳

(完整word版)分子生物学知识点归纳

分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。

2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。

3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。

4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。

甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。

真核生物中的DNA甲基化则在基因表达调控中有重要作用。

真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’.5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。

“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。

6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。

(2)DNA双链是右手螺旋结构。

螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。

每个碱基旋转角度为36度。

DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。

(3)疏水力和氢键维系DNA双螺旋结构的稳定。

DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。

7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。

各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。

核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。

8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。

9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。

分子生物学课程总结范文(精选7篇)

分子生物学课程总结范文(精选7篇)

分子生物学课程总结分子生物学课程总结范文(精选7篇)分子生物学课程总结1三天的分子生物学实习,我能认真听老师的讲解和很好的按照老师的安排完成实验。

期间,接触和学习到了很多有关分子生物学实验的方法、仪器的使用、技术,而且对分子生物学实验有一个大致的了解,学习到很多以前没有接触过的知识。

这几天来做的不足的地方有:1、预习不够充分。

只是浏览了实验报告上的原理、操作等内容,并没有深入了解每一个步骤的操作会对实验有什么的作用和影响。

实验失败了,不能自主找到原因。

2、实验操作过程不够细心。

实验要求十分细心,严谨和专注。

实验中很多细小的地方还是没有很好的注意到。

3、遇到不懂的没有及时发问。

实验就是一个让我们实操的过程,一边操作一边巩固书本上的知识。

过程中,遇到不明白的地方应该及时问别人活着自己翻阅资料,力求把实验弄透彻。

但是我还是有很多收获的:1、对分子生物学实验有了了解。

例如实验的基本的流程和操作,常用的方法等基础知识已经有了一定了解,对以后的实验会有一定的帮助。

2、最基本的移液枪、离心机、涡旋器等的使用还有实验中的PCR 仪、电泳等有一定的认。

3、学会了严谨和细心。

实验所用的材料都是比较昂贵的,而且实验只要一步错了,就得重做。

所以需要非常严谨。

不仅仅是分子生物学实验,其他实验也要求,所以培养这个有点对以后的实验非常有好处。

4、学会了坚持。

很多次因为实验做的时间很长,大家都会很累,但是,还是要坚持,一点点累都受不了是不能把实验做好的。

开始慢慢了解到做科研的人员的辛酸,长时间整天呆在实验室做实验,这需要很大的毅力。

5、把握实验机会,让自己学得更多。

实验过程中,只要有实操的机会,我都会去操作。

因为说和做是不一样的。

而且在操作中能加深巩固知识和学得更加深入。

三天的分子生物学实习虽然很累,因为要天天去院楼,而却实验时间都比较长。

但是还是很有意义的,因为学习到很到东西,收获了很多。

老师也为我们准备了很多的材料和准备,实验才做得那么快和顺利,其实,实验室简化了很多了,而且我们所做的实验都是已经设计好的,按照操作做就行了。

分子生物学总结

分子生物学总结

分子生物学总结1.分子生物学:是研究核酸,蛋白质等所有生物大分子的形态,结构特征及其重要性,规律性和相互关系的科学。

它是人类从分子水平上真正揭示生物世界的奥秘。

由被动适应自然界转向主动地改造和重组自然界的基础学科。

2.正向遗传学:(1900―1953)1950年代以前,以杂交为主要实验方法,通过观察比较生物体亲代和杂交后代的性状变化进行数量分析,从而认识与生物性状相关的基因及其突变与传递的规律。

这是遗传学的杂交分析时代,即从生物体的性状改变来认识基因是谓“正向遗传学”。

(forward genetics)3.反求遗传学:(1953―2003)1950年代以后,遗传学急剧演变为运用物理学和化学的原理和实验技术,直接解剖基因的物质结构,并在分子水平上揭示基因的结构和功能,以及两者之间的关系的学科。

这是遗传物质分子分析时期,即从基因的结构出发,认识基因的功能,是谓“反求遗传学”。

(reverse genetics)4.结构分子生物学:研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。

它包括结构的测定,结构的运动变化规律的探索及结构与功能相互关系的建立3个主要研究方向。

目前,最常见的研究三维结构及其运动规律的手段是:X线衍射的晶体学(又称蛋白质晶体学),其次是二维或多维核磁共振研究液相结构,也有用电镜三维重组,电子衍射,中子衍射和各种频谱学法研究生物分子的空间结构。

5.DNA重组技术:又称基因工程。

是20世纪70年代初兴起的技术科学,目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计方向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

严格来说,DNA重组技术并不完全等于基因工程,因为后者还包括其他可能使生物细胞基因结构得到改造的技术,DNA重组技术是核酸化学,蛋白质化学,酶工程学及微生物学,遗传学,细胞学长期深入研究成果的结晶,而限制性内切酶,DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。

分子生物学总结

分子生物学总结

SectionA1 三个域:真细菌,古细菌,真核生物2 组装中得主要作用力:非共价健作用力SectionB1 蛋白质纯化得分析方法2正电荷:天冬氨酸谷氨酸负电荷:赖氨酸精氨酸组氨酸极性:天冬酰胺谷氨酰胺苏氨酸丝氨酸半胱氨酸非极性:脂肪族甘氨酸丙氨酸缬氨酸亮氨酸异亮氨酸甲硫氨酸脯氨酸芳香族苯丙氨酸酪氨酸色氨酸Cys 二硫键Gly 无手性Pro 亚氨基酸芳香族氨基酸最大吸收峰280mm3 蛋白质得一级(决定蛋白折叠及其最后得形状得最重要得因素):氨基酸脱水缩合形成肽链N端到C端共价键二级:多肽链中空间结构邻近得肽链骨架通过氢键形成得特殊结构。

α转角β螺旋氢键为主要作用力三级:多肽链中得所有二级结构与其她松散肽链区域(散环结构)通过各种分子间作用力(非共价键为主),弯曲、折叠成具有特定走向得紧密球状构象。

