2015-2016学年苏科版初三上册数学期末与圆有关的计算问题复习题及答案
苏科版九年级数学上册圆全章复习 知识点 例题 练习(含答案)
圆全章复习【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. (3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).三角形三边中垂线的(1)OA=OB=OC定在三角形内部三角形三条角平分线(1)(2)OABAC心在三角形内部2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识例1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点在数轴上运动,若过P点P 且与OA 平行(或重合)的直线与⊙O 有公共点, 设OP=x ,则的取值范围是( ).A .-1≤≤1B .≤≤C .0≤≤ D .>【解析】如图,平移过P 点的直线到P′,使其与⊙O 相切,设切点为Q ,连接OQ ,由切线的性质,得∠OQP′=90°, ∵OA ∥P′Q,∴∠OP′Q=∠AOB=45°, ∴△OQP′为等腰直角三角形, 在Rt △OQP′中,OQ=1, OP′=2,∴当过点P 且与OA 平行的直线与⊙O 有公共点时,0≤OP≤,当点P 在x 轴负半轴即点P 向左侧移动时,结果为-2≤OP ≤0. 故答案为:-2≤OP≤2.举一反三:x x x 2x 2x 2例2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且,BF 交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC,∵ AB是⊙O的直径,弦CG⊥AB,∴.∵,∴.∴∠C=∠CBE.∴ CE=BE.CF CB=CB GB=CF BC=CF GB=证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE . ∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ .∵ ,∴ .∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE . ∵ ,, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ ,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ ,.∴ ,.∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO 交BC 于点D,过O 作OE ⊥BC 于E.则三角形ABD 为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt △ODE 中,∠ODE=60°,∠DOE=30°,则DE=OD=2,BE=BD-DE=10 CB BG =CB CF =CF BC BG ==12BN BF =12CD CG =CF BC =BG BC =CF BG BC ==BF CG =ON OD =12OE 垂直平分BC ,BC=2BE=20. 故选D类型三、与圆有关的位置关系例3.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm ,长约为8.4cm. (1)试计算烟盒顶盖ABCD 的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm 3173..【答案与解析】(1)如图(2),作O 1E ⊥O 2O 3)324AB cm ∴=+= ∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:类型四、圆中有关的计算例4.如图,AB 是⊙O 的直径,=,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C .(1)若OA=CD=2,求阴影部分的面积; (2)求证:DE=DM .【答案与解析】解:如图,连接OD ,∵CD 是⊙O 切线, ∴OD ⊥CD ,∵OA=CD=2,OA=OD ,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.举一反三:【变式】如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°, ∴∠DOB=60°,过点D 作DG ⊥AB 于点G , ∵OD=6,∴DG=3, ∴S △ACF +S △OFD =S △AOD =×6×3=9,即阴影部分的面积是9.【巩固练习】一、选择题1.如图所示,AB 、AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于( ).A .70°B .64°C .62°D .51°2.在半径为27m 的圆形广场中心点O 的上空安装了一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面SAB 的顶角为120°(如图所示),则光源离地面的垂直高度SO 为( ). A .54m B ..m D .m第1题图 第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC ,且AB=8cm ,以A 为圆心、AD 的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm 2B.(4π+16)cm 2C.(3π+8)cm 2D.(3π+16)cm 24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ). A. B. C. D. 5. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE=1寸,AB=10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸6.如图,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM .若⊙O 的半径为2,OP=4,则线段OM 的最小值是( )A .0B .1C .2D .37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ). A .80° B .100° C .80°或100° D .160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( ).A .65°B .115°C .65°或115°D .130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________.11.已知⊙O 1与⊙O 2的半径、分别是方程 的两实根,若⊙O 1与⊙O 2的圆心距=5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC ;③AE=2EC ;④劣弧是劣弧的2倍;⑤AE=BC ,其中正确的序号是 .1r 2r 2680x x -+=d13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________. 14.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___; (2)求图(m)中n 条弧的弧长的和为____ ____(用n 表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm 2,高为3.5m ,外围高4 m 的蒙古包,至少要____ ____m 2的毛毡.三、解答题17. 如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH ∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF . (1)证明:AF 平分∠BAC ; (2)证明:BF =FD.18.如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】 一、选择题 1.【答案】B ;【解析】由AB 为⊙O 的切线,则AB ⊥OD .又BD =OB ,则AB 垂直平分OD ,AO =AD ,∠DAB =∠BAO .由AB 、AC 为⊙O 的切线,则∠CAO =∠BAO =∠DAB .所以,∠DAB =∠DAC =26°. ∠ADO =90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C ;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO ⊥AB 于O ,∴ ∠SOA =∠SOB =90°.又SA =SB ,∠ASB =120°,∴ ∠SAB =∠SBA =,设SO =x m ,则AS =2x m .∵ AO =27,由勾股定理,得(2x)2-x 2=272,解得.3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系. ∵ 矩形ABCD 中,AB=2BC ,AB=8cm , ∴ AD=BC=4cm ,∠DAF=90°,,,又AF=AD=4cm , ∴,∴ .4.【答案】A ;【解析】OM 最长是半径5;最短是OM ⊥AB 时,此时OM=3,故选A. 5.【答案】D ;【解析】因为直径CD 垂直于弦AB ,所以可通过连接OA(或OB),求出半径即可. 根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”, 知(寸),在Rt △AOE 中,,即,解得OA=13,进而求得CD=26(寸).故选D. 6.【答案】B.【解析】设OP 与⊙O 交于点N ,连结MN ,OQ ,如图,∵OP=4,ON=2, ∴N 是OP 的中点, ∵M 为PQ 的中点,180120302=°-?°x =∴MN 为△POQ 的中位线, ∴MN=OQ=×2=1,∴点M 在以N 为圆心,1为半径的圆上, 当点M 在ON 上时,OM 最小,最小值为1, ∴线段OM 的最小值为1.故选B . 7.【答案】C ; 【解析】圆周角的顶点在劣弧上时,圆周角为;圆周角的顶点在优弧上时, 圆周角为.注意分情况讨论. 8.【答案】C ;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交;【解析】求出方程 的两实根、分别是4、2,则-<<+,所以两圆相交.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,5136010092⨯⨯=°°413608092⨯⨯=°°122680x x -+=1r 2r 1r 2r d 1r 2r圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】; ;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL,∴ ,,即正八边形的边长为..15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为. 本题还有其他解法,比如:设各个扇形的圆心角依次为,,…,, 则,∴ n 条弧长的和为.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴,∴ ,1)a 22)a 2x 22x x a ⨯+=1)x a =1)a 2222241)]2)AEL S S S a x a a a =-=-=-=△正方形正八边形(2)1801(2)3602n n -=-121(2)(2)2n n ππ⨯⨯-=-1α2αn α12(2)180n n ααα+++=-…°1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-5l ==223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBD ∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB , ∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形.19. 【答案与解析】 (1)如选命题①.2036720S ππ=⨯=总BF FC =D证明:在图(1)中,∵ ∠BON =60°,∴ ∠1+∠2=60°. ∵ ∠3+∠2=60°,∴ ∠1=∠3. 又∵ BC =CA ,∠BCM =∠CAN =60°, ∴ △BCM ≌△CAN ,∴ BM =CM . 如选命题②.证明:在图(2)中,∵ ∠BON =90°,∴ ∠1+∠2=90°. ∵ ∠3+∠2=90°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =90°, ∴ △BCM ≌△CDN ,∴ BM =CN . 如选命题③.证明:在图(3)中,∵ ∠BON =108°,∴ ∠1+∠2=108°. ∵ ∠2+∠3=108°,∴ ∠1=∠3. 又∵ BC =CD ,∠BCM =∠CDN =108°, ∴ △BCM ≌△CDN ,∴ BM =CN . (2)①答:当∠BON =时结论BM =CN 成立.②答:当∠BON =108°时.BM =CN 还成立. 证明:如图(4),连接BD 、CE 在△BCD 和△CDE 中,∵ BC =CD ,∠BCD =∠CDE =108°,CD =DE , ∴ △BCD ≌△CDE .∴ BD =CE ,∠BDC =∠CED ,∠DBC =∠ECD . ∵ ∠CDE =∠DEN =108°, ∴ ∠BDM =∠CEM .∵ ∠OBC+∠OCB =108°,∠OCB+∠OCD =108°. ∴ ∠MBC =∠NCD .又∵ ∠DBC =∠ECD =36°, ∴ ∠DBM =∠ECM . ∴ △BDM ≌△CEN , ∴ BM =CN .(2)180n n°。
苏科版数学九年级上册 第二章《对称图形---圆》(二)与圆有关的计算问题 江苏省苏州市复习课时作业(含答案)
课时作业二、中心对称图形------圆(二)与圆有关的计算问题一、正多边形和圆正多边形和圆正多边形定义正多边形和圆正多边形的判定及性质正多边形的有关计算(这是重点)圆的有关计算圆周长、弧长(这是重点)圆、扇形、弓形面积(这是重点)圆柱、圆锥侧面展开图(这是重点)⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎩⎪⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪ 二、圆与三角形的关系:1、不在同一条直线上的三个点确定一个圆。
