整式的乘除及因式分解(精致电子教案)

合集下载

第14章整式的乘除和因式分解-(教案)

第14章整式的乘除和因式分解-(教案)
五、教学反思
在今天的教学过程中,我发现学生们对于整式的乘除和因式分解这一章节的内容普遍感到有些吃力。在讲解整式的乘法法则时,我注意到有的学生在进行多项式乘多项式的运算时,容易混淆同类项和如何正确合并它们。这让我意识到,需要通过更多的例题和练习来加强他们的这部分能力。
在因式分解的教学中,我发现十字相乘法对学生来说是一个难点。他们往往在寻找能够相乘得到多项式系数的两个数时遇到困难。我尝试通过一些具体的例题和分解步骤来引导学生,但感觉效果并不如预期。这可能是因为我需要在课堂上提供更多的时间和机会,让学生自己尝试和探索,而不仅仅是观看我的演示。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘除和因式分解的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决实际代数问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.培养学生的逻辑推理能力,使其能够理解和运用整式的乘除法则,以及因式分解的各种方法;
2.提升学生的数学运算能力,熟练掌握整式乘除和因式分解的运算技巧;
3.增强学生的数学抽象思维,通过解决实际问题,体会数学在现实生活中的应用;
4.培养学生的团队合作意识,通过小组讨论和合作,共同解决复杂的整式乘除和因式分解问题;
第14章整式的乘除和因式分解-(教案)
一、教学内容
第14章整式的乘除和因式分解:
1.单项式乘单项式、单项式乘多项式、多项式乘多项式;
2.乘法公式:平方差公式、完全平方公式;
3.整式的除法:整式除以单项式、整式除以多项式;

整式的乘除与因式分解教案

整式的乘除与因式分解教案

XXX 教育学科教师辅导讲义讲义编号 学员编号: 年 级:初二 课时数:学员姓名: 辅导科目:数学 学科教师:学科组长签名及日期学员家长签名及日期 课 题整式的乘除与因式分解 授课时间:备课时间:教学目标理解整式乘除的相关概念,灵活运用相关公式进行计算,并能根据题目运用整式乘法公式进行因式分解;重点、难点重点:掌握整式乘除的相关公式; 难点:根据题目能准确进行因式分解;考点及考试要求主要以填空题和化简解答题为主,考察学生的运算能力。

教学内容一、相关知识回顾(一)整式乘法1、同底数幂的乘法对于任意底数a 与任意正整数m ,n ,一般地,我们有m n m n a a a +⋅=(m ,n 都是正整数)。

即同底数幂相乘,底数不变,指数相加。

2、幂的乘方对于任意底数a 与任意正整数m ,n ,一般地,我们有()m n m n a a ⋅= (m ,n 都是正整数)。

幂的乘方,底数不变,指数相乘。

3、积的乘方对于任意底数a , b 与任意正整数n ,一般地,我们有()n n n ab a b =(n 都是正整数)。

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

4、单项式与单项式相乘单项式与单项式相乘,把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

5、单项式与多项式相乘单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加。

6、多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

7、乘法公式(1)平方差公式一般地,我们有22()()a b a b a b +-=-,即两个数的和与这两个数的差的积,等于这两个数的平方差,这个公式叫做(乘法的)平方差公式。

(2) 完全平方公式一般地,我们有222()2a b a ab b +=++, 222()2a b a ab b -=-+,即两数和(或差)的平方,等于它们的平方和,加(减)它们的积的2倍,这两个公式叫做(乘法的)完全平方公式。

八上数学整式的乘除与因式分解教案

八上数学整式的乘除与因式分解教案

八上数学整式的乘除与因式分解教案第一章:整式的乘法1.1 单项式乘以单项式教学目标:了解单项式乘以单项式的计算方法。

能够正确计算单项式乘以单项式的结果。

教学内容:引导学生通过具体例子,探索单项式乘以单项式的计算方法。

让学生通过小组合作,发现单项式乘以单项式的规律。

教学步骤:Step 1:引入新课,展示例题。

Step 2:引导学生通过观察、讨论,发现单项式乘以单项式的规律。

Step 3:让学生进行小组合作,练习计算单项式乘以单项式。

Step 5:学生独立完成练习题,教师进行点评和讲解。

1.2 单项式乘以多项式教学目标:了解单项式乘以多项式的计算方法。

能够正确计算单项式乘以多项式的结果。

教学内容:引导学生通过具体例子,探索单项式乘以多项式的计算方法。

让学生通过小组合作,发现单项式乘以多项式的规律。

教学步骤:Step 1:引入新课,展示例题。

Step 2:引导学生通过观察、讨论,发现单项式乘以多项式的规律。

Step 3:让学生进行小组合作,练习计算单项式乘以多项式。

Step 5:学生独立完成练习题,教师进行点评和讲解。

第二章:整式的除法2.1 多项式除以单项式教学目标:了解多项式除以单项式的计算方法。

能够正确计算多项式除以单项式的结果。

教学内容:引导学生通过具体例子,探索多项式除以单项式的计算方法。

让学生通过小组合作,发现多项式除以单项式的规律。

教学步骤:Step 1:引入新课,展示例题。

Step 2:引导学生通过观察、讨论,发现多项式除以单项式的规律。

Step 3:让学生进行小组合作,练习计算多项式除以单项式。

Step 5:学生独立完成练习题,教师进行点评和讲解。

2.2 多项式除以多项式教学目标:了解多项式除以多项式的计算方法。

能够正确计算多项式除以多项式的结果。

教学内容:引导学生通过具体例子,探索多项式除以多项式的计算方法。

让学生通过小组合作,发现多项式除以多项式的规律。

教学步骤:Step 1:引入新课,展示例题。

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文一、教学目标:1. 知识与技能:(1)理解整式的乘除概念,掌握整式乘除的运算方法;(2)掌握因式分解的方法,能够对简单的一元二次方程进行因式分解。

2. 过程与方法:(1)通过实例演示和练习,培养学生的运算能力;(2)通过小组讨论和探究,培养学生合作解决问题的能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣;(2)培养学生勇于探索、积极思考的科学精神。

二、教学内容:1. 整式的乘法:(1)单项式乘以单项式;(2)单项式乘以多项式;(3)多项式乘以多项式。

2. 整式的除法:(1)单项式除以单项式;(2)多项式除以单项式。

3. 因式分解:(1)提取公因式法;(2)十字相乘法;(3)公式法。

三、教学重点与难点:1. 教学重点:(1)整式的乘除运算方法;(2)因式分解的方法及应用。

2. 教学难点:(1)整式乘除中的复杂运算;(2)因式分解中的技巧与策略。

四、教学过程:1. 导入:通过复习相关概念,引导学生进入整式乘除与因式分解的学习。

2. 教学新课:(1)整式的乘法:通过具体例子,讲解单项式乘以单项式、单项式乘以多项式、多项式乘以多项式的运算方法;(2)整式的除法:通过具体例子,讲解单项式除以单项式、多项式除以单项式的运算方法;(3)因式分解:讲解提取公因式法、十字相乘法、公式法的运用。

3. 课堂练习:布置练习题,让学生巩固所学内容。

4. 总结与拓展:总结整式乘除与因式分解的关键点,引导学生思考如何解决实际问题。

五、课后作业:1. 完成练习册的相关题目;2. 选取一道复杂的整式乘除或因式分解题目,进行深入研究和分析。

六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究整式乘除与因式分解的方法;2. 利用多媒体课件,展示整式乘除与因式分解的运算过程,增强学生的直观感受;3. 设计具有梯度的练习题,让学生在实践中巩固知识,提高运算能力;4. 组织小组讨论,鼓励学生分享解题心得,培养合作精神。

《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案第一章:整式的乘法1.1 教学目标让学生理解整式乘法的基本概念。