非共价键四级:许多蛋白分子由多条多肽链(亚基,subunits )构成。

组成蛋白得各亚基以各种非共价键作用力为主,结合形成得立体空间结构即为四级结构。

非共价键4 偶极:电子云在极性共价键得两原子间不均匀分布,使共价键两端得原子分别呈现不同得电性兼性离子:具有正电荷(碱性),又具有负电荷(酸性)得分子双极性分子:Section C1核酸得光学特性:增色性:一种化合物随着结构得改变对光得吸收能力增加得现象减色性:一种化合物随着结构得改变对光得吸收能力减少得现象Reason: 碱基环暴露在环境中得越多,对紫外得吸收力越强Absorbance(吸收值):Nucleotide > ssDNA/RNA > dsDNA核酸得最大吸收峰260mm(碱基有芳香环)芳香族氨基酸最大吸收峰280mmA260/A280:纯得dsDNA:1、8纯得RNA:2、0纯得Protein:0、52 Tm 值(熔解温度):热变性时,使得DNA双链解开一半所需要得温度。

Tm=2x(A+T) + 4x(G+C)Tm值与DNA分子得长度,及GC得含量成正比Annealing(退火):热变性得DNA经过缓慢冷却后复性快速冷却:Stay as ssDNA缓慢冷却: 复性成dsDNA3 脱氧核糖核酸与核糖核苷酸得到画法4 支持双螺旋结构得两个实验:查戈夫规则X射线晶体衍射5 双螺旋得内容:双链之间得关系:DNA分子由两条链组成双链反向平行(5’3’方向)两链得碱基通过氢键互补配对,A:T; G:C。

分子生物学总结(一)2024

分子生物学总结(一)2024

分子生物学总结(一)引言概述:分子生物学是现代生物学研究的重要分支领域,通过研究生物体内的生物大分子(如核酸、蛋白质等)的结构、功能和相互作用等问题,揭示生物体内生命活动的分子基础。

本文将对分子生物学的核心概念进行总结,包括DNA、RNA、蛋白质、基因调控以及分子遗传学等五个方面。

正文:一、DNA1. DNA的结构:双螺旋结构、碱基配对、磷酸二酯桥、五碱基2. DNA复制:半保留复制、DNA聚合酶、起始子、复制泡3. DNA修复:直接修复、错配修复、碱基切除修复4. DNA重组:同源重组、非同源重组、错配修复5. DNA技术:PCR、DNA测序、基因工程二、RNA1. RNA的功能:信息传递、信息储存、酶催化、调控基因表达2. mRNA的合成:转录、RNA聚合酶、启动子、转录因子3. rRNA和tRNA:核糖体、蛋白质合成、翻译、启动子、终止子4. RNA修饰:剪接、剪切体、甲基化、翻译后修饰5. RNA干扰:siRNA、miRNA、RNA干涉三、蛋白质1. 蛋白质的结构:氨基酸序列、一级、二级、三级结构、蛋白质域2. 蛋白质的合成:翻译、核糖体、启动子、终止子3. 蛋白质的修饰:磷酸化、乙酰化、甲基化、糖基化4. 蛋白质的折叠:分子伴侣、伽马泡沫5. 蛋白质的功能:结构蛋白、酶、激素、抗体四、基因调控1. 转录的调控:启动子、转录因子、转录抑制因子2. 转录后调控:剪接、RNA降解、RNA干涉、翻译调控3. 染色质的结构:DNA甲基化、组蛋白修饰、染色体构象4. 染色质的调控:修饰酶、组蛋白翻译因子、染色质重塑5. 表观遗传调控:组蛋白甲基化、组蛋白乙酰化、DNA甲基化五、分子遗传学1. 遗传信息的传递:基因、等位基因、基因型、表型2. 突变:点突变、重组、演化3. 基因家族:同源基因、家族扩张、功能分化4. 基因表达调控:转录因子、miRNA、表观遗传调控5. 分子进化:基因演化、分子钟、系统发育总结:通过对分子生物学核心概念的总结,我们了解到DNA、RNA和蛋白质在生物体内起着重要的功能和调控作用,而基因调控和分子遗传学则是揭示生物体内分子基础和发展演化的重要研究领域。

(完整word)临床分子生物学检验 总

(完整word)临床分子生物学检验  总

四个阶段:一、以导致遗传病的基因突变位点为靶标,以DNA分子杂交为核心二、以PCR技术为核心三、以生物芯片为核心四、以DNA测序技术为核心广义:分子标志物包括基因组DNA、各种RNA、蛋白质和各种代谢物临床分子生物学检验靶标主要以核酸(DNA和RNA)为主基因组DNA是临床分子生物学检验中最常用的分子靶标病原生物基因1。

菌种鉴定:PCR—测序和PCR—DNA探针杂交;缩短检测时间2。

确定病毒感染和病毒载量:明确感染源,判断病情,监测疗效3.病毒分析:基因型变异产生不同临床症状4。

细菌耐药监测和分子流行病学调查 :随机扩增多态性DNA;指导选择治疗方案,控制病原菌的感染传播基因变异1。

致病基因的分子缺陷 2.线粒体基因突 3。

肿瘤相关基因单基因病1。

致病基因结构发生了改变,影响了编码产物量和质的改变,如血红蛋白病、血友病、Duchenne肌营养不良等。

2。

致病基因中核苷酸三联体重复序列发生高度扩展,如脆性X综合征、亨廷顿病、强直性肌营养不良等。

基因多态性用于:1.基因定位和疾病相关性分析2。

疾病诊断和遗传咨询3。

多基因病的研究4。

器官移植配型和个体识别循环游离核酸检测(包括游离DNA和游离RNA)用于:产前诊断、恶性肿瘤早期诊断、病例检测临床分子生物学检验技术以分子杂交技术、PCR技术和DNA测序技术、芯片技术、双向电泳技术、生物信息学技术为主要技术分子生物学检验技术可用于微生物感染的确诊、感染性病原体的分型、耐药监测。

