大学物理第3章动量与角动量

合集下载

第3章_动量与角动量

第3章_动量与角动量
m a/2
o
a/2 m V0 m
(a/2) mv0 =(a/2)2mv+(a/2)mv
设碰后杆转动的角速度为 则碰后三质点的速率为
m
V
V=a/2

a/2
o a/2
V
解出
=2v0/3a
作 业 3.2、3.22、3.23
f mac
f ac m
c
ac
f
1 2 1 f 2 xc ac t ( )t 2 m 2
作 业
3.1、3.5、3.11、3.19
22
§3.4 质点的角动量和角动量守恒定律 一、质点的角动量
L
L r P r m
L
角动量的大小
P

m
r
o
L rP sin mr sin
注意:同一质点相对于不同的定点,角动量可以不同。
在说明质点的角动量时,必须指明是对哪个点而言的。
二、质点的角动量定理
dL d r P 角动量对时间的变化率 dt dt


dB dA d ( A B) A B dt dt dt
t0
(积分形式) 方向? 重要性:动量定理将过程量的计算转化为 状态量的计算,比较方便。
例题1 质量为m的质点,以恒速率v 沿一正三角形的 三边顺时针运动一周。求作用于正三角形一顶点处质 点的冲量。
P 2
解:由质点的动量定理
m
I P2 P1
P 1 P 2 m

120
v M
m
解:
发炮前,系统在竖直方向上的外力有重力 G 地面支持力 N 而且 G N

大学物理课件 第3章 动量 角动量

大学物理课件 第3章   动量   角动量

例 如图所示,一个有四分之一圆弧光滑槽的大物体,质量为 M, 置于 光滑的水平面上。另一质量为m的小物体从圆弧顶点由静止开始下滑。 求当小物体m滑到底时,M滑槽在水平上移动的距离。
解 以 M和 m 为研究对象,其在水平方向不受外力(所受外力都 在竖直方向),故水平方向动量守恒。
设在下滑过程中,m相对于M的滑动速度为m , M 对地速 度为 M ,并以水平方向右为正,则有
t
问题 结果与m与槽M间是否存在摩擦有关系吗?
3. 质心运动定理
C
mii mc m i 1 质点系的动量 p mc
i 1
m
n
rC
mi ri
n i 1
m
n
i i
质点系的动量等于质点系的质量乘以质心的速度。 注 质点系的动量的两种表达式
n p mii , p mc
pA m j ,
pB mi
y
B
I AB pB pA m (i j )
C
pC m j
o
A
x
I AC pC pA 2m j
质点的动量定理
例 一质量为10kg的物体沿x轴无摩擦地运动,设t=0时,物体 位于原点,速度为零。设物体在力(F=3+4t)N作用下运动了3秒, 求此时它的速度和加速度。 解
3.2
角动量定理 角动量守恒定律
3.2.1 质点的角动量定理及守恒定律
1. 力矩
讨论
力F 对定点O 的力矩 Mo F r F
单位:牛 米(N m)
(1)力矩的大小和方向
所组成的平面,指向是由 180 的角转到 F 时的右手螺旋前进的方向
①方向垂直于 r 和 F o
r 经小于
x 方向: m sin m0 sin 0 y 方向: ( f mg )t m cos m0 cos sin 由第一式 0 sin

第3章动量角动量

第3章动量角动量
(3)动量守恒定律只适用于惯性系, 使用时所有速度必须相 对于同一惯性系。
(4)动量守恒定律是物理学中最普遍、最基本的定律之一。 在微观高速范围同样适用。
例3-3 如图,在光滑的水平面上,有一质量为M、长为l 的小车, 车上一端站有质量为m的人,起初m、M均静止,若人从车 的一端走到另一端,则人和车相对地面走过的距离为多少?
为ω,杆长均为l 。(2)如系统作加速转
动,系统的动量和角动量变化吗?
三、质点的角动量(动量矩)定理
Lrp