2、三角形的外接圆:经过三角形三个顶点的圆。
3、三角形的外心:三角形三边垂直平分线的交点,即三角形外接圆的圆心。
4、三角形的内切圆:与三角形的三边都相切的圆。
内切圆半径公式:5、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。
6、圆内接四边形的对角互补,并且每一个外角等于它的内对角。
三、计算公式:正多边形的计算:正n 边形半径和边心距把正n 边形分成2n 个全等的直角三角形,根据这个性质可以把正n 边形的有关计算问题归纳为解直角三角形的问题。
弧长和扇形的面积:1. 弧长计算公式:因为360°的圆心角所对弧长就是圆周长C=2πR ,所以1°的圆心角所对的弧长是3602R π,即180R π。
这样,在半径为R 的圆中, n°的圆心角所对的弧长l 的计算公式为:l =180R n π。
2.扇形面积计算公式:(1)类比弧长的计算公式可知:圆心角为n°的扇形面积与整个圆面积的比和n°与360°的比一致,因此,扇形的面积应等于圆的面积乘以扇形的圆心角占360的几分之几,即圆心角是360°的扇形面积就是圆面积S=πR 2,所以圆心角是1°的扇形面积是。
3602R π这样,在半径为R 的圆中,圆心角为的扇形面积的计算公式为:S=360n πR 2 (2)扇形面积的另一个计算公式 比较扇形面积计算公式与弧长计算公式,可以发现:可以将扇形面积的计算公式:S=360n πR 2化为S=180R n π·21R,从面可得扇形面积的另一计算公式:S=21lR 。
苏科版中考专题测试19:圆的有关计算及圆的综合附答案解析
专题19 圆的有关计算及圆的综合学校:___________姓名:___________班级:___________1.【江苏省南通市海安县2015届九年级上学期期末考试数学试题】如图,⊙O中,OA⊥BC,∠A OB=52°,则∠ADC的度数为()A.36° B.26° C. 38° D.46°【答案】D.【解析】故选D.【考点定位】1.圆周角定理;2.垂径定理.2.【江苏省江阴市华士实验中学2015届九年级下学期期中考试数学试题】一个圆锥底面直径为2,母线为4,则它的侧面积为()A.2π B.12π C.4π D.8π【答案】C.【解析】根据圆锥的侧面积公式S=πrl可得这个圆锥的侧面积为π×1×4=4π.故选C.【考点定位】圆锥的侧面积公式.3.【江苏省苏州市区2015届九年级下学期中考数学一模试题】如图,⊙O上A、B、C三点,若∠B=50,∠A=20°,则∠AOB等于()A、30°B、50°C、70°D、60°【答案】D .【解析】先根据圆周角定理得出∠ACB=12∠AOB ,再由三角形内角和定理即可得出结论.∵∠AOB 与∠ACB 是同弧所对的圆心角与圆周角,∠B=50,∠A=20°,∴∠ACB=12∠AOB .∴180°-∠AOB-∠A=180°-∠ACB-∠B ,即180°-∠AOB-20°=180°-12∠AOB-50°,解得∠AOB=60°.故选D . 【考点定位】圆周角定理.4.【江苏省南通市海安县2015届九年级上学期期末考试数学试题】某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为120°的扇形,则这个圆锥的底面半径为( )cm .A 、2B 、3C 、4D 、5【答案】A .故选A.【考点定位】弧长的计算.5.【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,且AC=OC ,若⊙O 的半径为5,则图中阴影部分的面积是 .625π. 【解析】直接利用切线的性质结合勾股定理得出AB 的长,再利用锐角三角函数关系得出∠BOC 的度数,结合阴影部分的面积为:S △OBA -S 扇形BOC 求出即可.连接OB ,∵AB 是⊙O 的切线,切点为B ,∴∠OBBA=90°,∵AC=OC ,⊙O 的半径为5,∴AC=5,A=30°,则∠BOC=60°,∴图中阴影部分的面积为:S △OBA -S 扇形BOC =12×BO ×AB-605360π⨯=62225π-.故答案为:625π. 【考点定位】1.扇形面积的计算;2.切线的性质.6.【江苏省徐州市市区、铜山县2015届九年级中考模拟数学试题】13.圆锥底面圆的半径为3m ,其侧面展开图是半圆,则圆锥母线长为 m .【答案】6.【考点定位】圆锥的计算.7.【江苏省常州市2015年中考数学试题】已知扇形的圆心角为120°,弧长为6π,则扇形的面积是 .【答案】27π.【考点定位】扇形面积的计算.8.【江苏省南京市鼓楼区2015届九年级下学期中考二模考试数学试题】已知等腰△ABC 中,AB=AC=13cm ,BC=10cm ,则△ABC 的内切圆半径为 cm . 【答案】103. 【解析】如图,设△ABC 的内切圆半径为r ,由勾股定理得AD=12,再由切线长定理得AE=8,根据勾股定理求得r 即可.如图,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD=12cm,根据切线长定理,AE=AB-BE=AB-BD=13-5=8,设△ABC的内切圆半径为r,∴AO=12-r,∴(12-r)2-r2=64,解得r=103.故答案为:103.【考点定位】1.三角形的内切圆与内心;2.等腰三角形的性质.9.【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】如图所示,D是以AB为直径的半圆O上的一点,C是弧AD的中点,点M在AB上,AD与CM交于点N,CN=AN.(1)求证:CM⊥AB;(2)若3BD=2,求半圆的直径.【答案】(1)证明见解析;(2)6.【解析】试题解析:(1)证明:如图1,连接BC,则∠ACB=90°,∵CN=AN,∴∠NCA=∠NAC,∴∠MCA=∠DAC,∵C是弧AD的中点,∴∠ABC=∠DAC,∴∠MCA=∠ABC,∵∠CAB=∠BAC,∴△ABC∽△ACM,∴∠AMC=90°,∴CM ⊥AB ;(2)解:如图2,连接CD ,作CE ⊥BD ,交BD 的延长线于E ,在△CMB 与△BCE 中,MBC CBE CMB CEB BC BC ∠=∠∠=∠=⎧⎪⎨⎪⎩,【考点定位】1.相似三角形的判定与性质;2,全等三角形的判定与性质;2.圆周角定理.10.【江苏省无锡市2015年中考数学试题】已知:如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,且BC =6cm ,AC =8cm ,∠ABD =45º.(1)求BD 的长;(2)求图中阴影部分的面积.【答案】(1)BD =52cm;(2)S 阴影=25π-504cm 2. 【解析】【考点定位】圆周角定理的推论;勾股定理;扇形的面积公式.。
苏科版 九年级上第二章 圆的综合题(共30题,含答案)
3 圆类综合一.解答题(共30小题)1.如图所示,CD为⊙O的直径,AD、AB、BC分别与⊙O相切于点D、E、C(AD<BC).连接DE并延长与直线BC相交于点P,连接OB.(1)求证:BC=BP;(2)若DE•OB=40,求AD•BC的值;(3)在(2)条件下,若S△ADE:S△PBE=16:25,求四边形ABCD的面积.2.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为5,∠BAC=60°,求DE的长.3.如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED 的长.4.如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.5.如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为6,∠BAC=60°,延长ED交AB延长线于点F,求阴影部分的面积.6.如图,半圆O的直径AB=12cm,射线BM从与线段AB重合的位置起,以每秒6°的旋转速度绕B点按顺时针方向旋转至BP的位置,BP交半圆于E,设旋转时间为ts(0<t<15),(1)求E点在圆弧上的运动速度(即每秒走过的弧长),结果保留π.(2)设点C始终为的中点,过C作CD⊥AB于D,AE交CD、CB分别于G、F,过F 作FN∥CD,过C作圆的切线交FN于N.求证:①CN∥AE;②四边形CGFN为菱形;③是否存在这样的t值,使BE2=CF•CB?若存在,求t值;若不存在,说明理由.7.已知△ABC,分别以AC和BC为直径作半圆O1,O2,P是AB的中点,(1)如图1,若△ABC是等腰三角形,且AC=BC,在,上分别取点E、F,使∠AO1E=∠BO2F,则有结论①△PO1E≌△FO2P,②四边形PO1CO2是菱形,请给出结论②的证明;(2)如图2,若(1)中△ABC是任意三角形,其他条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;(3)如图3,若PC是⊙O1的切线,求证:AB2=BC2+3AC2.8.如图,已知在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径;(2)求y关于x的函数解析式,并写出它的定义域;(3)当AP=时,试比较∠CPN与∠A的大小,并说明理由.9.如图所示,在Rt△OBC中,∠OBC=90°,以O为圆心,OB为半径的⊙O交BO的延长线于A,BD⊥OC于D,交⊙O于E,连接CE并延长交直线AB于P.(1)求证:CE是⊙O的切线.(2)若CE=,⊙O的半径为5,求PE的长?10.如图,AB是⊙O的直径,CB=CD,AC与BD相交于F,CF=2,F A=4.(1)求证:△BCF∽△ACB.(2)求BC的长.(3)延长AB至E,使BE=BO,连接EC,试判断EC与⊙O的位置关系,并说明理由.11.如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.(1)DE与半圆0是否相切?若相切,请给出证明;若不相切,请说明理由;(2)若AD、AB的长是方程x2﹣16x+60=0的两个根,求直角边BC的长.12.如图,在⊙O中,直径AB的不同侧有点C和点P.已知BC:CA=4:3,点P和点C关于AB所在直线对称,过点C作CP的垂线与PB的延长线交于点Q,且CQ=.求⊙O的半径长.13.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm.以AB 为直径作圆O,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.(1)求⊙O的半径长.(2)求四边形PQCD的面积y关于P、Q运动时间t的函数表达式,并求出当四边形PQCD 为等腰梯形时,四边形PQCD的面积.(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由.14.已知:如图,AB为⊙O的直径,C为圆外一点,AC交⊙O于点D,且BC2=CD•CA,,BE交AC于F,(1)求证:BC为⊙O切线.(2)判断△BCF形状并证明.(3)已知BC=15,CD=9,求tan∠ADE的值.15.直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=AD=10,DC=4,动圆⊙O与AD边相切于点M,与AB边相切于点N,过点D作⊙O的切线DP交边CB于点P.(1)当⊙O与BC相切时(如图1),求CP的长;(2)当⊙O与BC边没有公共点时,设⊙O的半径为r,求r的取值范围;(3)若⊙O′是△CDP的内切圆(如图2),试问∠ODO′的大小是否改变?若认为不变,请求出∠ODO′的正切值;若认为改变,请说明理由.16.在等腰梯形ABCD中,AD∥BC,AB=DC,且BC=2.以CD为直径作⊙O′交AD于点E,过点E作EF⊥AB于点F.建立如图所示的平面直角坐标系,已知A、B两点坐标分别为A (2,0)、B(0,).(1)求C、D两点的坐标;(2)求证:EF为⊙O′的切线;(3)将梯形ABCD绕点A旋转180°到A′B′C′D′,直线CD上是否存在点P,使以点P为圆心,PD为半径的⊙P与直线C′D′相切?如果存在,请求出P点坐标;如果不存在,请说明理由.17.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD 于点F.(1)求证:DP∥AB;(2)试猜想线段AE,EF,BF之间有何数量关系,并加以证明;(3)若AC=6,BC=8,求线段PD的长.18.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.19.已知:A、B、C三点不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图①,当∠A=45°,R=1时,求∠BOC的度数和BC的长;ii)如图②,当∠A为锐角时,求证:sinA=;(2)若定长线段BC的两个端点分别在∠MAN的两边AM、AN(B、C均与A不重合)滑动,如图③,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为P,试探索在整个滑动过程中,P、A两点间的距离是否保持不变?请说明理由.20.如图,△ABC是边长为4cm的等边三角形,AD为BC边上的高,点P沿BC向终点C 运动,速度为1cm/s,点Q沿CA、AB向终点B运动,速度为2cm/s,若点P、Q两点同时出发,设它们的运动时间为x(s).(l)求x为何值时,PQ⊥AC;x为何值时,PQ⊥AB?(2)当O<x<2时,AD是否能平分△PQD的面积?若能,说出理由;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).21.已知:Rt△ABC中,AC⊥BC,CD为AB边上的中线,AC=6cm,BC=8cm;点O是线段CD边上的动点(不与点C、D重合);以点O为圆心、OC为半径的⊙O交AC于点E,EF⊥AB 于F.(1)求证:EF是⊙O的切线.(如图1)(2)请分析⊙O与直线AB可能出现的不同位置关系,分别指出线段EF的取值范围.(图2供思考用)22.如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE 是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.23.如图1至图4中,两平行线AB、CD间的距离均为6,点M为AB上一定点.思考如图1,圆心为0的半圆形纸片在AB,CD之间(包括AB,CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α.当α=度时,点P到CD的距离最小,最小值为.探究一在图1的基础上,以点M为旋转中心,在AB,CD之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO=度,此时点N到CD的距离是.