分子生物学检验技术有利于临床上对遗传性疾病的早期预防、早期诊断、早期治疗。

重要国际生物信息中心:1.美国国立生物技术信息中心(NCBI)2.欧洲生物信息学研究所(EBI) 3。

日本国立遗传研究所(DDBJ)一级核酸数据库有GenBank、EMBL和DDBJ;蛋白质序列数据库有SWISS-PROT、PIR、UNIPRO T等。

蛋白质X射线晶体三维结构数据库有PDB等.蛋白质数据库常用的有SWISS—PROT、 PIR、 PDB数据库。

分子生物学总结

分子生物学总结

名词解释分子生物学;是研究核酸,蛋白质等所有生物大分子的形态,构造特征及其重要性,规律性和相互关系的科学。

C值:指一种生物单倍体基因组DNA的总量C值反常现象:指C值往往与种系的进化复杂性不一致的现象DNA的半保存复制:每个子代分子的一条链来自亲代DNA,另一条链那么是新合成的,这种复制方式称为DNA的半保存复制复制子:生物体的复制单位称为复制子核酶:指一类具有催化功能的RNA分子,通过催化靶位点RNA链中磷酸二酯键的断裂,特异性地剪切底物RNA分子,从而阻断基因的表达。

内含子的变位剪接:在个体发育或细胞分化时可以有选择性地越过某些外显子或某个剪接点进展变位剪接,产生出组织或发育阶段特异性mRNA。

RNA的剪接;从mRNA前体分子中切除被称为内含子的非编码区,并使基因中被称为外显子的编码区拼接形成成熟mRNA。

AP位点:所有细胞都带有不同类型、能识别受损核酸位点的核苷水解酶,它能特异性切除受损核苷酸上的N-β-糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点转录单元:转录单元是一段从启动子开场至终止子完毕的DNA序列,RNA聚合酶从转录起始位点开场沿着模板前进,直到终止子为止,转录出一条RNA链。

转录起始位点;指与新生RNA链第一个核苷酸相对应DNA链上的碱基,研究证实通常为一个嘌呤。

增强子:能强化转录起始的序列;是指能使与它连锁的基因转录频率明显增加的DNA序列SD序列:存在于原核生物起始密码子AUG上游1~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16S rRNA3’端反向互补。

GU-AG法那么:多数细胞核mRNA前体中内含子的5’边界序列为GU, 3’边界序列为AG,因此,GU表示供体衔接点的5’端,AG代表接纳体衔接点的3’端,这种保守序列模式称为GU-AG法那么可译框架〔可读框〕:指一组连续的含有三联密码子的能够被翻译成为多肽链的核酸序列. 无义突变:在DNA序列中任何导致编码氨基酸的三联密码子转变为终止密码子的突变,它使蛋白质合成提前终止合成无功能的或无意义的多肽.错义突变:由于构造基因中某个核苷酸的变化使一种氨基酸的密码子变成另一种氨基酸的密码。

分子生物学完整版

分子生物学完整版

第一章遗传物质基础1.2 DNA的结构DNA一级结构:定义:指DNA 分子中四种脱氧核苷酸按照一定的排列顺序,通过磷酸二酯键连接形成的多核苷酸。

方向性:5’→3’5’-端:C5’没有和其他核苷酸相连的末端残基,含磷酸,又称5’磷酸端3’-端:C3’没有和其他核苷酸相连的末端残基,含有-OH,又称3’羟基端通常用bp、kb或Mb的数目表示大小生理pH下,核酸是多聚阴离子化合物DNA的二级结构:DNA双螺旋结构的研究背景:碱基组分分析(Chargaff 规则):不同来源DNA:[A] = [T],[G] = [C]。

不同物种DNA:A+T/G+C不同。

A+G = T+C DNA双螺旋结构模型要点:主链:1由脱氧核糖和磷酸基通过酯键交替连接而成。

2二条主链相互平行而走向相反形成右手双螺旋构型3主链处于螺旋外侧,亲水性4螺旋直径为2nm,形成大沟及小沟相间碱基对:1 碱基位于螺旋的内侧,同一平面的碱基在二条主链间形成碱基对(A=T 和G=C),以氢键维系。

2碱基平面取向与螺旋轴垂直。

螺距3.4nm,螺旋周期含10碱基对,相邻碱基平面间距0.34nm。

作用力:碱基堆积力:在水相中,轴向平行相邻的碱基平面将自发地相互靠近,从而形成碱基堆积,它的实质是疏水相互作用和范德华引力。

DNA双螺旋结构的多态性:DNA的分子结构是动态的,在不同的条件下可以有所不同。

A构象B构象C构象D构象Z构象DNA的三级结构:定义:双螺旋DNA进一步扭曲盘绕则形成其三级结构,是一种比双螺旋更高层次的空间构象。

超螺旋是DNA三级结构的主要形式。

超螺旋按其方向分分类正超螺旋:形成超螺旋时的旋转方向与DNA双螺旋方向相同,结果加大了DNA分子内部张力,有紧旋效应。

负超螺旋:形成超螺旋时旋转方向与DNA双螺旋方向相反,旋转结果使DNA分子内部张力减小,称为松旋效应。

在自然条件下共价封闭环状DNA呈负超螺旋结构。

DNA超螺旋的特点:1环状DNA分子:双螺旋扭曲而形成麻花状的超螺旋结构。

分子生物学总结

分子生物学总结

『分子生物学』第一章分子生物学发展简史1、中心法则:复制DNA 复制 RNA 蛋白质(画图+解释) P13有完整的示意图。

定义:遗传信息从DNA流向RNA再流向蛋白质的规律称为中心法则。

解释:编码蛋白质的基因中所蕴含的信息通过转录和翻译两个相关联的过程得到表达。

RNA聚合酶以DNA中的一条链为模板合成互补的一条RNA单链,将DNA中所蕴含的遗传信息以mRNA的形式带到核糖体中,在核糖体中作为多肽链合成的直接模板指导蛋白质的合成。