dL

d (r
p)
dr
p
r
dp
F
dt
dt
M
dL
dt
dt
dt
质点的角动量定理(微分形式)
质点所受合力对点O 的力矩, 等于质点对点O的角 动量的时间变化率。
M
dL
dt
改写
Mdt dL
t2 t1
F dt
p2
p1
(1)定理中的冲量指的是质点所受合力的冲量,或者质点所
受冲量的矢量和。
I
t2 t1
F合
dt
= =
t2 t1
(
F1+F2++Fn
)
d
t
t2 t1
F1dt
t2 t1
F2dt+

t2 t1
Fndt =
i 1
Ii
(2)冲量是过程量,动量是状态量,冲量的方向可用动量变化的
由动量定理 I p2 得 p1
(3) 2.7 m/s
(2)3s末质点的加速度
a(3) F (3) 1.5 m/s2 m
3.1.2 质点系的动量定理 动量守恒定律

大学物理动量与角动量

大学物理动量与角动量
恒力的冲量:
I F (t2 t1)
运动员在投掷标 枪时,伸直手臂,尽 可能的延长手对标枪 的作用时间,以提高 标枪出手时的速度。
变力的冲量:
I
t
2
F
(
t
)

dt
单位:N·s
t1
牛顿运动定律:
F

ma
F

d(mv)

dp
dt dt
动量定理的微分式:
dp
解:(1) 设沙袋抛到船上后,共同运动的初速度为V, 并设此运动方向为x轴正方向,忽略沙袋撞击船时受 水的阻力,则可认为沙袋+船在沙袋落到船上前后水 平方向动量守恒,因而有
(M m)V mv0
3分
V m v0
2分
Mm
(2) 由 k d x (M m) d v 得 d x M m d v
动量与角动量
研究: 力的时间积累作用
对平动——动量定理 对转动——角动量定理
基础:牛顿定律(牛顿力学)
1 动量
2 动量定理
3 动量守恒定律
*4 火箭飞行原理
*5 质心与质心运动定理 6 质点的角动量
7 力矩
8 角动量定理 角动量 守恒定律
2-2 动量守恒定律
动量
车辆超载容易 引发交通事故
车辆超速容易 引发交通事故
t
v2 x
mv 2
sin

Ft sin105
sin 0.7866 51.86 51.86 45 6.86
动量守恒定律
质点系的动量定理: t t0
Fidt P P0

当 Fi 0 时,

大学物理第三章动量与角动量分解

大学物理第三章动量与角动量分解

mg=Mgx/L
所以
F总=F+mg=2Mgx/L+Mgx/L=3mg
19
例2:(page72)一辆装煤车以v=3m/s的速率从煤斗下通过,每
秒钟落入车厢的煤为Δ m=500kg.如果使车厢的速率保持不
变,应用多大的牵引力拉车厢?
v
dm m F
20
例3:质量为M的滑块正沿着光滑水平地面向右滑动.一质量 为m的小球水平向右飞行,以速度 v 1 (相对地面)与滑块斜 面相碰,碰后竖直向上弹起,速度为 v (相对地面).若碰撞
F 可分解为两个分量 F//
与水对船的垂直阻力相平衡 与船平行,并指向船前进的方 向 10
例4.一篮球质量m = 0.58kg,从h = 2.0m的高度下落,到达 地面后以同样速率反弹,接触地面时间 t 0.019 s 。 求:篮球对地面的平均冲力 F 球对地
解:篮球到达地面的速率为:
f f’
m1
m2
F2
碰撞后两质点的速度分别为
1和 2
相碰时的相互作用内力为 f 和f
同时受系统外其它物体的作用外力为 F1和F 2
d P1 对质点m1: F1 f dt d P2 对质点m2:F2 f dt
两式相加,得
13
f f
d P1 d P2 F1 F2 f f dt dt
p 2mv 篮球接触地面前后动量改变(大小)为:
由动量定理有: F 地对球 t p 2mv 由牛顿第三定律有: F 球对地 F 地对球
v 2 gh 2 9.80 2 6.26 m/s
2mv 2 0.58 6.26 t 0.019 3.82 10 2 N