探究二将如图1中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB,CD 之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO 的最大值;(2)如图4,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.(参考数椐:sin49°=,cos41°=,tan37°=.)24.如图,AB是⊙O的直径,BC切⊙O于点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;(2)求证:=;(3)若BC=AB,求tan∠CDF的值.25.如图所示,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,连接AO、BO、AB,并延长BO与切线P A相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=OQ•BQ;(3)设∠AOQ=α,若,OQ=15,求AB的长.26.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.27.如图,抛物线y=ax2﹣(2a+1)x+b的图象经过(2,﹣1)和(﹣2,7)且与直线y=kx ﹣2k﹣3相交于点P(m,2m﹣7).(1)求抛物线的解析式;(2)求直线y=kx﹣2k﹣3与抛物线y=ax2﹣(2a+1)x+b的对称轴的交点Q的坐标;(3)在y轴上是否存在点T,使△PQT的一边中线等于该边的一半?若存在,求出点T的坐标;若不存在请说明理由.28.在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),且与x 轴交于点A,点B(点A在点B的左边),与y轴交于点C.(1)填空:b=,c=,直线AC的解析式为;(2)直线x=t与x轴相交于点H.①当t=﹣3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;②当﹣3<t<﹣1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.29.已知抛物线经过A(﹣3,0),B(1,0),C(2,)三点,其对称轴交x轴于点H,一次函数y=kx+b(k≠0)的图象经过点C,与抛物线交于另一点D(点D在点C的左边),与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)如图1,当S△EOC=S△EAB时,求一次函数的解析式;(3)如图2,设∠CEH=α,∠EAH=β,当α>β时,直接写出k的取值范围.30.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求△PCE面积的最大值;(3)在(2)的条件下,若点D为OA的中点,点M是线段AC上一点,当△OMD为等腰三角形时,连接MP、ME,把△MPE沿着PE翻折,点M的对应点为点N,求点N的坐标,并判断点N是否在抛物线上.参考答案与试题解析一.解答题(共30小题)1.(2016•郑州校级模拟)如图所示,CD为⊙O的直径,AD、AB、BC分别与⊙O相切于点D、E、C(AD<BC).连接DE并延长与直线BC相交于点P,连接OB.(1)求证:BC=BP;(2)若DE•OB=40,求AD•BC的值;(3)在(2)条件下,若S△ADE:S△PBE=16:25,求四边形ABCD的面积.【分析】(1)由于点O是CD的中点,所以要证BC=BP,只要证明OB∥DP即可;(2)由DE•OB=40可以想到比例式,由题意可以证明△DEC∽△OCB,由此得DE•OB=OC•DC=40,则OC=2,再证△ADO∽△OCB即可;(3)易证△ADE∽△BPE,根据面积的比等于相似比的平方得==,则BC=5,又四边形ABCD是梯形,按其面积公式即可求解.【解答】解:(1)证明:连接OE,如下图①,∵BC、AB分别与⊙O相切于点C、E,∴∠OCB=∠OEB=90°,在RT△OCB与RT△OEB中,RT△OCB∽RT△OEB(HL)∴∠COB=∠EOB∵同弧所对的圆周角是其所对的圆心角的一半,∴∠COB=∠COE=∠CDP,∴DP∥OB,又点O是CD的中点,∴OB是△CDP的中位线,∴BC=BP图①(2)连接OA、OE、CE,如下图②所示图②∵CD是⊙O的直径,∴∠DEC=90°,又BC与⊙O相切于点C,∴∠DEC=∠OCB=90°,又∠4=∠6∴△DEC∽△OCB,∴∴DE•OB=OC•DC=40∴DC=2OCOC2=20,OC=2,∵又∠1=∠2,∠3=∠4,∴∠1+∠4=90°,又∠1+∠5=90°,∴∠4=∠5∴△ADO∽△OCB∴∴AD•BC=OC•OD=OC2=20即:AD•BC=20(3)∵AD、BC分别与⊙O相切于点D、C,如图②所示,∴CD⊥AD,CD⊥PC,∴AD∥PB∴△ADE∽△BPE∴==,∴,即:AD=BC=BP又∵AD•BC=20∴BC2=25即:BC=5∴S四边形ABCD=(AD+BC)•2OC=OC(AD+BP)=2•BC=2××5=18即:四边形ABCD的面积为18【点评】本题考查了圆的切线的性质、相似的性质与判定等知识点,本题的难点是相似的判定与性质的应用,这也是解(2)、(3)两个小题的关键.2.(2016•零陵区校级模拟)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为5,∠BAC=60°,求DE的长.【分析】(1)连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠0DE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案;(2)结合(1)中的结论,可以证明△BOD是等边三角形,即可求得CD和BD的长,再根据锐角三角函数即可计算DE的长.【解答】(1)证明:如图,连接OD.∵OA=OB,CD=BD,∴OD∥AC.∴∠0DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.(2)解:∵OD∥AC,∠BAC=60°,∴∠BOD=∠BAC=60°,∠C=∠0DB.又∵OB=OD,∴△BOD是等边三角形.∴∠C=∠ODB=60°,CD=BD=5.∵DE⊥AC,∴DE=CD•sin∠C=5×sin60°=.【点评】本题考查了切线的判定与性质,用到的知识点是圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.3.(2013•德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC 于点G,过点C作⊙O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED 的长.【分析】(1)连结OC,根据切线的性质得OC⊥PC,则∠OCG+∠PCG=90°,由ED⊥AB 得∠B+∠BGF=90°,而∠B=∠OCG,所以∠PCG=∠BGF,根据对顶角相等得∠BGF=∠PGC,于是∠PGC=∠PCG,所以PC=PG;(2)连结OG,由点G是BC的中点,根据垂径定理的推论得OG⊥BC,BG=CG,易证得Rt△BOG∽Rt△BGF,则BG:BF=BO:BG,即BG2=BO•BF,把BG用CG代换得到CG2=BO•BF;(3)解:连结OE,OG=OG=,在Rt△OBG中,利用勾股定理计算出BG=2,再利用BG2=BO•BF可计算出BF,从而得到OF=1,在Rt△OEF中,根据勾股定理计算出EF=2,由于AB⊥ED,根据垂径定理可得EF=DF,于是有DE=2EF=4.【解答】(1)证明:连结OC,如图,∵PC为⊙O的切线,∴∠OCG+∠PCG=90°,∵ED⊥AB,∴∠B+∠BGF=90°,∵OB=OC,∴∠B=∠OCG,∴∠PCG=∠BGF,而∠BGF=∠PGC,∴∠PGC=∠PCG,∴PC=PG;(2)解:CG、BF、BO三者之间的数量关系为CG2=BO•BF.理由如下: 连结OG,如图,∵点G是BC的中点,∴OG⊥BC,BG=CG,∴∠OGB=90°,∵∠OBG=∠GBF,∴Rt△BOG∽Rt△BGF,∴BG:BF=BO:BG,∴BG2=BO•BF,∴CG2=BO•BF;(3)解:连结OE,如图,由(2)得OG⊥BC,∴OG=,在Rt△OBG中,OB=5,∴BG==2,由(2)得BG2=BO•BF,∴BF==4,在Rt△OEF中,EF==2,∵AB⊥ED,∴EF=DF,∴DE=2EF=4.【点评】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了垂径定理以及推论、勾股定理以及三角形相似的判定与性质.4.(2013•恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.【分析】(1)连结OC,由C是劣弧AE的中点,根据垂径定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根据切线的判定定理即可得到结论;(2)连结AC、BC,根据圆周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,则∠CDB=90°,根据等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;(3)在Rt△ADF中,由于∠DAF=30°,F A=FC=2,根据含30度的直角三角形三边的关系得到DF=1,AD=,再由AF∥CG,根据平行线分线段成比例得到DA:AG=DF:CF然后把DF=1,AD=,CF=2代入计算即可.【解答】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴=,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:在Rt△ADF中,∠DAF=30°,F A=FC=2,∴DF=AF=1,∴AD=DF=,∵AF∥CG,∴DA:AG=DF:CF,即:AG=1:2,∴AG=2.【点评】本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理、垂径定理和等腰三角形的判定.5.(2012•抚顺)如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)判断直线DE与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径为6,∠BAC=60°,延长ED交AB延长线于点F,求阴影部分的面积.【分析】(1)连接OD,根据三角形的中位线得出OD∥AC,推出OD⊥DE,根据切线的判定推出即可;(2)求出∠DOF=60°,∠F=30°,求出DF,根据阴影部分的面积等于三角形ODF的面积减去扇形DOB的面积,分别求出后代入即可.【解答】(1)直线DE与⊙O的位置关系是相切,证明:连接OD,∵AO=BO,BD=DC,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为半径,直线DE是⊙O的切线,即直线DE与⊙O的位置关系是相切;(2)解:∵OD∥AC,∠BAC=60°,∴∠DOB=∠A=60°,∵DE是⊙O切线,∴∠ODF=90°,∴∠F=30°,∴FO=2OD=12,由勾股定理得:DF=6,∴阴影部分的面积S=S△ODF﹣S扇形DOB=×6×6﹣=18﹣6π.【点评】本题考查了切线的性质和判定,平行线的性质和判定,扇形的面积,三角形的面积,三角形的中位线等知识点的综合应用.6.(2012•常熟市校级二模)如图,半圆O的直径AB=12cm,射线BM从与线段AB重合的位置起,以每秒6°的旋转速度绕B点按顺时针方向旋转至BP的位置,BP交半圆于E,设旋转时间为ts(0<t<15),(1)求E点在圆弧上的运动速度(即每秒走过的弧长),结果保留π.(2)设点C始终为的中点,过C作CD⊥AB于D,AE交CD、CB分别于G、F,过F 作FN∥CD,过C作圆的切线交FN于N.求证:①CN∥AE;②四边形CGFN为菱形;③是否存在这样的t值,使BE2=CF•CB?若存在,求t值;若不存在,说明理由.【分析】(1)根据弧长计算公式直接求出即可;(2)①利用圆周角定理和平行线的判定以及弦切角定理得出即可;②利用平行四边形的判定以及菱形判定得出即可;③利用相似三角形的判定得出△ACF∽△BCA,再利用等腰三角形的知识得出当t=10s时,∠AOC=∠AOE=60°,即可得出答案.【解答】(1)解:∵射线BM从与线段AB重合的位置起,以每秒6°的旋转速度绕B点按顺时针方向旋转至BP的位置,∴B一秒P转动的圆心角为12°,∴每秒走过的弧长为:=πcm∕s;(2)①证明:如图所示:∵点C始终为的中点,过C作CD⊥AB于D,AE交CD、CB分别于G、F,过F作FN∥CD,过C作圆的切线交FN于N.∴∠ACD+∠CAG=∠CGF,∠ABC=∠GAC=∠ACG,∠MCA=∠ABC,∴∠MCA+∠ACG=∠ACD+∠CAG,∴CN∥AE;②证明:∵FN∥CD,CN∥AE;∴四边形CGFN是平行四边形,∵∠GCF=90°﹣∠ACG,∠CFG=∠EFB=90°﹣∠EBC,∵∠EBC=∠ACD,∴∠GCF=∠GFC,∴CG=GF,∴平行四边形CGFN为菱形;③解:连接EO,CO.存在,理由如下:∵∠ACF=∠ACB,∠CAF=∠CBA,∴△ACF∽△BCA,∴,∴AC2=BC•CF,∵当t=10s时,∠AOC=∠AOE=60°,∴∠BOE=60°,∴△AOC,△BOE都是等边三角形,且此时全等,∴AC=BE,∴BE2=BC•CF.【点评】此题主要考查了切线的性质定理以及圆周角定理、相似三角形的判定、菱形的判定等知识,根据已知得出角之间等量关系是解决问题的关键.7.(2011•常德)已知△ABC,分别以AC和BC为直径作半圆O1,O2,P是AB的中点,(1)如图1,若△ABC是等腰三角形,且AC=BC,在,上分别取点E、F,使∠AO1E=∠BO2F,则有结论①△PO1E≌△FO2P,②四边形PO1CO2是菱形,请给出结论②的证明;(2)如图2,若(1)中△ABC是任意三角形,其他条件不变,则(1)中的两个结论还成立吗?若成立,请给出证明;(3)如图3,若PC是⊙O1的切线,求证:AB2=BC2+3AC2.(1)可证明△APO1与△BPO2全等,则∠AO1P=∠BO2P,再根据已知可得出EO1=FO2,【分析】PO1=PO2,则△PO1E≌△FO2P,可先证明四边形PO1CO2是平行四边形,再证明CO1=CO2,即可得出四边形PO1CO2是菱形;(2)由已知得出①成立,而②只是平行四边形;(3)直角三角形APC中,设AP=c,AC=a,PC=b,则c2=a2+b2;AB2=4c2=4(a2+b2),过点B作AC的垂线,交AC的延长线于D点.则CD=a,BD=2b.BC2=a2+4b2,由此得证.