2、基因工程实质:基因重组 P53、朊病毒,唯一一种蛋白质能够自我复制的病毒。

第二章遗传物质的本质1、什么可以作为遗传物质?除了DNA之外,RNA、蛋白质都可以。

2、一些经典的实验,肺炎双球菌实验,噬菌体实验都证明了DNA是主要的遗传物质。

3、RNA作为遗传物质时,病毒的例子:人免疫缺陷病毒(HIV)、非典型肺炎(SARS)4、RNA有两种复制,一种是一般而言的复制,还有一种是一些病毒的复制,多了逆转录的步骤,如HIV。

5、逆转录酶的发现证明遗传信息不仅可以从DNA流向RNA,也可以从RNA流向DNA。

6、测序方法了解:末端终止法、化学裂解法、全自动测序7、核酸的二级结构即双螺旋结构的基本要点:(1)DNA分子是由两条反相平行的脱氢核苷酸链盘旋成双螺旋结构(2)DNA核糖磷酸排列在外侧构成基本骨架,碱基位于内侧(3)氢键,碱基互补配对原则8、核酸的三级结构原核细胞中的超螺旋化,真核细胞中的核小体结构。

重点掌握真核生物核小体。

核小体由两个单位的组蛋白H2A、H2B、H3和H4形成八聚体的核心,约165bp的DNA双螺旋形成两圈超螺旋盘旋在核小体的核心上。

在两个核小体之间由1bp-80bp长的连接DNA相连。

9、名词解释①核酸的变性:核酸在化学或者物理因素的影响下,维系核酸双螺旋结构的氢键和碱基堆集力受到破坏,分子由稳定的双螺旋结构松懈为无规则线性结构甚至解旋成单链的现象,称为核酸的变性。

分子生物学个人总结5则范文

分子生物学个人总结5则范文

分子生物学个人总结5则范文第一篇:分子生物学个人总结第二章一.1..基因:gene 是合成一种功能蛋白或RNA分子所必须的全部DNA序列2.基因组:genome 狭义是指单倍体基因组,特定生物体的整套遗传物质的总和。

是细胞全部的遗传信息。

3.染色体:chromosome 是真核生物遗传物质在分裂期存在的形态,独立携带必须遗传信息的DNA分子,并包括决定其结构的蛋白质。

4.简述基因型和表现型的关系基因型是控制生物体表现型的遗传因子;表现型是有机体可见的或者可计算的外在性质,分为不同类型成为性状或特征。

不同的表现型可能受不同的基因型调控,不同的基因型可产生不同的表现型。

但基因型相同,由于表达调控差异,可产生不同的表现型,例如同一种生物有不同的发育期。

二.1..证明DNA是遗传物质的经典实验室如何进行的?简单描述其过程,进行结果分析。

答:肺炎双球杆菌侵染小鼠转化现象同位素标记蛋白质不是遗传物质三.1.ORF:开放阅读框,是结构基因正常的核苷酸序列,从起始密码子到终止密码子的阅读框可编码完整的多肽链,期间不存在使编码中断的终止密码子。

2.5’UTR and 3’UTR:3.exon:外显子,真核基因的编码序列。

4.intron:内含子,真核生物插入外显子之间的非编码序列。

5.典型的真核基因的结构特点?与原核基因的区别?典型的真核基因包括:编码序列,外显子;插入外显子之间的非编码序列,内含子;5,端和3,端非编译区;可位于三种序列中的调控序列原核基因往往是由环状基因组组成。

也有线形基因组,不存在外显子和内含子的差别等等原核生物钟一般只有一条染色体,且大多数都带有单拷贝基因,只有很少数基因是以多拷贝形式存在的;整个染色体几乎完全是由功能基因和调控序列组成的。

6.DNA作为遗传物质的优越性是什么?证明DNA是细菌和病毒遗传物质的经典实验是如何设计的?RNA和蛋白质能否成为遗传物质?信息量大可以微缩;表面互补,电荷互补,双螺旋结构说明了精确复制的机理;核糖的2,脱氧,在水溶液中稳定性好;可以突变,以求进化;有T无U基因组得以增大,而无C脱氨基变成U带来的潜在危险。

分子生物学总结

分子生物学总结

分⼦⽣物学总结分⼦⽣物学总结第⼀章绪论⼀. DNA重组技术和基因⼯程技术.DNA重组技术⼜称基因⼯程,⽬的是将不同的DNA⽚段按照⼈们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达.产⽣影响受体细胞的新的遗传性状.基因⼯程技术还包括其他可能使⽣物细胞基因组结构得到改造的体系.第⼆章染⾊体与DNA⼀. DNA的⼀、⼆、三级结构特征.DNA⼀级结构特征1. 双链反向平⾏配对⽽成2. 脱氧核糖和磷酸交替连接,构成DNA⾻架,碱基排在内侧3. 内侧碱基通过氢键互补形成碱基对DNA⼆级结构特征绕DNA双螺旋表⾯上出现的螺旋沟,宽的沟称为⼤沟,窄沟称为⼩沟。