第3章 动量与角动量

第3章 动量与角动量

1) 人匀速运动,到达车尾时小车的速度为(由上式解得): u=l/t
v v0
m uv m l 0 M m M mt
2)车的运动路程为: 由于人匀速运动,即u为常量,故小车的运动速度v 也为常量。此时车的运动路程可用 s=vt 进行计算。
m l m s vt (v0 )t v 0 t l Mm t Mm
f AB F f
A
N
mA g
f BA
N AB mB g 外力: 推力F , A的重力mA g , B的重力mB g , 地面对质点系的滑动磨擦力f , 地面对质点质的支持力N . 内力: AB间的静摩擦力f AB和f BA , AB间的正压力N AB和支持力N BA
M 大小:M rF sin 方向:右手螺旋法则
由力矩的定义可知: M r F
2、角动量
O 定义: 一个质点相对于参考点 的角动量等于 质点位置矢量 与其动量mv 的矢量积。 r
o m
L
L r mv mv r
L
L
例:一个物体在空中炸成几块,在忽略空气阻力的情况下, 这些碎块受到的外力只有竖直向下的重力,因此它们的总 动量在水平方向上的分量守恒。(某方向合外力为零,则 该方向动量守恒)
4、动量守恒定律是由牛顿定律导出的,只适用于惯性 系。(更广义的动量守恒定律不依赖于牛顿定律,是 自然界中的基本定律)
例2、 如图,车在光滑水平面上运动,已知人的质量m, 小车的质量M ,车长l ,小车的运动速度v0 人逆车运动,方向从车头经时间t到达车尾. 求:1、若人匀速运动,他到达车尾时车的速度; 2、车的运动路程; 3、若人以变速率运动,上述结论如何? m 解:以人和车为研究系统,取 v0 u 地面为参照系。水平方向系统 M 不受外力作用,动量守恒。 x

第03章动量与角动量

第03章动量与角动量
第3章 动量与角动量
Momentum and Angular Momentum 主要内容 冲量与动量定理 动量守恒定律 火箭飞行原理 质心 质心运动定理 质点的角动量和角动量定理 角动量守恒定律 质点系的角动量定理
1
3.1 冲量与动量定理 Impulse and the Theorem of Momentum 1.力的冲量
dM (v u) ( M dM )(v dv )
d M dv u , M
vf
Mf
dv u v
i
Mi
dM M
M vf vi u ln M i u ln N f
20
火箭体对喷射的气体的推力:
dm (v u ) dm v F dt dm u dt
SI unit: kgm2/s or Js
e.g. 质点作圆周运动. mv
o
R
大小:mvR 对圆心: L 方向:⊙
37
2.力对固定点的力矩 定义:
M r F
O
力 F 对O点的力矩
大小:Fr 方向:右手螺旋规则
r
r
k z Fz i j y Fy
F
在直角坐标系中表示
o
o
xC 6.8 10
rC 6.8 10
12
m
mi
O
y
d
o d
H C
52.3
o
12
x
52.3
o
H
3.5 质心运动定理
The Theorem of Motion of the Center of Mass
质心运动的速度为
dri mi i mi drc i dt i c dt m m

大学物理 动量与角动量解读

大学物理 动量与角动量解读

t2 t1
F外
dt
P2
P1
—质点系动量定 理(积分形式)
系统总动量由外力的冲量决定,与内力无关。
用质点系动量定理处理问题可避开内力。 8
§3.2动量守恒定律 (law of conservation of momentum)
质点系所受合外力为零时,质点系的总动量
不随时间改变。这就是质点系的动量守恒定律。
zC
mi zi m
质量为权重的平均值。 17
二.几种系统的质心
● 两质点系统
· · m1
C× m2
r1
r2
● 连续体
z
dm
r
×C
rc m
0

x
m1 r1 = m2 r2
rC
r dm
m
xC
xdm
……m
18
● 均匀杆、圆盘、圆环、球,质心为其几何中心。
● “小线度”物体的质心和重心是重合的。
[例]如图示,求挖掉小圆盘后系统的质心坐标。 解:由对称性分析,质心C应在x轴上。
2
3.1 冲量与动量定理
冲量:力和力作用时间的乘积 (单位:牛顿·秒 (N·s))
恒力 变力
在 dt 时间内的元冲量: dI Fdt
在 t1至 t2 时间段内的冲量:
(力对时间的积累效应)
动量:质点质量 m 和速度 的乘积
P mv
单位:千克·米·秒-1 (kg·m·s-1) 3
一、质点的动量定理
经整理得: Mdv = -udM
d v u d M M
f
Mf dM
d v u
i
M Mi
速度公式:
vf
vi