让学生掌握整式乘法的基本方法。

让学生能够运用整式乘法解决实际问题。

1.2 教学内容整式乘法的定义与性质。

整式乘法的基本方法:分配律、结合律、交换律。

整式乘法的应用。

1.3 教学步骤1. 导入:通过实例引入整式乘法的概念。

2. 讲解:讲解整式乘法的定义与性质,重点讲解分配律、结合律、交换律。

3. 示范:示范整式乘法的计算方法,让学生跟随老师一起完成一些简单的例子。

4. 练习:让学生独立完成一些整式乘法的练习题,老师进行个别指导。

5. 应用:让学生运用整式乘法解决一些实际问题,如计算面积、体积等。

1.4 作业布置完成课后练习题,重点掌握整式乘法的计算方法。

第二章:整式的除法2.1 教学目标让学生理解整式除法的基本概念。

让学生掌握整式除法的基本方法。

让学生能够运用整式除法解决实际问题。

2.2 教学内容整式除法的定义与性质。

整式除法的基本方法:长除法、带余除法。

整式除法的应用。

2.3 教学步骤1. 导入:通过实例引入整式除法的概念。

2. 讲解:讲解整式除法的定义与性质,重点讲解长除法、带余除法。

3. 示范:示范整式除法的计算方法,让学生跟随老师一起完成一些简单的例子。

4. 练习:让学生独立完成一些整式除法的练习题,老师进行个别指导。

5. 应用:让学生运用整式除法解决一些实际问题,如计算多项式的零点等。

2.4 作业布置完成课后练习题,重点掌握整式除法的计算方法。

第三章:因式分解3.1 教学目标让学生理解因式分解的基本概念。

让学生掌握因式分解的基本方法。

让学生能够运用因式分解解决实际问题。

3.2 教学内容因式分解的定义与性质。

因式分解的基本方法:提公因式法、分组分解法、十字相乘法。

因式分解的应用。

3.3 教学步骤1. 导入:通过实例引入因式分解的概念。

2. 讲解:讲解因式分解的定义与性质,重点讲解提公因式法、分组分解法、十字相乘法。

《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案一、教学目标:1. 让学生掌握整式乘除的计算方法,能够正确进行整式的乘除运算。

2. 让学生理解因式分解的意义,掌握因式分解的方法,能够对简单的多项式进行因式分解。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1. 整式的乘法:单项式乘单项式,单项式乘多项式,多项式乘多项式。

2. 整式的除法:单项式除以单项式,多项式除以单项式。

3. 因式分解:提公因式法,公式法。

三、教学重点与难点:1. 教学重点:整式的乘除运算,因式分解的方法。

2. 教学难点:因式分解的灵活运用,解决实际问题。

四、教学方法:1. 采用讲授法,讲解整式乘除的运算方法和因式分解的方法。

2. 采用案例分析法,分析实际问题,引导学生运用因式分解解决实际问题。

3. 采用互动教学法,引导学生积极参与讨论,提高学生的思维能力。

五、教学过程:1. 导入:通过复习相关知识,引导学生进入新课。

2. 讲解:讲解整式乘除的运算方法和因式分解的方法,结合案例进行分析。

3. 练习:让学生进行相关的练习,巩固所学知识。

4. 拓展:引导学生运用因式分解解决实际问题,提高学生的应用能力。

5. 总结:对本节课的内容进行总结,布置作业。

六、教学评价:1. 通过课堂练习和课后作业,评价学生对整式乘除和因式分解的掌握程度。

2. 观察学生在解决问题时的思维过程和方法选择,评价学生的逻辑思维能力和解决问题的能力。

3. 采用学生自评、互评和他评的方式,鼓励学生积极参与评价,提高学生的自我认知和反思能力。

七、教学资源:1. 教材:《整式的乘除与因式分解》相关章节。

2. 教学课件:展示整式乘除和因式分解的运算方法和案例分析。

3. 练习题:提供不同难度的练习题,巩固学生对知识的理解和应用。

4. 教学视频:讲解整式乘除和因式分解的运算方法和案例分析。

八、教学进度安排:1. 第一课时:讲解整式乘法,包括单项式乘单项式、单项式乘多项式、多项式乘多项式。

(八年级数学教案)整式的乘除与因式分解教案

(八年级数学教案)整式的乘除与因式分解教案

整式的乘除与因式分解教案八年级数学教案教学目标1.知识与技能能熟练掌握整式的概念、运算性质和因式分解的概念、分解方法,逐步形成知识结构.2.过程与方法通过图形的变化,从直观认识的角度领会整式运算及因式分解的知识,渗透数形结合的思想.3.情感、态度与价值观提高学生解决问题的能力,发展推理思维,体会数学的应用价值,增强自信心.重、难点与关键1.重点:熟练掌握整式,因式分解的解题方法.2.难点:灵活地应用乘法公式进行运算或因式分解.3.关键:系统把握知识点,从互逆的思想弄清整式运算与因式分解的关系.教学方法采取对知识系统“演绎”、“提升”的教学方法.教学过程一、数形结合,直观演绎【解释与比较】观察下列图形,写出相关的整式乘法公式:(1)如图1所示.(2)如图2所示.(3)如图3所示.(4)如下图在宽为a的正方形空地上修两条互相垂直宽度为b的水泥路,•其余的部分种植草坪,你能计算出草坪的面积吗?【教师提问】a2-2ab+b2=(a-b)2,请你用图形反映(a-b)2的结果,由图5•可得等式(a+b)2=(a-b)2+______.【辨析与理解】(1)(x-y)2=x2-y2;(2)(x+y)(y-x)=x2-y2;(3)(x+3y)(x-3y)=x2-3y2;(4)(x-3y)2=x2-3xy-3y2.(5)分解因式:x2-4=(x-2)2;(6)分解因式:a2±2ab+b2=(a±b)(a b)【运算与方法】1.把图6左框里的等式分别乘以(x+3y),所得的积分别写在右框相应的位置上.2.利用乘法公式计算:(1)102 (2)301×299 (3)(m+n)2(m-n)23.已知:(x+a)(x+b)=x2+(a+b)x+ab,利用这个等式计算:(x-3)(x+7)=_______.(x+5)(x+9)=_______.【运用与探究】1.一个正方体的边长为3cm,则它的体积为多少?表。