⼤沟,⼩沟都、是由于碱基对堆积和糖-磷酸⾻架扭转造成的。

DNA三级结构特征拓扑异构酶拓扑异构酶负超螺旋松弛DNA 正超螺旋溴已啶溴已啶⼆. 原核⽣物DNA具有哪些不同于真核⽣物DNA的特征.1. 结构简练2. 存在转录单元3. 有重叠基因三. DNA复制通常采取哪些⽅式.1. 线性DNA双链的复制.2. 环状DNA双链的复制分为θ型、滚环型和D-环型等.四. 原核⽣物DNA的复制特点.1. DNA双螺旋的解旋2. DNA复制的引发3. 冈崎⽚段与半不连续复制4. 复制的终⽌5. DNA聚合酶五. 细胞通过哪⼏种修复系统对DNA损伤进⾏修复?1. 错配修复2. 碱基切除修复3. 核苷酸切除修复4. DNA直接修复六. 什么是转座⼦?可分为哪些种类?转座⼦是存在与染⾊体DNA上可⾃主复制和位移的基本单位原核⽣物转座⼦的类型: 1. 插⼊序列 2. 复合转座⼦ 3. TnA家族第三章⽣物信息的传递(上)⼀. 什么是编码链?什么是模板链?与mRNA序列相同的那条DNA链称为编码链;将另⼀条根据碱基互补原则指导mRNA合成的DNA链称为模板链。

三. 简述σ因⼦的作⽤.σ因⼦的作⽤是负责模板链的选择和转录的起始,它是酶的别构效应物,使酶专⼀性识别模板上的启动⼦.四. 什么是Pribnow box?它的保守序列是什么?RNA聚合酶全酶与模板DNA结合后,⽤DNase I⽔解DNA,然后⽤酚抽提,沉淀纯化DNA后得到⼀个被RNA聚合酶保护的DNA⽚段,约有41-44个核苷酸对.在被保护区内有⼀个由5个核苷酸组成的共同序列,是RNA聚合酶的紧密结合点,称为Pribnow box. Pribnow区的保守序列是: TTGACA五. 简述原核⽣物和真核⽣物mRNA的区别.(⼀)原核⽣物mRNA的特征1、半衰期短2、多以多顺反⼦的形式存在3、5’ 端⽆“帽⼦”结构, 3’ 端没有或只有较短的polyA 结构。

分子生物学总结完整版

分子生物学总结完整版

分子生物学第一章绪论分子生物学研究内容有哪些方面?1、结构分子生物学;2、基因表达的调节与控制;3、DNA重组技术及其应用;4、结构基因组学、功能基因组学、生物信息学、系统生物学第二章DNA and Chromosome1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。

2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。

3、Tm(熔链温度): DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度)4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。

以Ψ来表示。

6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。

7、转座:可移动因子介导的遗传物质的重排现象。

8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA 分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。

特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H512、核小体组成:由组蛋白和200bp DNA组成13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。

分子生物学,绪论,1(Word最新版)

分子生物学,绪论,1(Word最新版)

分子生物学,绪论,1通过整理的分子生物学,绪论,1相关文档,渴望对大家有所扶植,感谢观看!绪论一、医学分子生物学的概念分子生物学(molecular biology)是在分子水平探讨生命现象的科学,以探讨生命现象的本质为目的,通过对生物大分子核酸、蛋白质等结构、功能及相互作用等的探讨来阐明生命的分子基础,探讨生命的奇异。

医学分子生物学是利用分子生物学的理论与技术,从分子水平探讨疾病的发生发展机制,疾病的预料与风险评价,疾病的临床诊断与治疗,疾病的预防与限制的科学。

目前,分子生物学是生命科学中发展最快的领域,并且与诸多学科有着广泛的交叉与渗透,它是生命科学的前沿学科。

二、医学分子生物学探讨内容医学分子生物学探讨的主要内容有:① 生物大分子的结构与功能及分子间的相互作用。

主要探讨核酸、蛋白质、酶的结构与功能及蛋白质与蛋白质、核酸与核酸、核酸与蛋白质、核酸与其它生物大分子之间的相互作用。

② 基因与基因组。

③ 遗传信息的传递、表达与调控。

④ 细胞的增殖与分化:包括癌基因与抑癌基因、肽类生长因子、细胞周期及其调控的分子机理等。

⑤细胞通讯与细胞内信号传导。

⑥ 分子生物学技术:主要包括分子杂交技术、聚合酶链反应技术、基因工程与蛋白质工程等。

⑦ 基因与疾病。

⑧基因诊断与基因治疗。

三、分子生物学的发展史分子生物学的重大发觉构成了分子生物学的发展历程。

尤其是20世纪50年头,Watson 和Crick提出的DNA 双螺旋结构,标记着现代分子生物学的兴起,为揭开人类生命现象的本质,探究疾病现象,实现特性化医学奠定了基础。