第三章动量与角动量分解

第三章动量与角动量分解

dP
dt F
dt
dt
dL
v
mv
r F
dt
称:M r F
dL
v mv
rF
dt
为质点所受合外力对同一固定点o的合外力矩
大小:M=Frsin (为矢径与力之间的夹角)
方向:右手螺旋定则
单位v:mmNv
dL
=0
M
o
r
F
rF M
dt
M
dL
角动量定理:质点所受的合外力矩
解:卫星在运动中仅受地球的引力(其他引力比此小得多, 可忽略),该引力始终指向地心O,因而对O的外力矩为 零,所以卫星对O的角动量守恒。
卫星在近地点的角动量 L1 mv1 (R l1 )
卫星在远地点的角动量 L2 mv2 (R l2 )
因角动量守恒 mv1 (R l1 ) mv 2 (R l2 )
t
0 (N-mg)dt mvz mv0 m 2gh
Nt mgt m 2gh 6.5
N
1 2h
0.55 56
1
1
mg t g
t
5.5×102
△t为10-1s、10-2s、10-3s、10-4s 5.5×103
计算结果表明,撞击作用持续时间愈短,平均 冲击力N与重力之比就愈大。若作用的持续时间 只有10-4秒时,N比mg要大5500倍,相比之下 重力微不足道。因此,在许多打击和碰撞问题 中,只要持续作用时间足够短,略去诸如重力 这类有限大小的力是合理的。
I
t2
Fdt=P
mv2
- mv1
t1
质点所受合外力Biblioteka 冲量,等于该质点动量 的增量。这个结论称为质点的动量定理。

第3章 动量与角动量

第3章 动量与角动量

dp燃
E
例题 如图所示,设炮车以仰角发射一炮弹,炮车和炮弹的质 量分别为M和m,炮弹的出口速度为v,求炮车的反冲速度V。 v 炮车与地面间的摩擦力不计。

M
m
解 把炮车和炮弹看成一个系统。发炮前系统在竖直方向上 的外力有重力 G 和地面支持力 N ,而且 G N , 在发射过程中G N 并不成立(想一想为什么?), 系统所受的外力矢量和不为零,所以这一系统的总动量不守 E 恒。

Fx
t
冲量可表为
I x Fx t
§3-1 冲量与动量定理
t
E
质点系——多个质点组成的系统。(质点的集合)
质点系的总动量——每个质点动量的矢量和。即
p

i 1
N
pi

i 1
N
mi vi
设第 i 个质点受外力为 Fi ,受质点系其他质点的合力, 即内力为 f i , j f i ,1 f i , 2 f i ,i 1 f i ,i 1 f i , N
v M dm
v+dv M dm t+dt 时刻 x
t 时刻
由动量守恒定律
t 时刻 总动量
Mv (M dm)(v dv) dm(v u) Mv Mdv udm dmdv
t+dt 时刻 总动量
E
Mdv udm 0
dm dM
Mdv udM 0
第三章 动量与角动量
Momentum and Angular Momentum
E
本章主要内容
§3-1冲量与动量定理
§3-2动量守恒定律 §3-3火箭飞行原理

大学物理3_3 角动量 角动量守恒定律

大学物理3_3 角动量 角动量守恒定律


R 、 h1 、h2 和 v1 各值代入,得
2 6.13公里/ 秒
3 – 3 角动量 角动量守恒定律 第三章 刚体的转动 例3-8 两个转动惯量分别为 J1 和 J2 的圆盘 A和 B. A 是机器上的飞轮, B 是用以改变飞轮转速的离合器 圆盘. 开始时, 他们分别以角速度ω 1 和ω 2 绕水平轴 转动. 然后,两圆盘在沿水平轴方向力的作用下.啮合 为一体, 其角速度为 ω, 求 齿轮啮合后两圆盘的角速度. 解: 系统角动量守恒
( L mR )
2