人教版八年级上册第十五章整式的乘除和因式分解全章教案

人教版八年级上册第十五章整式的乘除和因式分解全章教案

第十五章整式的乘除与因式分解15.1.1同底数幂的乘法教学目标1.知识与技能在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.3.关键:幂的运算中的同底数幂的乘法教学,要突破这个难点,•必须引导学生,循序渐进,合作交流,获得各种运算的感性认识,进而上各项到理性上来,提醒学生注意-a2与(-a)2的区别.教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则.教学过程一、创设情境,故事引入【情境导入】“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,•你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15•×105×102=15×?(引入课题)【教师提问】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示.计算过程:105×102=(10×10×10×10×10)×(10×10)=10×10×10×10×10×10×10=107【教师活动】下面引例.1.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)53×54=_____________=5( );(3)(-3)7×(-3)6=___________________=(-3)( ); (4)(110)3×(110)=___________=(110)( ); (5)a 3·a 4=________________a ( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师拓展】计算a ·a=?请同学们想一想.【学生总结】a ·a=()()()()m a a m n a a aa a a a a a a a +=个n个个=a m+n这样就探究出了同底数幂的乘法法则.二、范例学习,应用所学【例】计算:(1)103×104; (2)a ·a 3; (3)a ·a 3·a 5; (4)x ·x 2+x 2·x【思路点拨】(1)计算结果可以用幂的形式表示.如(1)103×104=103+4=107,但是如果计算较简单时也可以计算出得数.(2)注意a是a 的一次方,•提醒学生不要漏掉这个指数1,x 3+x 3得2x 3,提醒学生应该用合并同类项.(3)上述例题的探究,•目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.【教师活动】投影显示例题,指导学生学习.【学生活动】参与教师讲例,应用所学知识解决问题.三、随堂练习,巩固深化课本练习题.【探研时空】据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?四、课堂总结,发展潜能1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,•使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,•底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式.3.运用幂的乘法运算性质注意不能与整式的加减混淆.五、布置作业,专题突破1.课本P148习题15.1第1(1),(2),2(1)题.2.选用课时作业设计.板书设计15.1.1同底数幂的乘法1、同底数幂的乘法法则例:练习:15.1.2 幂的乘方教学目标1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.重、难点与关键1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,•要求对性质深入地理解.教学方法采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,•木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r ,那么,•请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=43πr 3) 【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V 木星=43π·(102)3=?(引入课题). 【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a 3代表什么?(102)3呢?【学生回答】a 3=a ×a ×a ,指3个a 相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,•因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a 2)3;(2)(24)3;(3)(b n )3;(4)-(x 2)2.【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a )的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:(a m )n =()n mm m mm m m m a a a a a +++=个n 个= a mn. 评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b 3)4;(3)(x n )3;(4)-(x 7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103×5=1015;(3)(x n)3=x n×3=x3n;(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.三、随堂练习,巩固练习课本P143练习.【探研时空】计算:-x2·x2·(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母,•也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,•一个是“指数相加”.五、布置作业,专题突破课本P148习题15.1第1、2题.板书设计15.1.2 幂的乘方1、幂的乘方的乘法法则例:练习:15.1.3 积的乘方教学目标1.知识与技能通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.2.过程与方法经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.3.情感、态度与价值观通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.重、难点与关键1.重点:积的乘方的运算.2.难点:积的乘方的推导过程的理解和灵活运用.3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入,•层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用.教学方法采用“探究──交流──合作”的方法,让学生在互动中掌握知识.教学过程一、回顾交流,导入新知【教师活动】提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问.【课堂演练】计算:(1)(x4)3(2)a·a5(3)x7·x9(x2)3【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.【教师活动】巡视,关注学生的练习,并请3位学生上台演示,•然后再提出下面的问题.同学们思考怎样计算(2a3)4,每一步的根据是什么?【学生活动】先独立完成上面的问题,再小组讨论.(2a3)4=(2a3)·(2a3)·(2a3)·(2a3)(乘方的含义)=(2·2·2·2)·(a3·a3·a3·a3)(乘法交换律、结合律)=24·a12(乘方的意义与同底数幂的乘法运算)=16a12【教师活动】提出应用以上分析问题的过程,再计算(ab)4,说出每一步的根据是什么?【学生活动】独立思考之后,再与同学交流.(ab)4=(ab)·(ab)·(ab)·(ab)(乘方的含义)=(aaaa)·(bbbb)(交换律、结合律)=a4·b4(乘方的含义)【教师提问】(1)请同学们通过计算,观察乘方结果之后,•你能得出什么规律?(2)如果设n为正整数,将上式的指数改成n,即:(ab)n,其结果是什么?【学生活动】回答出(ab )n =a n b n .【师生共识】我们得到了积的乘方法则:(ab )n =a n b n (n 为正整数),这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘.(ab )n =()()()()()n n n ab ab ab aaa a b b b b 个个个=a n b n【教师活动】拓展训练:三个或三个以上的积的乘方,如(abc )n ,【学生活动】回答出结果是(abc )n =a n b n c n.二、范例学习,应用所学【例】计算:(1)(2b )3;(2)(2×a 3)2;(3)(-a )3;(4)(-3x )4.【教师活动】组织、讲例、提问.【学生活动】踊跃抢答.三、随堂练习,巩固深化课本P144练习.【探研时空】计算下列各式:(1)(-35)2·(-35)3; (2)(a -b )3·(a -b )4; (3)(-a 5)5; (4)(-2xy )4;(5)(3a 2)n ; (6)(xy 3n )2-[(2x )2] 3;(7)(x 4)6-(x 3)8; (8)-p ·(-p )4;(9)(t m )2·t ; (10)(a 2)3·(a 3)2.四、课堂总结,发展潜能本节课注重课堂引入,激发学生兴趣,“良好开端等于成功一半”.1.积的乘方(ab )n =a n b n (n 是正整数),使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,•也可以是整式,对三个以上因式的积也适用.3.要注意运算过程,注意每一步依据,还应防止符号上的错误.4.在建构新的法则时应注意前面学过的法则与新法则的区别和联系.五、布置作业,专题突破1.课本P148习题15.1第1、2题.板书设计15.1.3 积的乘方1、积的乘方的乘法法则例:练习:15.1.4 单项式乘以单项式教学目标1.知识与技能理解整式运算的算理,会进行简单的整式乘法运算.2.过程与方法经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.3.情感、态度与价值观培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.重、难点与关键1.重点:单项式乘法运算法则的推导与应用.2.难点:单项式乘法运算法则的推导与应用.3.关键:通过创设一定的问题情境,•推导出单项式与单项式相乘的运算法则,可以采用循序渐进的方法突破难点.教学方法采用“情境──探究”的教学方法,让学生在创设的情境之中自然地领悟知识.教学过程一、创设情境,操作导入【手工比赛】让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.【教师活动】组织学生参加“才艺比赛”.【学生活动】完成上述手工制作,与同伴交流.【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:你们看这幅美丽的风景图片,如何装饰它会更漂亮?【学生回答】加一个美丽的像框.【引入课题】假如要加一个美丽的像框,需要知道这幅图片的大小,现在告诉你,图片的长为mx,宽为x,你能计算出图片的面积吗?【学生活动】动手列式,图片的面积为mx·x=?【教师提问】对于mx·x=?的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.【学生活动】先独立思考,再与同伴交流.实际上mx·x=m(x·x)=m·x2=mx2.【拓展延伸】请同学们继续计算mx·54x=?【学生活动】先独立完成,再与同伴交流,踊跃上台演示.mx·54x=m·54x·x=m·54x2=54mx2.【教师活动】请部分学生上台演示,然后大家共同讨论.【继续探究】计算:(1)x·mx;(2)2a2b·3ab3;(3)(abc)·b2c.【学生活动】独立完成,再与同学交流.【教师活动】总结新知:我们根据自己做的题目的原则,得到单项式与单项式相乘的运算法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,放在积的因式中.二、范例学习,应用所学【例1】计算.(1)3x2y·(-2xy3)(2)(-5a2b3)·(-4b2c)【思路点拨】例1的两个小题,可先利用乘法交换律、•结合律变形成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄.【例2】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒,•则卫星运行3×102秒所走的路程约是多少?【教师活动】:引导学生参与到例1,例2的解决之中.【学生活动】参与到教师的讲例之中,巩固新知.三、问题讨论,加深理解【问题牵引】1.a·a可以看作是边长为a的正方形的面积,a·ab又怎样理解呢?2.想一想,你会说明a·b,3a·2a以及3a·5ab的几何意义吗?【教师活动】问题牵引,引导学生思考,提问个别学生.【学生活动】分四人小组,合作学习.四、随堂练习,巩固深化课本P145练习第1、2题.五、课堂总结,发展潜能本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上.提问:(1)请同学们归纳出单项式乘以单项式的运算法则.(2)在应用单项式乘以单项式运算法则时应注意些什么?六、布置作业,专题突破1.课本P149习题15.1第3题.2.选用课时作业设计.板书设计15.1.4 单项式乘以单项式1、单项式乘以单项式的乘法法则例:练习:15.1.5 单项式与多项式相乘教学目标1.知识与技能让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.2.过程与方法经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.3.情感、态度与价值观培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.重、难点与关键1.重点:单项式与多项式相乘的法则.2.难点:整式乘法法则的推导与应用.3.•关键:应用乘法分配律把单项式与多项式相乘转化到单项式与单项式相乘上来,注意知识迁移.教学方法采用“情境──探究”教学方法,让学生直观地理解单项式与多项式相乘的法则.教学过程一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x)·(3x)2(2)(-3x)·(-x)(3)13xy·23xy2(4)-5m2·(-13mn)(5)-15x4y6-2x2y·(-12x2y5)【教师活动】组织练习,关注中下水平的学生.【学生活动】先独立完成上述“演练题”,再相互交流,部分学生上台演示.二、创设情境,引入新课小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了16a米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【教师活动】在学生讨论的基础上,提问个别学生.【情境问题2】夏天将要来临,有3家超市以相同价格n•(单位:元/台)销售A牌空调,他们在一年内的销售量(单位:台)分别是x,y,z,•请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A牌空调的总量(单位:台),•再计算出总的收入(单位:元).即:n(x+y+z).方法二:采用分别计算出三家超市销售A牌空调的收入,•然后再计算出他们的总收入(单位:元).即:nx+ny+nz.由此可得:n(x+y+z)=nx+ny+nz.【教师活动】引导学生在不同的代数式呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.三、范例学习,应用所学【例1】计算:(-2a2)·(3ab2-5ab3).解:原式=(-2a2)(3ab2)-(-2a2)·(5ab3)=-6a3b2+10a3b3【例2】化简:-3x2·(13xy-y2)-10x·(x2y-xy2)解:原式=-x3y+3x2y2-10x3y+10x2y2=-11x3y+13x2y2【例3】解方程:8x(5-x)=19-2x(4x-3)40x-8x2=19-8x2+6x40x-6x=1934x=19x=1934四、随堂练习,巩固深化课本P146练习.【探研时空】计算:(1)5x2(2x2-3x3+8)(2)-16x(x2-3y)(3)-2a2(12ab2+b4)(4)(23x2y3-16xy)·12xy2【教师活动】巡视,关注中差生.五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘,•就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.六、布置作业,专题突破课本P149习题15.1第4、6题.板书设计15.1.5 单项式乘以多项式1、单项式乘以多项式的乘法法则例:练习:15.1.6 多项式与多项式相乘教学目标1.知识与技能让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.2.过程与方法经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理.3.情感、态度与价值观通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.重、难点与关键1.重点:多项式与多项式的乘法法则的理解及应用.2.难点:多项式与多项式的乘法法则的应用.3.•关键:多项式的乘法应先转化为单项式与多项式相乘而后再应用已学过的运算法则解决.教学方法采用“情境──探索”教学方法,让学生在设置的情境中,通过操作感知多项式与多项式乘法的内涵.教学过程一、创设情境,操作感知【动手操作】首先,在你的硬纸板上用直尺画出一个矩形,并且分成如下图1•所示的四部分,标上字母.【学生活动】拿出准备好的硬纸板,画出上图1,并标上字母.【教师活动】要求学生根据图中的数据,求一下这个矩形的面积.【学生活动】与同伴交流,计算出它的面积为:(m+b)×(n+a).【教师引导】请同学们将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如图2.剪开之后,分别求一下这两部分的面积,再求一下它们的和.【学生活动】分四人小组,合作探究,求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如图3,•然后再求这四块长方形的面积.【学生活动】分四人小组合作学习,求出S1=mn;S2=nb;S3=am;S4=ab,•它们的和为S=mn+nb+am+ab.【教师提问】依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?【学生活动】分四人小组讨论,并交流自己的看法.(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.【师生共识】多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.字母呈现:=ma+mb+na+nb.二、范例学习,应用所学【例1】计算:(1)(x+2)(x-3)(2)(3x-1)(2x+1)【例2】计算:(1)(x-3y)(x+7y)(2)(2x+5y)(3x-2y)【例3】先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.【教师活动】例1~例3,启发学生参与到例题所设置的计算问题中去.【学生活动】参与其中,领会多项式乘法的运用方法以及注意的问题.三、随堂练习,巩固新知课本P148练习第1、2题.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a•米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?四、课堂总结,发展潜能1.多项式与多项式相乘,•应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理,•在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.五、布置作业,专题突破课本P149习题15.1第5、6、7(2)、9、10题.板书设计15.1.6 多项式乘以多项式1、多项式乘以多项式的乘法法则例:练习:15.2.1平方差公式(一)教学目标1.知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.2.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.3.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.重、难点与关键1.重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解.2.难点:平方差公式的应用.3.关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、•总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键.教学方法采用“情境──探究”的教学方法,让学生在观察、猜想中总结出平方差公式.教学过程一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,•其他学生认真听着,不时补充.【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式.【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识.【问题牵引】计算:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现.【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x-2)=x2-4;(2)(1+3a)(1-3a)=1-9a2;(3)(x+5y)(x-5y)=x2-25y2;(4)(y+3z)(y-3z)=y2-9z2.【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律.【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表现刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a-b)表示左边,那么右边就可以表示成a2-b2了,即(a+b)(a-b)=a2-b2.用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差.【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义.二、范例学习,应用所学【教师讲述】平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,•一切就变得容易了.现在大家来看看下面几个例子,从中得到启发.【例1】运用平方差公式计算:(1)(2x+3)(2x-3);(2)(b+3a)(3a-b);(3)(-m+n)(-m-n).填表:(a+b)(a-b) a b a2-b2结果(2x+3)(2x -3) 2x(2x)2-32(b+3a)(3a-b)(-m+n)(-m-n)【例2】计算:(1)103×97(2)(3x-y)(3y-x)-(x-y)(x+y)通过做题,应该总结出:在两个因式中,符号相同的一项作a,符号不同的一项作b.三、随堂练习,巩固新知课本P153练习第1、2题.四、课堂总结,发展潜能本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a,•第二个数b;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.五、布置作业,专题突破课本P156第1、2题.板书设计15.2.1平方差公式(一)1、平方差公式例:(a+b)(a-b)=a2-b2练习:15.2.1平方差公式(二)教学目标1.知识与技能探究平方差公式的应用,熟练地应用于多项式乘法之中.2.过程与方法经历平方差公式的运用过程,体会平方差公式的内涵.3.情感、态度与价值观培养良好的运算能力,以及观察事物的特征的能力,感受到学习数学知识的实际价值.重、难点与关键1.重点:运用平方差公式进行整式计算.2.难点:准确把握运用平方差公式的特征.3.关键:弄清平方差公式的结构特点,左边:(1)两个二项式的积;(2)•两个二项式中一项相同,另一项互为相反数.右边:(1)二项式;(2)两个因式中相同项平方减去互为相反数的项的平方.教学方法采用“精讲.精练”分层递推的教学方法,让学生在训练中,熟练掌握平方差的特征.教学过程一、回顾交流,课堂演练1.用平方差公式计算:(1)(-9x-2y)(-9x+2y)(2)(-0.5y+0.3x)(0.5y+0.3x)(3)(8a2b-1)(1+8a2b)(4)20082-2009×20072.计算:(a+12b)(a-12b)-(3a-2b)(3a+2b)。