1944年,Oswald T. Avery等进行了肺炎双球菌转化试验,证明白遗传物质是DNA。

1953年,Watson和Crick发觉了DNA的二级结构—双螺旋结构。

1954年,Crick提出了遗传信息传递的“中心法则”。

1958年,Meselson和Stahl用试验证明白DNA半保留复制模型。

1967年,在大肠杆菌中发觉了DNA连接酶。

分子生物学自我总结

分子生物学自我总结

分子生物学自我总结.doc文档标题:分子生物学自我总结引言(约200字)个人背景介绍:简要介绍自己的学习背景和对分子生物学的兴趣。

分子生物学的重要性:阐述分子生物学在现代生物学研究中的核心地位。

分子生物学基础知识(约300字)基因和DNA:介绍基因的概念、DNA的结构和功能。

RNA的角色:解释RNA的类型和在基因表达中的作用。

蛋白质合成:概述转录和翻译过程。

基因表达调控(约300字)原核生物的基因调控:介绍大肠杆菌等原核生物的基因表达调控机制。

真核生物的基因调控:阐述真核生物基因表达的复杂性,包括染色质结构、转录因子的作用等。

非编码RNA的作用:介绍miRNA、lncRNA等非编码RNA在基因调控中的功能。

DNA复制、修复与重组(约300字)DNA复制:描述DNA复制的过程和酶的作用。

DNA修复:介绍DNA损伤的修复机制,包括错配修复、核苷酸切除修复等。

同源重组:解释同源重组在遗传物质稳定性和遗传多样性中的作用。

分子遗传学(约300字)遗传变异:讨论基因突变、插入、缺失等遗传变异类型及其对生物体的影响。

遗传连锁与基因定位:介绍遗传连锁的原理和基因定位技术。

遗传疾病的分子机制:分析一些遗传疾病的分子生物学基础。

基因工程与基因编辑(约300字)基因克隆:解释基因克隆的原理和技术流程。

基因表达系统:介绍常用的原核和真核基因表达系统。

CRISPR-Cas9:阐述CRISPR-Cas9基因编辑技术的原理和应用。

分子生物学研究方法(约300字)分子克隆技术:介绍分子克隆的步骤和应用。

基因测序技术:概述第一代和第二代测序技术,以及最新的测序技术进展。

蛋白质组学:解释蛋白质组学的概念和研究方法。

分子生物学在医学中的应用(约300字)疾病诊断:讨论分子生物学技术在疾病诊断中的应用,如PCR、基因芯片等。

疾病治疗:分析基因治疗、RNA干扰等治疗方法的原理和进展。

个性化医疗:介绍分子生物学如何促进个性化医疗的发展。

分子生物学的伦理和法律问题(约200字)基因隐私权:讨论基因信息的隐私保护问题。

分子生物学总结

分子生物学总结

1名词解释:1 分子生物学:是一门从分子水平研究生命现象、生命本质、生命活动及其规律的科学。

广义是指以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,从分子水平阐明生命现象和生物学规律。

狭义是指研究基因或DNA 的复制转录和调控等过程的学科2 医学分子生物学:是分子生物学的一个重要分支,又是一门新兴交叉学科。

它是从分子水平上研究人体在正常和疾病状态下的生命活动及其规律,从分子水平开展人类疾病的预防、诊断和治疗研究的一门科学。

3酶工程:过去主要是通过生物化学方法从各种材料中提取、制备酶制剂。

现在主要应用基因工程技术制取酶制剂。

4蛋白质工程:过去主要是采用化学方法对纯化的蛋白质进行结构改造,制备出有特定功能的蛋白质。

现在主要应用基因工程技术,从改造目的基因的结构入手,在受体细胞中表达不同结构的蛋白质。

5微生物工程:又称发酵工程是利用微生物特定性状,使微生物产生有用物质或直接用于工业化生产的技术。

6DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。

7 CG岛:在整个基因组中存在一些成簇、稳定的非甲基化CG,这类CG称为CG岛。

8 信使RNA:从DNA分子转录的RNA分子中,有一类可作为蛋白质生物合成的模板,称为信使RNA。

9 顺反子:由结构基因转录生成的RNA序列亦称为顺反子。

10帽子结构:5端第1个核苷酸是甲基化鸟嘌呤核苷酸,它以5端三磷酸酯键与第2个核苷酸的5端相连,而不是通常的3、5磷酸二酯键。

11 核酶:在没有任何蛋白质(酶)存在的条件下,某些RNA分子也能催化其自身或其它RNA分子进行化学反应,即某些RNA 具有酶样的催化活性,这类具有催化活力的RNA被命名为核酶。

12 蛋白质的变性:蛋白质分子爱到物理化学因素(如加热、紫外线、高压、有机溶剂、酸、碱等)的影响时,可使维持空间结构的次级键断裂,性质改变,生物活性丧失,称为蛋白质的变性。

现代分子生物学概括 Microsoft Word 文档

现代分子生物学概括 Microsoft Word 文档

一、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。

从1847年Schleiden和Schwann提出"细胞学说",证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。

孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将"性状"与"基因"相耦联,成为分子遗传学的奠基石。

Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。

在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。

而Kendrew和Perutz利用X射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。

1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。

1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。

同年,Kornberg实现了试管内细菌细胞中DNA的复制。

1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。

分子生物学总结

分子生物学总结

分⼦⽣物学总结第⼀章绪论1、细胞学说 1847年由德国科学家施莱登和施旺提出。

细胞学说的主要内容有:①细胞是有机体,⼀切动植物都是由单细胞发育⽽来,即⽣物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂⽽来;④⽣物的疾病是因为其细胞机能失常。

2、分⼦⽣物学的概念:分⼦⽣物学是研究核酸、蛋⽩质等⽣物⼤分⼦的结构与功能,并从分⼦⽔平上阐明蛋⽩质与核酸、蛋⽩质与蛋⽩质之间的相互作⽤的关系及其基因表达调控机理的学科。

3、中⼼法则 1958年由克⾥克提出4、分⼦⽣物学的研究内容: a :DNA 重组技术(基因⼯程) b :基因的表达调控c :⽣物⼤分⼦的结构和功能研究(结构分⼦⽣物学)d :基因组、功能基因组与⽣物信息学研究【名词解释】:1、同功tRNA :多个tRNA 携带⼀种氨基酸,这些tRNA 称为同功tRNA 。

2、iRNA :即起始RNA ,DNA 合成的引物3、核酶:即具有催化作⽤的⼀类RNA 分⼦。

4、端粒酶:是⼀种⾃⾝携带模板RNA 的逆转录酶,催化端粒DNA 的合成,能够在缺少DNA 模板的情况下延伸端粒内3’端的寡聚核苷酸⽚段,包含两个活性位点,即逆转录酶活性和核酸内切酶活性。

5、反义核酸:是根据碱基互补原理,⽤⼈⼯合成或⽣物体⾃⾝合成的特定互补的DNA 或RNA ⽚段(或其化学修饰的衍⽣物),能够与⽬的序列结合,通过空间位阻效应或诱导RNase 活性,在复制、转录、剪接、mRNA 转运及翻译等⽔平,抑制或封闭⽬的基因的表达。