【解答】解:(1)∵P、O1、O2分别为AB、AC、BC的中点,∴AP=BP,AO1=BO2,PO1BC,PO2AC,∴四边形PO1CO2是平行四边形,∵AC=BC,∴PO1=PO2,∴四边形PO1CO2是菱形;(2)∵P为AB中点,∴AP=BP,又O1为AC中点,∴O1P为△ABC的中位线,∴O1P=O2B=BC,同理可得O2P=AO1=AC,∴△AO1P≌△BO2P(SSS),∴∠AO1P=∠BO2P,又∠AO1E=∠BO2F,∴∠AO1P+∠AO1E=∠BO2P+∠BO2F,即∠PO1E=∠FO2P,又∵O1A=O1E=O2P,且PO1=BO2=FO2,∴△PO1E≌△FO2P;但四边形PO1CO2不是菱形;(3)Rt△APC中,设AP=c,AC=a,PC=b,∴c2=a2+b2;AB2=4c2=4(a2+b2),过点B作AC的垂线,交AC的延长线于D点.∴CD=a,BD=2b,BC2=a2+4b2,∴BC2+3AC2=a2+4b2+3a2=4(a2+b2),∴AB2=BC2+3AC2.【点评】本题综合考查了圆与全等的有关知识;利用中位线定理及构造三角形全等,利用全等的性质解决相关问题是解决本题的关键.8.(2011•松江区模拟)如图,已知在△ABC中,AB=15,AC=20,cotA=2,P是边AB上的一个动点,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与边AC相切;当点P与点B不重合,且⊙P与边AC相交于点M和点N时,设AP=x,MN=y.(1)求⊙P的半径;(2)求y关于x的函数解析式,并写出它的定义域;(3)当AP=时,试比较∠CPN与∠A的大小,并说明理由.【分析】(1)作BD⊥AC,垂足为点D.则BD就是⊙P的半径.根据已知条件可求得sinA,即可得出BD,即⊙P的半径;(2)作PH⊥MN,垂足为点H,由垂径定理,得MN=2MH.即可表示出PH,从而得出y 关于x的函数解析式.(3)当AP=时,可求出AM、CN.可证出△AMP∽△PNC,从而得出∠CPN与∠A的大小.【解答】解:(1)作BD⊥AC,垂足为点D∵⊙P与边AC相切,∴BD就是⊙P的半径.∵cotA=2,∴.(1分)又∵,AB=15,∴.(2分)(2)作PH⊥MN,垂足为点H.由垂径定理,得MN=2MH.(1分)而,,(1分)∴,即.(2分)定义域为.(1分)(3)当AP=时,∠CPN=∠A.(1分)证明如下:当AP=时,PH=6,MH=3,AH=12,∴AM=9.(1分)∵AC=20,MN=6,∴CN=5.(1分)∵,,∴.(1分)又∵PM=PN,∴∠PMN=∠PNM.∴∠AMP=∠PNC.(1分)∴△AMP∽△PNC.(1分)∴∠CPN=∠A.【点评】本题是一道中考压轴题,考查了切线的性质和垂径定理以及相似三角形的判定,难度偏大.9.(2010•双流县)如图所示,在Rt△OBC中,∠OBC=90°,以O为圆心,OB为半径的⊙O 交BO的延长线于A,BD⊥OC于D,交⊙O于E,连接CE并延长交直线AB于P.(1)求证:CE是⊙O的切线.(2)若CE=,⊙O的半径为5,求PE的长?【分析】(1)连接EO,△EOB为等腰三角形,推出∠DOB=∠DOE,结合题意推出△CEO≌△CBO,得OE⊥PC,即可推出结论,(2)根据(1)的结论可知BC=CE=,结合题意可以推出△PEO∽△PBC,求得,在Rt△ABC中,根据勾股定理即可推出PE的长度.【解答】(1)证明:连接EO,∴△EOB为等腰三角形,∵BD⊥OC于D,∴∠DOB=∠DOE,∴△CEO≌△CBO,∵∠OBC=90°,∴OE⊥PC,∴CE是⊙O的切线.(2)解:∵OE⊥PC,∠OBC=90°,∴∠EOP=∠BCP,∴△PEO∽△PBC,∵OE=5,BC=EC=,∴,设PE=3x,PB=4x,∴(3x+)2﹣(4x)2=()2,解方程得:x(40﹣7x)=0,x1=0(舍去)x2=,∴PE=.【点评】本题主要考查全等三角形的判定和性质、切线的判定和性质、相似三角形的判定和性质、勾股定理,解题的关键在于求证△CEO≌△CBO;△PEO∽△PBC,推出.10.(2009•广元)如图,AB是⊙O的直径,CB=CD,AC与BD相交于F,CF=2,F A=4.(1)求证:△BCF∽△ACB.(2)求BC的长.(3)延长AB至E,使BE=BO,连接EC,试判断EC与⊙O的位置关系,并说明理由.【分析】(1)由题意可知,∠D=∠CBD,∠A=∠D,通过等量代换推出∠A=∠CBD,即可推出结论,(2)由(1)所推出的结论,推出,结合已知条件,即可推出BC的长度,(3)连接OC,根据垂径定理,即可推出OC⊥BD,然后通过求证,推出BF∥EC,即得,OC⊥EC,即可推出结论.【解答】(1)证明:∵CB=CD,∴∠D=∠CBD,∵∠A=∠D,∴∠A=∠CBD,又∵∠ACB=∠BCF,∴△BCF∽△ACB.(2)解:∵△BCF∽△ACB,∴,又∵CF=2,F A=4,∴,∴BC1=2或BC2=(舍去),∴BC=2,(3)解:EC与⊙O相切.证明:连接OC,∵CB=CD,∴,∴OC⊥BD,又∵BE=BO,AB是⊙O的直径,∴OB=OA=BE,∴,∵CF=2,F A=4,∴,∴,∴BF∥EC,∴OC⊥EC,故EC与⊙O相切.【点评】本题主要考查圆周角定理、切线的性质、相似三角形的判定与性质、垂径定理等知识点,关键在于(1)运用圆周角定理推出∠A=∠CBD,(2)熟练运用相似三角形的性质推出对应边成比例的比例式,(3)根据垂径定理,推出OC⊥BD,求证BF∥EC.11.(2009•黔南州)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.(1)DE与半圆0是否相切?若相切,请给出证明;若不相切,请说明理由;(2)若AD、AB的长是方程x2﹣16x+60=0的两个根,求直角边BC的长.【分析】(1)连接OD、BD,求出BD⊥AC,AD=CD,求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,推出∠ODE=90°,根据切线的判定推出即可;(2)求出AD和AB的值,证Rt△ADB∽Rt△ABC,得出=,求出AC=,根据勾股定理求出即可.【解答】解:(1)DE与半圆O相切,理由如下:连接OD、BD,∵AB是⊙O的直径,∴∠BDA=∠BDC=90°,。
第2章 对称图形-圆 苏科版九年级数学上册单元复习测试(含答案)
【单元复习】第2章对称图形——圆知识精讲第2章对称图形—圆一、圆的定义及其相关概念(1)定义:圆是轴对称图形,每一条直径都是它的对称轴,因此圆有无数条对称轴。
1)半径:圆上一点与圆心的连线段。
2)直径:连接圆上两点有经过圆心的线段。
3)弦:连接圆上两点线段(直径也是弦)。
4)弧:圆上两点之间的曲线部分。
半圆周也是弧。
劣弧:小于半圆周的弧。
优弧:大于半圆周的弧。
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
(2)圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”(3)弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB)(4)直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
(5)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(6)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)二、圆的对称性(1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置;(3)圆是满足y = x or y = -x轴对称的,这样只需要计算原来的1/2点的位置;圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
圆的中心对称性:圆是以圆心为对称中心的中心对称图形。
三、确定圆的条件1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.四、圆周角圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
苏科版九年级上册数学第2章 对称图形——圆含答案
苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,已知等边三角形△ABC内接于⊙O1,⊙O2与BC相切于C,与AC 相交于E,与⊙O1相交于另一点D,直线AD交⊙O2于另一点F,交BC的延长线于G,点F为AG的中点.对于如下四个结论:①EF∥BC;②BC=FC;③DE•AG=AB•EC;④弧AD=弧DC.其中一定成立的是()A.①②④B.②③C.①③④D.①②③④2、如图,⊙O是△ABC的外接圆,直径AD与BC相交于点E,连接CD,若⊙O 的半径为5,AB=AC=8,则EC长为()A.4B.C.D.3、如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20°B.40°C.70°D.80°4、如图,,,以BC为直径作半圆,圆心为点O;以点C为圆心,为半径作,过点O作AC的平行线交两弧于点D、E,则图中阴影部分的面积是()A. B. C. D.5、如图,在直角坐标系中,⊙O的半径为1,则直线y=﹣x+与⊙O的位置关系是().A.相离B.相交C.相切D.以上三种情形都有可能6、已知⊙O的半径为4,则垂直平分这条半径的弦长是( ) .A. B. C. D.47、已知⊙O的半径r=2,圆心O到直线l的距离d是方程x2﹣5x+6=0的解,则直线l与⊙O的位置关系是()A.相切B.相交C.相切或相交D.相切或相离8、如图,在⊙O中,弧AB=弧AC,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°9、如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED·BC=BO·BE.其中正确结论的个数有( )A.4个B.3个C.2个D.1个10、如图,是的外接圆,,则的度数为A. B. C. D.11、如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3B.3C.6D.912、如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A.28°B.26°C.60°D.62°13、如图,△ABC中,AB=AC=5,BC=6,AD⊥BC于点D,点E是线段AD上一点,以点E为圆心,r为半径作⊙E.若⊙E与边AB,AC相切,而与边BC相交,则半径r的取值范围是()A.r>B. <r≤4C. <r≤4D. <r≤14、将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为A. B. C. D.15、在Rt△ABC中,∠ACB=90°,AC=2 ,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2 ﹣πB.4 ﹣πC.2 ﹣πD. π二、填空题(共10题,共计30分)16、如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为________.17、圆锥的侧面展开图的面积为,母线长为3,则该圆锥的底面半径为________.18、一个扇形的圆心角是120°,它的半径是3cm,则扇形的弧长为________cm.19、如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是________.20、如图,点P为⊙O外一点,PA,PB分别与⊙O相切于点A,B,∠APB=90°.若⊙O的半径为2,则图中阴影部分的面积为________(结果保留π).21、如图,用一个半径为R,圆心角为90°的扇形做成一个圆锥的侧面,设圆锥底面半径为r,则R:r=________22、如图,内接于,为直径,若,则________度.23、如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为________ °24、如图,点A,B,D在⊙O上,∠A=20°,BC是⊙O的切线,B为切点,OD 的延长线交BC于点C,则∠OCB=________度.25、如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,R为半径所作的圆与斜边AB有两个交点,则R的取值范围是________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、已知,如图,AD=BC.求证:AB=CD.28、已知一个正三角形和一个正六边形的周长相等,求它们的面积的比值.29、如图,⊙O的半径为3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠P=30°,求弦AB的长.30、如图,某公园的一个草坪由两个相交的等圆组成,圆的半径为40m,且每个圆都过另一个圆的圆心.两个圆的公共部分(阴影部分)修建一个喷水池.求喷水池的面积(精确到1m2).参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、A5、C6、B7、D8、D9、A10、C11、A12、D13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
苏科版九年级上2.5直线与圆的位置关系专题练习(3)含答案