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文

整式的乘除与因式分解全单元的教案范文第一章:整式的乘法1.1 教学目标理解整式乘法的基本概念掌握整式乘法的基本法则能够正确进行整式乘法运算1.2 教学内容整式乘法的定义和基本概念整式乘法的基本法则整式乘法的运算步骤1.3 教学方法通过示例和练习,让学生理解整式乘法的概念和法则使用多媒体教学工具,展示整式乘法的运算过程提供充足的练习机会,让学生巩固整式乘法的运算技巧1.4 教学评估通过课堂练习和作业,检查学生对整式乘法的理解和掌握程度设计一些综合性的题目,评估学生对整式乘法的应用能力第二章:整式的除法2.1 教学目标理解整式除法的基本概念掌握整式除法的基本法则能够正确进行整式除法运算2.2 教学内容整式除法的定义和基本概念整式除法的基本法则整式除法的运算步骤2.3 教学方法通过示例和练习,让学生理解整式除法的概念和法则使用多媒体教学工具,展示整式除法的运算过程提供充足的练习机会,让学生巩固整式除法的运算技巧2.4 教学评估通过课堂练习和作业,检查学生对整式除法的理解和掌握程度设计一些综合性的题目,评估学生对整式除法的应用能力第三章:因式分解3.1 教学目标理解因式分解的基本概念掌握因式分解的基本方法能够正确进行因式分解运算3.2 教学内容因式分解的定义和基本概念因式分解的基本方法因式分解的运算步骤3.3 教学方法通过示例和练习,让学生理解因式分解的概念和法则使用多媒体教学工具,展示因式分解的运算过程提供充足的练习机会,让学生巩固因式分解的运算技巧3.4 教学评估通过课堂练习和作业,检查学生对因式分解的理解和掌握程度设计一些综合性的题目,评估学生对因式分解的应用能力第四章:多项式的乘法4.1 教学目标理解多项式乘法的基本概念掌握多项式乘法的基本法则能够正确进行多项式乘法运算4.2 教学内容多项式乘法的定义和基本概念多项式乘法的基本法则多项式乘法的运算步骤4.3 教学方法通过示例和练习,让学生理解多项式乘法的概念和法则使用多媒体教学工具,展示多项式乘法的运算过程提供充足的练习机会,让学生巩固多项式乘法的运算技巧4.4 教学评估通过课堂练习和作业,检查学生对多项式乘法的理解和掌握程度设计一些综合性的题目,评估学生对多项式乘法的应用能力第五章:多项式的除法5.1 教学目标理解多项式除法的基本概念掌握多项式除法的基本法则能够正确进行多项式除法运算5.2 教学内容多项式除法的定义和基本概念多项式除法的基本法则多项式除法的运算步骤5.3 教学方法通过示例和练习,让学生理解多项式除法的概念和法则使用多媒体教学工具,展示多项式除法的运算过程提供充足的练习机会,让学生巩固多项式除法的运算技巧5.4 教学评估通过课堂练习和作业,检查学生对多项式除法的理解和掌握程度设计一些综合性的题目,评估学生对多项式除法的应用能力第六章:平方差公式与完全平方公式6.1 教学目标理解平方差公式和完全平方公式的基本概念掌握平方差公式和完全平方公式的运用能够运用平方差公式和完全平方公式进行整式的运算6.2 教学内容平方差公式的定义和基本概念完全平方公式的定义和基本概念平方差公式和完全平方公式的运用6.3 教学方法通过示例和练习,让学生理解平方差公式和完全平方公式的概念使用多媒体教学工具,展示平方差公式和完全平方公式的运用过程提供充足的练习机会,让学生巩固平方差公式和完全平方公式的运用技巧6.4 教学评估通过课堂练习和作业,检查学生对平方差公式和完全平方公式的理解和掌握程度设计一些综合性的题目,评估学生对平方差公式和完全平方公式的应用能力第七章:分式的乘除法7.1 教学目标理解分式乘除法的基本概念掌握分式乘除法的运算方法能够正确进行分式乘除法的运算7.2 教学内容分式乘除法的定义和基本概念分式乘除法的运算方法分式乘除法的运算步骤7.3 教学方法通过示例和练习,让学生理解分式乘除法的概念和方法使用多媒体教学工具,展示分式乘除法的运算过程提供充足的练习机会,让学生巩固分式乘除法的运算技巧7.4 教学评估通过课堂练习和作业,检查学生对分式乘除法的理解和掌握程度设计一些综合性的题目,评估学生对分式乘除法的应用能力第八章:分式的化简与分解8.1 教学目标理解分式化简与分解的基本概念掌握分式化简与分解的方法能够正确进行分式的化简与分解运算8.2 教学内容分式化简与分解的定义和基本概念分式化简与分解的方法分式化简与分解的运算步骤8.3 教学方法通过示例和练习,让学生理解分式化简与分解的概念和方法使用多媒体教学工具,展示分式化简与分解的运算过程提供充足的练习机会,让学生巩固分式化简与分解的运算技巧8.4 教学评估通过课堂练习和作业,检查学生对分式化简与分解的理解和掌握程度设计一些综合性的题目,评估学生对分式化简与分解的应用能力第九章:整式与分式的综合应用9.1 教学目标理解整式与分式的综合应用的基本概念掌握整式与分式的综合应用的方法能够正确进行整式与分式的综合应用运算9.2 教学内容整式与分式的综合应用的定义和基本概念整式与分式的综合应用的方法整式与分式的综合应用的运算步骤9.3 教学方法通过示例和练习,让学生理解整式与分式的综合应用的概念和方法使用多媒体教学工具,展示整式与分式的综合应用的运算过程提供充足的练习机会,让学生巩固整式与分式的综合应用的运算技巧9.4 教学评估通过课堂练习和作业,检查学生对整式与分式的综合应用的理解和掌握程度设计一些综合性的题目,评估学生对整式与分式的综合应用的应用能力第十章:复习与提高10.1 教学目标巩固本单元所学知识提高学生解决实际问题的能力培养学生的数学思维和综合运用能力10.2 教学内容复习整式、分式的乘除法、因式分解、平方差公式、完全平方公式等基本概念和运算方法通过实际问题,引导学生运用所学知识解决实际问题总结本单元的重点知识和难点知识10.3 教学方法通过练习题和实际问题,让学生巩固所学知识使用多媒体教学工具,展示实际问题的解决过程组织小组讨论,培养学生的合作学习和解决问题的能力10.4 教学评估通过课堂练习和作业,检查学生对复习内容的掌握程度设计一些综合性的题目重点解析本文全面介绍了整式的乘除法、因式分解、平方差公式、完全平方公式、分式的乘除法、分式的化简与分解、整式与分式的综合应用等基本概念、运算方法和实际应用。

人教版八年级数学上册第十五章整式的乘除与因式分解(教案)

人教版八年级数学上册第十五章整式的乘除与因式分解(教案)
(1)多项式乘以多项式的法则:熟练掌握多项式乘法法则,特别是字母表示的项相乘时的符号处理和合并同类项。
举例:计算(a+b)(c+d),重点强调如何正确处理符号和合并同类项。
(2)多项式乘以单项式的法则:理解和运用单项式乘以多项式的法则,注意乘法分配律的应用。
举例:计算3x(2x^2+4x-1),重点在于如何将单项式3x分别与多项式中的每一项相乘。
(3)平方差公式和完全平方公式的应用:掌握平方差公式(a^2-b^2)和完全平方公式(a^2±2ab+b^2),并能灵活运用到实际计算中。
举例:化简表达式a^2-4,重点在于应用平方差公式得到(a+2)(a-2)。
(4)因式分解的方法:掌握提公因式法、平方差公式法和完全平方公式法,能够将多项式分解为整式的乘积。
3.平方差公式:掌握平方差公式的结构特点,能够灵活运用平方差公式进行乘法运算。
4.完全平方公式:理解并掌握完全平方公式的结构,学会运用完全平方公式进行乘法运算。
5.因式分解:掌握提公因式法、平方差公式法和完全平方公式法等因式分解方法,解决实际问题。
本节课将结合实际例题,帮助学生巩固所学知识,提高解题能力。
在学生小组讨论环节,我注意到有些学生在分享成果时表达不够清晰,可能是因为他们在讨论过程中没有充分整理自己的思路。针对这个问题,我需要在今后的教学中加强学生的语言表达训练,让他们学会如何条理清楚地表达自己的观点。
最后,总结回顾环节,我发现在这个阶段,部分学生仍然存在疑问。这说明我在课堂上的讲解和引导可能还不够到位,需要进一步关注学生的学习反馈,及时调整教学方法,提高教学效果。
五、教学反思
今天我们在课堂上学习了整式的乘除与因式分解,回顾整个教学过程,我觉得有几个地方值得反思。首先,我在导入新课环节提出了与日常生活相关的问题,希望通过这种方式激发学生的兴趣,但从学生的反应来看,可能问题设置得还不够贴近他们的实际经验,导致部分学生的参与度不高。在今后的教学中,我需要更加注意问题的设计,使其更具有针对性和吸引力。