LdL m gR cosd
3 – 3 角动量 角动量守恒定律
第三章 刚体的转动
LdL m gR cosd
2 3
由题设条件积分上式

L
0
LdL m gR
2
32
3


0
cosd
12
L mR (2 g sin )
L mR
2
2g 12 ( sin ) R
3 – 3 角动量 角动量守恒定律
第三章 刚体的转动
力的时间累积效应 力矩的时间累积效应 角动量定理.

冲量、动量、动量定理. 冲量矩、角动量、
刚体定轴转动运动状态的描述 L J Ek J 2 2 0, p 0 0, p 0
质点的角动量定理和角动量守恒定律 质点运动状态的描述 p mv Ek mv 2 2
2
航天器调姿
1

3 – 3 角动量 角动量守恒定律 第三章 刚体的转动 例3-6 如图所示,有一质量为 m1 、长度为 l 的均质细 棒,原先静止地平放在水平桌面上,它可绕通过其端点O 且与桌面垂直的固定轴转动,另有一质量为 m2 的水平运动 的小滑块,从棒的侧面沿垂直于棒的方向与棒的另一端A 相碰撞,并被棒反向弹回,设碰撞时间极短。已知小滑块 碰撞前、后的速率分别为 和 u ,桌面与细棒的滑动摩 擦系数为 。求:(1)从碰撞到细棒停止运动所需的时 间;(2)从碰撞到细棒停止运动,细棒转过的圈数。

3.2第三章-动量与角动量讲义

3.2第三章-动量与角动量讲义
初 F2 + F1 + F n dt = P末 − P初

F i = 0 则有 P末 = P初
动量守恒
i
dL =M= rF
角动量守恒
dt
若 M = 0 则有 L = r mv =常数
例:一个力学系统由两个质点组成,他们之间只有引力 作用。若两质点所受外力的矢量和为零,则系统:
动量守恒? 机械能守恒?角动量守恒?
质点在有心力作用下运动,角动
量守恒。
L = pr = mvr = 常量
r F
五、质点系的角动量
质元 i :质量 mi
Fi mi ri • fi
外力Fi 内力 fi
o
L = Li = ri pi = ri mvi
rj
fj •
Fj
mj
i
i
i
由质点的角动量定理 r F = M = dL
dt
mv0 (l0 + ) = ml0v sin( − )
1 2
mv02
+
1 2
k2
=
1 2
mv2
则有
v=
v02
+
k m
2
= arcsin v0 (l0 + )
l0v
A外+A内 = Ek末- Ek初
A外+A非保内 = E末- E初
复习
若 A外+A非保内=0
则有 E末=E初 机械能守恒定律
( ) 末
( ) 末
初 F2 + F1 dt = P末 − P初
或 注意:
I
=
P末

P初
……质点系的动量定理
a、外力可改变系统的动量,也可改变某一个质点的动

大学物理第3章_动量与角动量

大学物理第3章_动量与角动量
C
N N i 1 i 1
i 1
在任何参考系中,质心的动量都等于质点系 的总动量。
dvc mi ai m 4、质心的加速度 ac dt
N i 1
28
§3.6 质心运动定理和质心参考系
一、质心运动定理
f2外
p2
dP F m a c (惯性系) dt
i
内力可改变各质点的动量, 但合内力为零,对总动量无影 rj 响。 应用质点系动量定理不必 o 惯性系 考虑内力。
ri
f ij f ji
mj
pj
fj
13
证明:对第 i 个质点 d f ij fi d t pi j i 对质点求和
fi
pi
ri
2.火箭所受的反推力 研究对象:喷出气体 dm t 时刻:速度v (和主体速度相同),动量 vdm t +dt时刻:速度 v - u, 动量dm(v - u)
由动量定理,dt内喷出气体所受冲量
F箭对气dt = dm(v - u) - vdm = - F气对箭dt
由此得火箭所受燃气的反推力为
dm F F气 对 箭 u dt
3
§ 3.1 冲量与动量定理 力的时间积累称为冲量(impulse):
dI Fdt t I F (t )dt
t0
牛顿第二定律质点的动量定理: dI Fdt dp t I F (t )dt p p0
t0
动量定理常用于碰撞过程。
星(TEMPEL1)的彗核相撞。 据推算,撞击的强度相当于 4.5 吨 TNT 炸药造成的 巨大爆炸,它将会在彗核表面撞出一个约有足球场大