《直线与圆的位置关系》专题练习(3)1.(2016•大连)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB 的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.2.(2016•锦州)如图,已知△ABC,∠ACB=90°,AC<BC,点D为AB的中点,过点D 作BC的垂线,垂足为点F,过点A、C、D作⊙O交BC于点E,连接CD、DE.(1)求证:DF为⊙O的切线;(2)若AC=3,BC=9,求DE的长.3.(2016•兰州)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为5,BC=,求DE的长.4.(2016•宿迁)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.5.(2016•菏泽)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.6.(2016•荆州)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.7.(2016•本溪)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.8.(2016•茂名)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).9.(2016•宜宾)如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G.(1)求证:直线PE是⊙O的切线;(2)在图2中,设PE与⊙O相切于点H,连结AH,点D是⊙O的劣弧上一点,过点D作⊙O的切线,交PA于点B,交PE于点C,已知△PBC的周长为4,tan∠EAH=,求EH的长.10.(2016•西宁)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.11.(2016•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.12.(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.13.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.14.如图,已知AB是⊙O的直径,弦CD与AB交于点E,过点A作⊙O的切线与CD长线交于点F,AC=8,CE:ED=6:5,AE:EB=2:3.求:(1)AB的长度;(2)tan∠ECB的值.15.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.16.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.17.如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.18.完成下列各题:(1)如图,在矩形ABCD中,AF=BE,求证:DE=CF;(2)如图,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.19.(2016•扬州)如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O 的切线交AC于点D,且ED⊥AC.(1)试判断△ABC的形状,并说明理由;(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣,求⊙O的半径和BF的长.20.如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)当0<x<2时,求证:AD平分△PQD的面积;(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).21.(2015•德阳)如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D 为BC的中点,M为⊙O上一点,并且∠BMC=60°.(1)求证:AB是⊙O的切线;(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.22.(2015•厦门)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC 平分∠DCB,延长DA,CB相交于点E.(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.23.如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接EP、CP、OP.(1)BD=DC吗?说明理由;(2)求∠BOP的度数;(3)求证:CP是⊙O的切线;如果你解答这个问题有困难,可以参考如下信息:为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.24.等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.25.如图1在平面直角坐标系中,⊙O1与x轴切于A(﹣3,0)与y轴交于B、C两点,BC=8,连AB.(1)求证:∠ABO1=∠ABO;(2)求AB的长;(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM﹣BN的值不变;②BM+BN的值不变.其中有且只有一个结论正确,请判断正确结论并证明.26.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.(1)△DEF的边长为(用含有t的代数式表示),当t=秒时,点F落在AB上;(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.27.在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E 是射线AB上的任意一点,DF∥AB,DF与CE相交于点F,设EF=x,DF=y.(1)如图1,当点E在射线OB上时,求y关于x的函数解析式,并写出函数定义域;(2)如图2,当点F在⊙O上时,求线段DF的长;(3)如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.28.如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为﹣1,直线l:y=﹣x﹣与坐标轴分别交于A、C两点,点B的坐标为(4,1),⊙B与x轴相切于点M.(1)求点A的坐标及∠CAO的度数;(2)⊙B以每秒1个单位长度的速度沿想x轴负方向平移,同时,直线l绕点A以每秒钟旋转30°的速度顺时针匀速旋转,当⊙B第一次与⊙O相切时,请判断直线l与⊙B的位置关系,并说明理由:(3)如图2,过A、O、C三点作⊙O1,点E是⊙O1上任意一点,连接EC、EA、EO.①若点E在劣弧OC上,试说明:EA﹣EC=EO;②若点E在优弧OAC上,①的结论中EC、EA、EO的关系式是否仍然成立?若成立,请你说明理由?若不成立,请你直接写出正确的结论.29.在Rt△ABC中,∠A=90°,AB=AC=4,O是BC边上的点且⊙O与AB、AC都相切,切点分别为D、E.(1)求⊙O的半径;(2)如果F为上的一个动点(不与D、E),过点F作⊙O的切线分别与边AB、AC相交于G、H,连接OG、OH,有两个结论:①四边形BCHG的周长不变,②∠GOH的度数不变.已知这两个结论只有一个正确,找出正确的结论并证明;(3)探究:在(2)的条件下,设BG=x,CH=y,试问y与x之间满足怎样的函数关系,写出你的探究过程并确定自变量x的取值范围,并说明当x=y时F点的位置.参考答案与解析1.(2016•大连)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB 的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦且角定理得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解:连接BD,过D作DH⊥BF于H,∵DE与⊙O相切,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.2.(2016•锦州)如图,已知△ABC,∠ACB=90°,AC<BC,点D为AB的中点,过点D 作BC的垂线,垂足为点F,过点A、C、D作⊙O交BC于点E,连接CD、DE.(1)求证:DF为⊙O的切线;(2)若AC=3,BC=9,求DE的长.【分析】(1)连接DO并延长交AC于M,证出,由垂径定理得出DM⊥AC,证出DM∥BC,由已知得出DF⊥DO,即可得出DF为⊙O的切线;(2)由(1)得出DF=AC=1.5,CF=BF=BC=4.5,作ON⊥CE于N,连接OA,由垂径定理得出CN=EN=CE,AM=CM=ON=DF=1.5,设⊙O的半径为r,在△AOM中,由勾股定理求出半径,得出CN=EN=OM=2,CE=4,求出EF=4.5﹣4=0.5,再由勾股定理求出DE 即可.【解答】(1)证明:连接DO并延长交AC于M,如图1所示:∵∠ACB=90°,AC<BC,点D为AB的中点,∴CD=AB=AD,∴,∴DM⊥AC,∴DM∥BC,∵DF⊥BC,∴DF⊥DO,∴DF为⊙O的切线;(2)解:由(1)得:AC∥DF,∵点D为AB的中点,∴DF=AC=1.5,CF=BF=BC=4.5,作ON⊥CE于N,连接OA,如图2所示:则CN=EN=CE,AM=CM=ON=DF=1.5,设⊙O的半径为r,在△AOM中,由勾股定理得:r2+(4.5﹣r)2=r2,解得:r=2.5,∴CN=EN=OM=4.5﹣2.5=2,∴CE=4,∴EF=4.5﹣4=0.5,∴DE===.【点评】本题考查了切线的判定、直角三角形斜边上的中线性质、勾股定理,垂径定理等知识;熟练掌握切线的判定,由勾股定理求出半径是解决问题(2)的关键.3.(2016•兰州)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OD⊥AB于点O,分别交AC、CF于点E、D,且DE=DC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为5,BC=,求DE的长.【分析】(1)连接OC,欲证明CF是⊙O的切线,只要证明∠OCF=90°.(2)作DH⊥AC于H,由△AEO∽△ABC,得=求出AE,EC,再根据sin∠A=sin∠EDH,得到=,求出DE即可.【解答】证明:连接OC,∵OA=OC,∴∠A=∠OCA,∵OD⊥AB,∴∠A+∠AEO=90°,∵DE=DC,∴∠DEC=∠DCE,∵∠AEO=∠DEC,∴∠AEO=∠DCE,∴∠OCE+∠DCE=90°,∴∠OCF=90°,∴OC⊥CF,∴CF是⊙O切线.(2)作DH⊥AC于H,则∠EDH=∠A,∵DE=DC,∴EH=HC=EC,∵⊙O的半径为5,BC=,∴AB=10,AC=3,∵△AEO∽△ABC,∴=,∴AE==,∴EC=AC﹣AE=,∴EH=EC=,∵∠EDH=∠A,∴sin∠A=sin∠EDH,∴=,∴DE===.,【点评】本题考查切线的性质、相似三角形的判定和性质、三角函数等知识,解题的关键是添加辅助线,构造相似三角形,属于中考常考题型.4.(2016•宿迁)如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【分析】(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,即可得出结果.【解答】(1)证明:连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,如图所示:∵∠ABC:∠ACB:∠ADB=1:2:3,∠ADB=∠ACB+∠CAD,∴∠ABC=∠CAD,∵AE为⊙O的直径,∴∠ADE=90°,∴∠EAD=90°﹣∠AED,∵∠AED=∠ABD,∴∠AED=∠ABC=∠CAD,∴∠EAD=90°﹣∠CAD,即∠EAD+∠CAD=90°,∴EA⊥AC,∴AC是⊙O的切线;(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABC+∠ADB=90°,∵∠ABC:∠ACB:∠ADB=1:2:3,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.【点评】本题考查了切线的判定、圆周角定理、角的互余关系;熟练掌握切线的判定方法,由圆周角定理得出直角是解决问题的关键.5.(2016•菏泽)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.【点评】本题考查切线的判定、切割线定理、等角的余角相等等知识,解题的关键是熟练运用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.6.(2016•荆州)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.7.(2016•本溪)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.【分析】(1)根据等腰三角形的性质得到∠B=∠ACB,∠OCE=∠E,推出∠ACO=90°,根据切线的判定定理即可得到结论;(2)根据已知条件得到∠CFO=30°,解直角三角形得到DF==,EF=3OE=4,即可得到结论.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵OC=OE,∴∠OCE=∠E,∵DE⊥AB,∴∠BDE=90°,∴∠B+∠E=90°,∴∠ACB+∠OCE=90°,∴∠ACO=90°,∴AC⊥OC,∴AC是⊙O的切线;(2)解:∵∠E=30°,∴∠OCE=30°,∴∠FCE=120°,∴∠CFO=30°,∴∠AFD=∠CFO=30°,∴DF==,∵BD=5,∴DE=5,∵OF=2OC,∴EF=3OE=4,∴OE=,即⊙O的半径=.【点评】本题考查了切线的判定,直角三角形的性质,等腰三角形的性质,熟练掌握切线的判定定理是解题的关键.8.(2016•茂名)如图,在△ABC中,∠C=90°,D、F是AB边上的两点,以DF为直径的⊙O与BC相交于点E,连接EF,过F作FG⊥BC于点G,其中∠OFE=∠A.(1)求证:BC是⊙O的切线;(2)若sinB=,⊙O的半径为r,求△EHG的面积(用含r的代数式表示).【分析】(1)首先连接OE,由在△ABC中,∠C=90°,FG⊥BC,可得FG∥AC,又由∠OFE=∠A,易得EF平分∠BFG,继而证得OE∥FG,证得OE⊥BC,则可得BC是⊙O 的切线;(2)由在△OBE中,sinB=,⊙O的半径为r,可求得OB,BE的长,然后由在△BFG中,求得BG,FG的长,则可求得EG的长,易证得△EGH∽△FGE,然后由相似三角形面积比等于相似比的平方,求得答案.【解答】(1)证明:连接OE,∵在△ABC中,∠C=90°,FG⊥BC,∴∠BGF=∠C=90°,∴FG∥AC,∴∠OFG=∠A,∴∠OFE=∠OFG,∴∠OFE=∠EFG,∵OE=OF,∴∠OFE=∠OEF,∴∠OEF=∠EFG,∴OE∥FG,∴OE⊥BC,∴BC是⊙O的切线;(2)解:∵在Rt△OBE中,sinB=,⊙O的半径为r,∴OB=r,BE=r,∴BF=OB+OF=r,∴FG=BF •sinB=r ,∴BG==r ,∴EG=BG ﹣BE=r ,∴S △FGE =EG •FG=r 2,EG :FG=1:2,∵BC 是切线,∴∠GEH=∠EFG ,∵∠EGH=∠FGE ,∴△EGH ∽△FGE ,∴=()2=,∴S △EHG =S △FGE =r 2. 【点评】此题考查了切线的判定、相似三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.9.(2016•宜宾)如图1,在△APE 中,∠PAE=90°,PO 是△APE 的角平分线,以O 为圆心,OA 为半径作圆交AE 于点G .