人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解

人教版八年级数学上册教案第十五章整式的乘除与因式分解一、教学目标1.理解整式的乘法和除法运算的意义和性质;2.掌握整式的乘法和除法的计算方法;3.掌握整式的因式分解方法;4.能够应用所学知识解决相关问题。

二、教学重点1.整式的乘法和除法的计算方法;2.整式的因式分解方法。

三、教学难点整式的因式分解方法。

四、教学准备1.教材《人教版八年级数学上册》;2.录音机、磁带。

五、教学过程1. 导入通过以往学习知识的回顾,复习整式的基本概念和运算法则。

2. 整式的乘法(1) 同底数相乘两个整式的乘法,当因式中的字母及其指数相同时,可以进行相乘。

例如:(a+b)(a+b)=a2+2ab+b2(2) 不同底数相乘两个整式的乘法,当因式中的字母及其指数不同时,先用代数公式展开,再进行合并同类项。

例如:(a+b)(a+c)=a2+ac+ab+bc3. 整式的除法整式的除法是整式的乘法的逆运算。

通过列竖式进行计算,将被除式视作整式的公因式进行除法运算。

例如:(3x2+4x+5)÷(x+2)4. 整式的因式分解(1) 提取公因式法根据整式的乘法运算法则,将整式中所有的项进行拆分,提取公因式。

例如:6xy+9y=3y(2x+3)(2) 公式法利用一些公式和运算性质进行因式分解。

例如:x2+5x+6=(x+3)(x+2)(3) 分组法将待分解的整式中的项进行分组,然后对每个组进行公因式提取。

例如:2x3+xy+3x2y+3y=x(2x2+y)+3y(x2+1)=x(2x2+y)+3y(x2+1)5. 综合练习通过完成一些练习题,巩固和运用所学的整式的乘除和因式分解知识。

六、课堂小结1.整式的乘法和除法是根据乘法和除法的运算法则进行计算的;2.整式的因式分解可以通过提取公因式、使用公式和进行分组等方法进行。

七、课后作业1.完成课后习题;2.预习下一章节内容。

第十五章整式的乘除与因式分解教学案教案

第十五章整式的乘除与因式分解教学案教案

(第一课时)学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。

通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课复习乘方a n的意义:a n表示个相乘,即a n= .乘方的结果叫a叫做,•n是问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算列式为,你能利用乘方的意义进行计算吗二、探究新知:探一探:1根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)55×54=________ _=5( );(3)(-3)3×(-3)2=__ _______________ =(-3)( );(4)a6·a7=_______________ _ =a( ).(5)5m·5n猜一猜:a m·a n = (m、n都是正整数) 你能证明你的猜想吗说一说:你能用语言叙述同底数幂的乘法法则吗同理可得:a m·a n ·a p = (m、n、p都是正整数)三、范例学习:【例1】计算:(1)103×104;(2)a·a3;(3)m·m3·m5;(4)x m·x3m+1 (5)x·x2+ x2·x1.填空:⑴ 10×109= ;⑵ b2×b5= ;⑶x4·x= ;⑷x3·x3= .2.计算:(1) a2·a6; (2)(-x)·(-x)3; (3) 8m·(-8)3·8n; (4)b3·(-b2)·(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式.(1)(x+y)4·(x+y)3 (2)(x-y)3·(x-y)·(y-x)(3)-8(x-y)2·(x-y) (4) (x+y)2m·(x+y)m+1四、学以致用:1.计算:⑴ 10n·10m+1= ⑵x7·x5= ⑶m·m7·m9=⑷-44·44= ⑸ 22n·22n+1= ⑹ y5·y2·y4·y=2.判断题:判断下列计算是否正确并说明理由⑴a2·a3= a6( );⑵a2·a3= a5();⑶a2+a3= a5( );⑷a·a7= a0+7=a7();⑸a5·a5=2a10();⑹ 25×32=67()。

第一章整式的乘除(教案)

第一章整式的乘除(教案)
4.增强学生的数学建模和问题解决能力:让学生在实际问题中运用整式的乘除法则,学会建立数学模型,提高解决实际问题的能力。
5.培养学生的团队协作和交流能力:在小组讨论和合作完成练习的过程中,引导学生学会倾听、表达和交流,培养团队协作精神。
三、教学难点与重点
1.教学重点
(1)单项式乘以单项式的运算法则:强调同类项的概念,以及如何将两个单项式相乘并合并同类项。
举例:3x^2 * 4x = 12x^3,在此例中,重点讲解如何将系数相乘,并将相同字母的指数相加。
(2)单项式乘以多项式的运算法则:掌握分配律在整式乘法中x * (3x^2 + 2x - 1) = 12x^3 + 8x^2 - 4x,重点强调如何将4x分别与括号内的每一项相乘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“整式乘除在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
第一章整式的乘除(教案)
一、教学内容
本节课选自七年级数学教材《第一章整式的乘除》。教学内容主要包括以下两部分:
1.单项式乘以单项式:介绍并掌握同类项的概念,以及如何将两个单项式相乘,得出积的同类项合并的方法。
2.单项式乘以多项式:通过具体例题,引导学生理解并掌握将一个单项式乘以一个多项式的过程,掌握分配律在整式乘法中的应用。
关于学生小组讨论环节,我觉得效果还是不错的,大部分学生能够积极参与,提出自己的观点。但我也注意到,有些学生在分享成果时表达不够清晰,这可能是因为他们的语言组织能力不足。针对这个问题,我打算在课堂上多给他们一些锻炼的机会,比如让他们多做一些口头表达和总结。

八年级上数学人教版《整式的乘除与因式分解》教案

八年级上数学人教版《整式的乘除与因式分解》教案

《整式的乘除与因式分解》教案教学目标:1.掌握整式的乘除和因式分解的基本方法和技能,能够进行简单的整式运算和因式分解。

2.通过观察、操作、推理等活动,发展学生的数感和符号感,培养学生的数学思维能力和创新意识。

3.了解整式的乘除和因式分解在实际问题中的应用,体验数学与生活的联系,激发学生学习数学的兴趣。

教学重点:掌握整式的乘除和因式分解的基本方法和技能。

教学难点:正确进行整式的乘除运算和因式分解。

教学方法:1.实物演示法:通过实物演示,引导学生观察、思考,加深对整式的乘除和因式分解的理解。

2.小组讨论法:将学生分成小组,让他们自己探索、讨论整式的乘除和因式分解的方法,互相学习、互相启发。

3.讲解法:通过讲解例题和练习题,引导学生理解、掌握和应用整式的乘除和因式分解的知识点。

教学准备:教师准备教学PPT、实物模型等;学生准备草稿纸、笔等。

教学过程:一、导入新课通过复习旧知识,引出新知识,激发学生对新知识的探究欲望。

二、新课学习1.整式的乘除:通过PPT演示,引导学生掌握整式的乘除运算方法和技能。

具体包括同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法等。

通过例题解析和练习题,加深学生对整式的乘除运算的理解和应用。

2.因式分解:通过PPT演示,引导学生理解因式分解的概念和方法。

具体包括提公因式法、公式法等。

通过例题解析和练习题,加深学生对因式分解的理解和应用。

3.应用举例:通过PPT演示,引导学生了解整式的乘除和因式分解在实际问题中的应用。

例如,求解一些简单的数学问题、解决实际问题等。

通过例题解析和练习题,加深学生对整式的乘除和因式分解在实际问题中的应用理解。

三、课堂小结通过总结本节课的学习内容,让学生明确学习目标和重点难点。

同时引导学生反思自己的学习过程和方法,培养良好的学习习惯和能力。

四、作业布置1.完成教材上的练习题。

2.预习下一节课所学内容,做好预习笔记。

《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案

《整式的乘除与因式分解》初中数学教案一、教学目标:1. 知识与技能:(1)理解整式的乘除概念,掌握整式乘除的运算法则;(2)学会运用提公因式法、公式法分解因式;(3)能够运用整式的乘除与因式分解解决实际问题。