第⼆章核酸的结构与功能1、染⾊质的类型分为两种类型:常染⾊质和异染⾊质。

常染⾊质处于伸展状态,碱性染料着⾊浅⽽均匀;异染⾊质处于凝集状态,碱性染料着⾊较深。

2、染⾊质蛋⽩质分为两类:组蛋⽩和⾮组蛋⽩。

核⼼组蛋⽩,包括H 2A 、H 2B 、H3、H 4和H 1组蛋⽩。

3、组蛋⽩的特性:(1)、进化上极端保守;(2)、有组织特异性;(3)、肽链上的氨基酸分布不对称;(4)、组蛋⽩有被修饰的现象;(5)、富含Lys 的组蛋⽩H 54、核⼩体:⽤于包装染⾊质的结构单位,是由DNA 链缠绕⼀个组蛋⽩核构成的。

分子生物学总结完整版

分子生物学总结完整版

分子生物学总结完整版分子生物学是一门研究生物大分子,特别是核酸和蛋白质的结构、功能及其相互关系的科学。

它的发展为我们理解生命的奥秘提供了强大的工具和理论基础。

分子生物学的核心内容之一是对核酸,尤其是 DNA 的研究。

DNA 是遗传信息的携带者,它以双螺旋结构存在。

这种独特的结构使得DNA 能够稳定地储存遗传信息,同时又能通过碱基配对的方式进行复制,从而将遗传信息准确地传递给下一代。

DNA 的复制过程是一个高度精确和复杂的机制,涉及到多种酶和蛋白质的协同作用。

基因是 DNA 上具有特定功能的片段。

基因的表达是指基因中的遗传信息被转录为 RNA,然后再翻译为蛋白质的过程。

转录是在 RNA 聚合酶的作用下,以 DNA 为模板合成 RNA 的过程。

而翻译则是在核糖体上,以 mRNA 为模板,按照密码子的规则合成蛋白质的过程。

在这个过程中,tRNA 起着重要的作用,它能够识别密码子并携带相应的氨基酸。

蛋白质是生命活动的主要执行者,其结构和功能的研究也是分子生物学的重要内容。

蛋白质的结构分为一级结构、二级结构、三级结构和四级结构。

一级结构是指氨基酸的线性排列顺序,二级结构则包括α螺旋、β折叠等,三级结构是蛋白质的三维空间构象,四级结构是指多个亚基组成的蛋白质的整体结构。

蛋白质的功能与其结构密切相关,例如酶通过其特定的结构与底物结合并催化反应。

分子生物学技术的发展为研究带来了巨大的便利。

PCR 技术(聚合酶链式反应)能够快速扩增特定的 DNA 片段,在基因检测、疾病诊断等领域发挥了重要作用。

基因克隆技术使得我们能够获得大量特定的基因,为基因功能的研究和应用提供了基础。

DNA 测序技术的不断发展,让我们能够快速准确地测定 DNA 的序列,为基因组学的研究提供了有力支持。

在医学领域,分子生物学的应用非常广泛。

通过对疾病相关基因的研究,我们能够更好地理解疾病的发生机制,为疾病的诊断和治疗提供新的靶点和方法。

例如,在肿瘤研究中,发现了许多与肿瘤发生发展相关的基因,如癌基因和抑癌基因。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子生物学第一章绪论分子生物学研究内容有哪些方面?1、结构分子生物学;2、基因表达的调节与控制;3、DNA重组技术及其应用;4、结构基因组学、功能基因组学、生物信息学、系统生物学第二章DNA and Chromosome1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。

2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。

3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度)4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。

以Ψ来表示。

6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。

7、转座:可移动因子介导的遗传物质的重排现象。

8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。

特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H512、核小体组成:由组蛋白和200bp DNA组成13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。

复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。

非复制型转座:原始转座子作为一个可移动的实体直接被移位。

第三章DNA Replication and repair1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱基配对规律,合成与模板互补的子链。

子代细胞的DNA,一股单链从亲代完整地接受过来,另一股单链则完全从新合成。

两个子细胞的DNA都和亲代DNA碱基序列一致。

这种复制方式称为半保留复制。

2、复制子:生物体内能独立进行复制的单位3、前导链:以复制叉移动的方向为标准,一条模板链的走向是3’→5’,子代链复制时以5’→3’方向连续合成,这一条链称为前导链4、滞后链:另一条模板链的走向是5’→3’,子代链通过不连续的5ˊ-3ˊ聚合而成,称为滞后链(lagging strand)。

5、冈崎片段:滞后链的合成是一段一段的。

DNA复制时,由滞后链所形成的子代DNA短链称为冈崎片段6、端粒:是真核生物线性染色体末端的特殊结构,含物种特异性(species-specific)的DNA 重复序列。

7、逆转录:以RNA为模板, 按照RNA中的核苷酸顺序合成DNA的过程,称为反转录(reverse transcription, RT)。

该过程由逆转录酶催化进行,亦称反转录8、DNA复制的主要特征:半保留复制、双向复制、半不连续复制、保真性9、DNA复制的几种方式:10、DNA polymerases(DNA聚合酶)in E. Coli及其主要功能DNA Pol Ⅳ:din B编码DNA Pol Ⅴ:umc C, umc D编码两者涉及DNA的错误倾向修复(error-prone repair)。

当DNA受到较严重损伤时,即可诱导产生这两个酶,使修复缺乏准确性(accuracy),因而出现高突变率。

高突变率虽会杀死许多细胞,但至少可以克服复制障碍,使少数突变的细胞得以存活。

11、单链DNA结合蛋白(SSB):在复制中维持模板处于单链状态并保护单链的完整。

其作用是保证被解链酶解开的单链在复制完成之前能保持单链结构。

12、常见的真核细胞DNA聚合酶及其功能13、原核生物DNA复制的过程(课本P50-P52)1)复制的起始:识别起始点,合成引发体:在E.coli,DnaA蛋白识别并结合ori,DnaC 协助DnaB 蛋白(解链酶, helicase)结合于ori ,DNA双链局部被打开,引物酶及其他蛋白加入,形成引发体。