(1)求证:直线PE 是⊙O 的切线;(2)在图2中,设PE 与⊙O 相切于点H ,连结AH ,点D 是⊙O 的劣弧上一点,过点D 作⊙O 的切线,交PA 于点B ,交PE 于点C ,已知△PBC 的周长为4,tan ∠EAH=,求EH 的长.【分析】(1)作OH ⊥PE ,由PO 是∠APE 的角平分线,得到∠APO=∠EPO ,判断出△PAO ≌△PHO ,得到OH=OA ,用“圆心到直线的距离等于半径”来得出直线PE 是⊙O 的切线;(2)先利用切线的性质和△PBC的周长为4求出PA=2,再用三角函数求出OA,AG,然后用三角形相似,得到EH=2EG,AE=2EH,用勾股定理求出EG,最后用切割线定理即可.【解答】证明:(1)如图1,作OH⊥PE,∴∠OHP=90°,∵∠PAE=90,∴∠OHP=∠OAP,∵PO是∠APE的角平分线,∴∠APO=∠EPO,在△PAO和△PHO中,∴△PAO≌△PHO,∴OH=OA,∵OA是⊙O的半径,∴OH是⊙O的半径,∵OH⊥PE,∴直线PE是⊙O的切线.(2)如图2,连接GH,∵BC,PA,PB是⊙O的切线,∴DB=DA,DC=CH,∵△PBC的周长为4,∴PB+PC+BC=4,∴PB+PC+DB+DC=4,∴PB+AB+PC+CH=4,∴PA+PH=4,∵PA,PH是⊙O的切线,∴PA=PH,∴PA=2,由(1)得,△PAO≌△PHO,∴∠OFA=90°,∴∠EAH+∠AOP=90°,∵∠OAP=90°,∴∠AOP+∠APO=90°,∴∠APO=∠EAH,∵tan∠EAH=,∴tan∠APO==,∴OA=PA=1,∴AG=2,∵∠AHG=90°,∵tan∠EAH==,∵△EGH∽△EHA,∴===,∴EH=2EG,AE=2EH,∴AE=4EG,∵AE=EG+AG,∴EG+AG=4EG,∴EG=AG=,∵EH是⊙O的切线,EGA是⊙O的割线,∴EH2=EG×EA=EG×(EG+AG)=×(+2)=,∴EH=.【点评】此题是切线的性质和判定题,主要考查了切线的判定和性质,相似三角形的性质和判定,勾股定理,三角函数,解本题的关键是用三角函数求出OA.10.(2016•西宁)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.【分析】(1)连OD,OE,根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠ODB,于是∠CDA+∠ADO=90°;(2)根据已知条件得到△CDA∽△CBD由相似三角形的性质得到,求得CD=4,由切线的性质得到BE=DE,BE⊥BC根据勾股定理列方程即可得到结论.【解答】(1)证明:连结OD,∵OB=OD,∴∠OBD=∠BDO,∵∠CDA=∠CBD,∴∠CDA=∠ODB,又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD,∵OD是⊙O半径,∴CD是⊙O的切线(2)解:∵∠C=∠C,∠CDA=∠CBD∴△CDA∽△CBD∴∵,BC=6,∴CD=4,∵CE,BE是⊙O的切线∴BE=DE,BE⊥BC∴BE2+BC2=EC2,即BE2+62=(4+BE)2解得:BE=.【点评】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;也考查了圆周角定理的推论以及三角形相似的判定与性质.11.(2016•凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【分析】(1)由已知△ABC的三边a=3,b=12,c=7,可知这是一个一般的三角形,故选用海伦﹣秦九韶公式求解即可;(2)由三角形的面积=lr,计算即可.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.【点评】此题考查了三角形面积的求解方法.此题难度不大,注意选择适当的求解方法是关键.12.(2016•桂林)已知任意三角形的三边长,如何求三角形面积?古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S 为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:∵a=3,b=4,c=5∴p==6∴S===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ABC中,BC=5,AC=6,AB=9(1)用海伦公式求△ABC的面积;(2)求△ABC的内切圆半径r.【分析】(1)先根据BC、AC、AB的长求出P,再代入到公式S=即可求得S的值;(2)根据公式S=r(AC+BC+AB),代入可得关于r的方程,解方程得r的值.【解答】解:(1)∵BC=5,AC=6,AB=9,∴p===10,∴S===10;故△ABC的面积10;(2)∵S=r(AC+BC+AB),∴10=r(5+6+9),解得:r=,故△ABC的内切圆半径r=.【点评】本题主要三角形的内切圆与内心、二次根式的应用,熟练掌握三角形的面积与内切圆半径间的公式是解题的关键.13.已知:AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.【分析】(1)连接OC,则∠OCP=90°,根据∠CPA=30°,求得∠COP,再由OA=OC,得出∠A=∠ACO,由PD平分∠APC,即可得出∠CDP=45°.(2)由PC是⊙O的切线,得∠OCP=90°.再根据PD是∠CPA的平分线,得∠APC=2∠APD.根据OA=OC,可得出∠A=∠ACO,即∠COP=2∠A,在Rt△OCP中,∠OCP=90°,则∠COP+∠OPC=90°,从而得出∠CDP=∠A+∠APD=45°.所以∠CDP的大小不发生变化.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴OC⊥PC∴∠OCP=90°.∵∠CPA=30°,∴∠COP=60°∵OA=OC,∴∠A=∠ACO=30°∵PD平分∠APC,∴∠APD=15°,∴∠CDP=∠A+∠APD=45°.(2)∠CDP的大小不发生变化.∵PC是⊙O的切线,∴∠OCP=90°.∵PD是∠CPA的平分线,∴∠APC=2∠APD.∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°.即∠CDP的大小不发生变化.【点评】本题考查了切线的性质以及角平分线的性质、等腰三角形的性质,要注意各个知识点的衔接.14.如图,已知AB是⊙O的直径,弦CD与AB交于点E,过点A作⊙O的切线与CD长线交于点F,AC=8,CE:ED=6:5,AE:EB=2:3.求:(1)AB的长度;(2)tan∠ECB的值.【分析】(1)设CE=6k,ED=5k,AE=2a,BE=3a,过点O作OH⊥CD垂足为H,则CH=HD,由△OHE∽△FAE,得=求出EF=,由CE•ED=BE•AE求出k、a关系,得EF=10k,得到DE=DC,得△DEA、△BCE都是等腰三角形,在RT△ABC中利用勾股定理即可解决问题.(2)根据tan∠ECB=tan∠AEF=,求出AF、AE即可.【解答】解:(1)设CE=6k,ED=5k,AE=2a,BE=3a,过点O作OH⊥CD垂足为H,则CH=HD,∴EH=0.5k,OE=0.5a,∵AF是切线,∴∠FAE=90°=∠OHE,∵∠OEH=∠FEA,∴△OHE∽△FAE,∴=即=,∴EF=,∵CE•ED=BE•AE,∴6k•5k=3a•2a,∴a2=5k2,∴EF=10k,∴点D是EF中点,∴AD=ED=DF=5k,∴△DEA、△BCE都是等腰三角形,∴BC=BE=3a,∵AB是直径,∴∠ACB=90°,∴BC2+AC2=AB2,∴(3a)2+82=(5a)2,∴a=2,∴AB=5a=10.(2)∵a=2,∴k=,∵AF2=DF•FC=80k2=64,∴AF=8,∴tan∠ECB=tan∠AEF===2.【点评】本题考查切线的性质、垂径定理、直角三角形斜边中线性质、等腰三角形的性质、勾股定理等知识,解题的关键是设两个参数,想办法求出EF的长,发现点D是EF中点这个突破口,题目比较难,属于中考压轴题.15.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.【分析】(1)连结AC,由于BC是圆P的直径,那么∠CAB=90°.解Rt△ABC,得出AC==2,由垂径定理得出OB=OA=2,根据三角形中位线定理得出OP=AC=1,从而求出点B、P、C的坐标;(2)将C(﹣2,2)代入y=2x+b,利用待定系数法求出过点C的直线解析式为y=2x+6,得到D(﹣3,0),AD=1.再利用SAS证明△ADC≌△OPB,得出∠DCA=∠B,然后证明∠BCD=90°,根据切线的判定定理证明CD是⊙P的切线.【解答】(1)解:连结AC.∵BC是⊙P的直径,∴∠CAB=90°.在Rt△ABC中,∵∠CAB=90°,BC=2,AB=4,∴AC==2,∵OP⊥AB,∴OB=OA=2,∴OP=AC=1,∴P(0,1),B(2,0),C(﹣2,2);(2)证明:将C(﹣2,2)代入y=2x+b,得﹣4+b=2,解得b=6∴y=2x+6,当y=0时,则x=﹣3,∴D(﹣3,0),∴AD=1.在△ADC和△OPB中,,∴△ADC≌△OPB(SAS),∴∠DCA=∠B.∵∠B+∠ACB=90°,∴∠DCA+∠ACB=90°,即∠BCD=90°,∴CD是⊙P的切线.【点评】本题考查了切线的判定,垂径定理,勾股定理,全等三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.16.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF ⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.17.如图一,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠CAD=∠BAC;(2)如图二,若把直线EF向上移动,使得EF与⊙O相交于G,C两点(点C在点G的右侧),连接AC,AG,若题中其他条件不变,这时图中是否存在与∠CAD相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.【分析】(1)连接OC,根据切线的性质定理以及等角的余角相等即可证明;(2)构造直径所对的圆周角,根据等弧所对的圆周角相等以及等角的余角相等,发现∠BAC=∠GAD,再根据等式的性质即可证明∠BAG=∠DAC.【解答】(1)证明:如图一,连接OC,则OC⊥EF,且OC=OA,易得∠OCA=∠OAC.∵AD⊥EF,∴OC∥AD.∴∠OCA=∠CAD,∴∠CAD=∠OAC.即∠CAD=∠BAC.(2)解:与∠CAD相等的角是∠BAG.证明如下:如图二,连接BG.∵四边形ACGB是⊙O的内接四边形,∴∠ABG+∠ACG=180°.∵D,C,G共线,∴∠ACD+∠ACG=180°.∴∠ACD=∠ABG.∵AB是⊙O的直径,∴∠BAG+∠ABG=90°∵AD⊥EF∴∠CAD+∠ACD=90°∴∠CAD=∠BAG.【点评】此题运用了切线的性质定理、圆周角定理的推论.注意根据等角的余角相等是证明角相等的一种常用方法.18.完成下列各题:(1)如图,在矩形ABCD中,AF=BE,求证:DE=CF;(2)如图,AB是⊙O的直径,CA与⊙O相切于点A,连接CO交⊙O于点D,CO的延长线交⊙O于点E,连接BE,BD,∠ABD=25°,求∠C的度数.。
苏教版初三圆测试题及答案
苏教版初三圆测试题及答案一、选择题(每题2分,共10分)1. 圆的半径为5,那么圆的直径是()A. 5B. 10C. 15D. 202. 在圆中,弧长与所对圆心角的关系是()A. 弧长等于圆心角的2倍B. 弧长等于圆心角的4倍C. 弧长等于圆心角的6倍D. 弧长等于圆心角的8倍3. 圆的周长公式是()A. C = πrB. C = 2πrC. C = 3πrD. C = 4πr4. 圆的面积公式是()A. S = πr^2B. S = 2πr^2C. S = πrD. S = 2πr5. 如果一个圆的半径增加1,那么它的面积将增加()A. πB. 2πC. πr^2D. 2πr^2二、填空题(每题1分,共5分)6. 圆的切线与半径垂直,且切线与半径的交点是______。
7. 圆的内接四边形的对角和是______。
8. 圆周角定理指出,圆周角的度数是它所对弧中心角的______。
9. 圆的内接正六边形的边长等于圆的______。
10. 圆的外切正六边形的边长等于圆的______。
三、简答题(每题5分,共10分)11. 请简述圆的切线的性质。
12. 请说明如何计算圆的内接正多边形的边长。
四、计算题(每题10分,共20分)13. 已知圆的半径为7,求圆的周长和面积。
14. 已知圆的周长为44π,求圆的半径。
五、证明题(每题15分,共15分)15. 证明:圆的内接正三角形的边长等于半径的3倍。
答案:一、选择题1. B2. A3. B4. A5. B二、填空题6. 圆心7. 180度8. 一半9. 半径10. 直径三、简答题11. 圆的切线具有以下性质:(1)切线与圆相切于一点;(2)过圆上一点的切线有且只有一条;(3)切线与半径垂直。
12. 计算圆的内接正多边形的边长,可以使用公式:边长 = 2R *sin(π/n),其中R是圆的半径,n是正多边形的边数。
四、计算题13. 周长= 2π * 7 = 14π;面积= π * 7^2 = 49π。
苏科版九年级上册数学第2章 对称图形——圆 含答案(往年考题)
苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:甲:①、作OD的中垂线,交⊙O于B,C两点,②、连接AB,AC,△ABC即为所求的三角形乙:①、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.②、连接AB,BC,CA.△ABC即为所求的三角形.对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确、乙错误D.甲错误,乙正确2、如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是()A.2cm或8cmB.2cmC.1cm 或8cmD.1cm3、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.30°B.40°C.45°D.50°4、如图,是的外接圆,则点是的().A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点5、点P在⊙O内,OP = 2cm,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1cmB.2cmC. cmD.2 cm6、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4,BD为⊙O的直径,则⊙O的半径为()A.4B.6C.8D.127、如图,在中,,点O为的内心,则的度数为()A. B. C. D.8、如图,在中,为直径,,点D为弦的中点,点E 为上任意一点,则的大小可能是()A. B. C. D.9、若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A. B. C. 或 D.a+b或a﹣b10、如图,AB是⊙O 的直径,点D是半径OA的中点,过点D作CD⊥AB,交⊙O 于点C,点E为弧BC的中点,连结ED并延长ED交⊙O于点F,连结AF、BF,则()A.sin∠AFE=B.cos∠BFE=C.tan∠EDB=D.tan∠BAF=11、如图,⊙O是△ABC的外接圆,AC=4,∠ABC=∠DAC,则直径AD的长为()A.4B.6C.D.812、下列命题中,①直径是弦;②平分弦的直径必垂直于弦;③相等的圆心角所对的弧相等;④等弧所对的弦相等.⑤经过半径的一端并垂直于半径的直线是圆的切线.正确的个数为()A.1个B.2个C.3个D.4个13、如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足,连接AF并延长交⊙O于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E= ;④S=4 .△DEF其中正确的是()A.①②④B.①②③C.②③④D.①③④14、如图是一个横放的油桶的横截面图,油的最大深度为30cm,油面宽度为60cm,则油面的面积为()cm2.A.2400π﹣1800B.2400π﹣900C.1200π﹣900D.π﹣180015、如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。
苏科版九年级数学上册期末专题:第二章对称图形-圆含答案解析
苏科版九年级数学上册期末专题:第二章对称图形-圆一、单选题(共10题;共30分)1.如图,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于( )A. 75°B. 60°C. 45°D. 30°2.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A. 24°B. 28°C. 33°D. 48°3.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A. 100°B. 110°C. 120°D. 130°4.如图,△ABC内接于⊙O,点P是上任意一点(不与A,C重合),∠ABC=55°,则∠POC的取值范围x是()A. 0<x<55°B. 55°<x<110°C. 0<x<110°D. 0<x<180°5.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 70°B. 60°C. 45°D. 30°6.如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=2,那么∠AOB等于()A. 90°B. 100°C. 110°D. 120°7.一个钢管放在V形架内,下是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,∠MPN = 60°,则OP 的长为A. 50 cmB. 25cmC. cmD. cm8.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A. P在圆内B. P在圆上C. P在圆外D. 无法确定9.己知正六边形的边长为2,则它的内切圆的半径为()A. 1B.C. 2D. 210.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A. 70°B. 40°C. 50°D. 20°二、填空题(共10题;共30分)11.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是________.12.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于________.13.(2017•淮安)如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是________°.14.如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y= 经过圆心H,则反比例函数的解析式为________.15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=________.16.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是________ 度.17.已知的半径为,,则点与的位置关系是点在________.18.⊙O的半径为5,弦BC=8,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为________.19.如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为________ cm2(不考虑接缝等因素,计算结果用π表示).20.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.三、解答题(共8题;共60分)21.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.22.如图,⊙O的半径OC⊥AB,D为上一点,DE⊥OC,DF⊥AB,垂足分别为E、F,EF=3,求直径AB的长.23.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.24.如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求直径AB的长.25.如图,AD=CB,求证:AB=CD.26.如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.27.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在上.(1)求∠E的度数;(2)连接OD、OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值28.如图,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.(1)BE与IE相等吗?请说明理由.(2)连接BI,CI,CE,若∠BED=∠CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.答案解析部分一、单选题1.【答案】B2.【答案】A3.【答案】B4.【答案】C5.【答案】B6.【答案】D7.【答案】A8.【答案】C9.【答案】B10.【答案】D二、填空题11.【答案】1012.【答案】613.【答案】12014.【答案】﹣815.【答案】130°16.【答案】15017.【答案】外18.【答案】2或819.【答案】300π20.【答案】﹣2≤BE<3三、解答题21.【答案】解:如图,过O点作OC⊥AB,连接OB,根据垂径定理得出AB=2BC,再根据勾股定理求出BC===8,从而求得AB=2BC=2×8=16.22.【答案】解:∵OC⊥AB,DE⊥OC,DF⊥AB,∴四边形OFDE是矩形,∴OD=EF=3,∴AB=623.【答案】证明:如图所示,取BC的中点F,连接DF,EF.∵BD,CE是△ABC的高,∴△BCD和△BCE都是直角三角形.∴DF,EF分别为Rt△BCD和Rt△BCE斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D四点在以F点为圆心,BC为半径的圆上.24.【答案】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴∠BOC=60°,又∵CD为⊙的切线,∴∠OCD=90°,∴∠D=30°,∴在Rt△OCD中,OC= OD=15cm,∴AB=2OC=30cm25.【答案】证明:∵同弧所对对圆周角相等,∴∠A=∠C,∠D=∠B.在△ADE和△CBE中,∠∠,∠∠∴△ADE≌△CBE(ASA).∴AE=CE,DE=BE,∴AE+BE=CE+DE,即AB=CD.26.【答案】解;(1)证明:连接OD,如图1所示:∵OD=OC,∴∠DCB=∠ODC,又∠DOB为△COD的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,∵∠ACB=90°,∴∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,∴OD⊥AB,又∵D在⊙O上,∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M,如图1,∵OD=OE=BE=BO,∠BDO=90°,∴∠B=30°,∴∠DOB=60°,∵OD=OC,∴∠DCB=∠ODC,又∵∠DOB为△ODC的外角,∴∠DOB=∠DCB+∠ODC=2∠DCB,∴∠DCB=30°,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∴OD=2,BO=BE+OE=2OE=4,∴在Rt△BDO中,根据勾股定理得:BD=;解法二:过点O作OM⊥CD于点M,连接DE,如图2,∵OM⊥CD,∴CM=DM,又O为EC的中点,∴OM为△DCE的中位线,且OM=1,∴DE=2OM=2,∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2,∵Rt△BDO中,OE=BE,∴DE=BO,∴BO=BE+OE=2OE=4,∴OD=OE=2,在Rt△BDO中,根据勾股定理得BD=.27.【答案】解:(1)连接BD,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠C=180°,∵∠C=120°,∴∠BAD=60°,∵AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,∴∠AED=120°;(2)连接OA,∵∠ABD=60°,∴∠AOD=2∠ABD=120°,∵∠DOE=90°,∴∠AOE=∠AOD﹣∠DOE=30°,=12.∴n=°°28.【答案】证明:(1)如图1,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4,∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴IE=BE.(2)四边形BECI是菱形,如图2∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE,∵I是△ABC的内心,∴∠4=∠ABC=30°,∠ICD=∠30°,∴∠4=∠ICD,∴BI=IC,由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.。
初三上圆的测试题及答案
初三上圆的测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为5,那么它的直径是()A. 10B. 15C. 20D. 252. 圆的周长公式为()A. C = πdB. C = 2πrC. C = πrD. C = 2πd3. 圆的面积公式为()A. S = πr^2B. S = πd^2C. S = 2πrD. S = πd4. 圆的直径是半径的()A. 1倍B. 2倍C. 3倍D. 4倍5. 圆的周长是半径的()A. 2π倍B. π倍C. 2倍D. 4π倍6. 圆的面积是半径的()A. π倍B. πr倍C. πr^2倍D. 2πr^2倍7. 圆的直径是周长的()A. 1/π倍B. 2倍C. 4倍D. 1/2π倍8. 圆的半径增加1倍,面积增加()A. 1倍B. 2倍C. 4倍D. 8倍9. 圆的半径增加1倍,周长增加()A. 1倍B. 2倍C. 4倍D. 8倍10. 圆的半径增加1倍,直径增加()A. 1倍B. 2倍C. 4倍D. 8倍二、填空题(每题3分,共30分)1. 圆的半径为3cm,它的直径是_______cm。
2. 圆的周长是18.84cm,它的半径是_______cm。
3. 圆的面积是28.26cm²,它的半径是_______cm。
4. 圆的直径是6cm,它的周长是_______cm。
5. 圆的周长是31.4cm,它的面积是_______cm²。
6. 圆的半径是4cm,它的直径是_______cm。
7. 圆的直径是8cm,它的面积是_______cm²。
8. 圆的半径是2cm,它的周长是_______cm。
9. 圆的面积是50.24cm²,它的半径是_______cm。
10. 圆的周长是25.12cm,它的直径是_______cm。
三、解答题(每题10分,共40分)1. 已知一个圆的半径为7cm,求它的周长和面积。
2. 一个圆的周长是50.24cm,求它的直径和面积。
苏科版数学九年级上册 5.1 圆(含答案)-
A5.1 圆一、双基训练:1.确定一个圆的条件是_________和________.2.已知⊙O 中最长的弦为16cm ,则⊙O 的半径为________cm . 3.过圆内一点可以作出圆的最长弦_____条.4.以已知点O 为圆心,已知线段a 为半径作圆,可以作( ) A .1个 B .2个 C .3个 D .无数个 5.下列语句中,不正确的个数是( )①直径是弦;②弧是半圆;③长度相等的弧是等弧;•④经过圆内一定点可以作无数条直径.A .1个B .2个C .3个D .4个 6.下列语句中,不正确的是( )A .圆既是中心对称图形,又是旋转对称图形B .圆既是轴对称图形,又是中心对称图形C .当圆绕它的圆心旋转89°57′时,不会与原来的圆重合D .圆的对称轴有无数条,对称中心只有一个7.等于23圆周的弧叫做( )A .劣弧B .半圆C .优弧D .圆8.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦的条数有(• ) A .2条 B .3条 C .4条 D .5条9.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC ,求∠A 的度数.A二、拓广探索:10.弦AB 把圆分成1:3两部分,则AB 所对的劣弧等于_______度,AB•所对的优弧等于________度.11.如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB•于点D ,求∠ACD 的度数.12.如图,C 是⊙O 直径AB 上一点,过C 作弦DE ,使DC=OC ,∠AOD=40°,求∠BOE•的度数.BA三、智能升级:13.已知:如图,OA 、OB 为⊙O 的半径,C 、D 分别为OA、OB 的中点,求证:AD=BC .答案:1.圆心半径 2.8 3.1条或无数4.A 5.C 6.C 7.C 8.B9.连接OB,∠A=28°10.90 27011.10°12.120°,提示:•利用等腰三角形两个底角相等的性质和三角形的外角定理13.提示:证明△AOD≌△BOC。