大学物理-动量与角动量

大学物理-动量与角动量
解:以小孔O为原点,绳对小球的拉力为有心力,其力矩为零。则小球对点的角动量守恒。
因:v = rw
则小球的动能增量为:
例3.18 证明开普勒第二定律:对任一行星,它的位置矢量(以太阳中心为参考点)在相等的时间内扫过相等的面积。
太阳对行星的引力为有心力,故行星角动量守恒,即 L 为常矢量,因此有:
角动量守恒:r1mv1=r2mv2 v1=(r2/r1)v2=1.2857v2
机械能守恒:
代入数据计算时,注意长度单位要统一使用m或km。
空间累积效应
时间累积效应
瞬时效应
动量定理
角动量定理
动能定理
功能定理
质点的角动量守恒定律

力矩
动量
角动量
冲量
冲量矩
力与动量
力矩与角动量
动量定理(冲量与动量)
角动量定理(冲量矩与角动量)
动量守恒:某一时间间隔内,质点系所受外力矢量和始终为零,…
角动量守恒:对固定参考点而言,质点受到的合力矩始终为零,…
例2-17:将质量为m 的小球系于轻绳一端,绳的另一端穿过光滑水平面上的小孔O 用手拉住。先使小球以角速度 w1 在水平面上做半径为 r1 的圆周运动,然后慢慢将绳下拉,使半径缩小为 r2 ,求在此过程中小球的动能增量。
力矩
O
力矩的分量式:
对轴的力矩
力矩为零的情况: (1)力 F 等于零; (2)力 F 的作用线与矢径 r 共线(即 sinj = 0 )
二、角动量定理
角动量 力矩
质点对某固定点的角动量随时间的变化率,等于质点所受的合力对该点的力矩。
表示成积分形式:
冲量矩(合力矩在Δt时间内对定点的冲量矩)
由对称性分析,质心C应在x轴上。

大学物理第三章动量与角动量学习资料

大学物理第三章动量与角动量学习资料

m’
已知μs
N
f
解:箱子是否下滑,决定于物体坠入
箱子时,在冲力的作用下箱子的受力
F
是否平衡.
α mg
刚好不下滑时:
m g f s s m c in o g s s tg
当一物体竖直坠入箱中,在冲力作用下,时的瞬间应满足: s ( m c o F g cs ) o ( m s s i F g s n ) i m n
解:篮球到达地面的速率为:
v 2 g h 2 9 .8 2 0 6 .2m 6 /s
篮球接触地面前后动量改变(大小)为:p2mv
由动量定理有: F 地对 t 球 p2 m v
由牛顿第三定律有: F球 对地 F地 对 球
2mv 20.586.26
t
0.019
3.82102 N
方向向上
10
例5.在斜面上放着一个盛有细沙的箱子,在摩擦力的作用 下箱子刚好不下滑.若有一物体m’从竖直方向坠入箱中,试 问在该物体的冲力作用下,箱子是否还能保持静止?
利用冲力:增大冲力,减小作用时间——冲床 避免冲力:减小冲力,增大作用时间——轮船靠岸时的缓冲5
应用举例: 例1.
例2.问题:人为什 么从高处跳到地面 时,要把腿弯一下?
6
例3. “船行八面风”---帆船靠风力推动前进,只要有风,不
管风从什么方向吹来,都可借助风力前进。
7
F风对帆 F横
F进
v1 v2 帆
F
x
F
y
F
z
dP x
t2 F x dt
dt
t1
dP y
dt dP z
dt

t2
t1 t2
t1

大学物理课件第3章 动量与角动量

大学物理课件第3章 动量与角动量

§3.3 动量守恒定律 质点系所受合外力为零, Σ 时间改变,即
Fi = 0 总动量不随
N P pi 常矢量
i 1
1. 合外力为零,或外力与内力相比小很多;
2. 合外力沿某一方向为零;
p i
i
const .
3. 只适用于惯性系; 4. 比牛顿定律更普遍的最基本的定律。
M r F