2. 过程与方法:(1)通过实例演示,引导学生发现整式乘除的规律;(2)利用小组合作、讨论交流的方式,探索因式分解的方法;(3)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探究、合作交流的良好学习习惯;(3)培养学生运用数学知识服务社会的意识。

二、教学重点与难点:1. 教学重点:(1)整式的乘除运算;(2)提公因式法、公式法分解因式。

2. 教学难点:(1)整式乘除中的灵活运用;(2)因式分解方法的掌握与应用。

三、教学方法:1. 情境导入法:通过生活实例引入整式乘除与因式分解的概念;2. 讲授法:讲解整式乘除的运算法则及因式分解的方法;3. 小组合作法:引导学生分组讨论,探索因式分解的技巧;4. 练习法:布置有针对性的练习题,巩固所学知识。

四、教学准备:1. 教学课件:制作整式乘除与因式分解的课件,以便进行直观演示;2. 练习题:准备相应的练习题,包括基础题、提高题和拓展题;3. 教学道具:准备一些实物模型,如几何图形,以便更好地讲解整式乘除与因式分解的应用。

五、教学过程:1. 导入新课:通过生活实例,如几何图形的面积计算,引入整式乘除与因式分解的概念;2. 讲解与演示:讲解整式乘除的运算法则,并进行实物模型演示,让学生直观地理解;3. 小组合作:引导学生分组讨论,探索因式分解的方法,如提公因式法和公式法;4. 练习与巩固:布置练习题,让学生运用所学知识进行计算和分解,并及时给予解答和指导;5. 拓展与应用:结合实际问题,让学生运用整式的乘除与因式分解解决问题,提高学生的应用能力;6. 总结与反思:对本节课的内容进行总结,强调重点和难点,鼓励学生反思自己的学习过程,提高学习效果。

整式的乘除与因式分解教案

整式的乘除与因式分解教案

整式的乘除与因式分解教案整式的乘除与因式分解教案整式的乘除与因式分解教案1第十五章整式的乘除与因式分解根据定义,我们不难得出a+b+c、t-5、3x+5+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.15.1.2整式的加减(3)x-(1-2x+x2)+(-1-x2)(4)(8x-3x2)-5x-2(3x -2x2)四、提高练习:1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:试化简:│a│-│a+b│+│c-a│+│b+c│小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

作业:课本P14习题1.3:1(2)、(3)、(6),2。

《课堂感悟与探究》整式的乘除与因式分解教案215.1.1整式教学目标1.单项式、单项式的定义.2.多项式、多项式的次数.3、理解整式概念.教学重点单项式及多项式的有关概念.教学难点单项式及多项式的有关概念.教学过程Ⅰ.提出问题,创设情境在七年级,我们已经学习了用字母可以表示数,思考下列问题1.要表示△ABC的周长需要什么条件要表示它的面积呢2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?结论:1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC 的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC 的面积可以表示为ch.2.小王的平均速度是.问题:这些式子有什么特征呢?(1)有数字、有表示数字的字母.(2)数字与字母、字母与字母之间还有运算符号连接.归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.判断上面得到的三个式子:a+b+c、ch、是不是代数式(是)代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.Ⅱ.明确和巩固整式有关概念(出示投影)结论:(1)正方形的周长:4x.(2)汽车走过的路程:vt.(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.(4)n的相反数是-n.分析这四个数的特征.它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、ch、中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.请同学们阅读课本P160~P161单项式有关概念.根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、ch、这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.结论:4x、vt、6a2、a3、-n、ch是单项式.它们的系数分别是4、1、6、1、-1、.它们的次数分别是1、2、2、3、1、2.所以4x、-n 都是一次单项式;vt、6a2、ch都是二次单项式;a3是三次单项式.问题:vt中v和t的指数都是1,它不是一次单项式吗?结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt 是二次单项式而不是一次单项式.生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?写出下列式子(出示投影)结论:(1)t-5.(2)3x+5y+2z.(3)三角尺的面积应是直角三角形的面积减去圆的面积,即ab-3.12r2.(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.我们可以观察下列代数式:a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?这样推理合情合理.请看投影,熟悉下列概念.根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.a+b+c的项分别是a、b、c.t-5的项分别是t、-5,其中-5是常数项.3x+5y+2z的项分别是3x、5y、2z.ab-3.12r2的项分别是ab、-3.12r2.x2+2x+18的项分别是x2、2x、18.找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.Ⅲ.随堂练习1.课本P162练习Ⅳ.课时小结通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.Ⅴ.课后作业1.课本P165~P166习题15.1─1、5、8、9题.2.预习“整式的加减”.课后作业:《课堂感悟与探究》15.1.2整式的加减(1)教学目的:1、解字母表示数量关系的过程,发展符号感。

人教版八年级数学上册第十四章整式的乘除与因式分解单元教材分析优秀教学案例

人教版八年级数学上册第十四章整式的乘除与因式分解单元教材分析优秀教学案例
(一)导入新课
在导入新课时,我会通过一个生活实例引起学生的兴趣。例如,我会提出一个问题:“如果商店举行打折活动,原价100元的商品打8折后售价是多少?”让学生尝试计算。这样,学生可以直观地感受到整式乘法的实际应用,激发他们对新知识的学习兴趣。
(二)讲授新知
在讲授新知时,我会结合多媒体课件和实际例子,系统地讲解整式乘法、除法和因式分解的概念、方法和技巧。我会强调整式乘法中的分配律、结合律等运算法则,并通过例题展示整式乘法的步骤和注意事项。同时,我还会介绍整式除法的基本概念和步骤,以及因式分解的几种常用方法,如提公因式法、公式法等。
(四)反思与评价
在教学过程中,我鼓励学生进行反思和评价,帮助他们发现自己的优点和不足,提高他们的自我认知能力。例如,在课后,我可以让学生对自己的学习情况进行总结,找出自己在学习中的困难和问题,并提出相应的解决方法。同时,我还会对学生的学习情况进行评价,给予他们鼓励和指导,帮助他们提高学习能力。
四、教学内容与过程
2.问题导向与小组合作:提出具有启发性的问题,引导学生进行思考和探究,并通过小组合作解决问题,培养学生的团队协作能力和解决问题的能力。
3.反思与评价:鼓励学生进行反思和评价,帮助他们发现自己的优点和不足,提高自我认知能力,同时,教师对学生的学习情况进行评价,给予鼓励和指导,帮助他们提高学习能力。
4.系统化的教学内容:对整式乘法、除法和因式分解的知识进行系统归纳,帮助学生形成知识体系,提高学生的理解能力和运用能力。
(三)学生小组讨论
在讲授新知后,我会组织学生进行小组讨论,让学生运用所学知识解决一些实际问题。例如,我会给出几道不同难度的练习题,让学生分组讨论、合作解题。这样,学生可以在讨论中互相学习、互相帮助,提高他们的合作能力和解决问题的能力。

(八年级数学教案)整式的乘除与因式分解

(八年级数学教案)整式的乘除与因式分解

整式的乘除与因式分解八年级数学教案一、教学目标1•使学生掌握正整数幕的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算•使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式的法则,并运用它们进行运算.2•使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算.3•使学生掌握整式的加、减、乘、除、乘方的教简单的混合运算,并能灵活地运用运算律与乘法公式简化运算.4.使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.二、教材特点1•重视运算性质和公式的发生和归纳过程本章整式乘法运算性质、除法运算性质、乘法公式的得出过程,一般都是从数的运算,归纳得到的运算性质,是一个由特殊到一般,从具体到抽象的归纳过程.2.渗透转化的思想方法以及数学知识间的内在联系教材安排从易到难,逐步深入,符合学生的认知过程.在整式乘法和乘法公式部分内容中,采用给出几何图形的方式来直观地表示运算法则及公式,体现了代数与几何的内在联系和统一.3•充分发挥学生的主观能动性教材安排了九个探究”栏目让学生体验研究、解决问题和归纳得出一般结论的过程,加深学生对所学知识的理解•思考”栏目为学生提供了一个共同探索、共同发现和共同发展的空间•观察与猜想”栏目拓展了学生们的知识面.4•重视学生基本运算能力训练教材提供大量的基础运算练习,让学生能及时得到充分训练.三、课时安排本章教学时间约需14课时,具体安排如下:§15.1整式的乘法------------------------------------ 4课时§15.2乘法公式-------------------------------------- 2课时§15.3整式的除法------------------------------------ 2课时§15.4因式分解-------------------------------------- 4课时数学活动2课时小结四、教学建议§ 15.1整式的乘法(4课时)总体说明:1.掌握同底数幕的乘法公式:am?an=am+n (m, n都是正整数数)注意:同底数幕相乘,底数不变,指数相加.。