形成单链:促旋酶(II型拓扑异构酶)解开DNA超螺旋,解链酶解开双链,单链结合蛋白SSB结合于处于单链状态模板链上。

合成引物:前导链的引物由RNA聚合酶合成,滞后链的引物由引发酶合成。

引物提供3’-OH,复制进入延伸阶段2)复制的延伸:按照与模板链碱基配对的原则,在DNA聚合酶III的作用下,逐个加入脱氧核糖核酸,使链延长。

DNA聚合酶的即时校读和碱基选择功能,确保复制的保真性。

由于DNA双链走向相反,DNA聚合酶只能催化核苷酸从5’→3’方向合成,前导链的复制方向与解链方向一致,可以连续复制,而另一模板链沿5’→3’方向解开,随从链(滞后链)的复制方向与解链方向相反,复制只能在模板链解开一定长度后进行,因此随从链的合成是不连续的,形成的是若干个岗崎片段。

DNA聚合酶I的3’-5’核酸外切酶活性去除RNA引物。

DNA聚合酶I填补DNA间隙。

连接酶使相邻两个DNA片段的3’-OH末端和5’-P末端形成3’,5’磷酸二酯键。

3)复制的终止:两个复制叉的汇合点就是复制的终点。

两个复制叉向前推移,在终止区相遇而停止复制,复制体解体14、DNA复制过程中后随链的合成:后随链开始合成DNA时,需要一段RNA引物、后随链的引发过程引发体来完成引发体像火车头一样在后随链分叉的方向上前进,并在模板上断断续续地引发生成后随链的引物RNA短链,再由DNA聚合酶III作用合成DNA,直到遇到下一个引物或冈崎片段为止。

由RNaseH降解RNA引物并由DNA聚合酶I将缺口补齐,再由DNA连接酶将两个冈崎片段连接在一起形成大分子DNA。

15、与原核生物相比真核生物DNA复制的特点:DNA复制发生在细胞周期的S期;染色体DNA有多个复制起点,为多复制子;冈崎片段长约100—200 bp。

每个复制子在染色体DNA全部复制完成前,不能再开始新一轮复制;而在快速生长的原核中,起点可以连续发动复制。

真核生物快速生长时,往往采用更多的复制起点。

复制叉移动速度较原核生物慢(1/20);真核生物线性染色体两端有端粒结构,防止染色体间的末端连接和核酸酶降解。

由端粒酶负责新合成链5端RNA引物切除后的填补,保持端粒的一定长度。

16、几种修复机制:1)直接修复2)错配修复3)切除修复4)重组修复5)SOS修复第四章转录概念:模板链与编码链:DNA双链中按碱基配对规律能指引转录生成RNA的一股单链,称为模板链(template strand),也称作有意义链或Watson链。

相对的另一股单链是编码链(coding strand),也称为反义链或Crick链。

启动子:RNA聚合酶识别、结合和开始转录的一段DNA序列。

终止子(terminator):提供转录终止信号的DNA序列。

终止因子(termination factor) :协助RNA聚合酶识别终止信号的辅助因子(蛋白质)。

外显子&内含子:不编码的插入序列,称内含子;编码的序列称外显子。

断裂基因:大多数真核生物基因的核苷酸顺序不全部反映到蛋白质一级结构上。

基因的编码序列被不编码的插入序列分割成几段,这样的基因称为断裂基因。

RNA编辑:mRNA分子由于核苷酸的缺失、插入或置换导致序列发生了不同于模板DNA的变化,这种现象称为RNA编辑。

RNA聚合酶组成: 1)原核生物——2个α亚基、1个β亚基、1个次β亚基、1个ω亚基、1个σ亚基构成RNA聚合酶的全酶。

2)真核生物——一般有8-16个亚基,有两个分子质量超过100000的大亚基,同种生物3类聚合酶(聚合酶Ⅰ、Ⅱ、Ⅲ)有共享小亚基的倾向即有几个小亚基是3类或2类聚合酶所共有的。

σ70 识别的启动子:E. coli中σ70 识别的启动子包含2个保守的核心序列-10 区和-35 区:-10 区(TATA box, Pribnow box)中心位于转录起始位点上游10bp处,一致序列(Consensus sequence)为T80A95T45A60A50T96, 所以称-10区。

(右下角的数字表示该碱基在这个位置出现的百分率)功能:与RNA聚合酶紧密结合;形成开放启动子复合体;使RNA聚合酶定向转录-35 区(Sextama box)中心位于转录起始位点上游35bp处,一致序列为T82T84G78A65C54A45。

功能:RNA聚合酶的识别位点,为转录选择模版;-10 区和-35 区距离相当稳定,过大过小会影响转录活性转录的基本过程:起始(initiation)、延伸(elongation)、终止(termination)。

终止子的2个类型:强终止子(内部终止子)——不依赖于ρ因子弱终止子——依赖于ρ因子真核生物中的三种RNA聚合酶存在部位及作用酶位置转录产物相对活性对α-鹅膏蕈碱的敏感性RNA聚合酶Ⅰ核仁rRNA 50-70% 不敏感RNA聚合酶Ⅱ核质hnRNA 20-40% 敏感RNA聚合酶Ⅲ核质tRNA 约10% 存在物种特异性真核生物mRNA 加工5’capping(5’加帽)3’polyadenylation(3’加poly A尾巴)splicing(拼接)primary product(原初产物): hnRNA ( intron, exon)RNA editing(编辑)modification(修饰)原核和真核细胞的 mRNA 的异同同:功能相同,即通过三联密码子翻译生成蛋白质异:1)真核细胞5'端存在帽子结构;绝大多数具有多尾巴;2)原核细胞:mRNA半衰期短;许多原核生物mRNA可能以多顺反子的形式存在;5'端无帽子结构,3’端没有或只有较短的多(A)结构第五章翻译密码子:在mRNA的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸(或其他信息),这种三联体形式的核苷酸序列称为密码子。

相关文档
最新文档