M F d F r sin
提问:力矩为0的情况?
力矩
Lrp
动量
N m 矢量性: r F
单位:
三、角动量定理
pr p v pr F Lr 角动量定理: r F M (力矩)
q
v
V
v sinq
v cosq V

解:设车相对地面的反冲速度为V,方向水平向左 炮弹相对地面的速度水平分量为 v cosq V mv cosq 水平方向动量守恒 m(v cosq V ) MV 0 解得V
炮弹相对地面的速度竖直分量为 v sinq
m M
v sinq tg v cosq V
t2
mg
3秒时物是否被拉起?
F cos f 0 N F sin mg 0 f N t1 1.9 s
I x 0.62 Kgm / s
t1
F
x
dt 1.12t (cos sin ) mg dt
3
I x mvx 0 0.62Kgm / s
6
h
v
0
N =
m 2gh
τ
m 工件
mg

大学物理第三章动量与角动量分解

大学物理第三章动量与角动量分解

相碰时的相互作用内力为 f 和f
同时受系统外其它物体的作用外力为 F1和F 2
d P1 对质点m1: F1 f dt d P2 对质点m2:F2 f dt
两式相加,得
13
f f
d P1 d P2 F1 F2 f f dt dt
d F1 F2 ( P1 P2 ) dt ( F1 F2 )dt d ( P1 P2 ) ( m1 1 m2 2 ) ( m1 10 m2 20 )
由牛顿第三定律有: f ij 0
i j i
15
d t d pi 所以有: ( Fi) i i 令 Fi F外 , pi P
则有:
F外 d t d P
F外 dP dt
i
i

质点系动量定理 (微分形式)

t2 F t1 外
m’ N
已知μs
解:箱子是否下滑,决定于物体坠入 箱子时,在冲力的作用下箱子的受力 是否
mgsin f s mg cos s tg
当一物体竖直坠入箱中,在冲力作用下,时的瞬间应满足:
s ( mg cos F cos ) ( mg sin F sin ) ma
力在时间上的积累效应:
平动 冲量,改变动量 转动 冲量矩,改变角动量
2
1、冲量(impulse)
定义:力对一段时间的积累
t2 大小: I = Fdt
t1
F F
方向:速度变化的方向 单位:N· s 0 t
量纲:MLT-1
微分形式: d I F d t d p
v 2 gh 2 9.80 2 6.26 m/s
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


i
N N dp p m 常矢量 则有 i iv i 0 , p i 1 i 1 dt
这一质点系的总动量保持不变。 说明:
守恒
动量守恒定律:当一个质点系所受的合外力为零时,
守恒条件:合外力为零。与内力无关。 冲击碰撞过程中,一般有 ,动量近似守恒。 f F 内力改变各质点的动量,但总动量不变。
2. 动量定理及动量守恒定律只适用于惯性系。
§3.2 动量守恒定律
3. 动量若在某一惯性系中守恒,则在其它一切惯性系 中均守恒。
4. 若某个方向上合外力为零,则该方向上动量守恒, 尽管总动量可能并不守恒。 5. 当外力<<内力且作用时间极短时(如碰撞),可认 为动量近似守恒。 6. 动量守恒定律比牛顿定律更普遍、更基本 ,在宏 观和微观领域均适用。 7. 用守恒定律作题,应注意分析 过程、系统和条件。
§3.2 动量守恒定律
质点系——多个质点组成的系统。(质点的集合)
质点系的总动量——每个质点动量的矢量和。即
p