八上数学整式的乘除与因式分解教案

八上数学整式的乘除与因式分解教案

八上数学整式的乘除与因式分解教案第一章:整式的乘法1.1 多项式乘多项式学习目标:1. 理解多项式乘多项式的法则;2. 能够运用多项式乘多项式的法则进行计算。

教学内容:1. 多项式乘多项式的法则;2. 多项式乘多项式的计算实例。

教学活动:1. 引导学生通过观察和总结,发现多项式乘多项式的法则;2. 通过例题,让学生运用多项式乘多项式的法则进行计算;3. 布置练习题,巩固所学知识。

1.2 单项式乘多项式学习目标:1. 理解单项式乘多项式的法则;2. 能够运用单项式乘多项式的法则进行计算。

教学内容:1. 单项式乘多项式的法则;2. 单项式乘多项式的计算实例。

教学活动:1. 引导学生通过观察和总结,发现单项式乘多项式的法则;2. 通过例题,让学生运用单项式乘多项式的法则进行计算;3. 布置练习题,巩固所学知识。

第二章:整式的除法2.1 多项式除以单项式学习目标:1. 理解多项式除以单项式的法则;2. 能够运用多项式除以单项式的法则进行计算。

教学内容:1. 多项式除以单项式的法则;2. 多项式除以单项式的计算实例。

教学活动:1. 引导学生通过观察和总结,发现多项式除以单项式的法则;2. 通过例题,让学生运用多项式除以单项式的法则进行计算;3. 布置练习题,巩固所学知识。

2.2 单项式除以单项式学习目标:1. 理解单项式除以单项式的法则;2. 能够运用单项式除以单项式的法则进行计算。

教学内容:1. 单项式除以单项式的法则;2. 单项式除以单项式的计算实例。

教学活动:1. 引导学生通过观察和总结,发现单项式除以单项式的法则;2. 通过例题,让学生运用单项式除以单项式的法则进行计算;3. 布置练习题,巩固所学知识。

第三章:因式分解3.1 提公因式法学习目标:1. 理解提公因式法的概念;2. 能够运用提公因式法进行因式分解。

教学内容:1. 提公因式法的概念;2. 提公因式法的运用实例。

教学活动:1. 引导学生理解提公因式法的概念;2. 通过例题,让学生运用提公因式法进行因式分解;3. 布置练习题,巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思源实验学校数学学科辅导讲义
授课对象
授课教师
授课时间 授课题目
整式的乘除与因式分解
课 型
复习课
使用教具
教学目标
1.掌握单项式、多项式的相关计算;
2.掌握乘法公式:平方差公式,完全平方公式;
3.掌握因式分解的常用方法。

教学重点和难
点 1.同底数幂的运算;
2.单项式与多项式的相关运算;
3.因式分解的方法和熟练应用
参考教材
教学流程及授课详案
一、知识点总结:
1、同底数幂的乘法法则:m
n m n a a a +=
(n m ,都是正整数) 同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:2
3
5
()()()a b a b a b ++=+ 2、幂的乘方法则:mn
n
m a
a =)((n m ,都是正整数)
幂的乘方,底数不变,指数相乘。

如:10
2
53)3(=- 幂的乘方法则可以逆用:即m n n m m n
a a a )()(==
如:23326)4()4(4==
3、积的乘方法则:n
n
n
b a ab =)((n 是正整数) 积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙- 4、同底数幂的除法法则:n
m n
m
a
a a -=÷(n m a ,,0≠都是正整数,且)n m
同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷ 5、零指数和负指数;
10=a ,即任何不等于零的数的零次方等于1。

p p a
a 1
=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p
次方的倒数。

如:8
1)21(233
==-
6、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,
对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

注意:
①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②相同字母相乘,运用同底数幂的乘法法则。

时间分配及备注
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 ④单项式乘法法则对于三个以上的单项式相乘同样适用。

⑤单项式乘以单项式,结果仍是一个单项式。

如:=∙-xy z y x 3232
7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式) 注意:
①积是一个多项式,其项数与多项式的项数相同。

②运算时要注意积的符号,多项式的每一项都包括它前面的符号。

③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。

如:)(3)32(2y x y y x x +-- 8、多项式与多项式相乘的法则;
多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加 如:
)
6)(5()3)(23(-+-+x x b a b a
9、单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式
如:b a m b a 2
4
2
497÷-
10、多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。

即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++
11、平方差公式:2
2
))((b a b a b a -=-+注意平方差公式展开只有两项
公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。

右边是相同项的平方减去相反项的平方。

如:))((z y x z y x +--+ 12、完全平方公式:2222)(b ab a b a +±=±
公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。

注意:
ab b a ab b a b a 2)(2)(2222-+=-+=+ ab b a b a 4)()(22-+=-
222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+-
完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。

13、三项式的完全平方公式:
bc ac ab c b a c b a 222)(2222+++++=++
因式分解
常用方法:提公因式法、公式法、配方法、十字相乘法…… 注:乘法公式
平方差公式:()()2
2
b a b a b a -=-+
完全平方和公式:()222
2b ab a b a ++=+
完全平方差公式:()222
2b ab a b a +-=-
方法:1.提公因式法:式子中有公因式时,先提公因式。

例1把2105ax ay by bx -+-分解因式. 例2把2222()()ab c d a b cd ---分解因式. 2. 公式法:根据平方差和完全平方公式 3.配方法:例1分解因式2
616x x +-
4.十字相乘法:
2()x p q x pq +++型和2ax bx c ++型的因式分解
这类式子在许多问题中经常出现,其特点是:
(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.
22()()()()()
x p q x pq x px qx pq x x p q x p x p x q +++=+++=+++=++
因此,2
()()()x p q x pq x p x q +++=++
运用这个公式,可以把某些二次项系数为1的二次三项式分解因式. 例1把下列各式因式分解:
(1) 2
76x x -+
(2) 2
1336x x ++ (3) 2524x x +-
(4) 2
215x x --
例2把下列各式因式分解:
(1) 2
2
6x xy y +-
(2) 222
()8()12x x x x +-++
一、选择题:
1、下列运算中,正确的是( )
A.x2·x3=x6
B.(a b)3=a3b3
C.3a+2a=5a2
D.(x³)²= x5
2、下列从左边到右边的变形,是因式分解的是()
(A)(B)
(C)(D)
3、下列各式是完全平方式的是()
A、B、C、D、
4、下列多项式中能用平方差公式分解因式的是()
(A)(B)(C)(D)
5、如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()
A. –3
B. 3
C. 0
D. 1
6、一个正方形的边长增加了,面积相应增加了,则这个正方形的边长为()
A、6cm
B、5cm
C、8cm
D、7cm
二、填空题:
7、在实数范围内分解因式
8、___________
9、若3x=,3y=,则3x-y等于
10、绕地球运动的是7.9×10³米/秒,则卫星绕地球运行8×105秒走过的路程是
三、计算题:
11、 12、
13、[(x-2y)+(x-2y)(2y+x)-2x(2x-y)]÷2x.
四、因式分解:
14、15、2x2y-8xy+8y
16、a2(x-y)-4b2(x-y)
五、解方程或不等式:
17、。

相关文档
最新文档