苏科版九年级数学上册第二章:动点与动圆综合 复习(含答案)
初三数学动圆中的几何动点与动圆问题解题技巧:1.找到动态过程中不变的量,利用或探索(比如相似)已知条件列等式求值; 2.画出临界情况或符合题目情形的草图(非常重要),根据图像找等量关系。
动圆与几何图形结合问题例1.如图,在AOB 中,90,8,6O AO cm BO cm ===∠,点C 从A 点出发,在边AO 上以2/cm s 的速度向O 点运动,与此同时,点D 从点B 出发,在边BO 上以1.5/cm s 的速度向O 点运动,过OC 的中点E 作CD 的垂线EF ,则当点C 运动了 s 时,以C 点为圆心,1.5cm 为半径的圆与直线EF 相切.例2.如图,在Rt ACB 中,90,2,4ACB AC cm AB cm ===∠,动点P 从点C 出发,在BC 边上以3cm 每秒的速度向点B 匀速运动,同时动点Q 也从点C 出发,沿C A B →→以每秒4cm 的速度匀速运动,运动时间为t 秒3(0)2t <<,连接PQ ,以PQ为直径作O .(1)当12t =时,求PCQ 的面积; (2)设O 的面积为S ,求S 与t 的函数关系式;(3)当点Q 在AB 上运动时,O 与Rt ACB 的一边相切,求t 的值.学员姓名 年 级 初三 上课时间辅导科目 数学学科教师课 题 与圆有关的动点问题巩固练习:1.如图,已知12l l ⊥,⊙O 与12,l l 都相切,⊙O 的半径为2cm ,矩形ABCD 的边,AD AB 分别与12,l l 重合,43,4AB cm AD cm ==,若⊙O 与矩形ABCD 沿1l 同时向右移动,⊙O 的移动速度为3/cm s ,矩形ABCD 的移动速度为4/cm s ,设移动时间为()t s (1)如图①,连接,OA AC ,则∠OAC 的度数为 ;(2)如图②,两个图形移动一段时间后,⊙O 到达⊙O 1的位置,矩形ABCD 到达1111A B C D 的位置,此时点111,,O A C 恰好在同一直线上,求圆心O 移动的距离(即1OO 的长); (3)在移动过程中,圆心O 到矩形对角线AC 所在直线的距离在不断变化,设该距离为()d cm ,当2d <时,求t 的取值范围(解答时可以利用备用图画出相关示意图).动态一次函数与圆例3.如图,平面直角坐标系xOy中,一次函数34y x b=-+(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(1)若直线AB与CD有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.巩固练习:如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点(4,0),(0,3)A B ,动点P 从点O 出发,沿x 轴负方向以每秒1个单位的速度运动,同时动点Q 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动,过点P 作PC ⊥AB 于点C ,连接PQ ,CQ ,以PQ ,CQ 为邻边构造平行四边形PQCD ,设点P 运动的时间为t 秒.(1)当点Q 在线段OB 上时,用含t 的代数式表示PC ,AC 的长; (2)在运动过程中.①当点D 落在x 轴上时,求出满足条件的t 的值;②若点D 落在△ABO 内部(不包括边界)时,直接写出t 的取值范围;(3)作点Q 关于x 轴的对称点Q′,连接CQ′,在运动过程中,是否存在某时刻使过A ,P ,C 三点的圆与△CQQ′三边中的一条边相切?若存在,请求出t 的值;若不存在,请说明理由.课后作业1.如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12cm,BD=16cm,动点N从点D出发,沿线段DB以2cm/s的速度向点B运动,同时动点M从点B出发,沿线段BA以1cm/s 的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为t(s)(t>0),以点M为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN.(1)求BF的长(用含有t的代数式表示),并求出t的取值范围;(2)当t为何值时,线段EN与⊙M相切?(3)若⊙M与线段EN只有一个公共点,求t的取值范围.2.如图,已知Rt△ABC的直角边AC与Rt△DEF的直角边DF在同一条直线上,且AC=60c,BC=45cm,DF=6cm,EF=8cm.现将点C与点F重合,再以4cm/s的速度沿CA方向移动△DEF;同时,点P从点A出发,以5cm/s的速度沿AB方向移动.设移动时间为t(s),以点P为圆心,3t(cm)长为半径的⊙P与AB相交于点M,N,当点F与点A重合时,△DEF与点P 同时停止移动,在移动过程中,(1)连接ME,当ME∥AC时,t= s;(2)连接NF,当NF平分DE时,求t的值;(3)是否存在⊙P与Rt△DEF的两条直角边所在的直线同时相切的时刻?若存在,求出t 的值;若不存在,说明理由.3.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG 与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.参考答案例1.3 2例2.(1)32;(2)2194tSπ=;(3)3561105或或巩固练习:解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,AD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2G2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.例3.解:(1)连接CD,EA,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,(2)①如图,作OM⊥AB点M,连接OF,∵OM⊥AB,直线的函数式为:y=﹣34x+b,∴OM所在的直线函数式为:y=43x,∴交点M(b,b)∴OM2=(b)2+(b)2,∵OF=4,∴FM2=OF2﹣OM2=42﹣(b)2﹣(b)2,∵FM=12 FG,∴FG2=4FM2=4×[42﹣(b)2﹣(b)2]=64﹣b2=64×(1﹣b2),∵直线AB与有两个交点F、G.∴4≤b<5,(3)如图,当b=5时,直线与圆相切,∵DE是直径,∴∠DCE=90°,∵CO⊥DE,且DO=EO,∴∠ODC=OEC=45°,∴∠CFE=∠ODC=45°,∴存在点P,使∠CPE=45°,连接OP,∵P是切点,∴OP⊥AB,∴OP所在的直线为:y=43x,又∵AB所在的直线为:y=﹣34x+5,∴P(,).巩固练习:(1)34(4),(4)55PC t AC t=-=-;(2)2738t=27123811t<<;(3)927816或课后作业:1.(1)8(08)5BF t t=<≤;(2)329;(3)32400899t t<≤<<或2.(1)203;(2)307;(3)601211或3.解:(1)证明:∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=×12×3×4=.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,S△BCD=12BC•CD=12BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.∵S矩形ABCD=,∴34×()2≤S矩形ABCD≤34×42.∴≤S矩形ABCD≤12.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴34=.∴DG″=.∴点G移动路线的长为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1图2图3
6.如图3,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中的阴影部分的面积为( )A.π B.π-C.D.π+
7.如图4,⊙O的外切正六边形ABCDEF的边长为1,则图中阴影部分的面积为( )
A.-;B.-;C.-;D.-
图4图5图6
8.已知扇形的面积为2π,半径为3,则该扇形的弧长为________(结果保留π).
A.4π B.3π C.2π D.2π
4.如图1,一枚直径为4 cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是( )
A.2π cm B.4π cm C.8π cm D.16π cm
5.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从点P出发,绕圆锥侧面爬行,回到点P时所爬过的最短路线的痕迹如图2,若沿OM将圆锥侧面剪开并展开,所得的侧面展开图是( )
例2、如图,已知正△ABC的半径为R,求△ABC的边长a,周长P,边心距r和面积S.
例3、
(1)一个扇形的圆心角为90°.半径为2,则这个扇形的弧长为______.(结果保留 )
(2)如图,菱形ABCD的边长为2cm,∠A=600。弧BD是以点A为圆心、AB长为半径的弧,弧CD是以点B为圆心、BC长为半径的弧。则阴影部分的面积为cm2。
11.如图7,在△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.
图7
12.★★★如图8,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.
2.圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:将圆锥的侧面沿母线l剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r,这个扇形的半径等于什么?扇形弧长等于什么?
【解题方法1】在扇形中,弧长、半径、圆心角、面积四个量中只要已知两个量就能求出其余两个。
【解题方法2】在圆锥的侧面展开图中,底面圆周长等于扇形弧长。
A. B. C. D.
3、(2015•益阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则 的长为。
例4、★★★(2015•浙江丽水,第21题8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
四、考查目标:主要是指圆中的计算问题,包括弧长、扇形面积,以及圆柱与圆锥的侧面积和全面积的计算,这部分内容也是历年中考的必考内容之一。学生要理解圆柱和其侧面展开图矩形、圆锥和其侧面展开图扇形之间的关系。
所以1°的圆心角所对的弧长是 ,即 。这样,在半径为R的圆中,
n°的圆心角所对的弧长l的计算公式为:l= 。
2.扇形面积计算公ቤተ መጻሕፍቲ ባይዱ:
(1)类比弧长的计算公式可知:圆心角为n°的扇形面积与整个圆面积的比和n°与360°的比一致,因此,扇形的面积应等于圆的面积乘以扇形的圆心角占360的几分之几,即圆心角是360°的扇形面积就是圆面积S=πR2,所以圆心角是1°的扇形面积是。 这样,在半径为R的圆中,圆心角为的扇形面积的计算公式为:S= πR2
3.圆锥侧面积计算公式:圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,S圆锥侧=S扇形= ·2πr·l=πrl
4.圆锥全面积计算公式:S圆锥全=S圆锥侧+S圆锥底面=πr l+πr2=πr(l+r)
典型例题:
例1、如图,⊙O的内接正五边形ABCDE的对角线AD和BE相交于点M,请你仔细观察图形,并直接写出图中所有的等腰三角形.
课时作业二、中心对称图形------圆(二)与圆有关的计算问题
一、
二、圆与三角形的关系:
1、不在同一条直线上的三个点确定一个圆。
2、三角形的外接圆:经过三角形三个顶点的圆。
3、三角形的外心:三角形三边垂直平分线的交点,即三角形外接圆的圆心。
4、三角形的内切圆:与三角形的三边都相切的圆。内切圆半径公式:
(2)扇形面积的另一个计算公式
比较扇形面积计算公式与弧长计算公式,可以发现:可以将扇形面积的计算公式:S= πR2化为S= · R,从面可得扇形面积的另一计算公式:S= lR。
圆锥的侧面积和全面积:
1.圆锥的基本概念:连结圆锥的顶点S和底面圆上任意一点的线段SA、SA1……叫做圆锥的母线,连接顶点S与底面圆的圆心O的线段叫做圆锥的高。
当堂练习:
1.一个正多边形的每个外角都等于36°,那么它是( )
A.正六边形B.正八边形C.正十边形D.正十二边形
2.已知圆柱的底面半径为3 cm,母线长为5 cm,则圆柱的侧面积是( )
A.30 cm2B.30π cm2C.15 cm2D.15π cm2
3.在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2,则这个圆锥的侧面积是( )
5、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。
6、圆内接四边形的对角互补,并且每一个外角等于它的内对角。
三、计算公式:
正多边形的计算:正n边形半径和边心距把正n边形分成2n个全等的直角三角形,根据这个性质可以把正n边形的有关计算问题归纳为解直角三角形的问题。
弧长和扇形的面积:
1. 弧长计算公式:因为360°的圆心角所对弧长就是圆周长C=2πR,
9.如图5,⊙O的半径为6 cm,直线AB是⊙O的切线,切点为B,弦BC∥AO.若∠A=30°,则劣弧 的长为__________cm.
10.如图6,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是______________.
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是 的中点,⊙O的半径为1,求图中阴影部分的面积.
图8
课后作业:
1.如图,正六边形 内接于圆 ,半径为 ,则这个正六边形的边心距 和弧 的长分别为()
(A) 、 (B) 、 (C) 、 (D) 、
2.如图, 是⊙O的直径,弦 ,则
阴影部分的面积为()