p i
i 1 i 1
N
N
m iv i
设第 i 个质点受外力为 Fi ,受质点系其他质点的合力, 即内力为 f i, j f f f f f i , 1 i , 2 i , i 1 i , i 1 i , N
质点系的动量定理:
(积分形式)

t 0 i
F pp idt 0
微分形式:
(

i
F dt d p 或 i)

i
dp F i dt
定理表述:合外力的冲量等于质点系总动量的增量。
§3.2 动量守恒定律
dp F 考虑质点系的动量定理: i dt i F 如果质点系所受合外力为零 i 0
§3.1 冲量与动量定理
瞬时式
p m v —— 动量 dp —— 力的作用可以使动量变化。 F dt —— 力对时间的积累等于动量增量。 F dt d p
冲量(对dt)
力F 对时间间隔 0 t 的冲量为
I

t
0
Fdt
动量定理

p I F dt p p 或 F dt d p p p F dt d p 00 0 p 0 t
量子力学 相对论力学

第3章 动量与角动量
牛顿定律是瞬时的规律。
但在有些问题中, 如:碰撞(宏观)、 散射 (微观) … 我们往往只关心过程中力的效果 ——力对时间和空间的积累效应。 力在时间上的积累效应: 平动 冲量 动量的改变 转动 冲量矩 角动量的改变 改变能量 力在空间上的积累效应 功
t

t 0 i 0 i j i i i
t F dt i
f dt p p p p i , j i i 0 0
对任选的一对质点

i j i
fi, j 0
i I, j II f f 0 I, II II, I
t
0
§3.1 (状态量)
物体受到冲击,动量会明显改变。冲击 过程持续一般时间很短,因此冲击中物体受 力——冲力具有作用时间短、量值大的特点, 通常是变力。 Fx(t) 平均冲力:
1 tt F F t) dt x x( t t

Fx
§3.2 动量守恒定律

动量守恒定律的分量形式:
若 若 若
F F F
x
0, px 0, p y 0, pz
y z
m v m v m v
i i i
i ix i iy
常量 常量 常量
i iz
动量守恒可以在单一方向上守恒。 动量守恒定律在惯性系中成立。 动量守恒定律是自然界的普遍规律,它不依赖于牛顿 定律而成立。

j i
对第 i 个质点应用动量定理: 相加
t i 0
F dt
t i i 0 j i i i
§3.2 动量守恒定律
F f p i i, j dt i p i0 0 j i f dt p i , j i p i 0
动量是矢量!
作用在质量m=2kg的 12 t i( SI ) 例2. 力 F 物体上,使之从静止开始运动,则物体 在3秒末的动量应为 .
解:由动量定理,有

t2
t 1
F dt P P 2 2 1 P
0
3 54 ikg m / s P i12 tdt 2
微观粒子的实验(如电子转化为光子)
§3.2 动量守恒定律
t2
F外dt P P0
t1
动量定理
dP 微分形式? F dt
可以写成
0 P 当F C 外
动量守恒定律
吗? F m a
注意后面 的讲解。
讨论
1.动量守恒定律是牛顿第三定律的必然推论。
第3章 动量与角动量
本章主要内容
§3.1 §3.2 §3.3 §3.4 §3.5 §3.6 §3.7 §3.8 §3.9 冲量与动量定理 动量守恒定律 火箭飞行原理 质心 质心运动定理 质点的角动量和角动量定理 角动量守恒定律 质点系的角动量定理 质心参考系中的角动量
第3章
动量与角动量
动量和角动量不仅是经典力学,也是物理学中十 分重要的物理量,因为与它们相联系的守恒定律是自 然界普遍遵循的基本规律。 经典力学 牛顿运动定律 动量守恒定律 角动量守恒定律 牛顿运动定律
t
冲量可表为
Ix F t x
§3.1 冲量与动量定理
t
例1. 质量为m的物体,以初速 v0从地面抛出,
抛射角为30, 则从抛出到刚要落地的 P 过程中,(1) P ;(2) 的方向 为 .
解:
mv0
mv f
30 30
= P
大小:mv
0
方向:竖直向下
Attention:
相关文档
最新文档